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Abstract

In this paper we propose a new approach, called the matched shrunken subspace

detector (MSSD), to target detection from hyperspectral images. The MSSD

is developed by shrinking the abundance vectors of the target and background

subspaces in the hypothesis models of the matched subspace detector (MSD), a

popular subspace-based approach to target detection. The shrinkage is achieved

by introducing simple l2-norm regularisation (also known as ridge regression or

Tikhonov regularisation). We develop two types of MSSD, one with isotropic

shrinkage and termed MSSD-i and the other with anisotropic shrinkage and

termed MSSD-a. For these two new methods, we provide both the frequentist

and Bayesian derivations. Experiments on a real hyperspectral imaging dataset

called Hymap demonstrate that the proposed MSSD methods can outperform

the original MSD for hyperspectral target detection.
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1. Introduction1

Target detection or anomaly detection is an important task of hyperspectral2

image (HSI) analysis [1, 2, 3, 4, 5, 6]. To target detection, the matched subspace3

detector (MSD) [7, 8] is one of the most widely-used subspace-based approaches,4

underlying which is the idea of the linear mixing model (LMM) [9].5

The LMM [9] is a typical approach to unmixing a mixed pixel. Suppose there6

are p spectral bands and thus a mixed pixel x is represented by a p-dimensional7

vector/spectrum. Let us assume there are K types of materials potentially8

constituting a pixel; these component materials are often referred to as end-9

members, the spectra of which can be represented by m1, . . . ,mK , where each10

mk is a p-dimensional vector. Then the LMM of pixel x models the spectral11

signature of x as a linear combination of endmembers m1, . . . ,mK with corre-12

sponding abundance fractions a1, . . . , aK . More specifically, x = [x1, . . . , xp]
T

13

can be expressed as an additive mixture of K endmembers mk plus noise:14

x = ΣKk=1akmk + n = Ma + n, (1)

where M is a p×K matrix whose columns are the K endmember spectra mk =15

[mk,1, . . . ,mk,p]
T for k = 1, . . . ,K, respectively; a = [a1, . . . , aK ] denotes the16

abundance vector; and n = [n1, . . . , np]
T represents the additive Gaussian white17

noise, i.e. n ∼ N (0, σ2I), where I is a p×p identity matrix. In classical unmixing18

problems, the abundances a1, . . . , aK need to satisfy two conditions, which are19

the non-negative constraint and the sum-to one constraint, i.e. ak ≥ 0 and20

ΣKk=1ak = 1, respectively. However, in target detection problems, as explained21

in [9], both constraints will complicate the solution; as usually is the case, we22

can relax both constraints in target detection.23

To achieve an HSI target detection, the MSD determines whether a test24

pixel can be represented by a linear combination of target spectral signatures25

and background spectral signatures. To this end, two subspaces are constructed:26

the target subspace and the background subspace. In each subspace, the MSD27

assumes that each basis vector represents an endmember, which is in line with28

the assumption of the LMM for HSI analysis.29

2



To construct the two subspaces, the MSD usually acquires their basis vec-30

tors from the eigen-decomposition of covariance matrices of the training sam-31

ples [1, 10]. The eigenvectors with dominant eigenvalues, termed leading eigen-32

vectors, are selected as bases to span the subspaces, while those with small33

eigenvalues are discarded. This is essentially a scheme of basis selection, or say34

0/1 weighting, which extracts a subspace out of the full eigenspace.35

In fact, the 0/1 weighting scheme of the MSD implicitly imposes a sparseness36

constraint or say an l0-norm regularisation while building its LMM. However,37

it is well known that such a “hard” selection may exhibit high variance on the38

selected leading eigenvectors. Alternatively, explicit sparse representation (SR)-39

based techniques have also been developed in hyperspectral target detection [11,40

12, 13], with selection of a small number of atoms from a large dictionary. That41

is, these SR methods model a test HSI pixel as a linear combination of only few42

atoms from an over-complete dictionary; atoms in the dictionary are usually43

also samples, hence these SR methods can be viewed as being developed in the44

original sample space. Regarding the construction of the dictionary, [11] propose45

to construct a background spectra dictionary and a target spectra dictionary46

separately; on the other hand, [12, 13] propose to construct an over-complete47

dictionary including both background spectra and target spectra.48

To avoid the problem of high variance from such a “hard” selection, shrinkage49

methods [14] have been developed in statistical learning, mainly due to such a50

problem in regression analysis. Among the shrinkage methods, the most popular51

one is called ridge regression, also known as Tikhonov regularisation [15] in other52

disciplines; it shrinks the regression coefficients through imposing an l2-norm53

constraint. In this way, the estimates of the coefficients become more stable54

and therefore can improve the performance of regression.55

The l2-norm regularisation has been investigated for analysing hyperspectral56

imagery [16, 17, 4, 18, 19, 20]. For the HSI classification, [16] and [17] assume57

that a test pixel can be collaboratively represented by raw spectral signatures.58

It is shown that l2-norm constraints can actually improve the classification,59

instead of the “competitive” nature imposed by sparseness constraints (as l1-60
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norm or l0-norm regularisation). For the HSI target detection, [4, 18, 19, 20]61

add a scaled identity matrix to the background clutter covariance matrix before62

inverting it, in order to avoid an ill-conditioned problem. It is worth noting63

that these l2-norm regularisation methods are developed in the original sample64

space, rather than in the eigenspace as this work.65

In this paper, focusing on the popular MSD, we propose a new approach,66

called the matched shrunken subspace detector (MSSD), to target detection67

from hyperspectral images. Our MSSD is developed by shrinking the abun-68

dance vectors of the target and background subspaces in the hypothesis models69

of the MSD. The shrinkage is simply achieved by introducing l2-norm regular-70

isation into the MSD. We develop two types of the MSSD, one with isotropic71

shrinkage (and termed MSSD-i) and the other with anisotropic shrinkage (and72

termed MSSD-a). For these two new methods, we provide both the frequen-73

tist and Bayesian derivations. Experiments on a real hyperspectral imaging74

dataset called Hymap demonstrate that the proposed MSSD-i and MSSD-a can75

outperform the original MSD for hyperspectral target detection.76

The main contributions of this paper are two-fold. 1) Through introducing77

the l2-norm regularisation terms into the MSD, we shrink the abundance vectors78

so that the variance in each basis direction of the subspaces is also reduced,79

leading to a more stable estimation. 2) We derive the proposed MSSD-i and80

MSSD-a from both the frequentist and Bayesian perspectives, with the latter81

showing how the proposed methods preserve Gaussian prior distributions of the82

abundance vectors, instead of the uniform prior distribution which is implicitly83

imposed by the original MSD.84

The rest of this paper is organised as follows. Section 2 reviews the original85

MSD. In section 3.1 and section 3.2, detailed formulation of the two proposed86

method, MSSD-i and MSSD-a, are introduced. Then the two proposed methods87

are derived from the Bayesian perspective and shown in section 4. The links of88

MSD, MSSD-i and MSSD-a are discussed in section 5. Section 6 presents the89

experimental results, with the whole work concluded in section 7.90
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2. Matched subspace detector (MSD)91

2.1. Overview of the binary hypothesis testing model92

From a statistical perspective, target detection is typically derived from a93

binary hypothesis testing problem [3]. It is based on the likelihood ratio of the94

conditional probability density functions (pdfs) of two competing hypotheses,95

given that the spectral signature of an HSI pixel x is treated a continuous96

random vector:97

H0 : x is a background pixel,

H1 : x is a target pixel,

⇒ D(x) =
fx|H1

(x)

fx|H0
(x)

H1

≷
H0

ν,

(2)

where fx|H0
(x) and fx|H1

(x) are two conditional pdfs of x under the null hy-98

pothesis H0 and the alternative hypothesis H1, respectively; ν is the detection99

threshold; and D(x) is an output detector. In reality, the conditional pdfs are100

usually not available and are expressed parametrically. Hence, the generalised101

likelihood ratio test (GLRT) [21] is commonly used to replace the unknown102

parameters by their maximum likelihood estimates (MLEs):103

DGLRT (x) =
fx|H1

(x; ω̂1)

fx|H0
(x; ω̂0)

H1

≷
H0

ν

=
maxω1

{fx|H1
(x;ω1)}

maxω0
{fx|H0

(x;ω0)}
H1

≷
H0

ν,

(3)

where ω0 and ω1 are unknown parameters of pdf fx|H0
(x;ω0) and pdf fx|H1

(x;ω1),104

respectively; and ω̂0 and ω̂1 are their MLEs. In this paper, “ˆ” denotes the es-105

timates of unknown parameters.106

2.2. Formulation of the matched subspace detector (MSD)107

Following the idea of LMM (1) [9], the MSD models a test pixel by a linear108

combination of target spectral endmembers and background spectral endmem-109

bers, and these endmembers are represented by the basis vectors of the target110

subspace and the background subspace, respectively.111
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That is, derived from the binary hypothesis model (2), the MSD model [7]112

is constructed as113

H0 : x = Bβ + n0, x is a background pixel,

H1 : x = Tγ + Bβ + n1, x is a target pixel,
(4)

where T = [t1, . . . , trt ] is a p × rt matrix representing the target subspace,114

and B = [b1, . . . ,brb ] is a p× rb matrix representing the background subspace;115

T is derived from a training target matrix MT ∈ Rp×Nt whose columns are116

the Nt target spectra, and B is derived from a training background matrix117

MB ∈ Rp×Nb whose columns are the Nb background spectra; γ and β are the118

corresponding abundance vectors of the subspaces T and B, respectively; and119

n0 and n1 are p-dimensional vectors of Gaussian white noise: n0 ∼ N (0, σ2
0I)120

and n1 ∼ N (0, σ2
1I).121

In general, a set of orthogonal basis vectors that spans the corresponding122

subspace are used as the column vectors of T or B. In common practice, the123

leading eigenvectors of the target covariance matrix CT and those of the back-124

ground covariance matrix CB are used as the columns of T and B, respectively,125

as with [10][1]. In other words, when the test pixel x is a target pixel, it is de-126

composed into two components by linear combinations of the bases of B and T,127

denoted by model H1. When x is a background pixel, it is adequately described128

by model H0, which is a reduced order model.129

Let V be the concatenated matrix of T and B, i.e. V = [T B] = [t1, . . . , trt ,b1, . . . ,brb ],130

then the abundance vectors γ and β of model H1 can be concatenated into a131

single vector, denoted as α, i.e. α =

γ
β

 = [γ1, . . . , γrt , β1, . . . , βrb ]T . Hence132

model H1 can be written as133

H1 : x = Tγ + Bβ + n1

=
[
T B

]γ
β

+ n1

= Vα + n1,

(5)
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and thus the MSD model (4) becomes134

H0 : x = Bβ + n0, x is a background pixel,

H1 : x = Vα + n1, x is a target pixel,
(6)

where now the unknown parameters are β, α, and those of n0 and n1.135

The corresponding estimate of the likelihood ratio is the generalised likeli-136

hood ratio (GLR) of the MSD, formulated as137

l̂(x) =
l(α̂, σ̂2

1 ; x)

l(β̂, σ̂2
0 ; x)

=

(
σ̂2
1

σ̂2
0

)−p/2
exp

{
− 1

2σ̂2
1

‖n̂1‖22 +
1

2σ̂2
0

‖n̂0‖22

}
.

(7)

The MLEs σ̂2
0 and σ̂2

1 are equal to 1
p ‖n̂0‖22 and 1

p ‖n̂1‖22, respectively. Taking138

the 2/p power of (7), we have the following GLR of the MSD:139

LMSD(x) = (l̂(x))2/p

=

(
σ̂2
1

σ̂2
0

)−1
=
σ̂2
0

σ̂2
1

=
‖n̂0‖22
‖n̂1‖22

=

∥∥∥x−Bβ̂
∥∥∥2
2

‖x−Vα̂‖22
.

(8)

The MLEs of β and α in (8) are given by140

β̂ = argmax
β

{
fx|H0

(x;β, σ2
0)
}

= argmin
β

{
1

2σ2
0

‖x−Bβ‖22

}
(9)

and141

α̂ = argmax
α

{
fx|H1

(x;α, σ2
1)
}

= argmin
α

{
1

2σ2
1

‖x−Vα‖22

}
, (10)

and thus142

β̂ = (BTB)−1BTx = BTx (11)

and143

α̂ = (VTV)−1VTx. (12)

It is to be noted that the bases [b1, . . . ,brb ] of B are orthogonal, therefore144

(BTB)−1 is an identity matrix and β̂ can be simplified to BTx, but the bases145

[t1, . . . , trt ,b1, . . . ,brb ] of V are not orthogonal to each other.146
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Based on (11) and (12), the residual sums of squares (RSS) e0 and e1 given147

model H0 and model H1 are computed as148

H0 : e0 = ‖n̂0‖22 =
∥∥∥x−Bβ̂

∥∥∥2
2

= xT (I−BBT )x, (13)

and149

H1 : e1 = ‖n̂0‖22 = ‖x−Vα̂‖22 = xT (I−V(VTV)−1VT )x, (14)

where I is a p× p identity matrix. The final GLRT detector of the MSD model150

is then given by151

DMSD(x) =
e0
e1

=
xT (I−BBT )x

xT (I−V(VTV)−1VT )x

H1

≷
H0

ν. (15)

The value of DMSD is compared to a threshold ν to make the final decision152

of which hypothesis should be rejected for the test pixel x. Two tuning pa-153

rameters should be determined for the MSD, which are the numbers of leading154

eigenvectors to be preserved in the subspace B and T, i.e. rb and rt, respectively.155

3. Matched shrunken subspace detector (MSSD)156

In the MSD, the eigenvectors spanning the eigenspace are either preserved or157

discarded to build the subspaces. Rather than applying this selection scheme,158

it is desirable to adopt shrinkage schemes to reduce the variance induced by159

selection [14], in order to develop a more stable statistical method like the160

MSD, in particular for high-dimensional data like hyperspectral pixels. In the161

l2-norm regularised shrinkage methods, all the available features/eigenvectors162

are preserved and their coefficients are shrunk. In other words, rb and rt are163

fixed to the maximal numbers of available features/eigenvectors. We propose to164

introduce l2-norm regularisation into the MSD, to shrink the abundance vectors165

of the target and background subspaces in the hypothesis models of the MSD.166

We call this approach the matched shrunken subspace detector (MSSD).167

It is worth noting that, in the hyperspectral target detection practice, we168

often have only one target spectrum as a priori information for training, and169

this single target spectrum usually comes from the spectrum library. If this is170
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the case, the target training sample MT is a single vector, not a matrix, and171

thus the typical eigen-decomposition cannot be applied on MT to get T. To172

this end and as usually is the case, we use the normalised mean-corrected target173

spectrum as the only basis vector of the target subspace T. As a result, we have174

rt = 1 and T ∈ Rp×1, and the MSD does not discard this basis vector. Similarly,175

we do not shrink the abundance γ for the target subspace T when there is only176

one target spectrum available in practice, as also discussed in section 6.177

In the following sections, we shall develop two types of the MSSD, MSSD-i178

with isotropic shrinkage and MSSD-a with anisotropic shrinkage, and provide179

both the frequentist and Bayesian derivations of them.180

3.1. MSSD with isotropic shrinkage (MSSD-i)181

While preserving all available eigenvectors, we introduce l2-norm regularisa-182

tion terms θ0 ‖β‖22 and θ1 ‖α‖22 as constraints to the hypothesis models H0 and183

H1 of the MSD, respectively. The shrunken estimates of β and α now become184

β̂iso = argmin
β
{‖x−Bβ‖22 + θ0 ‖β‖22} (16)

and185

α̂iso = argmin
α
{‖x−Vα‖22 + θ1 ‖α‖22}, (17)

where θ0 and θ1 are the parameters that control the degree of shrinkage imposed186

on the size of abundance vectors β and α, respectively. In this sense, the same187

shrinkage degree is applied to all eigenvectors, as done in (16) and (17), and we188

call this new method the MSSD with isotropic shrinkage, shortened as MSSD-i.189

The test likelihood ratio of the MSSD-i is thus given by190

LMSSDiso
(x) =

minβ{‖x−Bβ‖22 + θ0 ‖β‖22}
minα{‖x−Vα‖22 + θ1 ‖α‖22}

H1

≷
H0

ν, (18)

and the estimates of β and α in the MSSD-i are readily given as191

β̂iso = ((1 + θ0)I0)
−1

BTx (19)

9



and192

α̂iso = (VTV + θ1I1)−1VTx, (20)

where I0 is a rb×rb identity matrix and I1 is (rt+rb)×(rt+rb) identity matrix.193

Hence the RSS e0 and e1 given models H0 and H1 are computed as194

H0 : eiso0 =
∥∥∥x−Bβ̂iso

∥∥∥2
2

= xT (I−B
(
(1 + θ0)I0)−1BT

)
x, (21)

and195

H1 : eiso1 = ‖x−Vα̂iso‖22 = xT (I−V(VTV + θ1I1)−1VT )x. (22)

As with (15), the detector of the MSSD-i model is finally given by196

DMSSDiso
(x) =

eiso0

eiso1

=
xT (I−B

(
(1 + θ0)I0)−1BT

)
x

xT (I−V(VTV + θ1I1)−1VT )x

H1

≷
H0

ν, (23)

To be noticed, the MSSD-i also has two tuning parameters, but not the rb197

and rt of the MSD: this time the tuning parameters are the shrinkage parameters198

θ0 and θ1.199

3.2. MSSD with anisotropic shrinkage (MSSD-a)200

Besides the directions represented by eigenvectors, the values of eigenvalues201

also reflect the information about distributions, in particular variances, of the202

data in the background and target subspaces. Therefore in addition to the203

MSSD-i, we propose another new method which preserves not just the useful204

information from all the available eigenvectors, but also the information of all the205

eigenvalues, while constructing the l2-norm regularisation terms for the MSD.206

Let ΛB denote the background eigenvalue matrix with the eigenvalues of the207

background eigenvectors λb1, . . . , λ
b
rb

on the diagonal, i.e. ΛB = diag([λb1, . . . , λ
b
rb

]T );208

and let ΛT denote the target eigenvalue matrix with the eigenvalues of the target209

eigenvectors λt1, . . . , λ
t
rt on the diagonal, i.e. ΛT = diag([λt1, . . . , λ

t
rt ]
T ).210

It is known that small eigenvalues correspond to the eigenvectors having211

small variances, therefore we aim to shrink these directions the most. To this212

end, we can add the inverse of the eigenvalue matrix, Λ−1B , to the regularisation213

term βTβ, for example. The shrunken estimates of β and α now become214

β̂aniso = argmin
β

{
(x−Bβ)T (x−Bβ) + θ0β

TΛ−1B β
}

(24)
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and215

α̂aniso = argmin
α

{
(x−Vα)T (x−Vα) + θ1α

TΛ−1V α
}
, (25)

where θ0 and θ1 are again the parameters for the shrinkage degrees, and ΛV is216

a concatenated matrix formed as217

ΛV =

ΛT 0

0 ΛB

 . (26)

Compared with (16) and (17) which shrink isotropically over features in218

MSSD-i, both (24) and (25) shrink anisotropically over features. Hence we call219

this new method the MSSD with anisotropic shrinkage, shortened as MSSD-a.220

As with (18), the test likelihood ratio of the MSSD-a is given by221

LMSSDaniso
(x) =

minβ{‖x−Bβ‖22 + θ0β
TΛ−1B β}

minα{‖x−Vα‖22 + θ1αTΛ−1V α}

H1

≷
H0

ν, (27)

and the estimates of βaniso and αaniso are222

β̂aniso = (I0 + θ0Λ
−1
B )−1BTx (28)

and223

α̂aniso = (VTV + θ1Λ
−1
V )−1VTx. (29)

The RSS eaniso0 and eaniso1 given models H0 and H1 are then computed as224

H0 : eaniso0 =
∥∥∥x−Bβ̂aniso

∥∥∥2
2

= xT (I−B(I0 + θ0Λ
−1
B )−1BT )x

(30)

and225

H1 : eaniso1 = ‖x−Vα̂aniso‖22

= xT (I−V(VTV + θ1Λ
−1
V )−1VT )x.

(31)

As with (15) and (23), the detector of the MSSD-a model can be written as226

DMSSDaniso
(x) =

eaniso0

eaniso1

=
xT (I−B(I0 + θ0Λ

−1
B )−1BT )x

xT (I−V(VTV + θ1Λ
−1
V )−1VT )x

H1

≷
H0

ν,

(32)

Similar to MSSD-i, only two tuning parameters are need to be determined227

in the proposed MSSD-a: the shrinkage parameters θ0 and θ1.228
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4. Bayesian derivations of MSSD-i and MSSD-a229

From the Bayesian perspective, the estimation of parameters β and α in the230

MSSD-i and the MSSD-a can be translated as the maximisation of a posteriori231

probability (MAP). Taking β for example, Bayes’ theorem [14] says232

f(β|x) =
f(x|β)f(β)

f(x)
, (33)

where f(x|β) is a likelihood function of x and f(β) is a prior distribution of β.233

Therefore the MAP estimate of β is234

β̂ = argmax
β

f(β|x) = argmax
β

f(x|β)f(β). (34)

As the noise term n0 is assumed to be a multivariate Gaussian distribution235

n0 ∼ N (0, σ2
0I) in the LMM [9] and the MSD [7], the likelihood function f(x|β)236

can be formulated as237

f(x|β) ∝ exp

{
− 1

2σ2
0

‖x−Bβ‖22
}
. (35)

In the conventional MSD, an improper uniform (non-informative) prior dis-238

tribution is actually assumed for parameter β of the selected leading eigenvec-239

tors. In the proposed MSSD-i and MSSD-a, adding l2-norm regularisation in240

fact imposes Gaussian prior distributions on β.241

4.1. Prior distributions of β and α in MSSD-i242

For the MSSD-i, the prior distribution of β is in fact assumed to be243

β ∼ N (0, σ2
BI0), (36)

with equal variance σ2
B in each element βi of β for i = 1, . . . , rb. Thus f(β) is244

given by245

f(β) ∝ exp

{
− 1

2σ2
B

‖β‖22

}
. (37)

12



Placing (35) and (37) into (34) and taking logarithm, we have246

β̂iso = argmax
β

log{f(β|x)}

= argmax
β

log{f(x|β)f(β)}

= argmax
β

{
− 1

2σ2
0

‖x−Bβ‖22 −
1

2σ2
B

‖β‖22

}
= argmin

β

{
‖x−Bβ‖22 + θ0 ‖β‖22

}
,

(38)

where θ0 = σ2
0/σ

2
B . The estimate of β in (38) is exactly the same as the MSSD-i247

estimate in (16). In this fashion, parameter θ0 effectively controls the degree of248

shrinkage through the ratio of two variances σ2
0 and σ2

B .249

Similarly, the prior distribution of γ is in fact assumed to be250

γ ∼ N (0, σ2
T It), (39)

where It is a rt × rt identity matrix and therefore it results in a zero mean251

distribution of α with an (rt + rb)× (rt + rb) diagonal covariance matrix252 σ2
T It 0

0 σ2
BI0

 . (40)

Then f(α) is given by253

f(α) =

rt+rb∏
i=1

1√
2πσ2

i

exp

{
− 1

2σ2
i

α2
i

}
, (41)

where σi = σT for i = 1, . . . , rt and σi = σB for i = rt + 1, . . . , rt + rb. When254

σB = σT and we let both of them to be σα, (41) can be simplified to255

f(α) =
1

(2πσ2
α)(rt+rb)/2

exp

{
− 1

2σ2
α

‖α‖22

}
∝ exp

{
− 1

2σ2
α

‖α‖22

}
.

(42)

Then placing the likelihood function and the prior distribution (42) into the256

MAP estimate of α we have257

α̂iso = argmin
α

{
‖x−Vα‖22 + θ1 ‖α‖22

}
, (43)
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where θ1 = σ2
1/σ

2
α is the shrinkage parameter. This is also in the same form of258

the MSSD-i estimate of α in (17), in particular if we assume σT = σB .259

We can further generalise (43) to a slightly-adaptive shrinkage model:260

α̂iso = argmin
α

{
‖x−Vα‖22 +

rt+rb∑
i=1

θ1iα
2
i

}
. (44)

In (44), when i = 1, . . . , rt, we have θ1i = σ2
1/σ

2
T , and when i = rt+1, . . . , rt+rb,261

we have θ1i = σ2
1/σ

2
B .262

4.2. Prior distributions of β and α in MSSD-a263

For MSSD-a, the prior distribution of β is in fact assumed to be264

β ∼ N (0, θBΛB), (45)

where ΛB is a rb×rb diagonal matrix with eigenvalues λb1, . . . λ
b
rb

on the diagonal,265

and θB is a parameter scaling the eigenvalue matrix ΛB. It means that each266

βi, for i = 1, . . . , rb, is assumed to have its own variance instead of an equal267

variance assumed in the MSSD-i. Then f(β) in MSSD-a is given by268

f(β) ∝ exp

{
−1

2
βT (θBΛB)−1β

}
. (46)

Placing (35) and (46) into (34) and taking logarithm, we have the MAP esti-269

mator of β in MSSD-a:270

β̂aniso = argmin
β

{
(x−Bβ)T (x−Bβ) + θ0β

TΛ−1B β
}
, (47)

where θ0 = σ2
0/θB . This is the same as the MSSD-a estimate of β in (24).271

The prior distribution of γ is assumed to be272

γ ∼ N (0, θTΛT), (48)

where ΛT is a rt×rt diagonal matrix with different eigenvalues λt1, . . . λ
t
rt on the273

diagonal, and θT is a parameter scaling the eigenvalue matrix ΛT. Therefore274

the distribution of α is a zero mean distribution with a (rt + rb) × (rt + rb)275

diagonal covariance matrix276 θTΛT 0

0 θBΛB

 . (49)
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If we let θT and θB both be equal to θv, then the prior distribution of α will277

be α ∼ N (0, θvΛV), where ΛV =

ΛT 0

0 ΛB

.278

Similar to (41), f(α) is given by279

f(α) ∝ exp

{
−1

2
αT (θvΛV)−1α

}
. (50)

Then the MAP estimate of α becomes280

α̂aniso = argmin
α

{
(x−Vα)T (x−Vα) + θ1α

TΛ−1V α
}
, (51)

where θ1 = σ2
1/θv. This is also exactly the same as the MSSD-a estimate of α281

in (25).282

Again, we can generlise (51) to a slightly-adaptive shrinkage model:283

α̂aniso = argmin
α

{
‖x−Vα)‖22 +

rb+rt∑
i=1

θ1i
λi
α2
i

}
. (52)

In (52), when i = 1, . . . , rt, we have θ1i = σ2
1/θT and λi = λti, and when284

i = rt + 1, . . . , rt + rb, we have θ1i = σ2
1/θB and λi = λbi−rt .285

To sum up, in contrast to the improper uniform distributions assumed in286

the MSD, two different prior distributions are assumed by the proposed MSSD-287

i and MSSD-a for the abundance vectors β and γ for the background and target288

subspaces. In the MSSD-i, a common variance is assumed on each coefficient289

in the form of a scaled identity matrix (see (37) and (39)). In the MSSD-a,290

unequal variances are assumed for individual coefficients in the form of a scaled291

eigenvalue matrix (see (46) and (48)).292

5. Underlying links among MSD, MSSD-i and MSSD-a293

The conventional MSD preserves the leading eigenvectors to form the sub-294

spaces B and T, which is essentially a basis selection process. Specifically, it295

drops eigenvectors of small eigenvalues, effectively forcing these eigenvalues to296

be 0. At the same time, eigenvalues of the preserved eigenvectors are effectively297

forced to be equal to each other. The proposed MSSD-i and MSSD-a on the298
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other hand, preserve all available eigenvectors and control the degrees of shrink-299

age of abundance by imposing l2-norm regularisation. Specifically, the MSSD-i300

imposes an isotropic shrinkage over the full eigenspace, while the MSSD-a is301

anisotropic using eigenvalues to adapt the shrinkage for different directions.302

From the Bayesian perspective, the conventional MSD implies a non-informative303

uniform distribution for the coefficient vectors over infinite interval. Different304

from the MSD, the proposed MSSD-i and MSSD-a imply Gaussian prior dis-305

tributions for the coefficient vectors: the MSSD-i assumes an equal variance306

for each coefficient, while the MSSD-a assumes different variances for different307

coefficients which are based on eigenvalues.308

Nevertheless, it is readily seen that the MSSD-i is equivalent to a ridge309

regression on the eigenspace. Also, as a kind of dual representation, the proposed310

MSSD-a can also be derived as a ridge regression on the original sample space.311

Specifically regarding this derivation of MSSD-a, if we apply the LMM in the312

original Nb-dimensional sample space of the p×Nb training sample matrix MB313

under model H0 with mean-corrected measurement. That is, supposing MB is314

a mean-corrected matrix and pixel x is represented as a linear mixture of Nb315

samples, we have316

x = MBa + n, (53)

where a is an Nb×1 coefficient vector, and the ridge regression problem becomes317

âiso = argmin
α
{‖x−MBa‖22 + θM ‖a‖22}, (54)

where âiso is the shrunken estimator of a and θM is the parameter controlling318

the shrinkage. The solution of âiso is319

âiso = (MT
BMB + θMIb)

−1MT
Bx, (55)

where Ib is a Nb ×Nb identity matrix.320

Following the notation in [14], if we perform the singular value decomposition321

(SVD) on MB , saying p < Nb, we obtain322

MB = UDVT , (56)
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where U and V are p× p and Nb ×Nb orthogonal matrices, with columns of U323

spanning the column space of MB and columns of V spanning the row space324

of MB ; and D is a p ×Nb rectangular diagonal matrix with singular values of325

MB on the diagonal in descending order. Based on the relationship between326

this SVD and the eigen-decomposition of covariance matrix CB in MSSD-a, we327

have328

1) U = B (rb = p in this case) and329

2) D2
p = NbΛB,330

where Dp is a p × p diagonal matrix of the first p columns of D. Then the331

solution of MB âiso has the following form:332

MB âiso = MB(MT
BMB + θMIb)

−1MT
Bx

= UDp(D
2
p + θMIp)

−1DpU
Tx

= B(NbΛB)(NbΛB + θMIp)
−1BTx

= B(Ip +
θM
Nb

Λ−1B )−1BTx

= B(Ip + θ0Λ
−1
B )−1BTx,

(57)

where Ip is a p × p identity matrix and θ0 = θM
Nb

. This is indeed the same as333

the solution of Bβ̂aniso, where β̂aniso is given by (28) in the MSSD-a method.334

Similar derivation can also be obtained for model H1, which we omit here.335

6. Experimental studies336

In the experimental studies, we compare the performances of the MSSD-337

i, MSSD-a and MSD by applying them to a real HSI dataset called Hymap338

image. To measure the detection performances of the three methods, the receiver339

operating characteristic (ROC) curve is used, in which a good detection curve340

should lie near to the top left. In pair with ROC curve, we also employ the area341

under curve (AUC) statistics to measure the detection results quantitatively.342

The Hymap image shown in Figure 1 was captured at the location of a small343

town of Cook City, USA. This image is published by Rochester Institute of344
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Figure 1: The Hymap scene. Two sub-images are cropped for evaluation.

Technology (RIT) [22], which is widely used as a testbed for the algorithms of345

the HSI target detection. The hyperspectral image of Hymap has a total of346

126 spectral bands with a pixel size of 280× 800, covering the spectral range of347

453nm-2496nm. Seven types of targets including four types of fabric panels (F1,348

F2, F3 and F4) and three vehicles (V1, V2 and V3) are deployed in the Hymap349

scene. When one type of target is to be detected, e.g. F1, the other targets,350

i.e. F2, F3, F4, V1, V2 and V3, are regarded as background pixels. We cropped351

two regions of interests (ROIs) into two separate HSI cubes, with the pixel size352

of 100× 120 and 100× 150, respectively. The ROIs of fabric panels (F1, F2, F3353

and F4) and their corresponding target locations are shown in Figure 2, and the354

ROIs of three vehicles (V1, V2 and V3) and their corresponding target locations355

are shown in Figure 3.356

(a)

F1

F2

F3

F4

(b)

Figure 2: Target F1, F2, F3 and F4: (a) Hymap image scene of fabric panels; (b) locations of

fabric panels. Pixels in different colours indicate different targets. The pixels sizes of ROIs of

F1, F2, F3 and F4 are 25, 25, 34 and 34, respectively.

There are two widely accepted experiment settings regarding the target pix-357

18



(a)

V1

V2

V3

(b)

Figure 3: Target V1, V2, V3: (a) Hymap image scene of vehicles; (b) locations if vehicles.

Pixels in different colours indicate different targets. The pixels sizes of ROIs of V1, V2,and

V3 are 9, 9 and 9, respectively.

els in the Hymap scene: 1) In [23, 24, 25, 26], only one target pixel of each358

desired target is assumed to be in the HSI; 2) whereas in [27], pixels within the359

ROIs of desired targets are all regarded as target pixels. In the setting 1), no360

target pixels are available for training. As a consequence, the parameters of the361

models have to be manually set. While in the setting 2), the target pixels can be362

randomly split into a training set and a test set and we can tune parameters for363

models. The setting 2) is believed to be a tougher condition for target detection364

than the setting 1). In this paper, we adopt the setting 2) in the evaluation of365

the compared methods for fair comparison.366

We randomly choose 2-3 labelled target pixels for training and the rest tar-367

get pixels for testing; and randomly choose around 10% background pixels for368

training and the rest background pixels for testing. Summaries of the numbers369

of training and test pixels of sub-images, which are used for detecting fabrics370

and vehicles, are given in Table 1 and Table 2, respectively.371

6.1. Parameter settings372

In real target detection problems, training examples of background pixels373

are not available. It is often assumed that the target presence in the scene is374

so sparse that if we extract neighbourhood pixels around a test pixel but not375

close to the test pixel, this neighbourhood can be seen as a replacement for376
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Table 1: Target fabrics: the number of target pixels for training and test in the sub-image

shown in Figure 2.

Target pixels Background pixels

Target training test total training test total

F1 2 23 25 1197 10778 11975

F2 2 23 25 1197 10778 11975

F3 3 31 34 1196 10770 11966

F4 3 31 34 1196 10770 11966

Table 2: Target vehicles: the number of target pixels for training and for test in the sub-image

shown in Figure 3.

Target pixels Background pixels

Target training test total training test total

V1 2 7 9 1499 13492 14991

V2 2 7 9 1499 13492 14991

V3 2 7 9 1499 13492 14991

background samples. Therefore as with [3, 4, 5, 11, 12, 28], we adopt the double377

concentric sliding window [11], a local and adaptive approach to extract the378

background pixels from the neighbourhood of each test pixel. Specifically, the379

concentric window separates the local area around each pixel into two regions,380

an inner window region (IWR) and an outer window region (OWR). The IWR is381

used to enclose the target of interest to be detected. The OWR is used to model382

the local backgrounds around the target region. An illustration of the double383

concentric window is shown in Figure 4. The determination of the window384

sizes is difficult. Since there are no labelled background samples in the Hymap385

dataset, we adopt the widely-used double concentric sliding window scheme386

to extract background samples and construct background subspace B. For387

illustrative purposes and as with most of the state-of-the-art works [5, 11, 12, 28],388

the window sizes are set empirically in this paper. In our cases, the sizes of OWR389

and IWR are set as 17× 17 and 7× 7 for detecting fabrics panels, and 15× 15390
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and 5 × 5 for detecting vehicles, respectively. Therefore, for each test pixel x391

in Figure 2, the number of training background pixels is Nb = 240; for each392

test pixel x in Figure 3, the number of training background pixels is Nb = 200,393

which are all greater than the dimension of the spectra (p = 126).394

Figure 4: An illustration of the double concentric window.

For each target pixel xi in an HSI, we use the mean-centred background395

samples extracted by double concentric window to compute the covariance ma-396

trix Ci, where i = 1, . . . , N and N is the total number of test pixels in the HSI.397

Then the columns of the subspace B are created by the eigen-decomposition of398

Ci. Since we only have one prior spectrum for each desired target, we subtract399

the background mean µi of the local adaptive background samples around the400

test pixel xi from the target spectrum mt, i.e. mt−µi, then normalise mt−µi401

to have a unit l2-norm as the target subspace T. As a result, the columns in B402

and T all have unit l2-norms and are independent of each other.403

Regarding the variance σT of γ defined in MSSD-i (39) and the eigenvalue404

matrix ΛT of γ defined in MSSD-a (48), we set both σT and ΛT to be∞, since405

we only have one target spectrum to construct T and there is no variance can406

be estimated in the target subspace. It means that in the real application of407

target detection where only one target spectrum is available, we actually do not408

shrink the size of abundance γ corresponding to the target basis vector in the409

H1 model in both MSSD-i and MSSD-a, and let the projection of a test pixel410

onto the target basis vector be as much as possible.411

In the conventional MSD to be evaluated on the Hymap image, there is only412

one unknown parameter to be tuned, which is the number of preserved leading413

eigenvectors rb(rb 6 p) for the subspace B, since for each desired target there414
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is only one target spectrum, Nt = rt = 1. In the proposed MSSD-i and MSSD-415

a, two unknown parameters in (18) and (27) need to be tuned: the shrinkage416

parameters θ0 and θ1. The optimal values of rb of MSD, θiso0 and θiso1 of417

MSSD-i and θaniso0 and θaniso1 of MSSD-a tuned by the training data are listed418

in Table 3.419

Table 3: Parameter settings of MSD, MSSD-i and MSSD-a.

MSD MSSD-i MSSD-a

rb θiso0 θiso1 θaniso0 θaniso1

F1 2 1e-09 1e-07 1e-03 1e-03

F2 2 1e-09 3e-07 7e-07 1e-09

F3 14 1e-09 1e-08 1e-08 3

F4 2 1e-09 1e-08 3e-03 3e-03

V1 124 1e-09 1e-09 3e-07 1e-09

V2 6 1e-09 1e-07 1e-07 1e-06

V3 124 1e-09 1e-07 3 5e+1

6.2. Detection performance420

Table 4: Detection performance of MSD, MSSD-i and MSSD-a measured with the AUC

statistics. The best performance is indicated in boldface.

MSD MSSD-i MSSD-a

F1 0.974 0.662 0.968

F2 0.706 0.713 0.888

F3 0.679 0.506 0.801

F4 0.711 0.656 0.784

V1 0.673 0.845 0.726

V2 0.647 0.752 0.778

V3 0.643 0.664 0.676

The detection performances of MSD, MSSD-i and MSSD-a are listed in Ta-421

ble 4 and shown in Figure 5 and Figure 6. Firstly, we can observe that both422
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Figure 5: ROC curves of detecting fabric panels: (a) F1; (b) F2; (c) F3; (d) F4.
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Figure 6: ROC curves of detecting vehicles: (a) V1; (b) V2; (c) V3.
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MSSD-i and MSSD-a can outperform MSD in detecting F2, V1, V2 and V3.423

Specifically, MSSD-a can improve the detection performance significantly, com-424

pared with the conventional MSD method. Among the seven types of targets,425

MSSD-a improves six of them, F2, F3, F4, V1, V2 and V3, from MSD. Secondly,426

MSSD-i improves the performance on detecting F2, V1, V2 and V3, compared427

with MSD. These results suggest that introducing l2-norm regularisation terms428

into MSD can improve the detection performance.429

We shall note that MSD has better performance on detecting F1 than MSSD-430

i and MSSD-a. However, MSSD-a still has competitive performance as MSD431

on detecting F1 (0.9680 vs. 0.9742); it also illustrates that preserving the infor-432

mation from the eigenvalues in the prior distribution of abundance by MSSD-a433

can have a more stable detection performance than MSSD-i, which assumes an434

equal variance in the prior distribution.435

6.3. Discussion on effects of parameters436
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Figure 7: Effects of window sizes on detecting V3: (a) MSD; (b) MSSD-i; (c) MSSD-a. The

IWR size is fixed to be 5 × 5, and the OWR size varies from 15 × 15, 13 × 13 to 11 × 11.

We further investigate the effects of parameters on the performances of de-437

tectors.438

Firstly, the effects of window sizes on the performances of MSD, MSSD-i439

and MSSD-a for detecting target V3 are illustrated in Figure 7; the results for440

detecting other targets are of a similar pattern. It is true that all parameters,441

such as window sizes of OWR and IWR and shrinkage parameters θ0 and θ1,442
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jointly affect the performances of detectors. Here for simplicity of exploring the443

effect of window sizes alone, we fix the values of other parameters (rb, θ0 and444

θ1) of corresponding detectors as those in Table 3, and fix the size of IWR. The445

ROC curves of the detectors under three different sizes of OWR are plotted446

in Figure 7. We can observe that MSD and MSSD-i are sensitive to OWR,447

whilst MSSD-a is more stable. This indicates that MSSD-a is more robust to448

the variation of background samples, and preserving variances of the original449

data is beneficial in terms of the stability of detection performance.450
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Figure 8: For OWR of size 15 × 15 and IWR of size 5 × 5. (a) MSSD-i: effects of θiso0 and

θiso1 on detecting V3; (b) MSSD-a: effects of θaniso0 and θaniso1 on detecting V3.
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Figure 9: For OWR of size 11 × 11 and IWR of size 5 × 5. (a) MSSD-i: effects of θiso0 and

θiso1 on detecting V3; (b) MSSD-a: effects of θaniso0 and θaniso1 on detecting V3.

Secondly, we investigate the effects of shrinkage parameters by sweeping the451

parameter spaces of θiso0 and θiso1 of MSSD-i and θaniso0 and θaniso1 of MSSD-452
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a. Here due to much higher computational complexity for the large number of453

test pixels, we show the results for the training pixels as illustration. We show454

the results of MSSD-i and MSSD-a for detecting V3 under two sets of window455

sizes in Figure 8 and Figure 9, respectively. Again, the results for detecting456

other targets are of a similar pattern.457

We can observe that the AUC surface of MSSD-i is smoother than that of458

MSSD-a in both sets of window sizes. This pattern is particularly clear in the459

setting that OWR is of size 15× 15 and IWR is of size 5× 5, where MSSD-i is460

not sensitive to θiso0, as shown in Figure 8(a). Technically, the reason for this461

‘extreme’ pattern is because the number of training background pixels Nb = 200462

is greater than the pixel dimension p = 126, which leads to the result that rb = p463

and the p× p matrix B represents a full space. Therefore for each pixel xj , the464

RSS eiso0 (xj) in (21) can be simplified to465

eiso0 (xj) = xTj (I−B
(
(1 + θiso0)I0)−1BT

)
xj

= xTj xj −
1

1 + θiso0
xTj BBTxj

= xTj xj −
1

1 + θiso0
xTj xj

=
θiso0

1 + θiso0
xTj xj .

(58)

In (58), eiso0 (xj) is equivalent to scaling the l2-norm of every pixel xj with a466

scaler θiso0
1+θiso0

. The detection ratio (23) is then scaled by θiso0
1+θiso0

as well when467

θiso1 is fixed. As a result, the AUC of MSSD-i does not depend on θiso0, as468

shown in Figure 8(a). However, in Figure 9(a) when the OWR size reduces to469

11×11, the number of background samples Nb becomes 96 and thus Nb < p, and470

the AUC becomes dependent on θiso0, because now eiso0 (xj) cannot be simplified471

to (58) and θiso0 affects the AUC.472

As a by-product, the above analysis suggests a guideline on the use of MSSD-473

i: when Nb < p, both shrinkage parameters θiso0 and θiso1 should be tuned474

during the training phase; when Nb > p, only θiso1 needs to be tuned and θiso0475

can be arbitrary. For example, the values of θiso0 in Table 3 are in the case of476

Nb > p and are not necessary to be 1e-09; instead, they can be any values.477

27



For MSSD-a, the detection performance varies with both θaniso0 and θaniso1,478

as shown in Figure 8(b) and Figure 9(b).479

Finally, it is worth discussing why MSSD-a is more favourable than MSSD-i,480

as indicated by the test results listed in Table 4. We believe a big reason for481

this is that MSSD-a considers both eigenvectors and eigenvalues to preserve the482

information of the data for the shrinkage, while MSSD-i considers only eigenvec-483

tors. MSSD-i essentially assumes an equal variance in the prior distribution of484

each coefficient in the eigenspace, while MSSD-a assumes different variances for485

different coefficients based on eigenvalues. Hence the latter preserves the vari-486

ances of the original data and can adapt to the shrinkage in different directions487

in the eigenspace better than the former.488

7. Conclusion489

We have proposed a new approached to hyperspectral target detection, called490

the matched shrunken subspace detector (MSSD), and its two implementations,491

MSSD-i with isotropic shrinkage and MSSD-a with anisotropic shrinkage. The492

MSSD introduces the l2-norm regularisation into the popular matched subspace493

detector (MSD), seeking more reliable projection for the hypothesis models H0494

and H1. From the Bayesian perspective, the added regularisation terms preserve495

non-uniform prior distributions of the coefficient vectors in the models. Both496

MSSD-i and MSSD-a can reduce the variances of the coefficients and result in497

more stable estimators. The links among MSD, MSSD-i and MSSD-a have also498

been discussed in detail, and the two proposed methods have shown superior499

detection performance compared with the conventional MSD on the real dataset500

of Hymap.501
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