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ABSTRACT
A large number of mainstream applications, like temporal
search, event detection, and trend identification, assume
knowledge of the timestamp of every document in a given
textual collection. In many cases, however, the required
timestamps are either unavailable or ambiguous. A charac-
teristic instance of this problem emerges in the context of
large repositories of old digitized documents. For such doc-
uments, the timestamp may be corrupted during the digiti-
zation process, or may simply be unavailable. In this paper,
we study the task of approximating the timestamp of a doc-
ument, so-called document dating. We propose a content-
based method and use recent advances in the domain of term
burstiness, which allow it to overcome the drawbacks of pre-
vious document dating methods, e.g. the fix time partition
strategy. We use an extensive experimental evaluation on
different datasets to validate the efficacy and advantages of
our methodology, showing that our method outperforms the
state of the art methods on document dating.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval
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1. INTRODUCTION
Temporal text mining is at the core of a large number

of mainstream applications. The input to such applications
consists of a collection of timestamped documents. The tem-
poral dimension can be used for, among others, event detec-
tion [1], document search [6], and text summarization [8].

The assumption made by all such applications is that the
timestamp of each document is both available and accu-
rate. In practice, however, this assumption may be false. A
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characteristic instance of this problem emerges in the con-
text of large repositories of old digitized documents. Such
repositories are becoming increasingly large and abundant,
due to initiatives such as The National Digital Newspaper
Program1. For such documents, the timestamp may be cor-
rupted during the digitization process, or may simply be
unavailable.

In this paper, we propose a purely statistical method based
on document content and burstiness for approximating the
true timestamp of a given document in the context of very
large timestamped document collections. We address the
problem by considering two main factors, (i) lexical similar-
ity and (ii) burstiness. The first factor captures the intu-
ition that similar documents are more likely to discuss the
same topics and events, and are thus more likely to be asso-
ciated with adjacent timestamps. The second factor builds
upon the intuition that bursts in term frequency capture the
trends in vocabulary usage during the corresponding time-
frame and can thus prove useful in document dating.

When an event takes place (e.g. an earthquake, sports
finals), the event’s characteristic terms (e.g. “earthquake”,
“shooting”, “overtime”) appear more frequently in the me-
dia. In the context of document dating, our intuition is that
a timeframe when many terms of the query document are
bursty is more likely to overlap with the document’s times-
tamp. Our method is the first to utilize temporal informa-
tion through a burstiness-aware approach, without depend-
ing on specific language rules, datasets, or meta-information.

Our contributions can be summarized as follows:

• We propose a purely statistical algorithm for estimat-
ing the timestamp of a document based on its content
and burstiness.

• Our approach reports non-fixed periods of time, in
contrast to previous approaches, that report one time-
frame among the pre-segmented timespan of the refer-
ence corpus.

• We provide an extensive experimental evaluation, by
using three different datasets spanning different time
periods, showing that our method outperforms the pre-
cision of the state of the art methods.

2. RELATED WORK
The problem of document dating has proven to be difficult

for the information retrieval community. The best published

1http://www.loc.gov/ndnp



results do not achieve more than 50% precision, when esti-
mating 1-year long intervals in corpora that span 10 years,
whilst using purely statistical methods [2]. The underlying
reason for this, is that not all documents contain temporal
information, which makes a percentage of the corpus useless
for testing and training purposes.

Previous approaches addressed the problem of document
dating by identifying linguistic constructs with a clear tem-
poral interpretation (e.g. the mention of the date or time).
However, such tokens can be very sparse as well as ambigu-
ous, referring to irrelevant timeframes. Another line of work
overcomes this drawback, by considering the entire vocabu-
lary of a document [3]. While this is a clear improvement,
these methods are limited by their static consideration of the
candidate timeframes, since they pre-segment the timeline
into intervals of the same fixed length. A language model is
then used to select the interval that is most likely to be the
temporal origin of the query document.

Kanhabua and Nørv̊ag in [5] propose a document-dating
method that extends the one proposed by de Jong et al. [3].
Specifically, the authors propose the application of semantic-
based preprocessing of the reference collection and apply a
term-weighting scheme. Chambers proposed a discrimina-
tive model, using a Maximum Entropy classifier, as well as
defining rules for processing temporal linguistic features, as
year mentions in documents [2]. While this model outper-
formed the methods proposed by de Jong and Kanhabua,
it has the limitation that it only works well for year pre-
dictions, because temporal linguistic features that refer to
months or days are ambiguous. Moreover, in this study
there were no running time experiments, an issue that we
address in the current paper. In contrast with all of the
above approaches, our approach has not such requirements
and can handle intervals of arbitrary length.

3. PROBLEM DEFINITION
Let D be a collection of documents spanning a timeline of

T = t1, t2, ..., tn of n discrete timestamps (e.g. days). Each
document d ∈ D is associated with exactly one timestamp
t(d) ∈ T . Given a query document q /∈ D, for which the
timestamp t(q) is unknown, our goal is to find the most
likely interval I of size `, within T , so that t(q) falls within I.
Among other things, our approach considers the burstiness
of the terms in the query document q. Given a term x ∈ q, by
B(x) we represent the set of non-overlapping bursty intervals
for x.

4. OUR APPROACH
Our approach considers (i) the lexical similarity of the

query document with the documents in the reference collec-
tion D (ii) the burstiness of the significant terms of the query
document q, e.g., top-k terms ranked by tf-idf. The use of
lexical similarity captures the intuition that similar docu-
ments are more likely to discuss similar topics and events,
and are thus more likely to originate in the same timeframe.
In practice, however, similar documents may appear on dif-
ferent timestamps across the timeline. We address this, by
introducing term burstiness. When an event or topic is
recorded in a textual corpus, its characteristic terms exhibit
atypically high frequencies. We refer to these timeframes
as bursty intervals. Our algorithm is orthogonal to the ac-
tual mechanism used for computing non-overlapping bursty
intervals. By identifying the bursty intervals of different
terms, we can identify the timeframe of relevant events, as

well as relevant documents that discuss them. A conceptual
view of our approach is given by the example in Figure 1.
In this case, the three documents d2, d3, d4 will be selected
by our algorithm, since they are both close to each other
and overlap with multiple bursty intervals of the considered
terms.

Figure 1: How BurstySimDater identifies the appro-
priate timestamp for a given query document.

We refer to our algorithm as BurstySimDater. The pseu-
docode is given in Algorithm 1.

Algorithm 1 BurstySimDater

Input: reference corpus D, bursty intervals B, query docu-
ment q, max timeframe length `
Output: timeframe of q

1: S ← top-k most similar documents to q from D
2: WS ← ∅
3: for d ∈ S do
4: wd ← 0
5: Y ← d ∩ q
6: for x ∈ Y do
7: wd ← wd + |{I ∈ B(x) : t(d) ∈ I}|
8: wd ← wd/|Y|
9: WS ←WS ∪ {wd}

10: AS ← (d ∈ S,WS)
11: I ← GetMax(AS , `)
12: Return I

The input to the algorithm consists of the query document
q, the reference corpus D, the set of precomputed bursty
intervals B and the upper bound on the reported timeframe
`. The output is an interval of length at most `, within the
timeline T spanned by D.

First, the algorithm retrieves the top-k most similar docu-
ments to q from D. In our own evaluation, we experimented,
among others, with the tf-idf measure and the Jaccard sim-
ilarity. We use the latter in the experimental section of this
paper, since it led to the best results. We refer to the re-
trieved set of the k most similar documents as S.

In steps 2-9, we assign a weight wd to each document in
d ∈ S, based on its overlap with the burstiness patterns of
its terms. Initially, wd is set to zero. Let Y be the overlap of
d’s vocabulary with the vocabulary of the query document
q. For each term x ∈ Y, let B(x) be the precomputed set of
bursty intervals for x. We then increment wd by the number
of the intervals from B(x) that actually contain t(d). After
the iteration over all terms in Y is complete, we normalize
wd by dividing it by |Y|. Conceptually, the weight wd of a
document d is the average number of bursty intervals that



Table 1: Description of the datasets
# Dataset Start Date End Date # docs

1 NYT10 01/01/1987 12/31/1996 665,741
2 NYT1987 01/01/1987 12/31/1987 73,279
3 SF-Call1 01/01/1903 12/31/1904 144,289
4 SF-Call2 01/01/1908 12/31/1909 153,412
5 TopixAll 01/01/2008 12/31/2008 65,540
6 TopixCanada 01/01/2008 12/31/2008 3,326
7 TopixSAfrica 01/01/2008 12/31/2008 2,389

it overlaps with, computed over all the terms that it has in
common with the query q. The computed weights are kept in
the setWS . We want to identify the interval when the most
terms from the top-k similar documents are simultaneously
bursty. This period is the intersection of intervals with the
maximum sum of weights. To do this, in steps 10-11, we
create an array AS of size T , where cell i equals to the sum
of weights wd for all documents d ∈ S that were written
at ti. Next, we find the interval I of length ` with the
maximum sum. By tuning `, we tune the level of desired
accuracy. In order to compute the sets of bursty intervals we
use the GetMax algorithm [6]. Given a discrete time series
of frequency measurements, GetMax returns a set of non-
overlapping bursty intervals with respect to the frequencies.

5. EXPERIMENTS
For our experimental evaluation we used three real-world

news datasets, each of them being a chronologically ordered
sequence of documents. Table 1 describes each dataset in
detail. Datasets 1, 2 are parts of the New York Times2

dataset, datasets 3, 4 are articles from The San Francisco
Call newspaper and datasets 5, 6, 7 are articles from the web-
site Topix.com, which host news articles from 181 countries.
After POS tagging and Word Filtering for all competing
methods, we kept only nouns, verbs and adjectives. After
carefully examining the relevant literature on document dat-
ing, we chose to compare with the following methods:
MaxEnt: The algorithm proposed by Chambers in [2] trains

a discriminative version of a Maximum Entropy classifier.
We used the MaxEnt classifiers from the freely available Stan-
ford toolkit, as was done in the original paper.
NLLR: The algorithm proposed by de Jong et al. [3] and

extended by Kanhabua and Nørv̊ag [5] initially splits the
timeline to segments of fixed (and equal) length (e.g. weeks).
It then uses temporal language modeling to compare the
vocabulary between each query document and the segments,
in order to choose the most likely segment.

In BurstySimDater experiments we used k = 10 most sim-
ilar documents. Changing this parameter did not result in
a big difference in precision. In MaxEnt and NLLR we used
all unigrams features. As proposed in the respective papers
[2, 5] and was validated in our experiments, performance
of MaxEnt and NLLR is best when all features are used. We
evaluate all approaches on each of the available datasets via
a 10-fold cross validation, omitting the known timestamp of
a query document.

5.1 Scalability Experiments
In this experiment we applied the three methods on vari-

ous random samples of increasing size from NYT10, which
is the largest document collection. We experimented with

2http://catalog.ldc.upenn.edu/LDC2008T19

various timeframe lengths ` = 1, 6, 12 months. Figure 4 de-
picts the total running time for each method as a function
of the sample size. X-axis illustrates the total size of the
dataset, 90% of which serves as training- and 10% as testing-
set. The total running time for NLLR includes partitioning of
the dataset, indexing of the documents and building the lan-
guage models for each partition. The total running time for
MaxEnt includes the training of the Maximum Entropy Clas-
sifier. The total running time for BurstySimDater includes
indexing of the documents and computation of the bursty
intervals for all terms in the corpus. Moreover, all running
time values include the computation of the reported inter-
vals for all testing documents.

As depicted in Figure 3 BurstySimDater achieves the best
precision for all dataset sample sizes and all timeframe lengths
`. More importantly, in terms of total running time BurstySim-
Dater scales much better than MaxEnt and is directly com-
parable to NLLR. Due to the computational complexity of
MaxEnt some of the experiments did not terminate in a rea-
sonable amount of time.

Figure 2 illustrates the difference in total running times
of the three methods for a multiple query experiment. More
specifically, for each document three intervals of respective
lengths ` = 1, 6, 12 months were desired. The reason for the
depicted running time difference is that BurstySimDater al-
gorithm does not need to repeat the indexing of documents
and the computation of the bursty intervals in order to eval-
uate the three different queries, whereas NLLR and MaxEnt

need to re-partition the timeline into segments of length
` = 1, 6 and 12 months. This is another benefit for not
pre-partitioning the timeline into fixed-length segments.

Figure 2: A multiple query experiment on a 60%
sample of the NYT10 dataset yields the depicted
total running time for the three approaches.

5.2 Precision Experiments
In this experiment we evaluate and compare the precision

values achieved by BurstySimDater, MaxEnt and NLLR in all
datasets and settings. In order to measure the precision val-
ues as a function of (the length of the target timeframe) `,
we experimented on NYT10, which is our largest dataset.
Both MaxEnt and NLLR algorithms require a pre-segmented
timeline in intervals of length `. Our BurstySimDater algo-
rithm has no such requirement. Instead, ` is provided as an
upper bound of the reported timeframe. We tune ` so that
the results of the competing approaches are directly com-
parable. We evaluate the approaches for ` ∈ [4, 12, 24, 48]
weeks.

Table 2 contains all achieved precision values for all meth-
ods. As described above, the experiments for MaxEnt algo-
rithm did not terminate in reasonable time for target time-



Figure 3: Comparison of precision values for the three methods vs. sample size for the NYT10 dataset.
Timeframe length: 1-month, 6-months and 12-months.

Figure 4: Comparison of total running time for the three methods vs. sample size for the NYT10 dataset.
Timeframe length: 1-month, 6-months and 12-months.

Table 2: Precision (%) for NYT10 dataset
Timeframe Length NLLR MaxEnt BurstySimDater

1 month 18 - 23.4
3 months 24 - 32
6 months 25 36 40
1 year 38.4 48.6 49.8

Table 3: Precision for 1 month in 1 or 2 year(s)
Dataset NLLR MaxEnt BurstySimDater

NYT1987 29 24 32
SF-Call1 35 38.5 38.6
SF-Call2 29 36 34

TopixCanada 44.5 61.8 63
TopixSAfrica 75 81 84

frames of length ` = 4 and 12 weeks. BurstySimDater not
only outperforms the state of the art methods in all time-
frame lengths, but also this difference in precision increases
as the number of candidate time intervals becomes larger
(Figure 3, e.g. for target timeframe length ` = 1 month).

Table 3 depicts all precision values for ` = 1 month for all
1 or 2 year datasets. This experiment also demonstrates the
challenging nature of the problem: while some of the doc-
uments discuss specific events, others simply discuss topics
that are not relevant to current events and can thus be as-
sociated with any timestamp. BurstySimDater algorithm
outperforms NLLR in all datasets for all values of `, while
achieving similar values to MaxEnt, which in turn has the
scalability problems analyzed in Section 5.1. Another in-
teresting observation comes from the results on the Top-
ixCanada and TopixSAfrica datasets. For this corpora,
the achieved precision values were significantly higher for
all methods, reaching up to 63% and 84% respectively. This
verifies our intuition that spatial information can be utilized
to improve the results of our document-dating algorithm.

6. CONCLUSION AND FUTURE WORK
In this paper we introduced a new approach for docu-

ment dating that does not depend on temporal linguistic
constructs and can report timeframes of arbitrary length. In
addition it clearly outperforms the state of the art in terms
of running time complexity and precision, over a variety of
real datasets. As future work, we will apply our approach
to a document retrieval problem in the context of temporal
search and leverage the determined timestamp of documents
in building the temporal profile [4, 7] of a query in order to
improve the overall retrieval effectiveness.
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