Chapter 22

REASONING ABOUT EVIDENCE
USING BAYESIAN NETWORKS

Michael Kwan, Kam-Pui Chow, Frank Law and Pierre Lai

Abstract  There is an escalating perception in some quarters that the conclusions
drawn from digital evidence are the subjective views of individuals and
have limited scientific justification. This paper attempts to address this
problem by presenting a formal model for reasoning about digital evi-
dence. A Bayesian network is used to quantify the evidential strengths
of hypotheses and, thus, enhance the reliability and traceability of the
results produced by digital forensic investigations. The validity of the
model is tested using a real court case. The test uses objective proba-
bility assignments obtained by aggregating the responses of experienced
law enforcement agents and analysts. The results confirmed the guilty
verdict in the court case with a probability value of 92.7%.
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1. Introduction

Like other forensic disciplines, digital forensics involves the formula-
tion of hypotheses based on the available evidence and facts, and the
assessment of the likelihood that they support or refute the hypotheses.
Although substantial research has focused on principles and tools for
retrieving digital evidence [7, 8, 10], little, if any, work has examined the
accuracy of hypotheses based on the evidence.

Without reliable and scientific models, the conclusions made by dig-
ital forensic analysts can be challenged on the grounds that they are
mere speculation. The problem is acerbated by the fact that forensic
conclusions derived from the same digital evidence can vary from ana-
lyst to analyst. This can severely impact the reliability of digital forensic
findings as well as the credibility of analysts. Speculation and subjective
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views offered by forensic analysts under the guise of expert opinion have
little (if any) value in legal proceedings [6].

This paper presents a formal model for reasoning about digital ev-
idence. The model, which is based on probability distributions of hy-
potheses in a Bayesian network, quantifies the evidential strengths of
the hypotheses and, thereby, enhances the reliability and traceability of
the analytical results produced by digital forensic investigations. The
validity of the model is investigated using a real court case involving
the illegal dissemination of a movie using the BitTorrent peer-to-peer
network.

2. Background

Forensics is the process of analyzing and interpreting evidence to de-
termine the likelihood that a crime occurred. Many researchers (see, e.g.,
[4, 12, 15, 19, 20]) argue that that this process should cover the formu-
lation of hypotheses from evidence and the evaluation of the likelihood
of the hypotheses for the purpose of legal proceedings.

Aitken and Taroni [1] state that likelihood is an exercise in hypotheti-
cal reasoning. It denotes the degree of belief in the truth of a hypothesis.
In the scientific community, belief is often expressed in terms of probabil-
ity. Probability theories provide mechanisms for deducing the likelihood
of hypotheses from assumptions. Although probabilistic methods may
be useful for proving or refuting the hypotheses involved in a criminal
investigation, Jones and co-workers [9] argue that obtaining all the prob-
ability distributions for the entailing evidence is impractical. Given the
large volume of evidence involved, it is not feasible to obtain the joint
probability distributions for all possible evidential variables. Moreover,
simple probabilistic methods do not capture the complex dependencies
that exist between items of evidence; therefore, the methods have limited
value from an analytical point of view [5]. Indeed, many researchers [5,
11, 16] emphasize that comprehensive probabilistic models should ac-
curately model the conditional dependencies existing between items of
evidence.

A criminal investigation is an abductive diagnosis problem [16]. How-
ever, it is difficult to design a model that can deterministically de-
scribe all the assumptions involved in an investigation. Poole [18] has
attempted to address this issue by proposing a model that describes
crime scenarios non-deterministically using symbolic logic and proba-
bilistic Bayesian methods. Unfortunately, Poole’s model is too abstract
to be applied in real scenarios.
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It is important to observe that digital events are discrete computer
events that are deterministic in nature and have a temporal causal se-
quence. Therefore, it is common practice for digital forensic analysts
to establish their abductive reasoning based on the existence or validity
of the causal events that entail their hypotheses. However, it is diffi-
cult to have consistent models that determine the supporting events for
hypotheses. Different analysts may attach different events to the same
hypothesis. Even if they agree on the same set of events, they usually
assign different (subjective) probabilities to the events.

Analysts also must reason about hypotheses in the face of missing
and/or uncertain information about events. The events for which evi-
dence is available may not prove the complete truth of the hypotheses;
however, they can be used very effectively to compute degrees of likeli-
hood for the hypotheses. Consequently, probabilistic approaches are well
suited to developing formal models for reasoning about digital evidence
in criminal investigations.

3. Bayesian Networks

Before we discuss Bayesian networks, it is important to emphasize that
digital evidence deals with “past” events that were caused by some other
hypothetical events that have to be verified. For example, if a suspect
had child pornography on his computer, he may have downloaded it
from a pornographic web site, which could be verified by the presence
of the URL in the history file of his browser.

A Bayesian network uses probability theory and graph theory to con-
struct probabilistic inference and reasoning models. It is defined as a
directed acyclic graph with nodes and arcs. Nodes represent variables,
events or evidence. An arc between two nodes represents a conditional
dependency between the nodes. Arcs are unidirectional and feedback
loops are not permitted. Because of this feature, it is easy to identify
the parent-child relationship or the probability dependency between two
nodes.

A Bayesian network operates on conditional probability. For example,
if the occurrence of some evidence F is dependent on a hypothesis H,
the probability that both H and E occurred, P(H, F), is given by:

P(H,E) = P(H)P(E|H). (1)

According to the multiplication law of probability, which expresses
commutativity, if H is relevant for F, then £ must also be relevant for
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Figure 1. Bayesian network connections: (a) Serial; (b) Diverging; (¢) Converging.

H. The corresponding joint probability expression is:

P(H,E) = P(H)P(E|H) = P(E)P(H|E), (2)
and, hence,
P(E|H) = %. (3)

Equation (3) is the celebrated Bayes’ Theorem. From a statistical
point of view, it denotes the conditional probability of F caused by H.
This is also referred as the likelihood ratio of H given FE. It denotes the
degree of belief that F will occur given a situation where H is true.

P(H|FE) is the posterior probability, i.e., the probability that when E
is detected H has actually occurred. P(H) denotes the prior probability
of H at a stage where the evidence is not yet presented. P(E) is the
prior probability of F, which is sometimes referred to as a normalizing
constant. Therefore, the above expression can be formalized as:

T . posterior probability x normalizing constant
likelihood ratio =

hypothesis prior probability - 4)

Since the likelihood ratio is proportional to the posterior probability, a
larger posterior probability denotes a higher likelihood ratio. In the evi-
dentiary context, it also means that the greater the evidence supporting
the hypothesis, the more likely that the hypothesis is true.

A Bayesian network has three elementary connections between its
nodes that represent three different types of probability distributions
(Figure 1). For a serial connection, if B’s evidential state is unknown,
then A and C are dependent on each other. In other words, there is
an evidential influence between A and C' if the evidential state of B is
unknown. However, if B’s state is known, then A and C' are independent
of each other; this means that A and C are conditionally independent
of each other given B. In a diverging connection, the same conditional
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independence is observed for A and C, i.e., if B’s state is known, then
A and C are independent. In a converging connection, if B’s state is
unknown, then A and C are independent. In other words, unless the
state of B is known, A and C can influence each other.

4. Proposed Model

A real case involving the distribution of a pirated movie via the Bit-
Torrent peer-to-peer network is used to demonstrate the utility of the
Bayesian network model. The digital evidence discussed in this paper
was presented in court during the criminal trial.

4.1 The BitTorrent Case

The defendant in the case was alleged to have used his computer to
distribute a pirated movie on the Internet using BitTorrent [13]. The
defendant had the optical disk of the movie in his possession. He copied
the movie from the optical disk to his computer and then used BitTorrent
to create a “torrent file” from the movie file. The torrent file contained
metadata of the source file (movie file) and the URL of the BitTorrent
tracker server.

To distribute the movie, the defendant sent the torrent file to several
newsgroups. He then activated the torrent file on his computer, which
caused his computer to connect to the tracker server. The tracker server
queried the defendant’s computer about the metadata of the torrent
file. The tracker server then returned a list with the IP addresses of
peer machines on the network and the percentages of the target file that
existed on the peer machines.

Since the defendant’s computer had a complete copy of the movie,
the tracker server labeled it as a “seeder computer.” The defendant
maintained the connection between the tracker server and his computer
so that other peers could download the movie from his computer.

4.2 Building the Model

The construction of a Bayesian network model begins with the main
hypothesis that the analyst intends to determine. In order to prove the
illegal act in the BitTorrent case, we use the following hypothesis:

H: The seized computer was used as the initial seeder to share the
pirated file on a BitTorrent network.

Next, we express the possible states of the hypothesis (Yes, No and
Uncertain) and assign probability values to these states. The values are
also called the prior probabilities of the hypothesis.
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Hypothesis H is the root node in the Bayesian network. Since it has
no parent nodes, its prior probabilities are unconditional. To begin with,
the probabilities of H are evenly distributed among its three states, i.e.,
P(H) = (0.333, 0.333, 0.333) (Table 1).

Table 1. Prior probability of the root node.

Node State P(H)

Yes 0.333
H No 0.333
Uncertain  0.333

Having established the root node, we proceed to explore evidence or
events that are causally dependent on H. These are usually observable
variables. However, note that sub-hypotheses may also be added under
the root node. Although these sub-hypotheses do not have observable
states, they are useful because they refine the model by producing a
graph with more structure and increased clarity. Five sub-hypotheses
are created to support the root hypothesis:

m  H;: The pirated file was copied from the seized optical disk (found
at the crime scene) to the seized computer.

m Hy: A torrent file was created from the copied file.
m  Hjs: The torrent file was sent to newsgroups for publishing.

m Hy: The torrent file was activated, which caused the seized com-
puter to connect to the tracker server.

m H5: The connection between the seized computer and the tracker
server was maintained.

Table 2. Conditional probabilities of H;.

State Yes No Uncertain
H = Yes 0.6 0.35 0.05
H = No 0.35 0.6 0.05
H = Uncertain 0.05 0.05 0.9

Since the sub-hypotheses are dependent on H, they are assigned con-
ditional probability values. Table 2 presents the conditional probability
values of Hypothesis H; given the state of H. Initial or prior probability
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values are assigned to the possible states of Hy for different states of H.
For example, an initial value of 0.6 is assigned for the situation when
H and H; are both Yes. This means that when the seized computer
has been used as an initial seeder, the probability that the pirated file
found on the computer had been copied from the optical disk seized at
the crime scene is 0.6. However, it is also possible that, although the
seized computer was the initial seeder, the pirated file was downloaded
from the Internet or copied from another computer in a local network;
a probability value of 0.35 is assigned to these scenarios.

Finally, there is the possibility that, even though the seized computer
was the initial seeder, the evidence may not be able to confirm a Yes or
No state for Hy. Therefore, there is a chance that the seized computer
was the initial seeder, but the source from where the pirated movie was
copied is Uncertain.

Table 3. Conditional probabilities of Hs, Hs, Hs and Hs.

State Yes No Uncertain
H = Yes 0.6 0.35 0.05
H = No 0.35 0.6 0.05
H = Uncertain 0.05 0.05 0.9

Table 3 presents the conditional probabilities of Hypotheses Hs, Hs,
H, and Hj given the state of H.

Following the assignment of conditional probabilities to the five sub-
hypotheses, we proceed to develop the entailing casual events or evidence
for the sub-hypotheses. This is because a Bayesian network propagates
probabilities for linked hypotheses based on the states of events or evi-
dence.

Hypothesis H and the five sub-hypotheses have a diverging connec-
tion. The nodes in a diverging connection influence each other when
the state of their parent node is still unknown. Therefore, the five sub-
hypotheses are related to each other in a probabilistic manner. Also,
their probabilities are affected by all the child events or evidence under
them.

To illustrate the Bayesian network methodology, we focus on Hypoth-
esis Hy: The pirated file was copied from the seized optical disk (found
at the crime scene) to the seized computer.

5. Assigning Prior Probabilities

Items of digital evidence correspond to past digital events (or posterior
evidence) that can be used to support or refute the five sub-hypotheses,
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Figure 2. Partial Bayesian network for H;.

which, in turn, support or refute H. One of the main challenges in ap-
plying a Bayesian network to evaluate evidence is assigning probability
values to posterior evidence. This is because the assignments are usu-
ally based on subjective personal beliefs. Although the personal beliefs
(regarding a case) of a digital forensic analyst are assumed to arise from
professional knowledge and experience, there is no means to determine
whether they truly represent the accepted views of the digital forensic
discipline, let alone whether or not the probability values assigned to
posterior evidence are, in fact, accurate.

To enhance the reliability and accuracy of the probability assign-
ments for posterior evidence, we attempted to use objective probabil-
ity assignments obtained by aggregating the responses of experienced
law enforcement agents and analysts. A questionnaire (available at
www.cs.hku.hk/kylai/qr.pdf) was created to obtain the required infor-
mation from personnel with the Technical Crime Bureau of the Hong
Kong Police and the Computer Forensic Laboratory of Hong Kong Cus-
toms. The questionnaire solicited the following information from the
respondents: (i) digital forensics training and experience, (ii) degree of
belief in digital evidence resulting from general computer operations,
and (iii) degree of belief in the digital evidence related to the operation
of the BitTorrent protocol.

Responses were received from 31 law enforcement personnel. The
weighted average approach was used to aggregate the probability values.
For example, Item 7 of the questionnaire required respondents to gauge
the probability range that the URLs and access times of web sites would
be stored in the file named index.dat in the folder History.IE5. The
answers received were: 20-40%: 1 respondent, 40-60%: 1 respondent,
60-80%: 6 respondents, 80-100%: 22 respondents, and Uncertain: 1
respondent. The weighted average of the probability of the Yes state
was computed as: (1x0.3) + (1x0.5) + (6x0.7) + (22x0.9) = 24.8,
which yielded a probability value 24.8/31 = 0.8. The probability of the
Uncertain state was computed as 1/31 = 0.03. Therefore, the probability
of the No state was 1 — 0.8 — 0.03 = 0.17.
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Figure 3. Probability values: (a) Initial; (b) Updated.

6. Analyzing Hypothesis H;

The partial Bayesian network for Hypothesis H; is presented in Figure
2. The arguments describing events or evidence that would be caused
by copying a file from an optical disk to a local hard disk are : (i) Ej:
Modification time of the destination file equals that of the source file
(states: Yes, No, Uncertain), (ii) E: Creation time of the destination
file is after its own modification time (states: Yes, No, Uncertain) and
(iii) F3: Hash value of the destination file matches that of the source file
(states: Yes, No, Uncertain).

Table 4. Conditional probabilities of F1, E2 and E3

FEq1 E- E3
State Y N U Y N U Y N U
H=Y 085 0.15 0 0.85 0.15 0 0.85 0.12 1.03
0 0
1 1

H=N 015 0385 0.85 0.15 0.12 0.85 0.03
H=U 0 0 0 0 0.03 0.03 0.94

The next task is to assign conditional probability values to the events
or evidence. Table 4 lists the conditional probabilities of F1, Fs and Fjs,
given the state of Hi.

Next, the probability of H; based on the observed probabilities of Eq,
FE5 and Fj is calculated. The MSBNx Bayesian Network Editor and
Tool Kit [14] was used to calculate this probability and to propagate
probability values within the Bayesian network.

The probability values for the network nodes are presented in Figure 3.
Figure 3(a) presents the initial probability values in the network without
any observed evidence. Figure 3(b) shows the updated probabilities
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Y: 0.59245 Y: 0.59891 Y: 0.351094
N: 0.35755 N: 0.35109 N: 0.598906
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N: 0.030201 N: 0.004377 N: 0.995623
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Y:1 Y:1 Y: 0.827953 Y: 1 Y:1 Y:1 Y:0 Y: 0 Y:0

N: 0 N: 0 N: 0.142047 N: 0 N: 0 N: 0 N:1 N:1 N:1

u: 0 u:0 ||U:0.03 u: 0 u: 0 u:0 u: 0 u: 0 u: 0
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Figure 4. Propagated probability values.

assuming that evidence E; is observed to be Yes while Ey and FE3 are
still unobservable.

Hypothesis H; is in a diverging connection with FE;, Ey and FEs.
Therefore, if the state of H; is unobserved, any change in the proba-
bility of E; will change the probability of H;. When H; changes, the
likelihood ratios of Fy and Fj3 also change. Similarly, since H, Hy and
E are in a serial connection, a change in the probability of F; will
propagate to H if H; remains unobservable.

The Bayesian network has two more serial connections, H — H; —
Ey and H — Hy — FE3. Therefore, any changes in the states of Es
and E3 will also affect the probabilities of H and H;.

Suppose we examine the state of the posterior evidence Fo and find
it to be Yes. The corresponding propagated probabilities in the network
are shown in Figure 4(a). If the final posterior evidence Ej3 is also ob-
served to be Yes, the probabilities that result are shown in Figure 4(b).
Note that when all the evidence states are Yes, the propagated prob-
ability for H; = Yes is 99.6% and the corresponding probability for H
= Yes is 59.9%. In other words, if the states of Ei, Fo and Ej3 are all
Yes, then the digital forensic analyst can confirm that there is a 99.6%
probability that H; (the pirated file was copied from the seized optical
disk to the seized computer) is true. Furthermore, based on the 99.6%
probability value for Hy, the forensic analyst can conclude that H (the
seized computer was used as the initial seeder to share the pirated file
on a BitTorrent network) is true with probability 59.9%.

Figure 4(c) shows the resulting probabilities for the case where all the
evidence states are No. The probability that H; is true drops to 0.4%
and the probability that H; is false rises to 99.6%. Unless a posterior
event or evidence exists, the probability that H is true drops to 35.1%
and the probability that H is false rises to 59.9%.
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HYPOTHESES:

H The seized computer was used as the initial seeder to share the pirated file on a
BitTorrent network

H; The pirated file was copied from the seized optical disk to the seized computer

H, A torrent file was created from the copied file

Hs; The torrent file was sent to newsgroups for publishing

H,; The torrent file was activated, which caused the seized computer to connect to
the tracker server

Hs The connection between the seized computer and the tracker was maintained

EVIDENCE:

E, Modification time of the destination file equals that of the source file

E, Creation time of the destination file is after its own modification time

E; Hash value of the destination file matches that of the source file

E, BitTorrent client software is installed on the seized computer

Es File link for the shared file is created

Es Shared file exists on the hard disk

E; Torrent file creation record is found

Es Torrent file exists on the hard disk

Ey Peer connection information is found

E,o Tracker server login record is found

E.s Torrent file activation time is corroborated by its MAC time and link file

E;, Internet history record about publishing website is found

Eq3 Internet connection is available

Ess Cookie of the publishing website is found

E1s URL of the publishing website is stored in the web browser

E,;¢ Web browser software is available

E4; Internet cache record about the publishing of the torrent file is found

Es Internet history record about the tracker server connection is found

Figure 5. Bayesian network diagram.
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7. Analyzing the BitTorrent Case

The overall Bayesian network diagram for the BitTorrent case is shown
in Figure 5. When no observations are made on any entailing evidence,
the initial probabilities of Hy, Ho, Hz, H4 and Hs and, therefore, H are
Yes = 33.33%, No = 33.33% and Uncertain = 33.33%.

Table 5. Probabilities of various hypotheses.

(a) (b)
Hypothesis Y(%) N(%) U%) YY) N%) U )
H 92.54 7.45 0.01 92.27 7.72 0.01
H, 99.71 0.29 0.00 99.70 0.30 0.00
H> 99.98 0.0015 0.0185  99.92 0.07 0.01
H; 99.98 0.02 0.00 99.80 2.20 0.00
Hy 99.93 0.07 0.00 99.51 0.49 0.00
Hs 89.31 10.47 0.22 99.45 10.33 0.22

When all the entailing evidence is switched to the state Yes, the prop-
agated probabilities for the various hypotheses are as presented in Table
5(a).

Media reports about the BitTorrent trial mentioned that there was
no indication that the torrent file was present on the seized computer.
Also, there was no mention of cookies that are required to publish the
torrent file in newsgroups. Therefore, the corresponding observations
about the existence of the created torrent file (node Eg in Figure 5) and
cookies of newsgroups (node E14) should be amended from Yes to No in
order to reveal their impact on the hypotheses.

It is worth mentioning that the “torrent file node” (Eg) is a com-
mon node for Hy, Hy and Hy. In other words, there is a converging
connection to Eg from these three hypotheses. According to the rules
of probability propagation for a converging connection, when the state
of Fg is known, the probabilities of Hs, Hs and Hy will influence each
other. Therefore, a change in the state of EFg changes the probabilities
of these three hypotheses.

Furthermore, since Hy, Hs, H3, Hy and Hj are in a diverging con-
nection with the parent hypothesis H, changes to the probabilities of
H,, Hs and H, influence the probabilities of H; and Hs. Table 5(b)
shows the probability values obtained after the states of Fg and FEi4
are changed from Yes to No. The propagated probability for H from
the available evidence is 92.27%. In other words, based on the observed
evidence, there is a probability of 92.27% that the seized computer was
used as the initial seeder to distribute the pirated movie on a BitTorrent
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network. This is the most that a digital forensic analyst can provide.
It is up to the court to decide whether or not this probability value is
sufficient to support the Hypothesis H.

Note that other evidence exists in the BitTorrent case. This includes
email exchanges, detailed comparisons of the torrent file metadata with
computer trails, and timeline analysis. However, as the focus of this pa-
per is to demonstrate the utility of Bayesian networks in digital forensic
investigations, only the most important pieces of digital evidence were
considered in the discussion.

8. Conclusions

A Bayesian network is a useful formalism for quantifying and propa-
gating the strengths of investigative hypotheses and supporting evidence.
The Internet piracy trial provides an excellent case study for validating
the approach. The hypotheses in the case and their supporting events
and evidence are clearly specified, along with their causal relationships
and probability values. Thus, the Bayesian network model is not only
an analytical tool for evaluating evidence, but also a tracking tool that
enables digital forensic practitioners to review and analyze the original
findings.

The subjectivity involved in assigning probabilities can be alleviated
to some extent by using a survey instrument and aggregating the re-
sponses obtained from expert investigators. However, it is difficult to
completely eliminate the subjective aspects, especially with regard to
the assignment of prior probabilities to posterior evidence. Our future
research will investigate this aspect in more detail with the goal of en-
hancing the accuracy, precision and reliability of the Bayesian network
model for reasoning about digital evidence.
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