
Chapter 6

USING BOOT CONTROL TO PRESERVE
THE INTEGRITY OF EVIDENCE

Keisuke Fujita, Yuki Ashino, Tetsutaro Uehara and Ryoichi Sasaki

Abstract This paper describes Dig-Force2, a system that securely logs and stores
evidentiary data about the operation of a personal computer. The in-
tegrity of the logged data is guaranteed by using chained hysteresis
signatures and a trusted platform module (TPM) that prevents unau-
thorized programs or tampered programs from executing. Experiments
indicate that the Dig-Force2 system is both efficient and reliable.

Keywords: Evidence integrity, hysteresis signatures, boot control

1. Introduction

Personal computers are often used as instruments of electronic crime.
This makes it important to securely log and store evidentiary data per-
taining to computer operations for use in legal proceedings [8].

To address this issue, we have previously developed Dig-Force [3], a
system that reliably records data about personal computer use on the
computer itself. Dig-Force uses chained signatures to maintain the in-
tegrity of evidentiary data. Dig-Force is effective even when it is installed
on a standalone computer located outside a protected network.

One problem with Dig-Force is that it is difficult to ensure that the
personal computer user cannot alter programs and data on the computer.
In particular, it is necessary to detect program or data tampering and to
guarantee that only authorized programs are executed. This paper de-
scribes an enhanced version of the Dig-Force system (Dig-Force2) that
securely logs and stores evidentiary data pertaining to computer use.
The integrity of the logged data is preserved using chained hysteresis
signatures and a trusted platform module (TPM) that prevents unau-



62 ADVANCES IN DIGITAL FORENSICS IV

Figure 1. Dig-Force architecture.

thorized programs or tampered programs from executing. Experiments
indicate that the new system is both efficient and reliable.

2. Dig-Force

This section describes the operating assumptions, architecture and
processing flow of the Dig-Force system.

2.1 Operating Assumptions

The primary functions of Dig-Force are to log data about personal
computer operations without any failure, and to detect tampering of the
logged data even when it is done by the personal computer operator.

Dig-Force was designed to operate under three principal assumptions:
(i) no programs or data on the personal computer should be modified by
its operator, (ii) although the computer operator may perform unautho-
rized operations, neither the administrator nor the verifier ever perform
unauthorized operations, and (iii) the computer operator never passes
the security device (described below) to a third party.

2.2 Architecture

The Dig-Force architecture is presented in Figure 1. It consists of
three principal subsystems:



Fujita, Ashino, Uehara & Sasaki 63

Security Device: The security device contains a tamper-resistant
area to prevent the chained hysteresis signatures from being mod-
ified. The device also performs hysteresis signature operations.

Logging System: The logging system collects operational infor-
mation, which is preserved in a log storage system. The logging
system also records that the security device is always installed on
the personal computer. Note that the computer cannot be oper-
ated without the security device.

Log Storage System: The log storage system communicates
with the security device and stores the hysteresis signatures with
the logged data. The logged data is intended to serve as evidence in
legal proceedings. However, since the data is easily coped, erased
or modified, chained hysteresis signatures are used instead of inde-
pendent digital signatures to ensure the security and integrity of
the logged data.

A hysteresis signature is a digital signature with a chained structure
[6], i.e., each signature is dependent on the preceding signatures. A
successful attack involving the alteration of data would require all the
hysteresis signatures preceding and following the data to be adjusted.
Thus, a hysteresis signature is more secure and reliable than a traditional
digital signature.

The security device enables Dig-Force to defend against “restoration
attacks,” which are effective against hysteresis signatures [3]. Such an
attack occurs when an intruder deletes the suffixes of log file data and
performs a series of operations to update the log file.

2.3 Processing Flow

Dig-Force’s processing flow has three phases: configuration, operation
and verification. Three entities are involved: the system administrator
who makes the initial settings, the personal computer operator, and the
verifier who checks the logs stored on the computer.

Configuration Phase: During this phase, the system adminis-
trator uses the security device to create public/private key pairs
and stores the private keys in the tamper-resistant area of the se-
curity device. The administrator also determines the initial values
of the chain data and stores them in the tamper-resistant area.
Next, the administrator sends the public keys and the initial val-
ues of the chain data to the verifier. Finally, the administrator
delivers the personal computer installed with the logging system,
log storage system and security device to the operator.



64 ADVANCES IN DIGITAL FORENSICS IV

Operation Phase: The operator uses the personal computer re-
ceived from the system administrator. The logging system con-
firms that the security device is installed, after which it collects
operational data and passes it to the log storage system.

The log storage system accumulates the logged data, communi-
cates with the security device, applies the hysteresis signatures to
the logged data, writes the chain values, signatures and logged data
to the log file, and stores the chained hash values in the security
device.

Upon completing a session, the personal computer operator saves
his documents and the log file on storage media, and submits the
storage media and security device to the verifier.

Verification Phase: The verifier applies the hash function to the
final chain data contained in the submitted log file and computes
the hash values. The verifier then compares these hash values with
those contained in the security device. Next, the verifier checks the
signatures using the initial values from the configuration phase and
the chain values, signatures and logged data stored in the log file.

3. Implementation Issues

It is difficult to guarantee that users cannot modify programs or data
on a personal computer. A malicious user with sufficient expertise could
alter the Dig-Force program itself so that it does not detect tampering.
To address this threat, Dig-Force should be tamperproof and computer
operations should be monitored to ensure that only the “correct” ver-
sions of authorized programs execute. This can be implemented using a
white list containing the digital signatures of approved programs, which
are provided by a trusted third party.

Another important requirement is to implement boot control func-
tionality that prevents unauthorized programs from executing. To ac-
complish this, we use features provided by Microsoft Windows XP, which
is used as the development and operational environment. In particular,
we leverage the multiple hierarchies that Windows XP provides from the
hardware layer all the way up to the application layer (Figure 2).

In general, there are three ways to implement the reliable monitoring
of programs on a personal computer. These involve using: (i) the op-
erating system, (ii) a device driver located within the operating system
kernel (Figure 2), and (iii) APIHook, a service program that hooks the
Windows API, changes the processing and monitors application program
start-up.



Fujita, Ashino, Uehara & Sasaki 65

Figure 2. Windows XP hierarchy.

Although the operating system is the most desirable option for moni-
toring unauthorized programs, Windows XP does not offer the required
functionality. Therefore, we considered the device driver and APIHook
solutions. Ultimately, we selected APIHook because it was easier to
implement.

APIHook is a service program that executes in the application layer;
therefore, there is always the risk that it can be tampered with. It is
difficult to tamper with or delete the APIHook program on a computer
because APIHook is automatically set to execute first. However, if the
hard drive is transferred to another computer, the APIHook program
on the drive can be modified or deleted. To address this issue, we have
developed an enhanced version of Dig-Force, called Dig-Force2, which
engages a trusted platform module (TPM) as an additional safeguard.

TPMs are integrated circuit chips with security hardware that protect
certain areas of the chips from being tampered with. A TPM mounted
on the motherboard of a personal computer can function as a coprocessor
accessible from the CPU via the low pin count bus. The Trusted Com-
puting Group (TCG) [10] defines several functions for a TPM. These
include: (i) creating, storing and conducting encryption/decryption and
signature operations with RSA keys, (ii) performing hashing operations,
(iii) generating random numbers, (iv) maintaining information on plat-
form state, and (v) providing adequate non-volatile and volatile memory
for storing data.

A TPM that is mounted in a personal computer is machine specific.
Therefore, if a TPM in a computer is removed and replaced with another
TPM, an authentication error results and the computer will not start up.



66 ADVANCES IN DIGITAL FORENSICS IV

Thus, the TPM can be used to uniquely identify a particular computer.
The encryption key in a TPM is also machine specific. Therefore, the
hard drive data, which is enciphered using the TPM’s encryption key,
cannot be deciphered by another machine. Thus, even if the hard drive
is moved to another personal computer, it is not possible to delete or
otherwise tamper with the APIHook program.

There are two additional reasons for using a TPM. First, apart from
the TPM, there is no need to incorporate a special device in the personal
computer. Second, an auxiliary device (e.g., USB device) can be removed
by mistake, which terminates data collection and storage.

4. Dig-Force2

We have designed the Dig-Force2 system to address the limitations
of Dig-Force. Dig-Force2 employs a TPM as its security device rather
than eToken [2], which is used by Dig-Force. This section describes the
operating assumptions, architecture and processing flow of Dig-Force2.

4.1 Operating Assumptions

Dig-Force2 is designed to operate under two primary assumptions:
(i) since the monitoring program is a service that operates under the
administrator’s authority, it cannot be halted by a computer user whose
authority is lower than that of the administrator, and (ii) the BIOS,
operating system and monitoring program software are reliable; since
the monitoring program starts up right after the operating system, it is
difficult for an unauthorized individual to alter the monitoring program,
which features APIHook functions.

4.2 Architecture

Dig-Force2 has five main components (Figure 3):

Logging System: The logging system collects operational infor-
mation, which is maintained in a log storage system. The logging
system also records that the auxiliary device is always installed on
the personal computer.

Log Storage System: The log storage system adds timestamps
and formats the operational data received from the logging system.
Then, it interacts with the TPM to apply hysteresis signatures to
the formatted data and writes the data to a log file.

Auxiliary Device: The auxiliary device must be inserted into
the personal computer in order for the computer to operate. The



Fujita, Ashino, Uehara & Sasaki 67

Figure 3. Dig-Force2 architecture.

auxiliary device stores the hash values (“white list”) of authorized
programs and IDs that identify users along with the digital signa-
tures of the hash values and IDs (signed by the administrator).

Trusted Platform Module: The TPM performs the hysteresis
signature operations. It has a tamper-resistant area that protects
the chain data that forms the signature keys and signature history.

Monitoring Program: The monitoring program is started as
a service at the uppermost authority of the operating system,
which prevents the computer operator from terminating the pro-
gram. The monitoring program checks that the auxiliary device is
mounted on the computer; the computer cannot be operated with-
out this device. The program then computes the hash values of
the .exe files of the logging and log storage systems and compares
them with the values in the white list; the computer is permitted
to start only if the values match. Note that before the white list
is used, the digital signature provided by the administrator or a
trusted third party is verified. The monitoring program also reads
the ID from the auxiliary device that identifies the computer op-
erator and compares it with its pre-set value; the computer can be
operated only if the IDs match.



68 ADVANCES IN DIGITAL FORENSICS IV

After the computer has booted, the logging system and log stor-
age system processes are monitored for unauthorized termination.
Also, whenever the user attempts to start a new program, the
monitoring program computes the hash value of the corresponding
.exe file and compares it with the corresponding value in the white
list; this ensures that only authorized programs are executed.

4.3 Processing Flow

Dig-Force2’s processing flow has three phases: configuration, opera-
tion and verification.

Configuration Phase: During this phase, the administrator con-
figures the personal computer before passing it along with the aux-
iliary device to the operator. The following steps are involved in
the configuration phase:

– The administrator creates a storage root key (SRK) in the
TPM; this root key secures the other TPM keys.

– The administrator creates a secret key (S) in the TPM that is
used for the hysteresis signatures and a public key (P) used for
signature verification. These keys are encrypted using SRK
and stored on the computer’s hard drive.

– The administrator specifies an arbitrary initial value (R1) for
the chain data and stores it in the TPM’s non-volatile mem-
ory.

– The administrator sends the initial values that become the
chain data to the verifier.

– The administrator stores in the auxiliary device the white
list and the IDs used by the monitoring program to identify
individuals.

– The administrator sets up the public key used for verifying
the white list and the IDs that identify individuals in the
monitoring program.

– Finally, the administrator installs the monitoring system and
the logging and log storage systems on the personal computer.

Operation Phase: During this phase, the auxiliary device is
mounted on the personal computer, and the monitoring program
and the logging and log storage systems are started. Figure 4
illustrates the processing flow of the monitoring program. The
following steps are involved:



Fujita, Ashino, Uehara & Sasaki 69

Figure 4. Monitoring flow diagram.

– The operator mounts the auxiliary device on the computer.

– The monitoring program is started as a service program after
the operating system has started.

– The monitoring program checks that the auxiliary device is
mounted; if the device is not mounted, the monitoring pro-
gram locks the computer.

– The monitoring program reads the IDs that identify individ-
uals and their digital signatures from the auxiliary device.
The monitoring program verifies the digital signatures; the
computer works only if this verification is successful.



70 ADVANCES IN DIGITAL FORENSICS IV

Figure 5. Hysteresis signatures using the TPM.

– The monitoring program reads the white list and the digi-
tal signatures from the auxiliary device; the signatures are
verified using the public key.

– The monitoring program computes the hash values of the log-
ging and log storage programs and compares them with those
in the white list. If the hash values match, the monitoring
program starts the programs and applies the hysteresis sig-
natures to the logged data (Figure 5). The processing flow
is the same as that of Dig-Force except that the TPM key
(SRK(S)) is used for signature operations in the TPM and
the chain data is stored in the TPM’s non-volatile memory.

– The monitoring program checks the other programs (.exe
files) to ensure that unauthorized programs do not start.
Also, whenever the operator attempts to start a program, the
monitoring program hooks the API and computes the hash
value of the program; the program is permitted to execute
only if this hash value matches its white list value.

Verification Phase: The verifier receives the personal computer
with the TPM and the auxiliary device from the operator. The
verification of digital signatures in the TPM is similar to that for
Dig-Force, except that the chain data stored in the TPM’s non-
volatile memory is used along with the TPM keys. This confirms



Fujita, Ashino, Uehara & Sasaki 71

Figure 6. Boot control flow diagram.

that the monitoring program is operating in a reliable manner,
ensuring that only authorized programs are executed.

5. Functional Experiments

Functional tests of the monitoring program and TPM were conducted
to verify the effectiveness and practicality of Dig-Force2.

5.1 Monitoring Program

An experiment was conducted to test the program start-up control
function provided by APIHook. APIMonitor [4] was used to identify the
APIs invoked during program start up (we discovered that more than
ten APIs are called when a program is started). We hooked some of
these APIs and changed their processing flow. One of these APIs is
RtlCreateProcessParameters, which is defined in ntdll.dll. Figure
6 illustrates how this particular API is hooked to control booting.

We wrote a prototype program that implemented the processing flow
in Figure 6 based on information provided in [1]. The program was used
to experiment with boot control. It was able to prevent unauthorized
programs from starting up. However, it was unable to exert boot con-



72 ADVANCES IN DIGITAL FORENSICS IV

trol on programs launched via a command prompt (cmd.exe). This is
because hooking an API is not available with a command prompt, which
is a DOS program. The problem was addressed by disabling program
start-up using command prompts, which caused all DOS programs to be
unavailable. Our future research will attempt to develop a boot control
technique for DOS programs.

5.2 Trusted Platform Module

Experiments were conducted to evaluate the performance of the TPM
for signature operations and its use of non-volatile memory. The devel-
opment effort used the C++ programming language under Microsoft
Visual Studio.NET 2003 and Infineon TPM Integration SDK; Windows
XP Professional was used as the evaluation environment.

Experiments were conducted to measure the time taken for hysteresis
signature processing and verification. The average times were 0.0764
seconds and 0.0295 seconds, respectively; these were deemed to be ac-
ceptable in operational environments.

Sufficient non-volatile memory is required in the TPM to store the
chain data for the hysteresis signatures. Our experiments confirmed
that 20 bytes of non-volatile memory were available in the TPM.

5.3 Possible Attacks

This section describes five attacks that can impact Dig-Force2 along
with the corresponding countermeasures.

Attack 1: This attack launches a malicious program that modi-
fies the logged data and/or signatures. The attack is defeated by
ensuring that the monitoring program checks every program and
only permits authorized programs to execute.

Attack 2: This attack tampers with or deletes the monitoring
program after transferring the hard drive on which it resides to
another computer. The hard drive is then returned to the original
computer. Thus, the monitoring program is unable to prevent
unauthorized programs from executing. The attack is defeated by
enciphering the monitoring program using the TPM’s encryption
function and public key so that it cannot be decrypted on another
computer.

Attack 3: This attack halts the logging program and/or log stor-
age program, preventing Dig-Force2 from collecting evidentiary
data. The attack is defeated by having the monitoring program



Fujita, Ashino, Uehara & Sasaki 73

check the programs’ execution status and automatically restart the
programs if they are terminated.

Attack 4: This attack modifies the white list so that the moni-
toring program permits an unauthorized program to execute. The
attack is defeated by using digital signatures that employ the ad-
ministrator’s private key; the monitoring program uses the corre-
sponding public key to verify the signatures and detect alterations.

Attack 5: This attack alters the chain data stored in the non-
volatile memory of the TPM. It is defeated by ensuring that the
monitoring program prevents unauthorized programs (that access
the non-volatile memory) from executing.

6. Conclusions

Dig-Force2 is an efficient and reliable system for collecting data about
computer operations for use in legal proceedings. The integrity of the
evidentiary data is ensured by using chained hysteresis signatures and a
TPM that prevents unauthorized programs from executing.

Our future research will focus on enhancing the Dig-Force2 system.
One issue is that the white list contains only the names of authorized
programs and their hash values. However, it is also necessary to consider
DLLs and plug-ins because tampering with these components can cause
unauthorized programs to execute. We will attempt to augment the
white list by incorporating the hash values of approved DLLs and plug-
ins [9]. Another important issue is to harden the monitoring program
against attacks. A promising approach is to use BitLocker in Windows
Vista [5] to encrypt the hard drive that contains the monitoring program.

Acknowledgements

The authors wish to thank IBM Japan and Infineon Technologies,
Japan for their assistance with TCG technology.

References

[1] K. Aiko, Kenji’s Homepage (ruffnex.oc.to/kenji).

[2] Aladdin Knowledge Systems, Petach Tikva, Israel (www.aladdin
.com).

[3] Y. Ashino and R. Sasaki, Proposal of digital forensic system using
security device and hysteresis signature, Proceedings of the Third In-
ternational Conference on Intelligent Information Hiding and Mul-
timedia Signal Processing, pp. 3–7, 2007.



74 ADVANCES IN DIGITAL FORENSICS IV

[4] R. Batra, API Monitor (www.rohitab.com/apimonitor).

[5] Microsoft Corporation, BitLocker Drive Encryption, Redmond,
Washington (www.microsoft.com/windows/products/windowsvista
/features/details/bitlocker.mspx).

[6] K. Miyazaki, S. Susaki, M. Iwamura, T. Matsumoto, R. Sasaki, H.
Yoshiura, Digital document sanitizing problem, Institute of Elec-
tronics, Information and Communication Engineers Technical Re-
ports, vol. 103(195), pp. 61–67, 2003.

[7] J. Richter, Advanced Windows, Microsoft Press, Redmond, Wash-
ington, 1997.

[8] R. Sasaki, Y. Ashino and T. Masubuchi, A trial for systematiza-
tion of digital forensics and proposal on the required technologies,
Japanese Society of Security Management Magazine, April 2006.

[9] SignaCert, Independent IT Controls, Portland, Oregon (japan.signa
cert.com).

[10] Trusted Computing Group, Beaverton, Oregon (www.trustedcom
putinggroup.org).


