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Abstract In wireless sensor networks, data aggregation is critical to net-
work lifetime. It implies that data will be processed in an efficient flow
from multiple sources to a specific node named sink. However, there are
trade-offs for fusing multisensor data and creating a path between source
and sink that increase the likelihood of aggregation. In this work, we pro-
pose a decentralized mechanism using parametric-based techniques, such
as Bayesian Inference and Dempster-Shafer Method, for data aggrega-
tion in wireless sensor networks. Moreover, we propose an extension to
an existing data-centric routing protocol in order to favor aggregation.
Our approach is evaluated by means of simulation.
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1 Introduction

Recently, the research interest in Wireless Sensor Networks (WSNs) is consid-
erable because of its wide range of potential applications, from weather data-
collection to vehicle tracking and physical environment monitoring [1]. Commu-
nicating wirelessly consumes much more power at the nodes than processing or
sensing [2]. Thus, it is preferred that data be processed in-network as opposed
to a centralized processing. Sensors data are transmitted from multiple acquisi-
tion sources toward one or more processing points, which may be connected to
external networks. Since sensors monitor a common phenomenon, it is likely to
appear significant data redundancy, which may be exploited to save transmis-
sion energy, throughout in-network filtering and data aggregation procedures.
Techniques employed range from suppressing duplicated messages and perform-
ing distributed basic functions, such as maz, min, average, and count, to data
fusion.

In this paper we deal with two different issues: aggregation tree construction
in data-centric routing protocols and aggregation mechanism using parametric
techniques, in order to save energy with a low cost to the network. The main
motivation behind this work is to exploit the colaborative characteristics of sen-
sor nodes to jointly estimate about a certain common sensed phenomena. The
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remainder of the paper is organized as follows. In section 2 we present a review of
related work in routing for aggregation and aggregation techniques themselves.
Section 3 describes the routing protocol and the multisensor aggregation tech-
niques proposed. Simulation results are presented in Section 4. Finally, the paper
is concluded in Section 5.

2 Data-Centric Routing and Aggregation

Energy is a factor of utmost importance in WSNs. To increase network life-
time, energy must be saved in every hardware and software solution composing
the network architecture. According to the radio model proposed in [2], data
communication is responsible for the greatest weight in the energy budget when
compared with data sensing and processing. Therefore, to save energy it is better
to increase data processing in order to avoid data transmission. Energy-aware
routing protocols can exploit two particularities of WSNs: data redundancy and
a many-to-one (sources to sink) association.

In order to in-network aggregation to be effective, routing protocols should
use the most suitable addressing and forwarding schemes. In data-centric routing
protocols [3,4], intermediate nodes build forwarding tables based on interests sent
by the sink and on the information provided by the sources. Source nodes are
recognized based on the sort of data content they can provide (temperature,
smoke presence, etc.) and in their current geographical location (if available).
Thus, instead of assigning a Global Unique ID to sensor nodes, network protocols
may use attributed-based addressing.

Other routing protocols aim at building aggregation trees from multiple
sources to the sink. The NP-hard Minimum Steiner Tree gives the optimal aggre-
gation path in terms of number of transmissions [5]. Authors in [6] analyze three
suboptimal aggregation schemes as function of two positioning models and an
increasing number of source nodes. Hierarchical cluster-based routing favors ag-
gregation in the cluster-heads and is analyzed in [2]. Building aggregation paths
creates a trade-off between delay and energy saving.

Concerning the data aggregation mechanisms, the breadth of applications
and diversity of applicable techniques [1] make their study very complex. These
techniques correspond to a mixture of mathematical and heuristic methods
drawn from statistics, artificial intelligence, and decision theory [7]. The most
trivial data aggregation function is to suppress duplicated messages. The aggre-
gation techniques involve how to aggregate data. The basic functions of aggre-
gation (such as maz and min) are appropriate to aggregate data from multiple
inputs of a same type of sensor, while fusing data from multiple kinds of sensors
requires more complex methods. Some of these methods have been exploited in
diverse mathematical developments, such as those called parametric techniques,
like Bayesian and Dempster-Shafer Inferences. These techniques compose the
data fusion model created by Joint Directors of Laboratories Date Fusion Sub-
panel (JDL DFS) of the American Department of Defense [7]. JDL DFS model
has been the target of several research and developments involving traditional



sensors (for instance, radar and ELINT sensors). However, WSN literature has
been limited only to cite the potential of these techniques. In this work, we apply
parametric techniques on a data-centric routing protocol, establishing an aggre-
gation mechanism that minimizes the negative aspects of traditional approaches.

3 Aggregation-Centric Routing and Multisensor Data
Aggregation

This work addresses different aspects of aggregation in WSNs. These aspects in-
volve the use of routing protocols and filtering mechanisms implemented in the
sensor nodes to save energy. In this paper, we propose an extension to an existing
data-centric routing protocol in order to increase the likelihood of aggregation
without incurring in the overhead related to aggregation tree building and main-
tenance. In addition, an aggregation mechanism, using parametric techniques,
with the minimum of losses in terms of delay, scalability and robustness.

3.1 Privileged Aggregation Routing (PAR)

The data-centric routing protocol used is the Directed Diffusion proposed in [3],
which allows application specific processing within the network. Data is named
using attribute-value pairs. The sink performs interests dissemination to assign
sensing tasks to the sensor nodes. This dissemination sets up gradients in order
to draw data that match the interest. Events (data) start flowing towards the
originators of interest along multiple paths. The sink reinforces one particular
neighbor from which it receives the first copy of the data message. Interme-
diate nodes using the same criterion reinforce their respective neighbor. This
approach privileges lower delay paths, while it does not necessarily lead to the
establishment of better aggregation paths.

We propose a new scheme to reinforce neighbors. The idea is to use the same
localized interactions of Directed Diffusion and exploit its filtering architecture,
described in [8], to build an empirical aggregation tree in the network. The dif-
fusion filter architecture is a software structure for a distributed event system
that allows an external software module, called filter, to interact with the Di-
rected Diffusion core and modify its routing capabilities to influence how data
is moved through the network. In this work, Directed Diffusion is modified to
reinforce intermediate nodes with greater potential to combine data from dif-
ferent sources. After these nodes are found and included in the source-to-sink
path, distributed estimation algorithms are used to efficiently aggregate network
traffic into a reduced number of higher delay data messages.

A sensor node has potential for aggregation if it receives, in a timely manner
and from different sources, data messages with the same attributes (e.g. tem-
perature), but not necessarily the same values. Data fusion will depend on the
aggregation function used. We consider a path efficient if the number of aggre-
gation nodes is higher and these nodes are closer to the sources. By selecting
these paths, we trade an increase in delay and in processing time for a reduced



number of transmissions, while limiting measurement accuracy loss. To identify
and select these better paths, we added a software module to the Directed Dif-
fusion implementation available on ns-2 [9]. We named this module PAR filter
(Privileged Aggregation Routing filter). Our filter acts on the data messages
used for route discovery and path setup, i.e. exploratory data messages.

Instead of immediately forwarding the first received exploratory data message
toward the interest message originator, the PAR filter sets up a timer associated
to this message and compares it with other messages received before the timer
expires. To perform the comparison, three attributes were added to the message
header, namely distance_to_source, aggreg_-nodes and aggreg_ID. The first contains
the number of hops between the source and the first aggregation node, indicating
how far is the aggregation point from that specific source of information. The
second stores the number of aggregation nodes in the path followed by that
exploratory data message. Finally, aggreg_ID keeps an indication of which of the
sources in the network are included in the aggregation path.

Messages received from a particular neighbor with the highest aggreg_nodes
and the lowest distance_to_source values are chosen to be forwarded, even if they
are received later than other messages, which are discarded. The last field (ag-
greg_ID) is used to avoid computation of the same source twice in the aggregation
path, which would give erroneous numbers for aggreg_nodes and could jeopar-
dize our mechanism for route selection. Because a node does not have global
knowledge of the topology, an exploratory data message from a specific source
could have been aggregated two hops away, and the current node has no means
of knowing this. The only way to provide the information of which sources are
included in the aggreg-nodes computation is to pass this information along with
the message. If the aggreg_ID of the received message matches the messages
already in the node, then the current message is not aggregated.

The route selection mechanism works in two phases. The first one occurs
when an exploratory data message arrives. It is compared with similar messages
already stored in the filter to check if it is a candidate for aggregation or to be
discarded. Messages are candidate for aggregation if they respond to the same
interest come from different sources and have not been previously aggregated, as
shown by their aggreg_ID. When two candidates are found, their aggregation pa-
rameters are updated to reflect this. To discard a message, the PAR filter checks
aggregation parameters of messages that come from the same source, preserving
messages with better parameters and discarding the others. The comparison is
made using the aggreg_nodes(higher is better) and distance_to_source (lower is
better) values, in this order. If a message is to be kept, a timer is set before
transmission. Otherwise, it is deleted. When the timer for a specific message
expires, the second phase begins. Now, a double check is performed to identify
any modification in the message queue, and then the better message is sent back
to the diffusion core.

The Directed Diffusion routing module will act as it normally does, except
that now it receives different exploratory data messages than before, with better
aggregation parameters, thus different neighbors are reinforced. These neighbors



are the ones we chose to privilege aggregation. For instance, suppose a node has
two neighbors, a and b, from which it receives similar messages, using the criteria
discussed above, and the message from a arrives first. Normally, the a message
(low latency) would be forwarded and the b message would be discarded. With
the PAR processing, it could be identified that the aggreg_nodes value of a is 1,
indicating it conveys aggregated information from two distinct sources, where
the aggreg_nodes value of b is 2, indicating an aggregation of three sources. The
PAR filter would then discard a and forward b to the next node.

This process continues in every intermediate node in the path until the sink
is reached and the desired (aggregated) routes are reinforced. Empirically, inter-
mediate nodes in the reinforced path receive similar data messages, candidates
for aggregation, from different sources. These intermediate nodes are the closest
to these sources, which presents the greatest gains in terms of a reduced num-
ber of transmissions. The aggregation timer can be used to adjust the desired
latency to the number of transmissions ratio. A small timer implies low latency,
while a larger timer reduces the number of transmissions with the cost of higher
latency. After the desired routes were established, another software module must
be attached to the nodes of the sensor field to act on the data messages and to
aggregate and suppress redundant information. In the remainder of this work,
we present two aggregation filters, one using Bayesian Inference (Bayes Filter)
and another the Dempster-Shafer Inference (DS Filter).

3.2 Distributed Multisensor Aggregation

In order to reduce the impact of multisensor data aggregation in the WSN, we
propose a distributed aggregation mechanism. In such mechanism, aggregation
occurs locally at each node on the basis of available information (local obser-
vations and information communicated from neighboring nodes). Data does not
need to be held at any node in order to be combined, and in this sense it differs
from traditional store-and-forward techniques. The result is a distributed pro-
cessing in the network, which favors scalability and a reduction of transmissions,
without occurring in increase of the latency.

The aggregation mechanism starts after the definition of source-to-sink routes,
as illustrated in the figure 1. The aggregation procedure consists of keeping a
copy of the last evidence received in each node (in the source-to-sink path). This
evidence can be used for aggregation for a period T, as illustrated in the figure
1(a), which defines the valid time of the evidence. To prevent data aggregation
of the same sensor, the parameter 7T, must be inferior to the lesser interval of
data transmission (I;) from the sources. Another parameter to be adjusted is the
discard time of the messages Ty, illustrated in figure 1(b). This parameter de-
fines the period in which aggregate messages can be considered redundant, and
therefore discarded. Finally, in the case of Dempster-Shafer aggregation, the pa-
rameter C defines the admitted maximum variation for the degree of certainty
of the messages (in an interval Ty).

When a data type message arrives in the node it is forwarded to the aggrega-
tion filter. The first step consists of verifying valid evidences in the cache. This
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Figurel. Parameters of the Aggregation Mechanism.

is done comparing the difference between current time and the evidences arrival
time with 7,. After that, the message’s content is read to identify which evi-
dences are being sent. After these procedures, the evidences (local and received)
are combined, generating a new message. Then, the cache is updated with the
most recent evidences. The new message could be forwarded to Gradient filter
or simply discarded, if identical (or without significant changes) when compared
with the previous message, within interval T;,.

The nodes carry out aggregation by combining data fusion based on para-
metric techniques with removal of redundant messages. Such techniques allow a
direct mapping between the evidences detected by sensors with events of interest,
which is simplified by the data centric addressing schema of Directed Diffusion.
The aggregation methods have been implemented in the Bayes (Bayesian Infer-
ence) and DS (Dempster-Shafer Inference) Filters, which were software modules
added to the protocol.

The Bayesiana Inference [7] was implemented in the Bayes Filter. Bayesian
Inference is a statistical-based data fusion algorithm based on Bayes’ rule (equa-
tion 1) that provides a method for calculating the conditional or a posteriori
probability of a hypothesis being true given supporting evidence detected by
Sensors.

p(E|H;)p(H;)
p(Hi|E) = (1)
) = 5 e H (]

DS Filter implements data aggregation based on Dempster-Shafer Inference
[10]. This technique can be considered as a generalization of the Bayesian Infer-
ence, being used when the sensors contribute with information (called proposi-
tions) that cannot be associated the one hundred percent of certainty. Knowledge




from multiple sensors about events are combined using Dempster’ rule (equa-
tion 2) to find the intersection or conjunction of the proposition (for instance,
e1) and the associated probability, denoted by ;. This combining rule can be
generalized by iteration if we treat m; not as sensor S;’s proposition, but rather
as the already combined (using Dempster-Shafer combining rule) observation of
Sensors.
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4 Simulation Results

In this section, we describe the results obtained with our simulation model im-
plemented in the ns-2 simulator [9]. In this evaluation, we used two different
scenarios. In the first one, a certain number of sensor nodes are randomly dis-
tributed over a sensor field of size 1000m x 1000m. The second scenario uses
a grid topology where each node is spaced 150m from its neighbors. In both
scenarios, all nodes have a transmission range of 250m and the interval between
data messages sent by the source nodes is of 1 second. Due to space constraints,
some of more detailed simulations and analysis have been omitted.
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Figure2. Preferred and Alternate Routes.

The first step in the simulation involves route discovery. We tested a 100-
nodes grid topology with and without the PAR filter. We found, as expected,
that routes discovered by directed diffusion, without PAR, followed independent
paths, where preferred and alternate routes can be observed. Figure 2(a) shows
the preferred routes for each source. The alternate paths can be explained as
a way to keep the energy balance in the network, avoiding early depletion of



the nodes involved in the preferred path. When the PAR filter was added, we
found new preferred routes. These routes alternate always looking for aggregation
nodes, as we can observe in Figures 2(b) (node 95) and 2(c) (node 55).
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Figure 3 shows the impact of these new routes in the aggregation parameters.
Figure 3(a) shows the number of aggregating nodes for different grid sizes, and
Figure 3(b) their average distance to the sources. We may observe that the PAR
filter increased the number of aggregating nodes for all grid sizes, while reducing
their distance to the sources. As discussed in section 3, we expect that the larger
number of aggregation nodes will reduce the number of messages received at
the sink, while the small distance from the aggregation point to the sources will
reduce the number of hops in the network.
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To verify the impact of the aggregation timer in the route discovery, we in-
creased its value in successive rounds of simulation. The timer is important for
the PAR filter to collect neighborhood information to decide on best aggregation
path. However, it increases the route discovery latency, calculated by the differ-
ence between the time of arrival of the first positive reinforcement in the source
node and the first corresponding exploratory data sent by the same source. Fig-
ure 4 shows this metric as function of the aggregation timer. In larger grids, the
timer influence is even larger since the route discovery messages pass through a
greater number of nodes. A timer comprised around 0,5s proved to be a good
balance between efficient aggregation trees and route discovery latency.
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Energy savings are compared through the use of Bayes and DS filters in two
simulation scenarios. In the first one, we use the Bayes filter in the grid topology
and we vary the grid size. The second scenario uses the DS filter and a random
topology for a varying number of nodes. In both scenarios, the number of sources
is constant and equal to five. The total number of transmissions used to send
the same amount of information from the source to the sink as function of grid
size and the number of nodes is shown in Figure 5. The longer is the route the
larger is the number of hops even with the same number of messages arriving at
the sink. Normally, the routes obtained with the PAR filter are longer than the
ones with the pure Directed Diffusion since the former moves away from shorter
routes in order to find aggregation nodes. So, it is important to find efficient
aggregation trees to reduce the number of hops. The results of Figure 5 show the
impact of bringing the aggregation points near to the sources, which produced
a considerable gain in this performance metric. Once the sources were far away
from the sink, for bigger grids the aggregation benefits increased, because much
less hops were necessary to convey information to the sink.



5 Conclusions

In this paper, we propose a multisensor-aggregation-centric routing protocol that
increases sensors network lifetime. In such scheme, two filters were added to the
directed diffusion protocol. The first filter is called Privileged Aggregation Rout-
ing (PAR) and it acts during route setup to identify intermediate nodes with
greater potential to combine data from different sources. These nodes are in-
cluded in the source-to-sink path in order to favor data aggregation, but with
the overhead of increasing route discovery time. The second filter is responsi-
ble for the aggregation mechanism. In this paper, we explore two techniques,
Bayesian Inference (Bayes Filter) and Dempster-Shafer Inference (DS Filter).
Both were implemented in order to minimize the aggregation cost in WSNi,
since it occurs locally at each node on the basis of the available information
(local observations and information received from neighboring nodes). We show
by means of simulation that our aggregation mechanism in a privileged fusion
path between sources and sink can reduce drastically the total number of trans-
missions needed to accomplish the task.
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