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Abstract. Technological advances in miniaturization and wireless networking 
have enabled the utilization of distributed wireless sensor networks (WSN) in 
many applications.  WSNs often use clustering as a means of achieving scalable 
and efficient communications.  Cluster head nodes are of increased importance 
in these network topologies because they are both communication and 
coordination hubs.  Much of the research into maximizing WSN longevity and 
efficiency focuses on dynamically clustering the network according to the 
residual energy contained within each node.  This is a result of the commonly 
held assumption that battery depletion is the primary cause of node failure.  In 
this work, we consider that there are applications in which threats may 
significantly impact node survival.  In order to cope with these applications, we 
present a threat-aware clustering algorithm, extending the Hybrid Energy 
Efficient Distributed clustering algorithm (HEED) that minimizes the exposure 
of cluster heads to threats in the network environment.  Simulation results 
indicate that our extended threat-aware HEED, or t-HEED, improves both the 
longevity and energy efficiency of a WSN while incurring minimal additional 
overhead. Our research demonstrates and motivates the need for a general 
framework for adaptive context-aware clustering in WSNs. 
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1. Introduction 

Wireless sensor networks (WSN) are being employed in numerous environments and 
applications.  Often, WSN implementations utilize clustering techniques as a method of 
achieving self-organization and scalability in their communication model [1-5].  WSNs are 
energy and resource constrained and their effectiveness and longevity is subject to that of 
their participant nodes. 

Clustering techniques introduce heterogeneity to the service profile of the network, 
which has the side effect of creating nodes that can be considered ‘more critical’ than 
others.  This is due to the fact that cluster head node serve as central hubs or super-peers 
for node management functions such as communications, organization, and security.  In a 
clustered network, each sensor node forwards all communications toward the cluster head 
to which it is assigned.  This can occur in one step or many steps, depending on the 
clustering implementation.  It is the cluster head’s job to route all received 
communications towards a destination or network sink.  As a result, cluster heads are of 



increased importance to the proper functioning of the WSN.  From this fact, it is apparent 
that the compromise or loss of a cluster head will have a greater impact on the overall 
effectiveness and longevity of the network. 

One of the primary design goals for clustering algorithms in WSNs is to maximize the 
lifespan of cluster heads [6-8].  By maximizing cluster head lifespan, one can minimize 
the need for the rearrangement of clusters, which is an expensive process involving, at a 
minimum, a number of communications between a cluster head and a sensor.  Most 
research into clustering algorithms makes the assumption that the primary factor 
influencing the longevity of sensors in a WSN is the residual energy of the node.[7].  In 
other words, the primary cause of node failure is a depleted battery. 

Increasingly, sensor networks are being used in environments where energy constraints 
are not the only threat to nodes.  For example, in battlefield contexts, enemies may be 
actively searching for and destroying sensors.  In the wilderness, firefighters may use air-
deployed sensor networks to track the movements of wildfires that may overwhelm and 
destroy some of the nodes.  In each of these contexts, it is likely that a node may be 
destroyed due to contextual factors other than energy levels. 

This work explores the potential for incorporating a contextual threat-based element 
into an existing clustering technique that emphasizes energy conservation.  Our hypothesis 
is that threat-aware clustering enhances network longevity and energy efficiency. As part 
of the work, we define a  threat model and simulate the initial distribution and clustering 
of a sensor network using a clustering technique based on the Hybrid Energy Efficient 
Distributed clustering algorithm (HEED) [6], and our own proposed algorithm, t-HEED, 
which is an extension of HEED that uses contextual threat awareness to minimize the 
threat level of cluster heads.  The network is then attacked by adversaries who perform the 
attacks based on a pre-determined threat distribution.  We measured node count, residual 
energy, and other metrics after a number of epochs to assess the effectiveness of the 
contextual threat enhanced HEED implementation. 
The remainder of the paper is organized as follows. Section 2 summarizes related 
work. Section 3 presents an overview of HEED [6] and describes our threat-aware 
clustering approach. Section 4 presents our network and threat models. Section 5 
reports on our comparison between HEED and our extension, t-HEED. Finally section 
6 concludes the paper and highlights future work. 

2. Related Work 

Clustering has been demonstrated as an effective technique for achieving prolonged 
network lifetime and scalability in WSNs [11]. Parameters to include the node degree, 
transmission power, battery level, or processor load usually serve as metrics for 
choosing the optimal clustering structure. Recent initiatives address the problem of 
clustering and reclustering based on application specific attributes and network 
conditions. Bouhafs et al. [12] propose a semantic clustering algorithm for energy-
efficient routing in WSNs. Nodes join the clusters depending on whether they satisfy 
a particular query inserted in the network. The output of the algorithm is called a 
semantic tree, which allows for layered data aggregation Siegemund [13] proposes a 
communication platform for smart objects that adapts the networking structure 



depending on the context. A cluster head node decides which nodes can join the 
cluster, based on similar symbolic location. Strohbach and Gellersen [14] propose an 
algorithm for grouping smart objects based on physical relationships. They use 
associations of the type “objects on the table” for constructing the clusters. A master 
node has to be able to detect the relationships for adding/deleting the nodes to/from 
the cluster. Perianu et al [15] propose a clustering scheme where the network is 
dynamic, the context is permanently changing and every pair of nodes is capable of 
understanding the physical relationships and thus the common context. Youssef et al 
[16] propose dynamic cluster head relocation based on a tradeoff between safety and 
performance. A cluster head moves closer to an event for enhanced performance 
while considering the threat level along the path between the cluster head and the 
monitored event. Up to our knowledge, our work in this paper is the first treatment of 
threat-aware clustering. 

3. Threat-aware Clustering 

To investigate the effectiveness of contextual threat-aware clustering, we modified 
HEED’s clustering algorithm to consider a node’s context when electing cluster 
heads.  HEED is a distributed clustering algorithm that uses the residual energy of 
each node as a primary factor in deciding whether or not to become a cluster head.  
By introducing the threat weighting, our construction discourages nodes in high threat 
areas from becoming cluster heads.  The next two subsections describe the HEED 
clustering algorithm and the modifications that were required to add context 
awareness. 

3.1 HEED Clustering 

The HEED clustering algorithm can be divided into three major steps: 1) Tentative 
cluster head distribution 2) Iterative CH election and balancing, and 3) Finalization and 
membership establishment. The algorithm is entirely distributed.  All information must be 
transmitted between nodes, or known locally. 

In the first step, each node decides whether or not to become a tentative cluster head 
based on a weighted probability of some ClusterHeadProbability*(Residual Energy/Max 
Energy).  Essentially, each node has a fixed probability of becoming a cluster head, 
weighted by a dynamic measurement of the node’s current residual energy.  When a node 
elects to become a tentative cluster head, it broadcasts that information to all nodes within 
communication range. 

In the second step, each node goes through an iterative process of deciding whether or 
not to become a final cluster head based on the cost of the nodes within its communication 
range and its own cluster head probability.  Each node doubles its probability of becoming 
a cluster head after each successive iteration in which no decision is made.  If a node 
determines it is the optimal cluster head, it will elect to become a tentative cluster head.  
Once a node’s probability of becoming a cluster head has reached 1, it will assert itself as 
a final cluster head.  Each node that is not ‘covered’ will repeat this process.  A node 
becomes ‘covered’ when it is within communication range of either a final or tentative 



cluster head.  Any time a node changes state during this phase, the node broadcasts the 
state change to all neighbors within communication range. 
During the final phase of HEED clustering, each node decides to join the least cost 
cluster head.  HEED uses one of two cost functions for determining cluster head 
membership, least degree and most degree.  The goal of least degree is to balance load 
across all clusters.  The goal of most degree is to provide dense clusters. 

3.2 Threat-Aware HEED (t-HEED) 

At first glance, the contextual threat HEED implementation appears to make minor 
modifications to the underlying HEED algorithm.  While subtle, the changes significantly 
affect the clustering process. 

First, we altered the initialization phase to assert the initial node distribution 
according to both the residual energy ratio and the contextual threat level.  For our 
purposes, we assume that the local contextual threat level of each node can be 
objectively determined by each node.  The new formula for cluster head probability is 
expressed in Equation (1). Since we are adding a new weight to the initial cluster head 
probability function, it may be necessary to increase the baseline cluster head 
probability Cprob.  Eresidual and Emax refer to the current battery level and the maximum 
battery level of the node.  Threatprob is the context-based threat value that defines the 
distribution of potential attacks.  Pmin is a minimum value that is needed so that CHprob 
never becomes 0 
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Second, we altered the cost function that is used in both the Repeat phase and the 
Finalize phase of the algorithm.  The cost function is used to rank the neighbors of a node 
according to their suitability as cluster heads.  HEED provides the guidance of using either 
‘node degree’ or ‘1/node degree’ depending on whether the goal is to create dense clusters 
or to distribute load.  we replace this with a simple measurement of the threat level of a 
node. 

The final modification to HEED involves its determination of when a node should stop 
repeating the middle phase.  HEED specifies that a node should repeat until it is ‘covered’.  
A node is considered ‘covered’ if it is within communication range of a final or tentative 
cluster head.  A node will stop trying to process its local maximum cluster head candidate 
at this phase because the presence of a tentative or final cluster head implies that the 
maximum is already known.  This implies that the node can simply accept one of the 
already existing cluster head candidates as its cluster head. 

In order for t-HEED implementation to properly propagate contextual information and 
determine the optimal solution, we had to loosen the definition of ‘covered’ to include 
only those nodes that have a final cluster head within communication range.  Eliminating 
the tentative cluster heads from the list allows the algorithm to converge on a more 
optimal solution rather than be subject to the initial CH distribution which is based solely 
on local information. 

In summary, the contextual threat information is used during each phase in order to 
modify the probability that a given node will become a cluster head based on its threat 



level.  This has the effect of moving cluster heads away from high threat areas. 

4 Network and Threat Models 

4.1 Network Model 

The simulated network model, Figure 1,  is a simple, grid arranged, statically placed, 
sensor network.  The simulations were performed with a grid size of 30 by 30 units.  
Nodes are distributed throughout the grid based on a normal random distribution.  The 
simulations were performed with a node density of 0.35.  It is assumed that nodes have a 
fixed communication range, simulated as 5 units, and communicate reliably.  Each node 
contains a battery that is modeled as a float value initialized to 1.  Each communication 
incurs a battery cost on both sender and receiver, simulated as 0.005 of the max battery 
capacity. 

The network model simulates a clustered organization and communication scheme, as 
shown in Figure 2.  During network operation, each node will be a cluster head or a 
sensor.  Each sensor must be a member of exactly one cluster, attached to the cluster head 
by a maximum of one step.  After deployment and clustering, any sensor that cannot reach 
a cluster head and is not a cluster head itself must turn itself off.  Cluster heads should be 
placed such that they are uniformly distributed throughout the topology unless 
intentionally otherwise arranged. 
For this simulation, I assume that after the initial clustering process, there is no 
reclustering. I am not attempting to test the effectiveness of HEED, simply to 
investigate the effects of adding the contextual threat awareness.  In order to mitigate 
the potential problems associated with not supporting reclustering, the network model 
does provide node reassignment. 

 
Fig. 1. Network Topology - initial distribution of nodes and node interconnectivity 

The network model includes simulated traffic.  Traffic is generated at a fixed rate and 
submitted to a random node in the network.  If the source of the traffic is a cluster head, 
the traffic will incur a send cost on the CH.  If the source of the traffic is a sensor node, a 
send cost is incurred on the sensor and a receive cost is incurred on the cluster head of the 



sensor.  To clarify this point, the model simulates traffic that is routed from sensors to 
cluster heads.  Cluster head to base station communication is ignored. 

 

 
Fig. 2. Clustered organization of sensor nodes 

When any node is killed either by a depleted battery or an adversary, it is turned off 
and effectively removed from the network.  Sensor nodes that are killed have no effect on 
the other nodes in the network.  Each cluster head that is killed has the effect of 
abandoning the nodes in its cluster.  Abandoned nodes will attempt to reattach to other 
clusters within communication range.  If no new cluster head is within range, the node will 
turn itself off. 

4.2 Threat Model 

The simulated threat model used against the network model can be characterized by a 
number of adversaries who travel fixed paths through the grid of nodes.  Adversaries 
travel straight and consistent longitudinal and latitudinal paths through the network.  
Adversaries are generated at a fixed rate in bursts.  At the start of the attack simulation, a 
number of adversaries are created and released.  The adversaries travel their paths through 
the network, taking discrete steps of 0.1 units, until they have traveled across the network 
and traveled out the network boundaries.  Once adversaries have left the network 
boundaries, the adversaries are destroyed.  The attack simulation consistently maintains 
the number of adversaries until a specified max number of entities have traveled through 
the network.  For the simulations performed in this work, adversaries were simulated at 
three different rates: 1 adversary at a time with a total of 10, 5 adversaries at a time with a 
total of 50, and 10 adversaries at a time with a total of 100. 

When an adversary comes within a certain distance (simulated as 0.5 units) of a node 
in the network model, it probabilistically decides whether or not to attack the node.  The 
probability is described in Equation (2). This probability ensures that an adversary is only 
going to attack a node once during its multi-step encounter with a node.  The equation 
assumes that adversaries will travel directly over each node; however, the equation is a 
satisfactory way of maintaining the mode important probability: the attack success.  The 
attacks of adversaries will succeed with a random probability that is according to the 



contextual threat level of the position that the adversary and node occupy.  The probability 
is modeled in Equation (3). 
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When an adversary successfully attacks a node, whether it is a sensor or a cluster head, 

the node in question is immediately killed and cannot be revived.  Adversary attacks are 
modeled as independent events.  A successful attack does not alter the behavior of the 
adversary, it simply continues on its path. 

The contextual threat probability distribution is modeled as a matrix of threat 
values that is 2 units larger in both dimension than the network grid.  The distribution 
has two primary features: points and lines.  Initially, the distribution is uniform, with 
each element in the matrix having a threat level of 0.  First, a specified number of 
random point-based threats are established in the distribution, boosting the threat level 
of small, symmetric areas throughout the network model.  Second, a specified number 
of random lines are established along latitude and longitude lines of the distribution.  
This simulates shape-based contextual threat elements (i.e. Roads or buildings).  Two 
specific sets of parameter values were considered for simulation:   a point-centric and  
a line-centric threat distributions.  Simulation tests indicated that the distributions 
produced consistent results.  As a result, the tests were performed against the line-
centric model. 

5 Simulation and Results 

The simulation is developed in C# using the .Net platform 3.0.  The simulation has a 
visual component and a date model component.  The visual component can be used to 
observe a simulation, as shown in Figures 3 and 4. Future efforts will likely include 
an implementation in TinyOS. 

We ran extensive simulations using the network and threat models with the goal of 
gathering performance metrics from both the baseline HEED implementation and the 
extended threat-aware t-HEED implementation. The metrics are divided into two 
categories.  The first category of metrics attempt to illustrate any effects the HEED 
modifications have on the behavior of the algorithm.  These metrics include: 

• The initial cluster head count 
• The number of iterations required to converge on a clustering arrangement 
• The average cluster head threat level 

Ideally, the changes to HEED should not impact the initial cluster head count 
significantly.  A significant change to cluster head count may bias other metrics and 
simulation results.  The number of iterations required to converge on a cluster arrangement 
is important because it directly affects the time and energy required to perform clustering.  
Finally, the average cluster head threat level is an important metric that indicates how well 



the modifications are achieving their goal of minimizing cluster head threat exposure. 
The second set of metrics capture the performance of the clustering technique by 

measuring the overall longevity and effectiveness of the WSN.  These metrics include 
the number of nodes and cluster heads alive in the network, and the average residual 
energy of the nodes and cluster heads in the network.  The number of nodes and 
cluster heads still alive in the network provide a simple indication of the remaining 
effectiveness of the network.  The average residual energies of nodes and cluster 
heads in the network indicate the energy efficiency of the network and its potential 
longevity. 

5.1 Clustering Metrics 

Initial Cluster Head Count 
Table 1 shows the initial cluster head count for two series of simulations.  In the 

first series, all parameters were left at their regular levels and the density of the 
network was adjusted.  In the second series, the transmission distance of each node in 
the network was adjusted.  The results show that x HEED implementation created 
slightly fewer cluster heads in every test.  The differences are marginal for the 
parameters that are closest to the defaults – Density 0.45 and transmission distance 6.  
An interesting observation to make is that the number of cluster heads increases with 
network density and decreases with transmission range. 

Table 1: Initial Clusterhead Counts 

t-HEED HEED  
10.76 12.84 Density - 0.05 
24.1 25.3 Density - 0.45 
26.02 26.86 Density - 0.85 
49.52 55.82 Trans – 3 

16.58 16.84 Trans – 6 

7.22 7.46 Trans – 10 

Number of Iterations to Converge 
Table 2 shows the number of iterations required to converge on a cluster arrangement 

for the same two series of simulations as for the initial cluster head count metric.  In this 
case, t-HEED implementation took approximately double the iterations to converge than 
the baseline HEED implementation.  Density does not appear to have significantly 
effected either implementation, and the transmission range seems to have an inverse 
relationship to convergence iterations. 

Table 2: No. of Iterations before Convergence 

t-HEED HEED  
11.84 6 Density - .05 



11.9 6 Density - .45 
12 6 Density - .85
12 6 Trans – 3
11.6 6 Trans – 6 
8.78 6 Trans – 10 

Average Cluster Head Safety 
This following table shows the average threat level of each cluster head in the WSN 

after clustering.  The metric was measured for the same set of simulations as the other 
metrics.  This is an important metric because it illustrates the effectiveness of the modified 
clustering algorithm at reducing the threat level of cluster heads.  The numbers in the table 
are measurements of cluster head safety.  The threat level is actually (1-x) where x is the 
value in the table.  The data shows that t-HEED implementation is effective at reducing 
the threat level of cluster heads in the network. 

Table 3: Average Threat Level for each Cluster 

t-HEED HEED  
0.6856 0.4555 Density - .05 
0.7082 0.4622 Density - .45 
0.7039 0.47 Density - .85
0.6472 0.4591 Trans – 3 
0.7298 0.445 Trans – 6 
0.7832 0.46 Trans – 10 

Using the visualization tool, it is easy to see how the context extended 
implementation of HEED has performed Figure 4. The cluster heads have moved into 
the low threat areas and are connected to sensor nodes that are in the high threat areas. 

5.2 WSN Performance Metrics 

Each implementation was subject to a series of simulations that measured the sensor 
and cluster head longevity and residual energy.  The simulations were performed with the 
default parameters, except for the adversary count, which was tested at 1 at a time for a 
total of 10, 5 at a time for a total of 50 and 10 at a time for a total of 100 (see the section 
on the threat model for details).  Each simulation was run 100 times and all values for all 
metrics are the average values over the course of the trials. 

Figure 5 shows the number of sensors that remain alive at a given epoch.  As the 
simulation runs, and adversaries attack the network, the number of live sensors decreases 
as expected.  Figure 6 shows the same metric, only for cluster head nodes.  The legends 
are the same for both diagrams.  As observed, the benefits that t-HEED introduces are 
greater as the number of adversaries increases. 

 
 



 
Fig. 4. Comparison between HEED and threat-extended t-HEED clustering 

 

Figure 7 shows the residual energy for the same simulation.  The source of the shift in 
the graph is uncertain, although it indicates that HEED uses more energy during the initial 
clustering phase than the context enhanced approach. Figure 8 shows the average residual 
energy for cluster head nodes in the network.  The graph looks very similar to the alive 
node graph.  This is due to the fact that the two metrics are closely correlated. 
Additional simulations were performed with various adjusted parameters, including 
disabling node reattachment, disabling traffic generation, and tweaking node 
transmission range, network density, and initial cluster head probability.  All of the 
results were consistent with those that have been presented.  In every simulation, the 
context enhanced t-HEED implementation matched or outperformed the baseline 
HEED implementation. 
 

Fig.5. WSN Sensor Count 
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