Chapter 18

EXTRACTING CONCEALED DATA
FROM BIOS CHIPS

P. Gershteyn, M. Davis, G. Manes and S. Shenoi

Abstract The practice of digital forensics demands thorough, meticulous exam-
inations of all data storage media seized in investigations. However,
BIOS chips and other firmware are largely overlooked in forensic in-
vestigations. No forensically sound procedures exist for imaging BIOS
chips and no tools are available specifically for analyzing BIOS image
files. Yet, significant amounts of data may be stored on BIOS chips
without hindering machine performance.

This paper describes robust techniques for concealing data in BIOS
freespace, BIOS modules, and throughout a BIOS chip. Also, it dis-
cusses how flashing utilities and traditional digital forensic tools can be
used to detect and recover concealed data.

Keywords: BIOS chips, firmware, data concealment, evidence acquisition

1. Introduction

The Basic Input/Output System (BIOS) of a computer is an interface
that enables its hardware and software to interact with each other [7, 16,
18]. BIOS chips provide diagnostics and utilities necessary for loading
operating systems. No computer — from the smallest embedded device
to the largest supercomputer — can function without a BIOS.

BIOS chips typically contain 128 to 512K of flash memory, which can
be used to conceal data. A BIOS writing technique was exploited by
the 1998 Win95/CIH virus that wiped out hard drives. Computer game
enthusiasts often use BIOS editing to “mod” computers with personal-
ized graphics [3]. We were able to store 40 pages of The Jolly Roger’s
Cookbook [11] on a functioning BIOS chip. Criminals can adopt similar
techniques to conceal information: drug contacts, financial records, dig-
ital photographs, or cryptographic keys that encrypt child pornography

218 ADVANCES IN DIGITAL FORENSICS

Gemeral Help

Sevret Besseqes and other texts can go here,
0 two guys walk - dntoa bar, rightt and
the third guy. he ducks bak blah Mab: :
in:irs«:iim\s fur terrarists go hmz Hell, they

mai.i tke whale paint of &hls tesparch 15 to

 sure that aEi mh dita s found

editors van bo wsed o do mxing thing& The wol‘
thing sbont x&nhxg it mu: this 15, .

Ll thie can be rm& !*ight from the bios sereen .

Figure 1. BIOS setup screen displaying hidden data.

stored on hard drives. However, BIOS chips are largely overlooked in
forensic investigations. No forensically sound procedures exist for imag-
ing BIOS chips and no tools are available specifically for analyzing BIOS
image files.

This paper describes robust techniques for concealing data in BIOS
freespace, BIOS modules, and throughout a BIOS chip. Also, it discusses
how flashing utilities and traditional digital forensic tools can be used
to detect and recover concealed data.

2. BIOS Overview

The Basic Input/Output System (BIOS) of a computer is an interface
that enables its hardware and software to interact with each other [7, 16,
18]. Typically located on the motherboard, the BIOS contains software
necessary for the computer to start, including instructions for performing
a Power-On Self-Test (POST) and reading hard drive boot sectors (2,
18]. BIOS chips also offer basic diagnostics utilities and provide low-
level routines that operating systems may use for communicating with
hardware. BIOS configurations are stored on a CMOS chip and powered
by a small lithium or nickel-cadmium battery that allows the CMOS to
store data for several years. Modern BIOS chips use flash memory that
enables them to be modified, updated and erased. BIOS chips on most
modern computers have storage capacities between 128 and 512K.

Executable code within a BIOS is typically active only during the
boot process and until operating system hardware drivers are loaded into
memory [5]. From this point on, operating system commands are used
to interact with hardware devices and the BIOS maintains only limited

Gershteyn, et al. 219

control over low-level hardware features such as power management and
certain software interrupts.

BIOS software is modular, enabling it to perform separate functions at
startup depending on the computer’s hardware configuration. The soft-
ware consists of two main parts: compressed modules and an area called
the “bootblock,” which is responsible for decompressing and executing
the modules. Hardware that requires initialization can be recognized
and loaded by the BIOS. The BIOS checks reserved memory locations
for specific byte sequences and headers that indicate the location and
size of the hardware initialization code. Modern BIOSs check memory
from 0x0C0000 to OxOEFFFF at 2K boundaries, sidestepping memory
ranges used by video hardware and the system BIOS itself. This behav-
ior provides for plug-and-play functionality of hardware devices at the
BIOS level [7].

2.1 BIOS Boot Process

When a computer is powered on, the processor first accesses a prede-
termined area of the system BIOS ROM to access the BIOS boot pro-
gram. This location is at memory offset OxFFFFO, sixteen bytes below
the top of real mode memory [12]. Real mode is the default operating
mode for modern Intel-architecture processors, allowing the processor
to mimic the 8088 chip. Offset 0xFFFFO is not located in RAM, but
actually on the BIOS ROM chip. This location contains a jump instruc-
tion to a memory offset that contains the BIOS startup code, typically
0xFE05B.

At this stage of the process, most flash BIOS chips copy themselves to
RAM in a process known as “shadowing,” which allows faster access to
the BIOS code while also decompressing and defragmenting noncontigu-
ous BIOS code. The BIOS code then performs the Power-On Self-Test
(POST). POST checks if all necessary hardware is present and function-
ing normally. Since the video card is not active at this point, POST uses
beep codes to alert the user to fatal errors encountered during the boot
process [2].

Next, the BIOS runs the video card’s built-in BIOS program, which
is normally found at location 0xC000. The video card’s BIOS initializes
the video card and displays the confirmation on the screen, providing
the first visual indication that the computer is booting. The system
BIOS then looks for and executes all other BIOS-enabled devices, dis-
plays the startup screen, and conducts more system tests, including a
memory count. All fatal errors encountered by the BIOS at this point
are displayed on the screen.

220 ADVANCES IN DIGITAL FORENSICS

BIOS Chip / Image

RomBase.bin

original.tmp cpucode.exe AWARDEXT.ROM FILE1.ROM
AWARDEYT.ROM awardepa.epa ACPITBL.BIN cav_shdw.bin
pci32.rom CR11CH.ROM nvpxes.nic

Free Space

0x0002£536 - 0x00031f£ff 0x0003e528 - 0x0003£063
0x00033100 - 0x00033fff 0x0003£564 - 0x0003£809
0x0003c000 - 0x0003dfff 0x0003feaa - 0x0003ffdf

Figure 2. Schematic diagram of BIOS storage.

The BIOS then configures system hardware, determines memory tim-
ing and dynamically sets hardware parameters [12]. The BIOS stores
hardware parameters in a 256 byte portion of reserved RAM between
locations 0x000400 and 0x0004FF, which allows the operating system
and other programs to reference hardware information. Once the BIOS
completes its inventory of computer hardware, it displays a summary
and begins searching for a boot device. After the BIOS finds a device
containing boot information it executes code from the first sector of that
device.

2.2 BIOS Storage

This work focuses on an ASUS A7N266-VM motherboard with a sock-
eted BIOS chip [1]. The BIOS version is the original ASUS A7TN266-VM
ACPI BIOS Rev. 1004/AA with build date 08/23/02.

Figure 2 shows the storage structure of the ASUS A7N266-VM BIOS.
It consists of eleven modules stored at the start of the file, followed by
BIOS data interspersed with freespace.

Data may be stored at several sites on a BIOS chip’s flash memory.
Depending on the location and quantity of data stored, the BIOS could
remain functional or it could become corrupted, rendering the computer
inoperable. BIOS chips are designed to be expandable. Consequently,
they have large portions of freespace that can be overwritten with data
without adversely affecting the operation of the chip. Figure 3 shows a
schematic diagram of a BIOS chip with data hidden in its freespace.

Data may also be stored within BIOS modules. Modules often contain
text strings that are displayed as messages, e.g., obscure error messages
and hardware data. These text strings can be overwritten with data
without affecting the operation of the chip. Figure 4 shows a BIOS chip

Gershteyn, et al. 221

BIOS Chip / Image

RomBase.bin
original.tmp cpucode.exe AWARDEXT.ROM FILE1.ROM
AWARDEYT.ROM awardepa.epa ACPITBL.BIN cav_shdw.bin
pci32.rom CR11CH.ROM nvpxes.nic
Hidden Data
0x0002£536 - 0x00031££ff 0x0003e528 - 0x0003£063
0x00033100 - 0x00033£f£ff 0x0003£564 - 0x0003£809
0x0003c000 - 0x0003dfff 0x0003feaa - 0x0003ffdf

Figure 3. BIOS with hidden data in freespace.

BIOS Chip / Image

RomBase.bin
original.tmp/ AWARDEXT.ROM/
Hidden Data cpucode.exe Hidden Data FILE1.ROM
awardepa.epa/ cav_shdw.bin/
AWARDEYT.ROM Hidden Data ACPITBL.BIN Hidden Data
pci32.rom/ nvpxes.nic/
Hidden Data CR11CH.ROM Hidden Data
Free Space
0x0002£536 - 0x00031££f 0x0003e528 - 0x0003£063
0x00033100 - 0x00033f£f 0x0003£564 - 0x0003£809
0x0003c000 - 0x0003dfff 0x0003feaa - 0x0003ffdf

Figure 4. BIOS with hidden data in modules.

with hidden data in six modules. A procedure for concealing data in
two of these modules is described in Section 3.2.

If BIOS functionality is not a concern, the entire BIOS chip memory
(256K in the case of ASUS) can be used for data storage. However, this
makes the recovery of the data problematic, as the computer cannot be
booted when the BIOS has been corrupted.

2.3 BIOS Flashing

Computer manufacturers often release updated BIOS software (im-
ages or ROMs) for their motherboards [6]. A BIOS is upgraded using
a “flashing” program, which erases the chip and replaces its software
with the new BIOS image. Sometimes, manufacturers package a flash-
ing program and BIOS image as a single executable file. Alternatively,
a third party flashing program (Uniflash [17]), which is compatible with
most motherboards and BIOSs can be used to upgrade a BIOS. These
flashing programs can be used to conceal data on BIOS chips.

222 ADVANCES IN DIGITAL FORENSICS

1BI0S Diectoy

f

AT
AWARDEYT FOM.
awardens any
STPITRLEN
oot o

TRITCH AOM

Figure 5. AwardMod screen during extraction of BIOS modules.

Most flashing programs run from the command prompt and require
the computer to be running in the DOS mode with no other programs,
drivers or services running. Therefore, an MS-DOS boot disk must be
modified to create an environment for running a flashing program. Ap-
propriate boot disks, e.g., Caldera Dr-DOS [4], may also be downloaded
from the Internet. Newer motherboards now support BIOS flashing from
Windows using special software; this makes it possible to quickly read
and write BIOS chips.

A BIOS utility, e.g., AwardMod [8], can be used to extract, delete and
add modules to a BIOS image. Figure 5 shows an AwardMod screen dur-
ing the process of extracting ASUS BIOS modules. Hex editors may also
be used to read and modify BIOS modules, except for those containing
graphics, e.g., the BIOS boot logo, which is encoded in EPA format. A
separate program, such as EPACoder [15], facilitates the editing process
by converting between EPA and bitmap graphics. Figure 6 shows EPA-
Coder being used to replace the standard BIOS logo with a skull and
crossbones.

Editing BIOS modules with AwardMod can corrupt the chip. To re-
cover from this failed flashing attempt, it is necessary to boot the com-
puter in order to re-flash the BIOS. Since a computer with a corrupt
BIOS will not boot, the “hotflashing” technique [9] must be used. Hot-
flashing involves replacing the corrupt BIOS chip with a working chip,
booting the computer to a state that allows flashing, and then switching

Gershteyn, et al. 223

Figure 6. EPACoder screen during bitmap to BIOS image conversion.

the working chip with the corrupt chip while the computer is running.
This permits the corrupt chip to be re-flashed.

Special hardware tools, e.g., BIOS Savior [10], simplify the hotflashing
process. BIOS Savior interfaces the motherboard and BIOS chip, and
provides a backup BIOS chip. A switch allows the user to choose between
the original BIOS and the BIOS Savior backup chip. Thus, the user can
hotswap BIOS chips with the flip of a switch rather than having to
physically remove and insert chips into a running computer.

3. Data Concealment

This section describes techniques for concealing data in: (i) BIOS
freespace, (ii) BIOS modules, and (iii) throughout the BIOS chip. The
first two techniques produce a usable BIOS chip with hidden data. The
third technique can hide a substantial amount of data, but it renders
the chip unusable. Nevertheless, the hidden data can be extracted using
special techniques (see Section 4).

The BIOS Savior tool [10] is used for hotflashing [9]. Caldera Dr-DOS
[4] is used to boot the computer into a state where flashing the BIOS
chip is possible. An ASUS flashing program (aflash.exe [1]) is used
to read and write to the BIOS chip. AwardMod [8] is used to extract
and replace BIOS modules. A hex editor (Hex Workshop) is used to
edit BIOS data. EPACoder [15] is used to convert graphical images to
a usable format. A separate workstation is used to manage the process
of flashing the BIOS.

3.1 Overwriting BIOS Freespace

Because BIOS software is designed to be upgradeable, BIOS chips
typically have significant amounts of freespace. The following procedure

224

ADVANCES IN DIGITAL FORENSICS

describes how data may be hidden in BIOS freespace without affecting
its operation. Note, however, that prior research is necessary to verify
which blocks of freespace can be used without affecting a BIOS chip.

BIOS Freespace Overwriting Procedure

1

10

Procure an MS-DOS compatible boot disk approved for BIOS flashing (e.g.,
Caldera Dr-DOS). The disk should not execute any terminate and stay resident
(TSR) programs.

Copy the ASUS flashing program (aflash.exe) to the boot disk.

Boot the ASUS machine using the boot disk. This may require altering the
drive boot order in the CMOS settings. After Caldera Dr-DOS has booted,
execute aflash.exe. Backup the original BIOS to the floppy disk and save the
file on the boot disk as asback.bin.

Place the boot disk in the workstation and copy asback.bin to the hard drive.

Find all 8 blocks of null characters in asback.bin. Null blocks are long strings
of either Os or Fs. Since these blocks represent free space, data may be writ-
ten to them without corrupting the BIOS. The null blocks are present at the
following locations:

Block 1: FFFFs at 0x0002F536--0x00031FFF
Block 2: 0000s at 0x00032A26--0x00032FFD
Block 3: 0000s at 0x00033100--0x00033FFF
Block 4: FFFFs at 0x0003B6A0--0x0003BFFF
Block 5: 0000s at 0x0003C000--0x0003DFFF
Block 6: 0000s at 0x0003E528--0x0003F063
Block 7: 0000s at 0x0003F564--0x0003F809
Block 8: 0000s at 0xOO0O03FEAA--0x0003FFDF

Note that editing any part of Block 2 corrupts the BIOS. Also, while editing
Block 4 will not corrupt the BIOS, the stored data cannot be recovered. The
remaining blocks permit both data storage and retrieval.

Select a file (evidence.rar) to be hidden that can fit within the null blocks,
which in this case is 26,850 bytes. Compression may be used to store more
data than would otherwise be possible. Multiple files may also be stored as
long as they do not exceed a total of 26,850 bytes.

Write evidence.rar across the empty blocks. Blocks that are not filled with
data should be padded with zeros. A file that is too large for a block can be
split using a hex editor and written to multiple blocks.

After the null bytes of asback.bin are overwritten by the data in evidence.rar,
save asback.bin and rename it asedited.bin.

To complete the process of hiding evidence.rar, copy asedited.bin to the
boot disk, boot the ASUS using the boot disk, and flash the BIOS. This is
done by typing aflash /boot /auto asedited.bin at the command prompt.

Restart the computer to verify that it still functions properly.

Gershteyn, et al. 225

3.2 Editing BIOS Modules

Significant amounts of data may be hidden within BIOS modules
without affecting the operation of the chip. Modules often contain text
strings that are displayed as messages (e.g., obscure error messages and
hardware data); these text strings can be overwritten with data. Like-
wise, modules contain considerable amounts of freespace that can also
be used to hide data.

The procedure for concealing data in two modules, awardepa.epa and
awardext.rom, is described below. The module awardepa.epa stores
the BIOS boot logo; awardext.rom contains text that is displayed at
the BIOS setup screen. Data hidden in these modules can be read from
the screen without having to image the BIOS. Note that the boot logo is
stored as awardepa.epa in one of two formats, EPA 1 and EPA 2. EPA
1 is a limited format: a picture is divided into cells, each cell limited to
two colors. Despite this restriction, it is possible to store information in
this graphic. The ASUS BIOS only supports EPA 1.

BIOS Module Editing Procedure

1 Procure an MS-DOS compatible boot disk (Caldera Dr-DOS) approved for
BIOS flashing.

2 Copy the ASUS flashing program (aflash.exe) to the boot disk.

3 Boot the ASUS machine using the boot disk. After Caldera Dr-DOS has
booted, execute aflash.exe. Backup the original BIOS to the floppy disk as
asback.bin. Place the boot disk in the workstation and copy asback.bin to
the hard drive.

4 Copy asback.bin to the workstation from the boot disk and run AwardMod.
AwardMod can be used to load and store a binary BIOS file or a directory
containing the extracted modules from the binary BIOS file. Use AwardMod
to extract the modules in asback.bin and store them in a directory.

5 Use a hex editor to edit the extracted module awardext.rom. The strings in
this file are the same strings that are visible on the BIOS setup screen. Since
the help text is scrollable and relatively long, this is the best place to write
data. Save the edited version of awardext.rom as zawardext.rom.

6 Use EPACoder to convert awardepa.epa to a bitmap. Edit the bitmap using
a graphics program and convert it back to the EPA 1 format using EPACoder.

7 Use AwardMod to open asback.bin. Copy the module number associated
with awardext.rom. Then, delete awardext.rom. Next, enter the location of
zawardext.rom in the new module (file name) prompt in AwardMod. Also,
paste awardext.rom’s module number into the box associated with the new
module, and add this module to the BIOS.

8 Similarly, delete awardepa.epa and add zawardepa.epa, making sure that
zawardepa.epa has the same module number as awardepa.epa.

226 ADVANCES IN DIGITAL FORENSICS

9 Enter the new file name asedited.bin and its location in the BIOS file name
prompt of AwardMod to write this file on the hard drive. Flash this file to
the ASUS BIOS chip using the boot disk and the command aflash.exe /boot
/auto asedited.bin.

10 Restart the computer to verify that it still functions properly. Also verify that
the changes made to the modules are reflected in the BIOS startup and setup
screens.

3.3 Overwriting the Entire BIOS

As discussed earlier, the entire BIOS chip memory (256K in the case of
ASUS) can be used to hide data. However, this makes the recovery of the
data problematic, as the computer cannot be booted with a corrupted
BIOS. Hotflashing is one solution. Alternatively, the motherboard must
have two BIOS chips or a BIOS backup device, e.g., BIOS Savior, must
be used to recover the hidden data. The procedure described below
makes use of BIOS Savior. The user can flip a switch on the computer
to choose whether the original chip or the BIOS Savior chip should be
used.

Entire BIOS Overwriting Procedure

1 Procure an MS-DOS compatible boot disk (Caldera Dr-DOS) approved for
BIOS flashing.

2 Copy the ASUS flashing program (aflash.exe) to the boot disk.

3 Create a RAR archive with the files to be hidden. The files should not be
compressed to ensure that the size of the RAR archive is predictable.

4 When the RAR archive is close to (but less than) 262,144 bytes save and close
the archive. Then, open it in a hex editor and pad with zeros at the end until
the total size of the RAR archive is exactly 262,144 bytes. Name the RAR
archive evidence.rar.

5 Copy evidence.rar to the boot floppy. Boot the ASUS with the boot floppy
and flash evidence.rar to the BIOS chip using the command aflash /boot
/auto evidence.rar. Note that the ASUS will no longer be able to boot with
its BIOS chip.

4. Concealed Data Recovery

This section describes procedures for detecting and extracting data
that has been hidden using the procedures described in Section 3. Data
hidden in the freespace cannot be detected without imaging the BIOS
chip. However, it may be possible to detect if data is hidden within
BIOS modules before imaging the BIOS, depending on which modules
contain hidden data. It is always possible to detect whether or not the

Gershteyn, et al. 227

entire BIOS chip has been overwritten with data simply by turning on
the computer.

The following procedure should be followed for investigating a seized
computer that may have data hidden in its BIOS chip.

Initial Investigative Procedure

1 Turn on the seized computer after its hard drives have been removed. If the
computer does not boot, it is possible that the entire BIOS chip has been
overwritten with data.

2 Examine the BIOS startup and setup screens for any unusual text or graphics.
The existence of anomalies indicates that the BIOS modules have been edited.
Note, however, that the absence of anomalies does not guarantee that the BIOS
modules are free of hidden data.

3 Search the seized storage media for BIOS modification tools and flashing pro-
grams. The presence of such software may provide clues with regard to the
type of data hidden in the BIOS as well as the technique used.

The following three subsections describe procedures for detecting and
extracting hidden data from various locations in a BIOS chip.
4.1 Recovering Data from BIOS Freespace

The following procedure should be used if the investigator suspects
that data is hidden on the BIQS chip, although there is no visible ev-
idence of it on the BIOS startup and setup screens. Note that BIOS
modules should also be checked for hidden data.

BIOS Module Freespace Recovery Procedure

1 Procure an MS-DOS compatible boot disk (Caldera Dr-DOS) approved for
BIOS flashing.

2 Copy the ASUS flashing program aflash.exe to the boot disk.

3 Boot the ASUS machine using the boot disk. After Caldera Dr-DOS has
booted, execute aflash.exe. Backup the original BIOS to the floppy disk as
asback.bin.

4 Place the boot disk in the workstation and copy asback.bin to the hard drive.

5 Use forensic utilities (e.g., Foremost, Encase, Forensic Tool Kit, ILook [13,
14]) to examine the BIOS image for file headers and regular expressions, and
preserve all data of interest.

6 If the hidden data cannot be found using the forensic utilities, use a hex editor
to compare the seized BIOS image with a clean copy of the BIOS image from
the motherboard manufacturer’s website. This comparison assists in locating
hidden data.

228 ADVANCES IN DIGITAL FORENSICS

7 If a clean copy of the BIOS image is not available, examine the seized BIOS’s
image with a hex editor and look for suspicious text strings.

8 Use forensically sound procedures to copy and preserve all data of interest.

4.2 Recovering Data from BIOS Modules

If hidden data is found upon examining all the BIOS setup screens,
the BIOS modules must be processed to recover the evidence. Even if
no hidden data is found within the BIOS startup and setup screens, it
is still possible for data to be hidden within the modules. The follow-
ing procedure should be performed along with the procedure to recover
hidden data from BIOS freespace (Section 4.1).

BIOS Module Data Recovery Procedure

1 Procure an MS-DOS compatible boot disk (Caldera Dr-DOS) approved for
BIOS flashing.

2 Copy the ASUS flashing program aflash.exe to the boot disk.

3 Boot the ASUS machine using the boot disk. After Caldera Dr-DOS has
booted, execute aflash.exe. Backup the original BIOS to the floppy disk as
asback.bin.

4 Place the boot disk into the workstation and copy asback.bin to the hard
drive.

5 Use AwardMod to extract all modules from asback.bin.

6 Use forensic utilities (e.g., Foremost, Encase, Forensic Tool Kit, ILook [13,
14]) to examine the BIOS modules for file headers and regular expressions,
and preserve all data of interest.

7 If the hidden data cannot be found using the forensic utilities, use a hex editor
to compare the seized BIOS’s modules with those in a clean copy of the BIOS
image from the motherboard manufacturer’s website. This comparison assists
in locating hidden data.

8 If a clean copy of the BIOS image is not available, examine the seized BIOS’s
modules with a hex editor and look for suspicious text strings.

9 Use forensically sound procedures to copy and preserve all data of interest.

4.3 Recovering Data from Entire BIOS Chip

Recovering data from a BIOS chip that has been overwritten com-
pletely requires the chip to be physically removed. The hotflashing
technique or a BIOS Savior may be used to image the seized BIOS
chip. Alternatively, a chip programmer can be used.

Gershteyn, et al. 229

Data of any type may be hidden on a BIOS chip. Therefore, it is
recommended that forensic tools be used to conduct extensive examina-
tions of the BIOS image. Careful manual examination of the hex code
must also be performed. Forensically sound procedures must be used to
copy and preserve all data of interest.

5. Conclusions

Modern BIOS chips can hold substantial amounts of hidden data with-
out affecting their performance. This paper shows how data may be
hidden in BIOS freespace, BIOS modules, and throughout a BIOS chip.
Also, it presents forensically sound techniques for detecting and recov-
ering concealed data. The work is intended to raise awareness about
the ability of malicious individuals to store secret information on BIOS
chips and other firmware. Moreover, it should stimulate new research in
the area of firmware forensics.

References

[1] ASUS, A7TN266-VM/AA motherboard support (support.asus.com),
2003.

[2] BIOS Central (www.bioscentral.com).
[3] BIOSMods (www.biosmods.com).
[4] Bootdisk.com (bootdisk.com).

[5] P. Croucher, The BIOS Companion, Electrocution Technical Pub-
lishers, Calgary, Alberta, Canada, 1998.

[6] W. Gatliff, Implementing downloadable firmware with flash memory,
in The Firmware Handbook, J. Ganssle (Ed.), Elsevier, Burlington,
Massachusetts, pp. 285-297, 2004.

[7] Gen-X-PC, BIOS info (www.gen-x-pc.com/BIOS_info.htm).
[8] J. Hill, AwardMod (sourceforge.net/projects/awardmod/), 2002.

[9] K. Hindistan, BIOS flashing and hotflashing (www.onlamp.com/pub
/a/onlamp/2004/03/11/bios_hotflash.html), 2004.

[10] IOSS, RD1 BIOS Savior (www.ioss.com.tw), 2000.

[11] Jolly Roger, The Jolly Roger’s Cookbook (www.textfiles.com), 1990.

[12] C. Kozierok, System BIOS (www.pcguide.com), 2001.

[13] K. Mandia, C. Prosise and M. Pepe, Incident Response and Com-
puter Forensics, McGraw-Hill/Osborne, Emeryville, California, 2003.

[14] G. Mohay, A. Anderson, B. Collie, O. de Vel and R. McKemmish,

Computer and Intrusion Forensics, Artech, Norwood, Massachusetts,
2003.

230 ADVANCES IN DIGITAL FORENSICS

[15] S. Nikolayev and A. Prokopiuk, EPACoder (shareware.pcmag.com
/product.php[id]38610[cid]301[SiteID]pcmag), 2000.

[16] Phoenix Technologies, System BIOS for IBM PCs, Compatibles and
EISA Computers (2nd Edition), Addison-Wesley Longman, Boston,
Massachusetts, 1991.

[17] Rainbow Software, Uniflash (www.uniflash.org), 2005.

[18] A. Wong, Breaking Through the BIOS Barrier: The Definitive BIOS
Optimization Guide for PCs, Prentice Hall, Indianapolis, Indiana,
2004.

