NETCONF Interoperability Testing

Ha Manh Tran, Iyad Tumar, and Jiirgen Schénwalder

Computer Science, Jacobs University Bremen, Germany
{h.tran,i.tumar, j.schoenwaelder}@jacobs-university.de

Abstract. The IETF has developed a network configuration manage-
ment protocol called NETCONF which was published as proposed stan-
dard in 2006. The NETCONF protocol provides mechanisms to install,
manipulate, and delete the configuration of network devices by using an
Extensible Markup Language based data encoding on top of a simple
Remote Procedure Call layer. This paper describes a NETCONF inter-
operability testing plan that is used to test whether NETCONF protocol
implementations meet the NETCONF protocol specification. The test of
four independent NETCONF implementations reveals bugs in several
NETCONF implementations. While constructing test cases, a few short-
comings of the specifications were identified as well.

Key words: Network Management, NETCONF, Interoperability Testing

1 Introduction

The NETCONTF protocol specified in RFC 4741 [1] defines a mechanism to con-
figure and manage network devices. It allows clients to retrieve configuration
from network devices or to add new configuration to these devices. The NET-
CONTF protocol uses a remote procedure call (RPC) paradigm. A client encodes
an RPC request in Extensible Markup Language (XML) [2] and sends it to a
server using a secure, connection-oriented session. The server returns with an
RPC-REPLY response encoded in XML.

The NETCONF protocol supports features required for configuration man-
agement that were lacking in other network management protocols, for instance
SNMP [3]. NETCONTF operates on so called datastores and represents the config-
uration of a device as a structured document. The protocol distinguishes between
running configurations, startup configurations and candidate configurations. In
addition, it provides primitives to assist with the coordination of concurrent
configuration change requests and to support distributed configuration change
transactions over several devices. Finally, NETCONF provides filtering mecha-
nisms, validation capabilities, and event notification support [4].

The aim of this paper is twofold. First, we describe a NETCONF interop-
erability testing plan that is used to test whether NETCONF protocol imple-
mentations meet the NETCONF protocol specification in RFC 4741. The test
plan particularly focuses on testing the correctness of NETCONF messages and

2 Tran, Tumar and Schénwalder

operations; it is not our current goal to measure the performance of NETCONF
implementations. Second, we will discuss the observations and results that show
how the test plan found some NETCONF implementation bugs, and how it re-
vealed a few shortcomings where the specification (RFC 4741 and RFC 4742 [5])
is either somewhat ambiguous or totally silent.

In order to make the paper concise and precise, we use the word request
when we refer to an rpc request message and the word response when we refer
to an rpc-reply response message. We refer to NETCONF operations such as
get-config by typesetting the operation name in teletype font. The names of
test suites are typeset in small caps, e.g., VACM.

The rest of the paper is structured as follows: An overview of the NETCONF
protocol is presented in Section 2. Section 3 provides information about the sys-
tems under test before the test plan is introduced in Section 4. The NETCONF
interoperability tool (NIT) is described in Section 5. Preliminary observations
are reported in Section 6 before the paper concludes in Section 7.

2 NETCONF Overview

The NETCONTF protocol [1] uses a simple remote procedure call (RPC) layer
running over secure transports to facilitate communication between a client and
a server. The Secure Shell (SSH) [6] is the mandatory secure transport that
all NETCONF clients and servers are required to implement as a means of
promoting interoperability [5].

The NETCONF protocol can be partitioned into four layers as shown in
Figure 1. The transport protocol layer provides a secure communication path
between the client and server. The RPC layer provides a mechanism for encoding
RPCs. The operations layer residing on top of the RPC layer defines a set of
base operations invoked as RPC methods with XML-encoded parameters to
manipulate configuration state. The configuration data itself forms the content
layer residing above the operations layer.

The NETCONTF protocol supports multiple configuration datastores. A con-
figuration datastore is defined as the set of configuration objects required to
get a device from its initial default state into a desired operational state. The
running datastore is present in the base model and provides the currently active
configuration. In addition, NETCONF supports a candidate datastore, which is
a buffer that can be manipulated and later committed to the running datastore,
and a startup configuration datastore, which is loaded by the device as part of
initialization when it reboots or reloads [4].

Table 1 shows the protocol operations that have been defined so far by the
NETCONF working group of the IETF. The first two operations get-config
and edit-config can be used to read and manipulate the content of a datas-
tore. The get-config operation can be used to read all or parts of a specified
configuration. The edit-config operation modifies all or part of a specified con-
figuration datastore. Special attributes embedded in the config parameter con-
trol which parts of the configuration are created, deleted, replaced or merged.

NETCONF Interoperability Testing 3

Layer Example

Content Configuration data

| |
Operations <get-config>, <edit—config>

| |

Remote Procedure Call <rpc>, <rpc-reply>
| |

Transport Protocol SSH, SOAP, BEEP, TLS, ...

Fig. 1. NETCONF protocol layers [1].

The test-option and the error-option parameters control the validation and the
handling of errors. The copy-config operation creates or replaces an entire con-
figuration datastore with the contents of another complete configuration data-
store and the delete-config operation deletes a configuration datastore (the
running configuration datastore cannot be deleted).

The lock and unlock operations do coarse grain locking of a complete data-
store and locks are intended to be short lived. More fine grained locking mech-
anisms are currently being defined in the IETF [4]. The get operation can be
used to retrieve the running configuration and the current operational state of
a device.

Table 1. NETCONF protocol operations (arguments in brackets are optional) [4]

lOperation ‘Arguments ‘

get-config source [filter]

edit-config target [default-operation]
[test-option] [error-option] config

copy-config target source

delete-config target

lock target

unlock target

get [filter]

close-session

kill-session session-id

discard-changes

validate source

commit [confirmed confirm-timeout]

create-subscription|[stream)] [filter] [start] [stop]

4 Tran, Tumar and Schénwalder

NETCONF sessions can be terminated using either the close-session op-
eration or the kill-session operation. The close-session operation initiates
a graceful close of the current session while the kill-session operation forces
the termination of another session.

The optional discard-changes operation clears the candidate configuration
datastore by copying the running configuration into the candidate buffer while
the optional validate operation runs validation checks on a datastore. The
optional commit operation is used to commit the configuration in the candidate
datastore to the running datastore.

A separate specification published as RFC 5277 [7] extends the base NET-
CONTF operations defined in RFC 4741 for notification handling. This is done by
adding the create-subscription operation and introducing new notification
messages carrying notification content. By using a notification stream abstrac-
tion, it is possible to receive live notifications as well as to replay recorded noti-
fications.

NETCONF protocol introduces the notion of capabilities. A capability is
some functionality that supplements the base NETCONF specification. A capa-
bility is identified by a uniform resource identifier (URI). The base capabilities
are defined using URNSs following the method described in RFC 3553 [8]. NET-
CONF peers exchange device capabilities when the session is initiated: When the
NETCONTF session is opened, each peer (both client and server) must send a
hello message containing a list of that peer’s capabilities. This list must include
the NETCONF :base capability!. Following RFC 4741, we denote capabilities
by the capability name prefixed with a colon, omitting the rest of the URI.

3 Systems Under Test

The systems used for the NETCONF interoperability testing comprise Cisco
1802 integrated services routers, Juniper J6300 routers, the Tail-f ConfD soft-
ware for configuration management, and the EnSuite software [9] for configu-
ration management. The ConfD software is an extensible development toolkit
that allows users to add new components by writing a configuration specifica-
tion for a data model and loading the generated object and schema files for
the components. For the sake of consistency, we refer to the ConfD software
as the Tail-f system. The EnSuite software contains a YencaP implementation
used to test the NETCONF configuration protocol and extensible features on
an experimental network management platform. It also supports web-based con-
figuration management for NETCONF and additional modules and operations
for the platform; e.g., the BGP_Module for configuring BGP routers and the
Asterisk_Module for configuring VoIP servers. Table 2 briefly describes the four
platforms and the SSH support of the four systems. The ConfD and EnSuite are
installed and configured to run on Linux XEN virtual machines [10].

Table 3 presents the NETCONF capabilities announced by the systems un-
der test. The Tail-f system supports all capabilities except the :startup ca-

! urn:ietf:params:netconf:base:1.0

NETCONF Interoperability Testing 5

Table 2. Systems under test

ISystem[Platform [SSH Support ‘

Juniper| JUNOS ver. 9.0 ver. 1.5/2.0
Tail-f | ConfD ver. 2.5.2 ver. 2.0
Cisco 10S ver. 12.4 ver. 2.0

EnSuite|YencaP ver. 2.1.11 ver. 2.0

pability. The Cisco, Juniper and EnSuite systems support fewer capabilities
and apparently the Cisco implementation favours a distinct startup datastore
while the Juniper implementation favours a candidate datastore with commit
and rollback support. The EnSuite implementation supports both startup and
candidate datastores. Note that some implementations can be configured to
support additional capabilities, but we used the more standard default settings
in our tests. In addition to the capabilities listed in Table 3, each system an-
nounces several proprietary capabilities.

Table 3. NETCONF capabilities supported by the systems under test

l Capability [Juniper[Tail-f [Cisco [EnSuitel

:base v 4 4 v
:writable-running Vv Vv Vv
:candidate Vv v Vv
:confirmed-commit v v
:rollback-on-error Vv
:validate Vv v
:startup Vv vV
w VAR VA VA Y
:xpath Vv

The Tail-f and Juniper implementations use an event driven parser. They do
not wait for the framing character sequence to respond to a request. The Cisco
and EnSuite systems do not seem to have an event driven parser or at least they
do not start processing requests until the framing character sequence has been
received.

The Juniper implementation is very lenient. For example, it continues pro-
cessing requests even if the client does not send a hello message or the client
does not provide suitable XML namespace and message-id attributes. The Ju-
niper implementation supports a large number of vendor-specific operations. In
addition, it renders the returned XML content in a tree-structure that is rela-
tively easy to read and it generates XML comments in cases of fatal errors before
closing the connection. As a consequence, the Juniper implementation is very
easy to use interactively for people who like to learn how things work without
using tools other than a scratch pad and a cut and paste device. The EnSuite im-

6 Tran, Tumar and Schonwalder

plementation shares the same characteristics with the Juniper implementation.
Moreover, it returns an error message with an explanation of the reason and
does not close the connection when the client sends illegal input. It, however,
requires message-id attributes for requests.

The Tail-f and Cisco implementations are much less tolerant when process-
ing input not closely following RFC 4741. They also return XML data in a com-
pact encoding, minimizing the embedded white-space and thus reducing message
sizes. Without proper tools, it is pretty difficult for humans to read the responses.
In some cases, these two implementations close the connection when the client
sends illegal input without an indication of the reason for closing the connection.
In such cases, it can take some effort to investigate the wrongdoings.

Finally, we like to point out that the Cisco implementation we have tested
does not support structured content; i.e., its configuration content is a block
of proprietary I0S commands wrapped in an XML element. As a consequence,
several of the advanced NETCONF features for retrieving and modifying struc-
tured configuration data cannot be applied. The EnSuite implementation still
contains bugs and partially supports the candidate and url capabilities; e.g.,
several operations on the candidate datastore do not seem to work.

4 Test Plan

In this section we describe our NETCONF test plan. To make the execution of
the tests efficient and to keep the collection of tests organized, we divided our
test plan into five test suites. A test suite is a collection of test cases that are
intended to be used to test and verify whether the systems under test meet the
NETCONF protocol specification contained in RFC 4741 and RFC 4742.

Table 4 lists the test suites and the current number of test cases in each
suite. The total number of test cases is 87. Each test case contains three parts:
(i) a pre-configuration prepares the system under test for the test; (ii) a main
test sends requests to, and receives responses from, the system under test, and
verifies the responses; (iii) a post-configuration brings the system under test to
the initial status. Our organization of test cases into test suites is not directly
following the vertical layering model show in Figure 1 and the horizontal or-
ganization of operations and capabilities in the operations layer as one might
expect. The reason is essentially our attempt to reduce the overhead of the pre-
configuration and post-configuration parts during the execution of the test suite
on the systems under test, e.g., in order to test the edit-config operation on
a network interface, we describe a sequence of test cases for create, replace,
merge and delete operations with setting up and cleaning up the interface once.
This also led to a more tightly integrated organization of the test cases.

The first test suite is referred as the GENERAL test suite because it in-
cludes test cases for individual operations such as lock, unlock, close-session,
kill-session, discard-changes, validate, and commit. The lock and unlock
test cases verify that the responses do not contain an error or the responses con-
tain a proper error, e.g., a lock request to the datastore already locked causes

NETCONF Interoperability Testing 7

Table 4. Test suites and current number of test cases

Test Suite |No. Test Casesl

GENERAL 19
GET 11
GET-CONFIG 16
EDIT-CONFIG 15
VACM 26

an error. The kill-session test case contains a pre-configuration that prepares
another running session before terminating it, while the validate test case con-
tains a post-configuration that discards a change after validating it. This test
suite also checks the format of requests and responses. Few test cases verify
whether the responses contain the compulsory attributes and the attribute’s
value matches the value contained in the requests.

The next two test suites are the GET and GET-CONFIG suites. These suites
aim to test the filter mechanism of the get and get-config operations. While
get operates on the running configuration datastore and the device’s state data,
get-config operates on different sources of the configuration data such as the
running and candidate datastores (depending on the support of capabilities),
resulting in additional test cases for the GET-CONFIG suite. Test cases verify
several types of subtree filters, e.g., a test case checks whether the system un-
der test returns the entire content of the running configuration data plus the
operational state when no filter is used, or another test case checks whether the
system under test returns nothing when an empty filter is used.

The EDIT-CONFIG suite involves tests modifying the configuration data in the
datastore. This suite includes test cases for the delete-config, copy-config,
and edit-config operations. The edit-config operation test cases support the
create, replace, merge and delete operation attributes. Several test cases in
this suite are data model specific due to the lack of a common data model, thus
we need to implement several tests in different ways. This extra work can be
reduced if implementers volunteer to support a common data model.

The last test suite is the VACM suite verifying the NETCONF protocol oper-
ations against the VACM data model [11]. This data model is a YANG version
of the SNMP-VIEW-BASED-ACM-MIB (View-based Access Control Model for the
Simple Network Management Protocol [12]). YANG [13] is a data modelling
language for NETCONF. Test cases in this suite are generated from this data
model focusing on the group, access, and view lists.

5 Test Tool (NIT)

We have implemented a tool called NIT (NETCONF Interoperability Testing
tool) to automatically execute the test suites against a system under test. Our
NIT tool basically performs the following operations:

1. connecting to a system under test using the SSH

8 Tran, Tumar and Schonwalder

2. verifying the initial hello message
3. executing test cases by
— sending a test request and receiving a response
— verifying both the request and the response following the criteria defined
by RFC 4741.
4. reporting the failure or the success of each test

The tool is equipped with an XML parser to analyze the responses for veri-
fication. The parser, upon receiving a response, provides a list of elements with
quantity, a list of attributes with quantity, a list of attribute values and a list
of text parts. With this information, the tool can detect possible flaws from the
responses, such as whether any element or attribute is missing, whether an error
must be returned. The following example presents a response without an error
or a warning:

<?7xml version="1.0" encoding="UTF-8"7>
<rpc-reply message-id="1007"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>
11>11>

The parser provides the following information of the response:

-Element Types
rpc-reply 1
ok 1
-Attribute Types
message-id 1
xmlns 1
-Attribute Values
message-id [’1007°]
xmlns [’urn:ietf:params:xml:ns:netconf:base:1.0°]
-Text Parts
(]

We have used the Python unit testing framework [14]. The framework fea-
tures test automation, shared configuration of setup and shutdown methods,
arrangement of tests into collections, and independent reporting of the tests.
The tool takes advantage of these features to maintain a single SSH connection
for all tests and to group related tests into a collection; e.g., tests concerned
with creation, modification and deletion operations are grouped together to re-
use and clean the testing environment easily. The tool organizes test cases into
several collections of test cases, namely test suites, as discussed in Section 4.

While the tool has been used successfully to test some specific devices (see
next section), it possesses several limitations. Firstly, it lacks a resumption mech-
anism to continue the test run when it encounters connection loss due to the

NETCONF Interoperability Testing 9

misbehavior of systems under test. Secondly, while the test cases are believed to
comply with RFC 4741, the test scripts, i.e., the piece of code that implements
test cases, depends on the specification and configuration of components of the
tested systems to produce the requests and to verify the responses. Finally, the
framework requires some extra work for complicated test cases; e.g., testing the
lock operation requires an extra session to lock the database.

6 Preliminary Observations

We have used the NIT tool to test the systems described in Section 3. Since the
result of the tests are specific to the different NETCONF implementations, we
present the results by referring to system X and we leave out the mapping of X
to the systems described in Section 3. Note that we did manually re-check the
failed test cases in order to erase bugs in the test scripts. Despite these efforts,
several test cases reflect our interpretation of RFC 4741 and there might not be
full agreement with our interpretation and thus the numeric results presented
below should be taken with a grain of salt.

Table 5. Test result summary organized by the systems under test

l System ‘ Success ‘ Failure ‘Irrelevant‘

47.2% 14.9% 37.9%
82.8% 9.2% 8.0%
17.3% 10.3% 72.4%
17.3% 21.8% 60.9%

S| QW =

Table 5 presents the result of the NIT tool for the systems under test. The
“success” and “failure” columns indicate the percentage of passed and failed
test cases respectively, while the “irrelevant” column indicates the percentage
of test cases that cannot be applied to a specific system due to either system
configuration or implementation problems (e.g., the vacm data model is not
implemented).

We learned that the systems A and B comply reasonably well with the RFCs.
The system A fails 14.9% of the test cases and most of them are related to the
basic format of request and response messages or the filter mechanism of the get
operation. The system B performs better with very few failed test cases and most
of them are concerned with the validation of XML elements in request messages.
The two systems A and B have very few problems with the filter mechanism
of the get-config operation or the usage of the edit-config operation for
creating, modifying and deleting configuration elements. The systems C' and D
perform poorer with 72.4% and 60.9% irrelevant test cases and 10.3% and 21.8%
failed test cases, respectively. The failed test cases are related to the format of
requests and responses or the filter mechanism of the get operation.

10 Tran, Tumar and Schénwalder

Table 6. Test result summary organized by the test suites

l Test Suite [Success [Failure [Irrelevant‘

GENERAL 73.6% 13.2% 13.2%

GET 29.5% 52.3% 18.2%

GET-CONFIG 48.4% 14.1% 37.5%
EDIT-CONFIG 38.3% 1.7% 60%
VACM 19.2% 5.8% 75%

Table 6 reports the passed and failed test cases organized by the test suites
over the total number of running test cases for the systems under test. There
are two remarks: (i) the GET suite obtains a high percentage of failed test cases
52.3%, and (ii) the EDIT-CONFIG suites obtains low percents of failed test cases
1.7%. We found that the majority of failed test cases from the GET suite is
related to the filter mechanism of the get operation.

With the failed test cases in mind, we have looked back into the RFCs. There
are several things where the RFC is either somewhat ambiguous or totally silent.
In general, the RFC should provide more detailed descriptions for error situations
and it might be necessary to better constrain the currently open ended format
of request and response messages since they for example allow arbitrary values
for attributes. Furthermore, the RFC should be updated with clearer examples.
Some particular issues are listed below:

— The RFC ignores the XML declaration
<7xml version$="1.0" encoding="UTF-8"?7>

for requests and responses. Some systems do not execute a request without
this declaration while other systems do. It seems that the IETF working
group favours to have a mandatory XML declaration.

— The examples in RFC 4741 often omit namespace declarations for request
and response messages. Only few systems execute a request without a proper
namespace declaration and it would help interoperability if the examples
would contain namespace declarations where necessary.

— RFC 4741 requires that additional attributes present in the <rpc> element
of a request message must be returned in the <rpc-reply> element of the
response message without any change (see section 4.1 of the RFC 4741).
This requirement leads to problems when such an attribute conflicts with
attributes generated by the implementation. One implementation generated
duplicated attributes (and thus invalid XML) while another implementation
removes a duplicated attribute resulting in violation of RFC 4741.

— RFC 4741 allows arbitrary strings for the message-id attribute. From the
tests, we found that implementations terminate the session often without
an error indication or return strange results when the message-id attribute
in a request message contains unexpected content such as the literal string
11>11> or the literal string </rpc>. Of course, a proper NETCONF client
would not generate such request messages since they are invalid XML. But

NETCONF Interoperability Testing 11

on the other hand, one can question whether arbitrary content in request
and response attributes is a feature worth to support.

Some of the items listed above are meanwhile actively discussed on the NET-
CONF working group mailing list and work is underway to revise RFC 4741 in
order to fix bugs and to clarify the processing of NETCONF messages [15].

7 Conclusions and Future Work

We have carried out some work on NETCONF interoperability testing. This
work aims at observing the compliance of NETCONF implementations with
RFC 4741. It also aims at identifying inconsistencies in the RFC. We have pro-
posed a test plan consisting of five test suites. Each test suite contains a number
of test cases that involve a single operation or a group of related operations. The
test cases exploit several aspects of RFC 4741 including the format of request and
response messages, the filter mechanism supported by some operations, NET-
CONTF capabilities, and so on. The test cases have been coded into the NIT
tool, which automates the execution of test runs. It should be noted, however,
that the test cases so far have not been reviewed and as such there might be
disagreement on some test cases whether they are correct or not relative to RFC
4741.

We have used the NIT tool to test four different NETCONF implementations.
Our preliminary observations indicate that the number of failed test cases is
relatively high for some systems, thus raising the question of the compliance of
these systems with RFC 4741. We have also noted some inconsistencies in RFC
4741 that should be addressed in a future revision of this document. It should be
mentioned that some test cases are our interpretation of RFC 4741 and it needs
to be worked out to what extend our interpretation meets the interpretation of
the working group.

While some interesting initial results have been obtained, this work still re-
quires several improvements. First, the coverage of RFC 4741 by the test cases
needs to be evaluated and increased by adding additional test cases as needed.
Furthermore, it would be nice to reduce the dependency of the test cases on
different data models. Third, the NIT tool should be improved to better support
more complicated test cases that involve multiple NETCONF sessions. Fourth,
it would be nice to have a tool able to generate test suites out of YANG data
models. And finally, it would be valuable to repeat the tests with a larger number
of different NETCONF implementations and to evaluate how test results impact
future software revisions and lead to more interoperability.

Acknowledgment

The work reported in this paper is supported by the EC IST-EMANICS Network
of Excellence (#26854).

12

Tran, Tumar and Schénwalder

References

1.
2.

10.

11.

12.

13.

14.

15.

R. Enns. NETCONF Configuration Protocol. RFC 4741, December 2006.

C. Sperberg-McQueen, J. Paoli, E. Maler, and T. Bray. Extensible Markup
Language (XML) 1.0 (Second Edition). http://www.w3.org/TR/2000/REC-xml-
20001006, October 2000. Last access in July 2008.

J. Case, R. Mundy, D. Partain, and B. Stewart. Introduction and Applicability
Statements for Internet Standard Management Framework. RFC 3410, December
2002.

J. Schonwailder, M. Bjorklund, and P. Shafer. Network Configuration Management
using NETCONF and YANG. IEEE Communications Magazine, 2009.

. M. Wasserman and T. Goddard. Using the NETCONF Configuration Protocol

over Secure Shell (SSH). RFC 4742, December 2006.

T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture. RFC
4251, January 2006.

S. Chisholm and H. Trevino. NETCONF Event Notifications. RFC 5277, July
2008.

M. Mealling, L. Masinter, T. Hardie, and G. Klyne. An IETF URN Sub-namespace
for Registered Protocol Parameters. RFC 3553, June 2003.

V. Cridlig, H. J. Abdelnur, J. Bourdellon, and R. State. A NetConf Network
Management Suite: ENSUITE. In Proc. 5th IEEE International Workshop on IP
Operations and Management: Operations and Management in IP-Based Networks
(IPOM ’05), volume 3751 of LNCS, pages 152-161. Springer, 2005.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the Art of Virtualization. In Proc. 19th ACM
Symposium on Operating Systems Principles (SOSP ’03). ACM, October 2003.

J. Schonwélder. VACM Yang Data Model. Jacobs University Bremen, October
2008.

B. Wijnen, R. Presuhn, and K. McCloghrie. View-based Access Control Model
(VACM) for the Simple Network Management Protocol (SNMP). RFC 3415, De-
cember 2002.

M. Bjorklund. YANG - A data modeling language for NETCONF. Internet draft,
January 2009.

Python Unit Testing Framework. http://pyunit.sourceforge.net/. Last access in
November 2008.

R. Enns, M. Bjorklund, and J. Schonwéalder. NETCONF Configuration Proto-
col. Internet Draft <draft-ietf-netconf-4741bis-00.txt>, Juniper Networks, Tail-f
Systems, Jacobs University, March 2009.

