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Abstract 6 
This paper evaluates the critical contribution of the industry sector to long-term decarbon-7 
isation, efficiency and renewable energy policy targets. Its methodological novelty is the 8 
incorporation of a process-oriented modelling approach based on a comprehensive tech-9 
nology database for the industry sector in a national energy system model for the UK 10 
(UKTM), allowing quantification of the role of both decarbonisation of upstream energy 11 
vectors and of mitigation options in the industrial sub-categories. This enhanced model is 12 
then applied in a comparative policy scenario analysis on the various target dimensions 13 
on emission mitigation, renewable energy and energy efficiency at both a national and 14 
European level. Ambitious emission cuts in the industry sector of up to 77% until 2050 15 
compared to 1990 can be achieved. Moreover, with a reduction in industrial energy de-16 
mand of up to 31% between 2010 and 2050, the sector is essential for achieving the over-17 
all efficiency commitments. The industry sector also makes a moderate contribution to 18 
the expansion of renewable energies mostly through the use of biomass for low-19 
temperature heating services. However, additional sub-targets on renewable sources and 20 
energy efficiency need to be assessed critically, as they can significantly distort the cost-21 
efficiency of the long-term mitigation pathway.    22 

Keywords: Energy system analysis; industry sector; emission reduction; renewable ener-23 
gies; energy efficiency; policy interaction 24 

1. Introduction 25 

In recent years, the number of national greenhouse gas (GHG) emissions mitigation targets and strate-26 

gies has increased considerably accompanied by a trend to implement these targets through a mix of 27 

different, often sector-specific, policy instruments [1]. In addition to limits on GHG emissions, many 28 

countries have formulated targets for the use of renewable energies and progress in energy efficiency 29 

making the issue of target and policy coordination essential [2]. Within the global effort of keeping 30 

the temperature rise below 2ºC, the UK introduced the Climate Change Act in 2008. Through this le-31 

gally binding framework the UK has formally committed to a GHG emission reduction of 80% by 32 

2050 compared to the level in 1990 and a portfolio of instruments, including an electricity market re-33 

form, energy taxes as well as incentive measures for renewable heat and energy efficiency in build-34 

ings has been introduced ([3] & [4]).  35 

In many past analyses on the possible pathways to reach these targets, a strong focus has been put on 36 

the evaluation of the mitigation potentials on the energy supply side, particularly the decarbonisation 37 

of the electricity sector. Demand-side analyses and modelling has generally focused on the more ho-38 

mogenous transport and buildings sectors. Yet, it is essential to consider the industrial sector in its 39 

contribution to energy policy goals and its interactions with the rest of the energy system.  40 

                                                           
1  Corresponding author: Birgit Fais, email: b.fais@ucl.ac.uk 
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At the global level, the industrial sector is responsible for over a third of energy demand and a slightly 41 

higher emissions share ([5] & [6]). In its 5th Assessment Report, the IPCC placed the industrial sector 42 

as the most pollutant end-use sector, even before buildings and transport [7]. In the UK, the industrial 43 

sector currently accounts for about a quarter of total greenhouse gas emissions (including indirect 44 

emissions from electricity use) and almost a fifth of final energy consumption with the most energy-45 

intensive subsectors (iron and steel, cement and other non-metallic minerals, non-ferrous metals, pulp 46 

and paper, chemicals) being responsible for more than two thirds of these emissions [8]. In the future, 47 

the industry sector will face the dual challenge of implementing low energy and low carbon technolo-48 

gies while simultaneously maintaining international competitiveness. In addition to the national ener-49 

gy and climate policy, the future development of the UK industry sector is also affected by the EU-50 

wide legislation which, in addition to emission reduction, sets explicit targets for the progress in ener-51 

gy efficiency and the use of renewable energies across the whole energy system ([9] & [10]). 52 

As discussed in detail in Chapter 2, assessing the possible contribution of the industry sector to a mul-53 

ti-faceted energy transition poses a considerable challenge given the heterogeneity of the sector in 54 

terms of the manufactured products, the production processes and technologies applied, all within a 55 

systems context of competing resources and alternate end-use applications of energy vectors. Bottom-56 

up energy system models constitute powerful tools to analyse long-term emission reduction pathways 57 

in a systematic manner with the advantages of including a high level of technological detail and tak-58 

ing all interactions within the energy system into account. Detailed modelling of actual production 59 

processes and accounting for the substantial differences between industrial subsectors is a bespoke 60 

process that can yield fresh insights, although often with exogenous assumptions on energy systems 61 

interactions. 62 

This paper has two primary objectives:  63 

1) to present a novel process-oriented modelling approach for the industry sector (the disaggregated 64 

hybrid module or DHM) integrating a comprehensive bottom-up technology database into a new-65 

ly developed national energy system model (UK TIMES Model or UKTM); and  66 

2) to assess the UK industry sector’s possible long-term contribution system-wide targets within the 67 

scope of a comparative scenario analysis of overlapping policies of decarbonisation, efficiency 68 

and renewable energy.  69 

Chapter 2 provides a review on the current modelling representation of the industry sector in an ener-70 

gy system context. Focusing on the UK as a modelling and policy exemplar, after a short description 71 

of UKTM, the new methodology for representing the industry sector in a more disaggregated manner 72 

is presented in Chapter 3. Chapter 4 outlines the overlapping policy analysis and the comparative sce-73 

nario assumptions. The main results of the scenario analysis, focusing on the industry sector, are out-74 

lined in Chapter 5. The paper concludes with a discussion of findings and policy implications in 75 

Chapter 6. 76 
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2. Modelling of the industry sector in an energy system context2 77 

Since the industry sector is a highly heterogeneous sector in terms of its energy use, modelling the 78 

future development of industrial energy demand as well as policy design is a substantial challenge 79 

[11]. Other energy end-use sectors, especially the residential and transport sector are in comparison 80 

more homogenous with respect to their energy service demands, such that modelling approaches in 81 

whole system models are generally more straightforward (cf. for example [12], [13], [14] for the resi-82 

dential sector; and [15], [16], [17] for the transport sector).  83 

A variety of recent studies have evaluated the energy savings and emission reduction potentials of 84 

different industrial subsectors from a sector-specific perspective (cf. for example [18], [19], [20], [21], 85 

[22], [23] & [24]). These analyses explore the industrial production routes in great detail, but look at 86 

the industrial subsectors in isolation. However, in order to evaluate the industry sector’s long-term 87 

contribution to emission mitigation and other energy policy targets, a more comprehensive modelling 88 

approach is required.  89 

On the other hand, bottom-up energy optimisation models which cover the entire energy system have 90 

long been applied to determine cost-efficient and consistent long-term pathways for a low-carbon en-91 

ergy transition and to analyse interactions and the competition for resources as well as low-carbon 92 

energy vectors in the system. Yet, given the scope and complexity of these models, traditionally a rel-93 

atively simple modelling approach for the industrial sector based on the different types of energy ser-94 

vice or end-use demands has often been chosen (see for example the representation in UK MARKAL 95 

[25] or in the global ETSAP-TIAM model [26]).  96 

This approach is generally characterized by the use of abstract process technologies which provide 97 

different types of energy services (like low or high temperature heat, motor drive, drying, etc.). That 98 

means that instead of representing the actual production steps and specific technologies required to 99 

produce a certain final product, the energy service demands and their potential provisions through 100 

different fuels are represented in a generic manner (usually using the same cost and technology as-101 

sumptions for each sub-sector). Each process technology has one specific fuel as input which is used 102 

to produce one specific energy service. In a second step, a dummy demand technology (not represent-103 

ing an actual production process) aggregates the various energy service demand categories (usually 104 

with fixed shares for each category) in order to produce the final end-use demand (usually specified in 105 

units of useful energy). Figure 1 provides a stylized representation of this approach.  106 

                                                           
2  This short review focuses on the representation of the industrial sector in technology-oriented, bottom-up 

energy system models. There are two additional main thrusts of industrial energy modelling that are im-

portant but are not the focus of this paper. Firstly, multi-regional input-output models analysing issues of di-

rect versus indirect emissions and the possible offshoring of energy use and resultant emission leakage (cf. 

for example [31], [32] & [33]). Secondly, macroeconomic modelling approaches focusing on the wider mac-

ro-economic implications of changed prices in the industrial subsectors and potential restrictions on industri-

al output (cf. for example [34], [35] & [36]). 
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 107 
Figure 1:  Example of an industrial modelling approach based on energy service demands  108 

The advantage of modelling by end-use demands is that the sector can be represented through a small 109 

number of components, while still allowing for the characterisation of energy uses and cross-sectoral 110 

substitutions. This approach is mainly suited to evaluate the potential for fuel switching in the indus-111 

try sectors. However, several shortcomings need to be taken into account when applying this method-112 

ology: 113 

 Given that the actual process technologies in the various industrial subsectors are not explicitly 114 

modelled, important technological constraints can often not be accounted for or only approximated 115 

with this approach. For example, the use of the electric arc furnace route in steel-making is limited 116 

by the availability of metal scrap.  117 

 This also implies that radical technological changes in the production processes, which are espe-118 

cially needed in the case of ambitious emission reduction targets, cannot directly be included in the 119 

model approach. This drawback becomes particularly evident when thinking about technologies 120 

with carbon capture and storage (CCS).  121 

 In addition, if the actual process technologies are not modelled, it is difficult to account for process 122 

emissions and, more importantly, to include mitigation options for these emissions.  123 

 Although energy systems models focus on energy flows, it is evident that materials are an im-124 

portant part of the system, especially in the industry sector. Such material flows can only be repre-125 

sented when the actual process technologies are modelled.  126 

In light of these problematic issues, attempts have been made in recent years to improve the represen-127 

tation of the industry sector in bottom-up energy system models. In general, it can be observed that 128 

modelling improvements are strongly focused on the energy-intensive subsectors. The European en-129 

ergy model PRIMES still represents the industry sector through end uses, but includes a large variety 130 

and differentiates them by subsector (e.g. sinter making in iron and steel) [27]. The energy-economy 131 

modelling system NEMS uses a detailed process flow approach for energy-intensive manufacturing 132 

industries with homogenous products, while for more heterogeneous subsectors the end-use approach 133 

is chosen [28]. The ETP model contains a stock accounting simulation model for five energy-134 

intensive sectors with a detailed representation of the process technologies in the different production 135 

routes [29]. Similar to the new approach chosen for UKTM described below, the JRC-EU-TIMES 136 
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model represents energy-intensive industries in a detailed, process-based manner and uses a generic 137 

structure based on end uses for the remaining industrial subsectors [30]. In all cases it is, however, 138 

difficult to obtain information on the underlying cost and technology assumptions used for the indus-139 

trial modelling approaches.  140 

The novelty of the modelling approach with UKTM consists mainly in its link to a comprehensive 141 

process-oriented database on industrial production processes and future potentials of innovative tech-142 

nologies. Thus, UKTM does not only provide a representation of the industrial sector with a higher 143 

level of detail on production technologies than most current energy system models, but this technolo-144 

gy data is based on a consistent and publicly available database. This also makes it easier to replicate 145 

the approach in other geographical energy system contexts.  146 

3. Model and methodological approach 147 

3.1. The national energy system model UKTM 148 

The quantitative scenario analysis is conducted with the new national UK TIMES energy system 149 

model (UKTM). UKTM has been developed at the UCL Energy Institute over the last two years as a 150 

successor to the UK MARKAL model [25], It is based on the model generator TIMES (The Integrated 151 

MARKAL-EFOM System), which is developed and maintained by the Energy Technology Systems 152 

Analysis Programme (ETSAP) of the International Energy Agency (IEA) [37].  153 

UK MARKAL and now UKTM have been major underpinning analytical frameworks for UK energy 154 

policy making and legislation from 2003 to 2013 ([38], [39], [40] & [3]). With the aim to increase the 155 

transparency in energy systems modelling and to establish an active user group – including key deci-156 

sion makers – an open source version of UKTM will be released in 2015 which will be updated on a 157 

regular basis. Moreover, UKTM will continue to be the central long-term energy system pathway 158 

model used for policy analysis at the Department of Energy and Climate Change (DECC) and the 159 

Committee on Climate Change (CCC), including the 5th Carbon Budget Report which sets the limit on 160 

GHG emissions in the UK for the period from 2028 to 2032 and feeds into the UK’s negotiating posi-161 

tion at the United Nations Climate Change Conference (COP 21) in December 2015. First research 162 

outputs based on UKTM are [41] and [42].  163 

UKTM is a technology-oriented, dynamic, linear programming optimisation model representing the 164 

entire UK energy system (as one region) from imports and domestic production of fuel resources, 165 

through fuel processing and supply, explicit representation of infrastructures, conversion to secondary 166 

energy carriers (including electricity, heat and hydrogen), end-use technologies and energy service 167 

demands. Generally, it minimizes the total welfare costs (under perfect foresight3) to meet the exoge-168 

nously given sectoral energy demands under a range of input assumptions and additional constraints 169 

and thereby delivers an economy-wide solution of cost-optimal energy market development. 170 

The model is divided into three supply side (resources & trade, processing & infrastructure and elec-171 

tricity generation) and five demand sectors (residential, services, industry, transport and agriculture). 172 

All sectors are calibrated to the base year 2010, for which the existing stock of energy technologies 173 

and their characteristics are taken into account. A large variety of future supply and demand technolo-174 

gies are represented by techno-economic parameters such as the capacity factor, energy efficiency, 175 

                                                           
3  UKTM is run in a dynamic manner. The assumption of perfect foresight means that all investment decisions 

in each period are made with full knowledge of the input assumptions for future periods (e.g. on fuel prices 

or technology costs). 
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lifetime, capital costs, O&M costs etc. Moreover, assumptions are laid down concerning energy pric-176 

es, resource availability and the potentials of renewable energy sources, etc. UKTM has a time resolu-177 

tion of 16 time-slices (four seasons and four intra-day times-slices). In addition to all energy flows, 178 

UKTM tracks CO2, CH4, N2O and HFC emissions. For more information on UKTM see [43]. 179 

3.2. New modelling approach for the industrial sector: disaggregated hybrid module 180 

The new industrial sector module in UKTM is composed of eight subsectors4. A more detailed model-181 

ling approach has been incorporated for the most energy-intensive branches of the UK industry, while 182 

for the remaining sectors the already mentioned conventional methodology based on aggregated ser-183 

vice demands (ASD) is maintained. See Figure 2 for a simplified structure of UKTM and the new in-184 

dustrial modelling approach. 185 

The development of a more detailed, process-oriented modelling approach for the industry sector de-186 

pends hugely on the availability of comprehensive and reliable data on current and future industrial 187 

production process. The new industrial module in UKTM is based mainly on the technological and 188 

economic data provided in the Usable Energy Database (UED). It provides both the baseline energy 189 

use and emissions by technology in 2010 and a wide range of possible future improvement technolo-190 

gies for a number of energy-intensive industry sectors in the UK [44]5. One of the major challenges in 191 

linking the UED to UKTM was to select the most relevant future technology options (as the UED 192 

provides up to 50 options per sub-sector) and represent them correctly in an energy systems modelling 193 

context. This was done on the basis of their energy or emissions saving potential and the associated 194 

costs. Highly uncertain technologies have been constrained or fully excluded from the modelling ap-195 

proach. 196 

Based on the UED, the energy-intensive industry sectors iron & steel, cement and paper are modelled 197 

in a process-oriented manner, meaning that the actual production processes are represented in the 198 

model. With respect to future technology choices, different options to reduce energy demand and 199 

emissions are taken into account: (1) exploitation of already commercial technology options with 200 

higher energy efficiency or less carbon-intensive energy inputs, e.g. a stronger switch to the electric 201 

arc furnace steelmaking route, the use of precalciners and kilns with increased waste utilisation in ce-202 

ment production or autothermal reforming in ammonia production; (2) improvement potentials for 203 

already installed process technologies, e.g. heat recovery in different sectors, scrap preheating in elec-204 

tric arc furnaces or online moisture management in the paper industry and (3) more radical process 205 

changes, e.g. carbon capture and storage technologies (CCS), low-carbon cement options, alternative 206 

steelmaking routes (MIDREX, HISARNA, etc.) or Fischer-Tropsch processes in steam cracking. 207 

Growth constraints are put on all major technology groups to ensure realistic future technology de-208 

ployment rates.  209 

                                                           
4  Mining and refining processes are included in the resources & trade and the processing sectors of UKTM. 
5  The UED can be downloaded here: http://data.ukedc.rl.ac.uk/cgi-bin/dataset_catalogue/view.cgi.py?id=15 

http://data.ukedc.rl.ac.uk/cgi-bin/dataset_catalogue/view.cgi.py?id=15
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 210 
Figure 2:  Overview of the UKTM Energy Systems Model and the Integration of the new industrial model-211 

ling approach 212 

The chemicals sector is highly heterogeneous. In the model, it has been decided to separate the pro-213 

duction of high value chemicals (olefins) and ammonia and model these subsectors in a process-based 214 

manner. High value chemicals are responsible for about a quarter of energy demand of the entire 215 

chemicals sector and also consume a high share of fuels for non-energy use. The separate modelling 216 

of ammonia is of particular importance to take the process-related emissions of this subsector into 217 

account. 218 

The remaining industrial subsectors (other chemicals, non-ferrous metals, other non-metallic minerals, 219 

food, drink and tobacco as well as other industries), which are either comparatively small (in terms of 220 

their energy demand and/or GHG emissions) or less energy intensive and have a highly heterogeneous 221 

production structure, are modelled using the traditional ASD approach described above based on dif-222 

ferent energy service demand categories. The data on the current industrial energy demand according 223 

to different energy service categories is taken from [45]. In the model, a differentiation is made be-224 

tween the six most important energy services (high temperature processes, low temperature processes, 225 

drying/separation, motor drive, refrigeration, and others). The technology and cost data for the various 226 

process technologies in these subsectors are mainly taken from the previous UK MARKAL model 227 

with updated cost data for low temperature heat and drying/separation processes. 228 

4. Policy assumptions and scenario description 229 

The scenario analysis with UKTM is based on standard socio-economic assumptions, most important-230 

ly an average GDP growth rate of 2.4% p.a. [46] and a rise in population of 0.5% p.a. [47] over the 231 

period from 2010 to 2050. From that, consistent drivers for the various energy service demands in the 232 

end-use sectors are developed taking also a variety of national forecasts on the development of house-233 

hold growth, employment, transport demand, etc. into account. The demand projections for the indus-234 

try sector are mainly based on the econometric DECC Energy and Emissions Projections model 235 
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(EEP)6 (Error! Reference source not found.). It has to be noted that in case of the process-oriented 236 

sectors the demand projections describe changes in aggregate output, while in the case of the remain-237 

ing sectors both changes in output and energy intensity are taken into account. 238 

Table 1: Demand projections for the industry sector in UKTM (based on the DECC EEP model) 239 

 240 

The assumptions for fossil fuel prices are based on results from the global energy system model 241 

TIAM-UCL [48] with a world market price for crude oil of 90$7 per barrel in 2050. The availability 242 

and costs for bio-energy, both domestic resources and imports, are adopted from [49] (medium as-243 

sumptions of the Extended Land Use Scenario). With respect to future technology costs, exogenous 244 

learning rates are applied, especially in the case of less mature electricity and hydrogen technologies, 245 

assuming that the UK is a price taker for globally developing technologies. A global discount rate of 246 

3.5% p.a. for the first 30 years and 3% afterwards is used based on [50]. In addition, sector-specific 247 

discount rates are included to reflect the varying private costs of capital by sector (10% for all energy 248 

supply sectors as well as the industry, agriculture and service sectors, 7% for transport and 5% for the 249 

residential sector; based on [51] and [52]). In order to take into account adjustments in energy service 250 

demand due to changes in energy prices, the elastic demand variant of TIMES is used [37]. The long-251 

run own-price elasticities that are attached to the demand categories are based on [53] and range be-252 

tween -0.03 and -0.7. 253 

With the aim to assess the contribution of the UK industry sector to major energy and climate policy 254 

targets, the comparative scenario analysis takes both the national climate policy framework and the 255 

overarching policy targets on EU level into account. In light of the rising number of targets and 256 

measures in energy and climate policy, the issue of policy interactions gains in importance and must 257 

be accounted for when aiming at a coordinated and consistent policy mix [54]. Modelling multiple 258 

policy targets and especially instruments increases the complexity of the scenario analysis but pro-259 

vides valuable insights ([55] & [56]). The policy scenarios in the analysis at hand are constructed such 260 

that the interactions between the overall GHG reduction target and the sub-targets on energy efficien-261 

cy and renewable energies can be evaluated (see Table 2). 262 

                                                           
6  A description of the DECC EEP model can be found in [65]. The actual model runs underlying the demand 

projections for UKTM have not been published.  
7  All monetary values stated in this paper are in real terms, with 2010 as base year. 

2010 2015 2020 2030 2040 2050

1 0.92 0.90 0.87 0.83 0.80

1 1.01 1.01 1.00 0.97 0.89

1 0.90 0.87 0.81 0.75 0.70

Chemicals 1 0.94 0.92 0.89 0.87 0.84

1 0.92 0.90 0.87 0.83 0.80

1 1.01 1.01 1.00 0.97 0.89

1 0.92 0.96 1.03 1.12 1.20

1 0.84 0.83 0.80 0.78 0.75

Paper and paper products

Non-ferrous metals 

Other non-metallic minerals 

Food, drink and tobacco 

Other industries 

Demand driver, 2010 = 1

Iron and steel

Cement
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Table 2: Policy scenario overview  263 

Scenario 
name 

National  
GHG reduc-
tion target 

EU Emission 
Trading 

Energy effi-
ciency target 

Renewables       
 target 

BASE No long-term policy targets 

GHG 

-80% until 
2050 com-
pared to 

1990 

- - - 

GHG_RE 
Carbon prices 

for the ETS 
sector and the 
Non-ETS sec-
tor until 2030 

- 
Renewable share: 15% in 2020, 

20% in 2030, 50% in 2050 

GHG_EE 
Annual reduc-
tion rate for   
final energy 

consumption: 
0.9%  

- 

GHG_RE+EE 
Renewable share: 15% in 2020, 

20% in 2030, 50% in 2050 

In addition to the baseline scenario BASE, which assumes no long-term energy or climate policy tar-264 

gets and is used as a benchmark, Table 2 details four low-carbon scenarios with varying assumptions 265 

on the consideration of the EU targets on emission mitigation, energy efficiency and the use of renew-266 

able energy sources are analysed. This allows both to assess the impact of the various targets on the 267 

UK energy system in general as well as the industry sector in particular and to explore the interactions 268 

between the various target dimensions. In the scenario GHG only the national legislation on GHG 269 

emission limits is accounted for, including the four five-yearly carbon budgets that have been fixed so 270 

far until 2027 [4] and the long-term target of a -80% reduction until 2050 compared to 1990. In order 271 

to give the model flexibility with respect to the timing of emission reductions the long-term target is 272 

implemented via a cumulative budget constraint which results in the same total amount of emissions 273 

as a linear reduction pathway to -80% until 2050 would.  274 

The three other low-carbon scenarios also consider the EU regulations on emission reduction in form 275 

of the European Emissions Trading System (EU ETS) and the national reduction targets for the non-276 

ETS sectors as stipulated in the Effort Sharing Decision [57]. Modelling supranational emission trad-277 

ing schemes in national energy system models such that both the certificate price and the national 278 

contribution to emission reduction are reflected correctly is relatively complex [55]. Here a simplified 279 

approach both for the ETS and the Non-ETS sector is chosen by setting exogenous carbon prices 280 

based on the central projections of the Supplementary Appraisal Guidance on valuing energy use and 281 

greenhouse gas emissions from the DECC / HM Treasury Green Book [58]. It is assumed that the sec-282 

tor-specific EU ETS will remain in force until 2030 before it is substituted by a wider emission con-283 

trol system which is reflected in the model by the long-term national target of -80%. In the EU ETS, 284 

certificate prices are projected to stay at a comparatively low level of about 5 £/ton of CO2eq until 285 

2020 and to rise gradually to 72 £/ton of CO2eq until 2030. For the non-ETS sectors, carbon prices 286 

increase from 57 £/ton of CO2eq in 2015 to 72 £/ton of CO2eq in 2030 (thus converging with the EU 287 

ETS).  288 

In addition to emission reduction, the EU Climate and Energy Package [9] specified separate targets 289 

for energy savings and the use of renewable sources acknowledging their dominant role in emission 290 
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mitigation. In line with these “20-20-20” targets8, the UK committed to raise the share of renewable 291 

sources in gross final energy consumption to 15% until 2020 compared to 5% in 2013 [59] and to cut 292 

final energy consumption by 18% compared to the 2007 business as usual projection for 2020 [60]. 293 

Similar EU-wide goals for 2030 were decided in 2014, with a GHG emission reduction of at least 294 

40%, a minimum renewable share of 27% and an increase in energy efficiency of at least 27% [10]. 295 

No national targets have been fixed for 2030. For this scenario analysis, the 2030 renewable target for 296 

the UK has been determined based on the relation between the EU and the UK targets for 2020 result-297 

ing in a renewable share in gross final energy consumption of 20.25%. For the reduction in final ener-298 

gy consumption, the EU target of 27% has been directly applied to the UK. Compared to 2010, this 299 

relates to a reduction in final energy consumption (excluding non-energy fuel use) of 8% until 2020 300 

and of 16% until 2030.  301 

There is less clarity on the EU-wide targets on renewable energies and energy savings after 2030. In 302 

the scenario assumptions, the annual reduction rate in final energy consumption of 0.9% between 303 

2010 and 2030 is extrapolated until 2050 leading to a fall in the UK’s final consumption of 30% until 304 

2050. Moreover, a minimum renewable share of 50% is assumed for 2050 which implies a compara-305 

tively conservative target level [61]9. In the three low-carbon scenarios reflecting EU energy and cli-306 

mate policy, GHG_EE, GHG_RE and GHG_RE+EE, different combinations of the energy efficiency 307 

and renewable targets for the UK are included.  308 

5. Results of the comparative scenario analysis 309 

5.1. Overall energy consumption in the industry sector 310 

First of all, the development of total final energy consumption in the UK industry sector under the 311 

different scenario assumptions is given in Figure 3. In 2010, industrial energy demand is dominated 312 

by natural gas (36%) and electricity (27%) and is responsible for about 20% of total final energy de-313 

mand. Already in the base case industrial energy consumptions drops by almost a quarter (315 PJ) 314 

between 2010 and 2050. This can be attributed to the expected decline in production (responsible for 315 

about 12% of the reduction, cf. Error! Reference source not found.), the shift to high-value, less 316 

energy-intensive subsectors, and as some of the modelled energy efficiency measures become cost 317 

efficient in the base case due to the rise in fossil fuel prices.  318 

When implementing the 80% GHG reduction target, total final energy consumption in the UK indus-319 

try sector remains at about the same level as in the base case over the projected period. Here, two op-320 

posing trends need to be taken into account. On the one hand, a stronger emphasis is put on energy 321 

efficiency measures, especially in the paper industry and by using more efficient boilers in the less 322 

energy-intensive subsectors. On the other hand, the use of CCS technologies in the iron and steel, ce-323 

ment and chemicals industries from 2030 onwards raises the energy demand in these sectors com-324 

pared to the base case. Natural gas remains the dominant fuel for the provision of low temperature 325 

                                                           
8  On the European level, the targets are: (1) a reduction of GHG emission of 20% compared to 1990; (2) a 

renewable share of 20% in gross final energy consumption and (3) a reduction of energy consumption of 

20% compared to a previously specified baseline. 
9  No upper limit is put on the share of intermittent renewables in electricity generation. A variety of studies 

have shown that renewable shares of up to 80% would be technically feasible ([66], [67] for the UK, [68] for 

the European Union) – and even at manageable cost. While the necessary back-up capacity for intermittent 

renewables is accounted for in UKTM, it has to be noted that other system effects and costs (in terms of re-

quired storage capacity, grid expansion and demand response) are not fully reflected in such a comprehen-

sive energy system model. 
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heat. Moreover, a small amount of hydrogen is used in boilers from 2045 onwards which is produced 326 

from natural gas reforming and biomass gasification in centralized dedicated plants with CCS.  327 

The comparative scenario analysis shows that in the industry sector the influence of the additional EU 328 

targets on renewable sources and energy efficiency only becomes visible after 2030. While in the sce-329 

nario GHG the industrial demand for biomass remains on almost the same low level as in the base 330 

case, in GHG_RE biomass contributes with 210 PJ (22%) to industrial energy consumption (mainly 331 

for the provision of low-temperature heat) in 2050 which is almost three times more than in GHG. 332 

Furthermore, the implementation of the renewable target also leads to a considerable increase in in-333 

dustrial electricity use due to the substantial contribution of electricity generation to the renewable 334 

share (further discussed in Chapter 5.4).  335 

The implementation of the energy efficiency target (scenario GHG_EE) only triggers significant addi-336 

tional energy savings in the industry sector after 2040 highlighting that further efficiency efforts in the 337 

industry sector are quite costly. The 10% decrease in final energy demand in the scenario GHG_EE 338 

compared to GHG in 2050 can be mainly explained by the reduced use of CCS technologies in the 339 

chemicals and cement industries. The scenario results also show that no hydrogen is used in the indus-340 

try sector when the efficiency or the renewable target is implemented. This is due to the fact that the 341 

low-carbon generation of hydrogen with CCS is no longer needed as mitigation option because of the 342 

additional efforts in terms of energy efficiency or renewable energies.  343 

 344 
Figure 3: Final energy consumption in the UK industry sector 345 

The scenario GHG_RE+EE, which complies both with the renewable and the energy efficiency target, 346 

exhibits a combination of the effects observed for the industry sector in GHG_RE and GHG_EE with 347 

an increased use of biomass and limited deployment of CCS. Due to the competition with centralized 348 

zero-carbon electricity generation options and the limited availability of bioenergy, a general down-349 

ward trend in the use of industrial CHP plants can be observed in all GHG scenarios after 2020 with a 350 

slightly higher contribution in the scenarios where the efficiency target is implemented.10  351 

                                                           
10  Please note that several sensitivity analyses have been conducted on key input assumptions in UKTM (most 

importantly on the availability of low-carbon electricity options, biomass resources, fossil fuel prices, tech-
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5.2. Technology trends in the most energy-intensive industrial subsectors 352 

The main added value of the new industrial modelling approach is the increased process-level detail in 353 

the most energy-intensive subsectors. The representation of individual technologies and production 354 

routes provides more clarity on how substantial transition pathways can actually be achieved and al-355 

lows to analyse the interaction between different mitigation options (e.g. fuel switching vs. efficiency 356 

improvements vs. CCS). To highlight the additional insights that this new modelling approach can 357 

deliver, the final energy consumption for those sectors which are modelled in a process-oriented man-358 

ner in UKTM is shown in Figure 4. In addition, detailed figures on the technology evolution for the 359 

most important production steps in these sectors under the different scenario assumptions can be 360 

found in the Annex (see Figure A-1 to A-5).  361 

About three quarters of the steel production in the UK is currently produced through the coke oven - 362 

blast furnace route, while the remaining share relies on the substantially less energy and emission in-363 

tensive electric arc furnace route. The expansion of the latter option is, however, constrained in the 364 

model due to the limited availability of metal scrap. Because of the comparatively long technology 365 

lifetimes and the current overcapacities in the UK steel industry, hardly any differences in the sector’s 366 

final energy consumption can be observed between the scenarios in the mid-term. After 2030, a shift 367 

to more efficient blast furnaces (top-gas recovery and HIsarna steelmaking processes) is cost efficient 368 

both in the base case and the low carbon scenarios, with the difference that in the GHG scenarios the 369 

CCS variants of these production processes are installed. In the iron & steel sector, CCS capacities are 370 

less affected by the implementation of the energy efficiency target than in other energy-intensive sub-371 

sectors. With respect to the electric arc furnace route, a shift to Comelt furnaces occurs in all low-372 

carbon scenarios. Other new production technologies, like the ULCORED or MIDREX direct reduced 373 

iron route, do not become competitive. In general, the technology choices are quite similar under the 374 

different scenario settings (Figure A-1). Differences in the fuel use occur with respect to boilers: 375 

while hydrogen boilers are used after 2040 in the central GHG scenario, they are displaced by natural 376 

and blast furnace gas in the scenario GHG_EE (as hydrogen production with CCS is no longer re-377 

quired as mitigation option) and by biomass when the renewable target is implemented. 378 

In the UK cement industry both semi-wet, semi-dry and dry kilns are currently in use. The first two 379 

types will be gradually substituted by the more efficient dry kilns in the future. Apart from coal, large 380 

amounts of industrial waste are used in these kilns. The use of precalciners as well as the option to 381 

reduce the amount of clinker required per unit of cement by substituting for other materials will be 382 

extended considerably under all scenario settings. From 2025 onwards, the more energy efficient flu-383 

idised bed kilns become competitive in all scenarios and are deployed with increased waste utilisation 384 

in the scenarios with the renewable target. In contrast to the iron and steel industry, the long-term de-385 

velopment of the cement sector is strongly influenced by the implementation of the energy efficiency 386 

target (Figure A-2), showing the completely different dynamics of these sectors, which can only be 387 

                                                                                                                                                                                     
nology cost, etc.). Unfortunately, these additional analyses cannot be discussed in detail here. To summarize, 

the industry sector reacts relatively sensitive to the electricity price (if relevant low-carbon electricity options 

like nuclear and CCS are removed) switching to a higher use of biomass and even stronger efforts in terms 

of energy efficiency. Constraints on biomass availability only play a crucial role in the scenarios with re-

newable target (putting an even stronger weight on renewable electricity generation). The hydrogen use in 

the industry sector depends strongly on the availability and cost of hydrogen production in centralized CCS 

plants, while the removal of CCS in industry leads to a higher trend to electrification. The industry sector is 

also relatively sensitive to the gas price, leading to a stronger use of biomass and electricity in cases with 

high fossil fuel prices. Comparatively small changes occur when technology costs are increased, given the 

scale of the decarbonisation challenge.  
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analysed by using a process-oriented approach. While heavy reliance is put on kilns with CCS in the 388 

scenarios GHG and GHG_RE, carbon capture disappears almost completely in the scenarios comply-389 

ing with the efficiency target. As an alternative mitigation option UKTM contains a “low-CO2” ce-390 

ment production process representing technologies like Novacem, E-Crete, Celitement or Aether. Due 391 

to the high uncertainty of these technologies, relatively high cost assumptions are laid down and their 392 

share in total cement production is limited to 20% in 2050. Nevertheless, in order to fulfil the target 393 

on final energy consumption, this low-carbon option is exploited in the scenarios GHG_EE and 394 

GHG_RE+EE. 395 

For the paper industry, the modelling approach concentrates mainly on improvement options for the 396 

existing production technologies. While none of these efficiency options are applied in the base case, 397 

a strong increase in energy efficiency in paper production is realized in all low-carbon scenarios. The 398 

most prominent efficiency options include online moisture management, the switch to impulse drying, 399 

as well as several improvements to the press section. With the efficiency target in place, a gradual 400 

shift to the alternative production route dry sheet forming also occurs after 2030 (Figure A-3). Due to 401 

the large demand for low temperature heat, the paper industry takes a prominent role in the use of bi-402 

omass when the renewable target is introduced. The equally high biomass demand in the base case 403 

can be explained by the availability of low-cost bioenergy resources (which come directly from the 404 

paper production and recycling processes) for which in all the low-carbon scenarios the paper industry 405 

has to compete with alternative, potentially more valuable usage options (especially in combination 406 

with CCS). Similar to the iron and steel industry, hydrogen boilers are deployed after 2040 in the cen-407 

tral GHG case, but disappear in the other low-carbon scenarios as the mitigation option of using of 408 

low-carbon hydrogen (produced in centralized CCS plants) is replaced by the additional efforts in 409 

terms of energy efficiency and/or renewable energy use.  410 
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 411 
Figure 4: Final energy consumption in the energy-intensive industrial subsectors in UKTM 412 

In the chemicals industry, the production of high value chemicals (olefins) and of ammonia are mod-413 

elled in a process-oriented manner. In both of these sectors, emission mitigation is mainly achieved 414 

via CCS options if no additional requirements in terms of energy efficiency are made. Otherwise, a 415 

switch to the highly efficient autothermal steam reforming in ammonia production can be observed 416 

(Figure A-4). Radical process changes in steam cracking are only realized after 2040 with a limited 417 

uptake of Fischer-Tropsch steam crackers in the scenarios GHG_EE and GHG_RE+EE (Figure A-5). 418 

5.3. The industry sector’s contribution to emission reduction 419 

When looking at emission mitigation, the first relevant insight is that, based on the cumulative budget 420 

fixed for 2028 to 2050, in none of the low-carbon scenarios are overall GHG emissions reduced by 421 

80% in 2050 compared to 1990 (maximum of -74% in the scenario GHG_EE). With the cumulative 422 

approach, early action is favoured such that especially between 2030 and 2040 higher emission cuts 423 

are realised than a linear reduction path would imply thereby avoiding investments in additional, cost-424 

ly abatement options in 2050.  425 

As expected, emission mitigation is dominated by the electricity sector where in the scenarios GHG 426 

and GHG_EE even negative emissions are achieved after 2030 through the use of biomass CCS 427 

plants11 (Figure 5). The implementation of the renewable target increases the competition for the 428 

scarce biomass resources leading to a shift to wind and (to a much smaller extent) solar energy and a 429 

                                                           
11  Biomass resources are assumed to be carbon-neutral in the model following the bioenergy emission account-

ing approach of the EU Renewable Energy Directive [63]. 
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slightly higher emission level in electricity generation in 2050. In relative terms (lower part of Figure 430 

5), the industry sector reaches the second highest GHG emission reduction between 2010 and 2050 431 

across sectors in those scenarios where the energy efficiency target is not implemented (up to -77%). 432 

As mentioned before, the constraint on total final energy consumption leads to a lower deployment of 433 

industrial CCS plants while at the same time emission mitigation in the residential and transport sec-434 

tors is raised. In absolute terms (upper part of Figure 5), the industry sector takes a less prominent role 435 

with the emission reduction in 2050 of -50 Mt CO2eq in the scenario GHG. The absolute emission 436 

reduction figures also reveal the negative emissions generated in hydrogen production through the use 437 

of biomass CCS in 2050.  438 

 439 
Figure 5:  Absolute (top) and relative (bottom) GHG emission reduction between 2010 and 2050 by sector 440 

With respect to emission mitigation, the strength of the new process-oriented modelling approach can 441 

be identified in the addition of crucial mitigation options, especially to the energy-intensive subsec-442 

tors. This increases the confidence in the actual feasibility of these mitigation pathways. Also, when 443 

comparing the results at hand with previous energy system analyses with UK MARKAL, it becomes 444 

evident that the contribution of the industry sector to decarbonisation has clearly increased [62]12.  445 

5.4. The industry sector’s contribution to renewable targets 446 

The EU target on the minimum share of renewable sources in gross final energy consumption can be 447 

complied with in three different ways: (1) raising the contribution of renewables to electricity genera-448 

tion; (2) increasing the share of biofuels in the transport sector and (3) extending the direct use of bio-449 

energy and other renewable sources for heating and cooling in the residential, services and industry 450 

sector (Table ). With the new process-oriented modelling approach, additional deployment options for 451 

biomass are represented in the industry sector, most importantly kilns with biomass and waste utiliza-452 

tion in the cement sector, steam crackers in the chemicals industry and industrial CHP plants (both for 453 

solid biomass and biogas).   454 

                                                           
12  For scenarios with a -80% CO2 reduction target, the analyses with UK MARKAL in [62] yielded changes in 

industrial final energy demand ranging from -10% to +5% and industrial CO2 reductions ranging from 21% 

to 58% by 2050 compared to 2010. 
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The scenario analysis at hand shows that renewable electricity generation will play a dominant role in 455 

fulfilling the renewable target. In the scenarios GHG_RE and GHG_RE+EE a rapid increase in the 456 

renewable share in electricity production from 7.4% in 2010 to up to 73% in 2050 is realized, mainly 457 

based on onshore and offshore wind energy. Shares of intermittent sources in electricity generation of 458 

up to 66% will have substantial impacts on the electricity system. In UKTM, this is reflected in the 459 

significant amount of back-up capacity required in the scenarios with renewable target (more than 460 

50 GW of open cycle gas turbines in 2050 run at very low capacity factors).  461 

In the two low-carbon scenarios without minimum renewable requirements much more reliance is put 462 

on nuclear energy. Only in the mid-term where the expansion of nuclear plants is restricted by the im-463 

posed growth constraints, renewable sources (mainly biomass CCS) cover up to half of total electrici-464 

ty generation in these scenarios. From 2040 onwards, hydrogen generation is one of the major con-465 

sumers of biomass in the scenarios GHG_RE and GHG_ RE+EE even though the contribution of hy-466 

drogen to total final energy demand remains rather limited in these scenarios (4% in 2050). 467 

The increased deployment of biofuels in the transport sector in 2020 in the scenarios where the re-468 

newable target is implemented can be attributed to the sub-target for the transport sector of the EU 469 

Renewable Directive of 10% (with multiplication factors for certain biofuels [63]). Assuming that this 470 

additional transport target is discontinued after 2020, the scenario analysis shows that due to the lim-471 

ited availability of bioenergy resources, the use of biofuels in transport is not a cost-efficient option to 472 

comply with the renewable target. However, both the renewable and the efficiency target lead to a 473 

stronger use of electricity in the transport sector at the expense of hydrogen.  474 

Table 3: Contribution to the renewable target by sector  475 

 476 

For heating and cooling, the share of renewable sources directly used for these services in total final 477 

energy demand of the agriculture, services, industrial and residential sectors (without electricity con-478 

sumption) is calculated. The scenario results indicate that in the heating sector the expansion of re-479 

newable energies is delayed when compared with electricity generation. In 2020, substantial differ-480 

ences between the scenarios with and without the minimum renewable requirements can only be ob-481 

served in the services and agricultural sectors, where the deployment of biomass boilers rises consid-482 

erably. In the residential sector, a significant contribution to the renewable target is only visible after 483 

2030 with a massive roll-out of electric heat pumps. With up to 42% of total energy demand for heat-484 

ing in 2050, the renewable share in the industrial sector is lower than in the residential and services 485 

sector. However, the industry sector is the second largest consumer of biomass (after hydrogen gener-486 

GHG
GHG_   

RE

GHG_    

EE

GHG_    

RE+EE
GHG

GHG_   

RE

GHG_    

EE

GHG_    

RE+EE
GHG

GHG_   

RE

GHG_    

EE

GHG_    

RE+EE

RE share in electricity 15% 36% 12% 41% 53% 58% 52% 58% 19% 73% 20% 68%

RE share in hydrogen 0% 0% 5% 0% 3% 84% 6% 83% 21% 99% 7% 99%

RE share in transport 1% 7% 1% 7% 2% 6% 2% 6% 0% 0% 0% 0%

RE share in heating and 

cooling
4% 13% 4% 11% 7% 14% 7% 13% 30% 50% 29% 56%

 Industry 7% 10% 7% 10% 12% 14% 13% 14% 11% 42% 10% 38%

 Residential 1% 4% 1% 2% 2% 7% 3% 4% 43% 54% 51% 67%

 Services & agriculture 7% 43% 7% 41% 16% 33% 10% 39% 32% 48% 8% 49%

Overall RE share 5% 15% 4% 15% 14% 20% 15% 20% 20% 50% 19% 50%

Total RE consumption [PJ] 262 839 229 843 760 1057 744 1066 1073 1934 944 2061

2020 2030 2050
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ation) in the long term. It has to be noted that under the assumed technology parameters, the use of 487 

biomass in industrial CHP plants remains comparatively limited, competing with centralized biomass 488 

CCS plants in hydrogen and electricity generation.  489 

Comparing the overall renewable shares between the scenarios with and without minimum require-490 

ments for renewable sources (50% vs. 20% in 2050) shows that under the chosen scenario assump-491 

tions, an ambitious expansion of renewable energy in the UK is not the most cost-efficient mitigation 492 

option.  493 

5.5. The industry sector’s contribution to energy efficiency 494 

In UKTM, energy savings can be achieved through the deployment of more efficient technologies as 495 

well as fuel substitution. In addition, endogenous energy service demand reductions due to changes in 496 

the prices for these services are taken into account by applying own-price elasticities to the various 497 

demand commodities. In the energy-intensive industry sectors, a large variety of both replacement 498 

technologies with higher efficiency and improvements to existing production routes (e.g. the use of 499 

waste heat) are taken into account with the new modelling approach, while in the less energy-500 

intensive sectors efficiency can mainly be improved through the use of high efficiency boilers. 501 

In the base case, total final energy consumption remains at about today’s level over the observed peri-502 

od (Figure 6). Industry is the only sector whose energy consumption drops considerably until 2050 503 

without the implementation of emission targets. Strong increases in energy demand occur especially 504 

in the transport sector. When the long-term GHG reduction target for the UK is taken into considera-505 

tion (scenario GHG), increasing energy efficiency is one of the main abatement strategies with a de-506 

cline in final energy demand of 23% until 2050. While, as mentioned before, no further reductions 507 

compared to the base case are realized in the industry sector, significant efforts are undertaken in the 508 

residential sector through the uptake of conservation measures as well as a trend to electrification. In 509 

the transport sector, which exhibits the highest reduction rate between 2010 and 2050, efficiency is 510 

initially increased by the use of hybrid electric vehicles which after 2030 are partly replaced by elec-511 

tric (mainly cars and light-duty transport) and hydrogen (mainly heavy-duty transport) vehicles. The 512 

lowering effect of conservation measures applied in the services sector is, in the long term, more than 513 

offset by the sector’s rising energy services demand caused by a still growing share in gross value 514 

added and the associated increase in commercial floor space.  515 

The results for the scenario GHG_RE show that a simultaneous increase in energy efficiency is used 516 

as one strategy to comply with the renewable target in the long-term. Especially in the transport sector 517 

additional reductions in final energy demand are achieved through a stronger electrification.  518 

When introducing the additional target on energy efficiency, additional energy savings compared to 519 

the scenario GHG can be observed for all end-use sectors and involve the installation of more effi-520 

cient technologies, a higher rate of electrification as well as a switch from biomass to highly efficient 521 

natural gas boilers. In comparison to the baseline, the strongest changes occur in the transport sector, 522 

while in the industry sector the reduction in final energy demand between 2010 and 2050 is only 523 

raised from -24% in the base case to up to -31% in the scenario GHG_EE. Hence, the decline of in-524 

dustrial energy demand plays a crucial role in reaching long-term energy efficiency targets, but most 525 

of these reductions are already realized in the absence of any policy targets.  526 
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 527 
Figure 6: Change in final energy consumption by sector compared to 2010 528 

5.6. Overlapping policy cost impacts 529 

Apart from technology deployment and fuel use, the UKTM results also allow a comparison of the 530 

different scenarios in terms of implications on costs. For each scenario, the least-cost pathway for the 531 

long-term development of the UK energy system under the given assumptions is calculated. With the 532 

representation of actual technology options and their associated cost parameters in the industry sector, 533 

greater reliability of the contribution of the industry sector to overall system costs has been achieved 534 

with the new modelling approach.  535 

First, the scenarios are contrasted in terms of the carbon price which is given in the model as the 536 

shadow price of the carbon constraint (Figure 7). In the scenario GHG, a first strong increase in the 537 

price on GHG emissions to over 100 £/t CO2eq occurs with the implementation of the 4th Carbon 538 

Budget (2023-2027). Afterwards, the formulation of the -80% target as a cumulative emission budget 539 

covering the period from 2028 to 2050 results in a smoothly increasing carbon price reaching slightly 540 

above 400 £/t CO2eq in 2050. It has to be pointed out that the carbon price would be significantly 541 

higher in 2050 if a linear reduction pathway forcing the model to a -80% reduction in 2050 was im-542 

plemented.  543 

In the scenarios which take the European policy targets into account, the price of carbon is, until 544 

2030, mainly determined by the exogenously set ETS and non-ETS prices. After 2020 the same cu-545 

mulative target is assumed as in the scenario GHG. It clearly shows that both the renewable and the 546 

energy efficiency target have a dampening effect on the carbon price signal. In 2050, the price for 547 

GHG emissions ranges between 200 (GHG_RE+EE) and 260 (GHG_RE) £/t CO2eq. This does not 548 

imply that the mitigation targets are reached in a less costly way in these scenarios as the shadow 549 

prices on the renewable and efficiency constraints also need to be taken into consideration, which 550 

reach up to 58 £/GJ of renewable energy used and up to 84 £/GJ of final energy demand reduced.  551 
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 552 
Figure 7: Carbon prices in the scenario analysis 553 

In order to assess the additional system-wide cost burden that is caused by the implementation of the 554 

different climate and energy policy targets in a consistent manner a look is taken at total societal wel-555 

fare costs. These are defined as the net total surplus of producers and consumers and comprise the 556 

entire costs of a specific energy system in a certain region and a certain period, covering capital costs 557 

for energy conversion and transport technologies, fixed operating and maintenance costs as well as 558 

fuel and certificate costs.  559 

The cost burden resulting from the transition to a low-carbon energy system in the UK increases 560 

steadily over the projected period with a difference in total annual undiscounted welfare costs of 6% 561 

in 2020 and of 11% in 2050 between the scenario GHG and the base case (Table ). In absolute terms, 562 

the difference amounts to more than £1300 billion (in real terms) when cumulated over the period 563 

from 2010 and 2050. The results also highlight that putting additional constraints on the energy sys-564 

tem in terms of minimum requirements for renewable energy or energy efficiency increases the cost 565 

reflected in a cumulated cost difference to the scenario GHG of £540 billion for GHG_RE and of 566 

£322 billion for GHG_EE over the period 2010 to 2050. The fact that this cost difference decreases 567 

over time indicates that especially in the mid-term the current EU target levels have a strong influence 568 

on the chosen mitigation options associated with substantial additional costs for the energy system.  569 

Table 4: Comparison of annual undiscounted welfare cost 570 

 571 

6. Conclusions and Policy Implications 572 

This paper has introduced a new methodological approach for a more detailed representation of the 573 

industrial sector based on an integration of bottom-up process level database, but still contained with-574 

in a whole energy system modelling framework. Presented here for a case study of the UK, this meth-575 

odology could be easily transferred to other national settings.  576 
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The subsequent quantitative scenario analysis of the UK energy system has shown how this process-577 

oriented representation of the industry sector in an energy system analysis can help to evaluate the 578 

contribution of this sector to long-term climate and energy policy targets. The scenario results indicate 579 

that the UK’s industry sector will have to play a key part in the decarbonisation process, both in terms 580 

of its use of low-carbon upstream vectors and in process mitigation options within the subsectors. The 581 

industry sector will also be a major contributor to achieving the energy efficiency target, while it plays 582 

a slightly less prominent role in the expansion of renewable energies, which is mainly limited to the 583 

use of biomass for low-temperature heating services. Ambitious renewable targets will most strongly 584 

affect electricity generation where high shares of intermittent sources will have substantial effects on 585 

the electricity system in terms of back-up and storage capacity, grid reinforcement and expansion as 586 

well as demand-side management. Such system effects are not fully reflected in the scenario analysis 587 

with UKTM.  588 

The scenario analysis also highlights that the implementation of additional policy targets apart from 589 

emission mitigation, as it is being done in the European Union in the case of renewable source and 590 

energy efficiency, needs to be examined critically. Such additional targets can distort the cost efficient 591 

strategy of reaching the desired emission reductions and lead to additional cost burdens for consum-592 

ers. Setting additional sub-targets and implementing technology- or sector-specific policy instruments 593 

might be justified from a second-best perspective where not all environmental externalities from cli-594 

mate change are yet internalized and substantial uncertainty about future carbon price signals exists 595 

([64] & [54]). Moreover, other political motivations for the promotion of renewable sources and ener-596 

gy efficiency need to be taken into account, as for example a reduction of import dependency, allevia-597 

tion of fuel poverty or technology promotion in order to realize learning effects. Yet, even if these 598 

additional target dimensions can be justified, it is essential to take the interactions between them into 599 

account.  600 

With respect to the modelling approach, further methodological work will be needed to improve the 601 

representation of the less energy-intensive industrial subsectors in bottom-up energy system models. 602 

The fact that also from these industry sectors substantial mitigation efforts will be required highlights 603 

that targeted policy engagement with these highly heterogeneous sectors, often dominated by small- 604 

and medium-sized companies, will be required. In addition, the significant uncertainties in the cost 605 

and efficiency assumptions of future industrial technology options, which often constitute radical pro-606 

cess changes, need to be addressed thoroughly. However, the methodological advance presented in 607 

this paper has shown how a process-oriented representation of the industry sector based on a compre-608 

hensive technology database can provide a more detailed and consistent picture of the sector’s role in 609 

long-term energy and climate policy targets within the scope of a whole energy system analysis. 610 
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Annex – Technology evolution in the energy-intensive sectors 830 

The figures below provide additional information on the technology deployment in the energy-831 

intensive sectors modelled in a process-oriented manner in UKTM. Note that usually only the tech-832 

nology choices for the most important production steps are shown. Also, only the technologies that 833 

are chosen are displayed in the figures (and not all that are actually modelled in UKTM).  834 

 835 
Figure A-1:  Technology evolution in the iron and steel sector (blast and electric arc furnaces) in the low-836 

carbon scenarios 837 

 838 
Figure A-2: Technology evolution in the cement sector in the low-carbon scenarios 839 
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* For the BF route, only the technologies for the production of hot metal in BF is shown (which is then processed to liquid steel in 
basic oxygen furnaces); for the EAF route the production of liquid steel is shown.
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 841 
Figure A-3: Technology evolution in the paper sector (basic paper production) in the low-carbon scenarios 842 

 843 
Figure A-4:  Technology evolution for ammonia production in the low-carbon scenarios 844 
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Existing other production steps (OPS) Existing press sections
Press section, standard Press section with add. improvements**

Press section:
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Existing other production steps (OPS) Existing dryers
Dryers, standard Dryers with add. improvements***
Condebelt drying Impulse drying
Infrared drying Dry sheet forming*****

Dryer:

* Additional improvements (=add-ons improving existing technologies) for OPS modelled in UKTM are: (1) Online moisture manage-
ment; (2) Other (covering average of using fans or blowers instead of vacuum where applicable, using turbo-compressors in place of 
vacuums in given situations; pumps and motors: match pumping capacity, aim for continuous flows, better control of flows.

** Additional improvements for press section modelled in UKTM are: (1) Aggregate (covering average of felt and belt design optimisa-
tion, monitoring press performance, turning off/reducing steam flow when not required, shoe pressing, minimising rewet, checking 
nip profiles & optimising crowns, steam boxes use).

*** Additional improvements for dryer modelled in UKTM are: (1) Hot press; (2) Reducing air infiltration; (3) Maximizing hood humidi-
ty; (4) Efficiently using flash stream; (5) Maximizing heat recovery; (6) Other (average of avoiding steam venting, optimising 
pressures, felt design to optimise sheet contact, auto warm-up, using low pressure steam in place of high pressure, maximising 
condensate return, optimised dryer technology).

**** Alternative production route, covers all steps of basic paper production (OPS, press section & dryer)
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 845 
Figure A-5: Technology evolution for the production of high value chemicals (olefins) in the low-carbon sce-846 

narios 847 
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