Chapter 24

FORENSIC ANALYSIS OF BIOS CHIPS

Pavel Gershteyn, Mark Davis and Sujeet Shenoi

Abstract Data can be hidden in BIOS chips without hindering computer perfor-
mance. This feature has been exploited by virus writers and computer
game enthusiasts. Unused BIOS storage can also be used by criminals,
terrorists and intelligence agents to conceal secrets. However, BIOS
chips are largely ignored in digital forensic investigations. Few tech-
niques exist for imaging BIOS chips and no tools are available specifi-
cally for analyzing BIOS data.

This paper focuses on the Award BIOS chip, which is commonly
used in IBM compatible machines. It demonstrates how data may be
concealed within BIOS free space and modules in a manner that makes it
accessible using operating system commands. Furthermore, forensically
sound techniques are described for detecting and recovering concealed
data from BIOS chips.

Keywords: BIOS chips, Award BIOS, data concealment, evidence recovery

1. Introduction

The Basic Input/Output System (BIOS) is the lowest level of soft-
ware in any embedded device or computer [4, 13, 16, 20]. A BIOS
typically resides on the motherboard within a read/write flash memory
chip [8] of capacity 128K to 512K. It interfaces the hardware with the
operating system, which is critical during the booting process. Also, it
provides diagnostics and utilities for the computer system. A BIOS is
motherboard-specific, allowing the operating system to load from and
use specific hardware configurations. It maintains several system set-
tings, e.g., drive boot order and boot-up password protection. The
BIOS settings are stored separately in CMOS memory (not flash mem-
ory), which requires a small battery to maintain its integrity [20]. After
the operating system loads, the BIOS passes control to the operating
system.

302 ADVANCES IN DIGITAL FORENSICS II

AWINDOWS\System32\cmd.exe - debug (Ol %]

] osoft Windows XP [Uersion 5.1.268081
<C> Copyright 1985-2081 Microsoft Corp.

C:\Documents and Settings:paul>debug
—d £808:7180 722f
7148 066 00 O

Hotmai
is: 1
%2

Encryption Key i
s: 9849561385465
4619843498743219
8468137901375923
?986798353425345
5345452345325435
4352353495178375
9123739785435. ..

ae-aa

Figure 1. Hidden data in a BIOS viewed using Windows XP.

BIOS chips may contain 25K to 100K or more of unused space that can
be used to store data without hindering computer performance. Unused
BIOS storage space was exploited by the 1998 Win95/CIH virus that
wiped out hard drives. Computer game enthusiasts often overwrite BIOS
data to create personalized graphics. The same BIOS storage techniques
can be used by criminals, terrorists and intelligence agents to conceal
secrets, e.g., address books, financial data, incriminating photographs
and cryptographic keys.

Data concealed in a BIOS chip can be accessed relatively easily. Figure
1 shows hidden data stored in the D3VA1323.BIN module of an Award
BIOS chip viewed using the Windows XP command prompt. This is
possible because most of the data in D3VA1323.BIN is copied to RAM
during the boot process. Thus, the hidden data is discernible in a mem-
ory dump produced by the debug tool.

Although BIOS chips can conceal significant amounts of data, they
are largely ignored in digital forensic investigations. Indeed, very few
techniques exist for imaging BIOS chips [10] and no tools are available
specifically for analyzing BIOS storage.

This paper focuses on the Award BIOS chip, which is commonly used
in IBM compatible machines. It demonstrates how data may be con-
cealed within BIOS free space and modules in a manner that makes it
accessible using the operating system. Also, the paper suggests modi-
fications to standard digital forensic procedures to include BIOS (and
other firmware) chips.

The following section provides an overview of the Award BIOS chip,
including the boot process and storage organization. Next, procedures
are described for concealing data in various locations within an Award

Gershteyn, Davis € Shenoi 303

BIOS chip. Finally, forensically sound techniques are specified for de-
tecting and recovering hidden data from Award BIOS chips.

2. Award BIOS Overview

This paper focuses on the Award Version 6 BIOS chip (EPoX EP-
D3VA with BIOS Version EPoX EP-D3VA ID# 03/23/2001-694X-596B-
977-6A6LJPABC), which is representative of the family of IBM PC com-
patible BIOS chips. The BIOS chip contains modular software that facil-
itates communication between a specific motherboard and the operating
system. The BIOS software runs from the BIOS chip at power-up and
performs all the tasks necessary for the operating system to load suc-
cessfully. The software also provides diagnostic and configuration tools
for the user and low-level hardware routines for the operating system
[9]. BIOS software is stored in flash memory, which allows the software
to be upgraded. BIOS configuration data is stored on a separate CMOS
chip. Award BIOS software consists of compressed modules along with
executable code, which decompresses the modules and also provides for
erTor recovery.

BIOS executable code usually becomes inactive after the operating
system’s hardware drivers are initialized. However, the BIOS may retain
limited control over low-level functions such as power management.

The following subsections describe the boot process and storage or-
ganization of the Award BIOS chip.

2.1 BIOS Boot Process

A BIOS chip is critical to booting a computer. When a computer
is turned on, the processor reads instructions from memory location
O0xFFFFO [13], which contains a jump call to the start of the BIOS pro-
gram on the BIOS chip. When the BIOS is invoked, it executes a Power-
On Self-Test (POST) that systematically checks that the necessary hard-
ware is present and is in working order. At this point the video card
is not yet initialized, so errors are communicated to the user through a
series of beeps known as “beep codes” [1]. The BIOS also copies itself
into system RAM for faster access, decompressing its modules in the
process [7].

After the POST is completed, the system BIOS program finds and
executes the video-card’s own built-in BIOS program that initializes
the video card. The system BIOS then locates and executes the BIOS
programs of other devices.

Following these invocations, the system BIOS performs additional
hardware tests and conducts a system inventory; this establishes hard-

304 ADVANCES IN DIGITAL FORENSICS II

BIOS Chip / Image

RomBase.bin

D3VA1323.BIN awardext.rom CPUCODE.BIN ACPITBL.BIN

AwardBmp.bmp awardeyt.rom _EN_CODE.BIN | AWDFLASH.EXE

370110.ROM

Free Space

0x0002FE3F - 0x00035FFE 0x0003A278 - 0x0003BFFE
0x0003708F - 0x000373FA 0x0003D648 - 0x0003DFFE
0x00037F66 - 0x00037FFD 0x0003EFFD - 0x0003F064
0x00038000 - 0x00038FFE 0x0003F066 - 0x0003FSFE
0x00039801 - 0x00039FFE 0x0003FE64 - 0x0003FFE6

Figure 2. Award BIOS storage organization.

ware parameters. Next, the BIOS detects the memory size and identifies
the drives. A summary of the system configuration is then displayed to
the user.

The BIOS subsequently identifies its target boot drive, which is deter-
mined by the BIOS settings. Next, it searches for a master boot record
and, upon finding it, starts loading the operating system. After the op-
erating system is loaded, control passes from the BIOS to the operating
system.

2.2 BIOS Storage Organization

The storage organization of an Award BIOS chip is shown in Fig-
ure 2. The BIOS has nine modules (D3VA1323.BIN, awardext.rom,
CPUCODE.BIN, ACPITBL.BIN, AwardBmp.bmp, awardeyt.rom, _EN_CODE.
BIN, AWDFLASH.EXE and 370110.R0M), which are stored at the start of
the flash memory. The modules are followed by executable BIOS code
and data interspersed with free space. Also, the BIOS has ten sections
of consecutive free space (Figure 2). Some of these sections comprise
several consecutive “blocks” of free space; each block only contains hex
strings of 00s and FFs.

The integrity of all the modules as well as the first and second blocks
of free space is protected by an 8-bit checksum. The integrity of the
third block of free space is protected by a second checksum. However,
all the free space following the third block is unprotected.

The checksum data are stored after the third block of free space at
memory addresses 0x37FFE - 0x37FFF. All the data stored after address

Gershteyn, Davis € Shenoi 305

0x37FFF is not protected in any way. A checksum mismatch is treated
as a fatal error by the BIOS, which halts the booting process.

All the BIOS modules and most of the executable code and data are
stored in a compressed format using the LHA /LH5 algorithm [5]. The
BIOS chip incorporates code that decompresses the data during the
booting process.

Data may be concealed within BIOS free space and modules. Depend-
ing on the location and amount of data concealed, the BIOS could remain
functional or it could become corrupted, which prevents the computer
from booting. BIOS chips are designed to be expandable. Consequently,
they have large amounts of free space that can be overwritten with data
without affecting BIOS operation.

BIOS modules contain text strings that are displayed as messages,
e.g., error messages and hardware data. These text strings can be over-
written with data without affecting the BIOS.

Of course, the entire BIOS memory can be used to conceal data. This
makes the recovery of the data problematic, as the computer cannot be
booted with a corrupt BIOS. However, special devices and techniques
exist for booting such a computer and recovering hidden data [10].

3. Corrupted BIOS Recovery Technique

Editing or “flashing” BIOS modules, free space or any other code/data
can corrupt a BIOS. Therefore, a BIOS data hiding strategy must in-
corporate a technique for recovering from BIOS flashing errors.

Upon detecting an error, a BIOS chip attempts to re-flash itself using a
backup BIOS file from the floppy drive. However, automatic re-flashing
is unreliable because errors sometimes go undetected. Also, the data
hiding process can corrupt the flashing code (AWDFLASH.EXE) itself.

A BIOS Savior device can be used to recover from a data hiding at-
tempt that results in a corrupted BIOS. This device provides a backup
BIOS chip and a hardware switch that enables the user to select whether
the computer will use the BIOS Savior chip or the original BIOS chip
for the booting process. The BIOS Savior plugs into the BIOS chip’s
socket, and the original BIOS chip plugs into the BIOS Savior. There-
fore, if the BIOS on the original chip is corrupted, the user can boot the
computer using the BIOS Savior, switch back to the original chip after
the computer is operational, and then flash the original chip.

Before a BIOS is edited, a backup copy of the BIOS must be pre-
served within the BIOS Savior. This backup copy enables the computer
to boot successfully regardless of the changes made to its BIOS. Note

306 ADVANCES IN DIGITAL FORENSICS II

that the booting process involves three main steps: POST, hardware
initialization and master boot record access.

After data is written to the BIOS during the process of data hiding
(see Section 4), two possibilities exist. The first is that the overwritten
BIOS will boot the computer successfully. If the BIOS checksum com-
puted during the POST is incorrect, the BIOS will attempt to re-flash
itself. If the POST is unsuccessful and the BIOS checksum is correct,
a fatal error occurs and the system halts. Regardless of the situation,
the backup BIOS maintained in the BIOS Savior can be used to boot
the computer. This is accomplished simply by flipping the switch on the
BIOS Savior.

4. Hiding Data in BIOS Chips

This section describes procedures for hiding data in: (i) BIOS free
space, (ii) BIOS modules, and (iii) free space within BIOS modules. In
all three cases, substantial amounts of data can be concealed within the
BIOS without hindering computer performance.

Hiding data on a BIOS chip requires a separate workstation to edit and
store BIOS image files and to prepare the boot disk. Caldera Dr-DOS [2,
3] is used to create the boot disk and to facilitate BIOS flashing because
it does not contain any TSR (terminate and stay resident) programs.
A BIOS Savior device [12] is used to recover from BIOS flashing errors
(Section 3). A hex editor is used to modify BIOS images and modules.
AwardMod software [11] is used to load and store binary BIOS files
and directories containing extracted BIOS modules. Also, Uniflash [17],
a universal BIOS flashing utility, is used for BIOS read/writes instead
of the standard Award BIOS program (AWDFLASH.EXE), which leaves
portions of the chip unflashed.

4.1 Hiding Data in BIOS Free Space

The Award BIOS has 38,020 bytes of free space (located after the
block of compressed modules) that can be used for storing data. In
reality, 44,163 bytes of free space exist, but 6,143 bytes cannot be used
because data stored in certain locations is not retained.

The Award BIOS has 12 blocks of free space; the specific locations of
the blocks are shown in Table 1. Note that the first and last null bytes
(00 or FF) of each free space block are assumed to belong to the code
preceding/following the free space, and are therefore not counted.

Free space blocks are null blocks containing long strings of 00s or FFs
(Table 1). These free space blocks can be overwritten without corrupt-
ing the BIOS. However, it is important to ensure that data written to

Gershteyn, Davis € Shenoi 307

Table 1. Award BIOS free space blocks.

Block Pattern Range Comments

Block 1 FF 0x2FE3F-0x35FFE Protected by Checksum 1

Block 2 00 0x3708F—0x373FA Protected by Checksum 2

Block 3 FF 0x37F66—0x37FFD Protected by Checksum 3
— — 0x37FFE-0x37FFF

Block 4 FF 0x38000—0x38FFE

Block 5 FF 0x39801-0x39FFE

Block 6 FF 0x3A278-0x3A744

Block 7 00 0x3A745—0x3AFFF 0x3A800—-0x3AFFF not recoverable

Block 8 FF 0x3B000—0x3BFFE Entire block not recoverable

Block 9 00 0x3D648-0x3DFFE

Block 10 00 0x3EFFD-0x3F064

Block 11 00 0x3F066—0x3F5FE

Block 12 00 0x3FE64-0x3FFE6

Blocks 1, 2 and 3 does not alter the checksums [19]. This is accomplished
by reserving one byte each in Block 2 and Block 3 to balance the check-
sums. First, the 8-bit checksum of BIOSback.bin is computed before
any changes are made (the checksum value for the Award BIOS is EA).
Next, one byte in Block 2 is reserved by changing it to 00. Then, data
is written to Blocks 1 and 2, and checksum is re-calculated. Finally, the
reserved byte in Block 2 is changed to a value that makes the checksum
equal to EA. This “balancing value” is computed as [(Original Value) —
(Current Value) + 0x100] mod 0x100. Block 3 is overwritten with data
and the corresponding Checksum 2 is balanced in a similar manner.

The following procedure specifies the steps involved in hiding data in
BIOS free space.

BIOS Free Space Overwriting Procedure

1. Procure an MS-DOS compatible boot disk (Caldera Dr-DOS) approved for
BIOS flashing.

2. Copy the Uniflash program (UNIFLASH.EXE) and all its required components
to the boot disk.

3. Boot the Award BIOS machine using the boot disk. After Caldera Dr-DOS
has booted, invoke UNIFLASH.EXE. Backup the original BIOS to the boot disk
as BIOSback.bin. Copy BIOSback.bin to the workstation hard drive.

4. Use the hex editor to write data to free space in BIOSback.bin, making sure
that Checksums 1 and 2 are preserved using balancing values. Save the changes
in a new file called BIOSedited.bin.

308 ADVANCES IN DIGITAL FORENSICS II

5. Complete the process of hiding data by copying BI0Sedited.bin to the boot
disk. Boot the Award BIOS machine using the boot disk, and flash the BIOS
chip by invoking UNIFLASH.EXE.

6. Restart the computer to verify that it functions properly.

4.2 Hiding Data in BIOS Modules

The following procedure lists the steps involved in hiding data in BIOS
modules.

BIOS Module Overwriting Procedure

1. Procure an MS-DOS compatible boot disk (Caldera Dr-DOS) approved for
BIOS flashing.

2. Copy the Uniflash program (UNIFLASH.EXE) and all its required components
to the boot disk.

3. Boot the Award BIOS machine using the boot disk. After Caldera Dr-DOS
has booted, invoke UNIFLASH.EXE. Backup the original BIOS to the boot disk
as BIOSback.bin. Copy BIOSback.bin to the workstation hard drive.

4. Use AwardMod to extract modules in BIOSback.bin and store them in a di-
rectory named BIOSBackup.

5. Use the hex editor to overwrite module data that is not critical to the operation
of the BIOS (e.g., text strings). This data can be overwritten with text or
binary data.

6. After one or more modules are overwritten, use AwardMod to load all the
files in the BIOSBackup directory and store them in a new BIOS image called
BIOSedited.bin.

7. Preserve Checksum 1 in BIOSedited.bin using a balancing value in Block 1 or
2.

8. Complete the process of hiding data by copying BI0Sedited.bin to the boot
disk. Boot the Award BIOS machine using the boot disk, and flash the BIOS
chip by invoking UNIFLASH.EXE.

9. Restart the computer to verify that it functions properly.

4.3 Hiding Data in BIOS Module Free Space

This section describes how data may be stored in the BIOS module
D3VA1323.BIN in a manner that makes it accessible from Windows using
the debug command.

Module D3VA1323.BIN, which contains hardware-specific settings and
routines, has 5,057 bytes of free space that can be accessed from Win-
dows using the debug command. The debug memory dump of locations

Gershteyn, Davis € Shenoi 309

0xF0000 - OxFFFFF contains some data from D3VA1323.BIN. Note that
debug uses the segment:offset memory notation [18]; the correspond-
ing absolute memory address notation is 16*segment + offset. For ex-
ample, the segment:offset address FO00:027E in RAM is equivalent to
the absolute address 0xFO27E in RAM. The following are the mappings
of memory addresses in debug notation to absolute addresses in the
D3VA1323.BIN module (when viewed as a file):

FO000:027E - FO000:13FF <=> 0x1027E - 0x113FF
F000:1514 - F000:1BFF <=> 0x11514 - 0x11BFF

F000:1C9F - FO000:FFFF <=> 0x11C9F - Ox1FFFF

The last memory mapping contains two blocks of free space that con-
stitute 5,057 bytes of 00s. Note that the last four digits of each pair of
starting and ending address are identical, which simplifies the task of
determining the memory addresses to be dumped to obtain the contents
of a certain location in D3VA1323.BIN.

BIOS Module Free Space Overwriting Procedure

1. Run a telnet server on the Award BIOS machine. Use a telnet client to
connect to the telnet server (this is needed to capture the screen output).
Execute the command debug. At the debug prompt, type: d F000:0000 FFFF
and press enter. Save the output in a new text document: originalBIO0S.txt.

2. Procure an MS-DOS compatible boot disk (Caldera Dr-DOS) approved for
BIOS flashing.

3. Copy the Uniflash program (UNIFLASH.EXE) and all its required components
to the boot disk.

4. Boot the Award BIOS machine using the boot disk. After Caldera Dr-DOS
has booted, invoke UNIFLASH.EXE. Backup the original BIOS to the boot disk
as BIOSback.bin. Copy BIOSback.bin to the workstation hard drive.

5. Use AwardMod to extract modules in BIOSback.bin (see Figure 3) and store
them in a directory named BIOSBackup.

6. Use the hex editor to view the module D3VA1323.BIN. Compare D3VA1323.BIN
with originalBIOS.txt. Note that three hex segments of each of the two
files are identical because they map to each other (see the discussion immedi-
ately preceding this procedure). Therefore, data hidden in these locations in
D3VA1323.BIN can be viewed using the debug command.

7. The third segment of D3VA1323.BIN (i.e., 0x11C9F - Ox1FFFF), which can be
viewed using the debug command, contains two blocks of 00s (0x16FFB -
0x17FFE, 0x1DC42 - O0x1DFFE) that can be overwritten without corrupting the
BIOS. Overwrite these blocks with data that is to be hidden.

8. After the module is edited, use AwardMod to load all the files in the BIOSBackup
directory and store them in a new BIOS image called BIOSedited.bin.

310 ADVANCES IN DIGITAL FORENSICS II

(=T
[BIOS Filename =
;EIDS Diirectony E‘
|D3WA1323BIN {20480 |0 -]
iawarde:-:!.rom |1851'| iD ;I
|CPUCODE BIN {16385 |0 -
|ACPITELEIN {16387 |0 -1
[swardBmp bp T -
iawarde_l,l!.mm |15398 iD ;I
|_EN_CODE BIN {16425 |0 -]
|£/DFLASH EXE [tes2z [0 -
{370110.ROM [16518 |0 -1
[FileName &[0 []

Store I

Figure 3. AwardMod screen during extraction of BIOS modules.

9. Preserve Checksum 1 in BIOSedited.bin using a balancing value in Block 1 or
2.

10. Complete the process of hiding data by copying BI0OSedited.bin to the boot
disk. Boot the Award BIOS machine using the boot disk, and flash the BIOS
chip by invoking UNIFLASH.EXE.

11. Restart the computer to verify that it functions properly. Verify that the data
hidden in D3VA1323.BIN can be viewed using the debug command.

5. Forensic Examination of BIOS Chips

A BIOS chip is a convenient location for hiding secrets because signif-
icant amounts of data are easily stored and retrieved. Law enforcement
agents generally overlook BIOS chips during investigations. Moreover,
at this time, no established forensic procedures exist for imaging and
analyzing BIOS chips.

This section describes how common forensic tools can be used to ex-
amine BIOS chips. In particular, searches based on regular expressions
and file headers (e.g., file carving) can be used to identify and extract
data concealed in a BIOS.

Gershteyn, Davis € Shenoi 311

BIOS Data Recovery Procedure

1. Procure an MS-DOS compatible boot disk (Caldera Dr-DOS) approved for
BIOS flashing.

2. Copy the Uniflash program (UNIFLASH.EXE) and all its required components
to the boot disk.

3. Boot the Award BIOS machine using the boot disk. After Caldera Dr-DOS
has booted, invoke UNIFLASH.EXE. Backup the seized BIOS to the boot disk
as BIOSevidence.bin; this creates a forensic image of the seized BIOS. Copy
BIOSevidence.bin to the workstation hard drive.

4. Use AwardMod to extract modules in BI0OSevidence.bin and store them in a
directory named BIOSEvidence.

5. Use forensic tools (e.g., Foremost, EnCase, Forensic Tool Kit, ILook) to exam-
ine BIOSevidence.bin and the extracted modules, especially D3VA1323.BIN,
for text, file headers and regular expressions, and preserve all data of interest.
Also, examine D3VA1323.BIN, which is 128K in size, manually using the hex
editor to detect all hidden text.

6. If hidden data cannot be found using the forensic tools, use the hex editor to
compare modules from the seized BIOS with those from a clean copy of the
BIOS image (e.g., one obtained from the motherboard manufacturer). This
assists in locating hidden data.

7. Use forensically sound procedures to copy and preserve all data of interest.

6. Modifications to Forensic Procedures

Traditional digital forensic investigations involve three main steps:
initial response, media duplication (imaging) and imaged media analy-
sis. Investigations are jeopardized when important evidence is stored in
media that are not seized by investigators or when the media are seized
but, for a variety of reasons, evidence is not recovered from the media.

The initial response step is typically executed on a live computer
system that contains volatile information. This volatile information,
e.g., current users, open sockets and running processes, is captured and
saved for further investigation. Code and data — including concealed
information — stored on a BIOS chip are not lost when a computer system
or embedded device is powered down. Therefore, no action specific to the
BIOS chip is necessary during the initial response step. Of course, initial
responders must be aware that importance evidence may be hidden in
the chip.

It is important that forensic examiners image a BIOS chip just as
they image other media (e.g., hard drives and flash memory) during the
media duplication step. The procedure for imaging a BIOS chip has
been described in Section 5.

312 ADVANCES IN DIGITAL FORENSICS II

Some authors (e.g., [15]) recommend that digital forensic examiners
view drive geometry data in the system BIOS configuration — before the
media duplication step — to obtain drive parameters that might aid in
media duplication. An analysis of the system BIOS configuration may
reveal that data is hidden in the BIOS. However, the examiner must be
alert to the fact that the BIOS may contain hidden data.

It is possible that the BIOS in a seized computer may be intentionally
corrupted, e.g., when the BIOS contains secret information or when the
owner has overwritten the BIOS to hinder the forensic investigation.
Such a computer will not boot. Therefore, the examiner may use a chip
programmer [16] to image the BIOS or the BIOS Savior device [12] to
boot the computer and image the BIOS. The latter technique has been
described in Section 3. Note that some BIOS chips are soldered directly
to their motherboards, which renders the BIOS Savior technique useless
and the chip programming technique risky at best.

During the imaged media analysis step, a forensic examiner would
analyze a BIOS image using standard forensic tools as described in Sec-
tion 5. Once again, the examiner should be aware of where data might
be concealed and should conduct a thorough search of the BIOS image.
The locations where data might be hidden in a BIOS chip have been
described in Section 4.

7. Conclusions

Modern hardware components, such as dual-BIOS motherboards and
replaceable BIOS chips, simplify the task of concealing secret informa-
tion in BIOS chips. However, digital forensic practice has not kept up
with advances in BIOS technology. As a result, few, if any, recognized
techniques exist for detecting and extracting hidden data from BIOS
chips. This paper has shown that even BIOS chips with checksum-based
integrity protection can be used to conceal data. The other main con-
tributions of this paper include a technique for detecting and extracting
hidden data, and suggestions for modifying forensic examination proce-
dures to accommodate BIOS chips.

“BIOS forensics” is an interesting area of digital forensic research. A
library of known good hashes of BIOS chips would make it trivial to ver-
ify whether or not BIOS chips have been tampered. Note, however, that
in modern computers, the extended system configuration data (ESCD) is
typically stored on the BIOS chip, so the hash value computations would
have to omit certain areas of the BIOS. Boot disks and CDs that auto-
mate the process of imaging BIOS chips would greatly benefit forensic

Gershteyn, Davis € Shenoi 313

investigators. Likewise, forensic tools for heuristically analyzing BIOS
images and detecting hidden data would be very valuable.

References

1
2
3

[
[
[
[4

]
]
J
]

[16]

[17]
[18]

BIOS Central (www.bioscentral.com).
BIOSMods (www.biosmods.com).
Bootdisk.com (bootdisk.com).

P. Croucher, The BIOS Companion, Electrocution Publishers, Cal-
gary, Alberta, Canada, 1998.

M. Darmawan, Award BIOS reverse engineering (www.codebreak
ers-journal.com/viewarticle.php?id=38), 2004.

M. Darmawan, Award BIOS code injection (www.codebreakers-
journal.com/viewarticle.php?id=58), 2005.

D. Dunn, BIOS basics (freepctech.com/articles/articles.php?Article
1d=122), 2002.

W. Gatliff, Implementing downloadable firmware with flash mem-
ory, in The Firmware Handbook, J. Ganssle (Ed.), Elsevier, Burling-
ton, Massachusetts, pp. 285-297, 2004.

Gen-X-PC, BIOS info (www.gen-x-pc.com/BIOS_info.htm).

P. Gershteyn, M. Davis, G. Manes and S. Shenoi, Extracting con-
cealed data from BIOS chips, in Advances in Digital Forensics, M.
Pollitt and S. Shenoi (Eds.), Springer, New York, pp. 217-230, 2005.

J. Hill, AwardMod (sourceforge.net/projects/awardmod), 2002.
I0SS, RD1 BIOS Savior (www.ioss.com.tw), 2000.
C. Kozierok, System BIOS (www.pcguide.com), 2001.

K. Mandia, C. Prosise and M. Pepe, Incident Response and
Computer Forensics, McGraw-Hill/Osborne, Emeryville, Califor-
nia, 2003.

G. Mohay, A. Anderson, B. Collie, O. de Vel and R. McKemmish,
Computer and Intrusion Forensics, Artech House, Norwood, Mas-
sachusetts, 2003.

Phoenix Technologies, System BIOS for IBM PCs, Compatibles and
EISA Computers (2nd Edition), Addison-Wesley Longman, Boston,
Massachusetts, 1991.

Rainbow Software, Uniflash (www.uniflash.org), 2005.

D. Sedory, Removing the mystery from segment:offset addressing
(thestarman.dan123.com/asm/debug/Segments.html), 2004.

314 ADVANCES IN DIGITAL FORENSICS II

[19] R. Sevko, Editing the BIOS (www.winsov.ru/sios002.php), 2003.
[20] J. Tyson, How BIOS works (computer.howstuffworks.com/bios.
htm).

[21] A. Wong, Breaking Through the BIOS Barrier: The Definitive BIOS
Optimization Guide for PCs, Prentice Hall, Indianapolis, Indiana,
2004.

