
An interactive tool for intelligent analysis of
geo-temporal backbone monitoring data

Nilson Luı́s Damasceno
Computing Institute

Fluminense Federal University
Rio de Janeiro, Brazil

nilsonld@id.uff.br

Antonio A de A Rocha
Computing Institute

Fluminense Federal University
Rio de Janeiro, Brazil

arocha@ic.uff.br

Abstract—Due to the increased usage of the internet for all sort
of human activities, the demand for high-quality communication
services continually grows, which makes essential the detection
of events that compromise the quality of these services. The
intelligent analysis of the monitoring data produced by routers
can reveal relevant patterns hidden on the massive volume of
data archived and, therefore, help to guide decisions of network
providers. This paper presents a graphical and interactive web
tool that performs intelligent analysis of visually selected geo-
temporal subsets of monitoring data collected by routers. The
tool uses a variation of a data structure to store and selectively
retrieve geo-temporal data to feed the intelligent analysis. At this
time, the analysis module can detect anomalies and perform data
predictions using selected Machine Learn algorithms present on
Microsoft’s ML.Net framework.

Index Terms—Network monitoring, GIS, Network Traffic
anomalies, Artificial Intelligence.

I. INTRODUCTION

Backbone internet routers commonly collect monitoring
data, such as the status of the equipment itself and information
related to the large amount of traffic that pass by their
interfaces. Such information may include different kind of
data, including the amount of packets received, transmitted
and discarded, and other details about the packets themselves.
Performing proper analysis of these data can indicate actual
or potential issues about the quality of the network services/s-
tatus.

With the evolution of Artificial Intelligence (A.I.) tech-
niques, it became possible to analyze the collected data to
identify hidden traffic patterns; to recover, via interpolation,
missing measurement details; and even, to perform prediction,
via extrapolation, of trends in some monitored values. How-
ever, A.I. monitoring data analysis is usually done in offline
mode, apart of the network operation, imposing a significant
delay between the registration of network events and the
analysis of these events. Due to this delay, it is not possible
to fix, on real-time, any detected issue.

The tool presented in this paper performs A.I. analysis over
data collect from backbone network routers, using algorithms
provided by Microsoft’s ML.NET framework [1], on a real-
time fashion. The tool offers visual and interactive ways to
analyze all (or a subset of) data, considering also other factors

AI Analysis
(ML.NET)

[Raw Data]
Data

Receiver

[Schema] Schema
Creator

Outcome

Query
Processor

Tinycubes
Data Structure

Tinycubes
Schema

Query
Web

Interface

Fig. 1. Schematics

(besides geo-temporal information) presented in the data, such
as the location of routers and time of the event.

This kind of tool can be used for many different purposes,
including: (i) automatic detection identification of issues re-
garding network performance or connectivity; (ii) generation
of automatic alerts and notifications of failures; and, (iii)
simultaneous visualization of failures in different monitoring
points, offering a big-picture view, that may recommend
further investigation of correlation among traffic anomalies.

This paper is organized as follows. Section II describes the
tool structure. Section III presents a case study using actual
monitoring data from two RNP Point of Presence (PoP). And,
finally, Section IV lists the conclusions and opportunities for
further research.

II. TOOL DESCRIPTION

This section describes the most relevant components of the
tool, as can be seen in Figure 1. The current implementation
reads input data from a file, store it in a specialized data
structure that performs statistical geo-temporal queries, whose
outcomes feed machine learning algorithms. The final result
is present in a graphical manner on a web interface.

A. Core Data Structure - Tinycubes

The tool uses a new data structure called Tinycubes. A full
description of the Tinycubes data structure is beyond the scope
of this paper and will be subject of a future publication. This
section presents only the features of Tinycubes necessary to
understand the capabilities of the tool.

978-3-903176-23-2 © 2019 IFIP

Coordinate1 Coordinate 2

*
Root

UDP
*

T6

TCP UDP

T2T1 T5T4

TCP

T3

*

UDP
*

T9T8T7

TCP

Fig. 2. Logical representation of a Tinycube with two dimensions

The Tinycubes data structure works as an in-memory
database. It stores collected data and replies statistical geo-
temporal queries such as “How many TPC and UDP packets
was received by the POPs in specified region between date1
and date2?”. The Tinycubes was derived from a previous geo-
temporal data structure called Nanocubes [2]. This structure
is a datacube [3] specialized in handling geo-temporal data,
offering low response time for queries and moderate memory
usage. Tinycubes enhances Nanocubes with new capabilities,
such as even lower memory usage and online removal of stored
data, which allows data stream processing.

Tinycubes stores information as a graph [4], where part of
the available input data can be used to create paths to terminal
nodes, whose contains a set of summarized information related
to the data in the path. Typical summarized information are
event counters, averages and variances. The data paths of
Tinycubes can be logically viewed as datacube dimensions,
which can be queried independently. As the main enhance-
ment regarding usual datacubes, Tinycubes allows hierarchical
subdivision of each dimension, which facilitates storing and
retrieving information hierarchically encoded, as geographic
coordinates organized as QuadTrees [5].

Figure 2 illustrates a Tinycube with a geographic coordinate
dimension followed by a categorical dimension that identifies
a transport protocol. The distinguish trait of the structure is
given by the sided-node edges labeled with “*” (asterisk), that
store the aggregation of information contained in some node’s
children. For example, if each terminal Ti counts how many
packets were received, then node T3 stores the sum of counts
of T1 and T2, which is the count of all packets received in
coordinate1, despite of the protocol. Node T9, on the other
hand, stores the sum of counts of all packets received in all
coordinates.

B. Schema

The actual composition of the Tinycubes structure is de-
termined by a JSON schema file, as detailed in Listing 1.
From that schema, a Tinycube structure is generated similar
to the one in Fig. 2. The JSON record section enumerates
the information available to be either stored as dimension
or summarized in terminal nodes. The dimensions section
defines the datacube dimensions, used as path to reach the

{

"record": {

"fields": [

{ "id":"seconds", "type": "int" },

{ "id":"lat", "type": "double" },

{ "id":"lon", "type": "double" },

{ "id":"proto", "type": "int" },

{ "id":"sport", "type": "int" },

{ "id":"dport", "type": "int" },

{ "id":"ipackets", "type": "int" },

{ "id":"ibytes", "type": "int" }

]

},

"dimensions": [

{ "id": "location", "length": 25,

"class": ["geo", "lat", "lon"] },

{ "id": "proto",

"class": ["cat", "proto"]}

],

"terminal": {

"contents": [

{ "id": "hours",

"class": ["binlist",

"seconds", "1"],

"contents": [

{"id": "hc",

"formula":["counter"] },

{"id": "havg",

"formula":["avg", "ibytes"] },

{"id": "hsd",

"formula":["sd", "ibytes"] }

]

}

]

},

}

Listing 1: Schema file for Figure 2

summarized data stored on terminals. Finally, the terminal field
defines which summarized information is stored for future
retrieving using queries. In the example, the geographical
dimension location is created using the class geo, which uses
“lat” and “lon” record fields, and uses the “length” field to
define the geographic precision of the location (in this case,
approximately 1

225 of Earth circumference, around 1, 3m).
Besides, the contents of field “hours” in terminal section
indicates that each terminal node has a 1-second resolution
binned list of a triple formed by an event counter “hc”, the
average and the standard deviation of “ibytes” record field.

C. A.I. Analysis - Machine Learning Algorithms

The current implementation of the tool uses three algorithms
for anomaly detection (detailed in Table I) and one algorithm
for regression and prediction of values (detailed in Table II),
all of them available in Microsoft ML.NET framework. The
tool interacts with these algorithms sending and receiving data
files computed by ML.NET routines.

TABLE I
ANOMALY DETECTION ALGORITHMS

Algorithm Short Description
DetectIidSpike predicts spikes in independent identically

distributed (i.i.d.) [6] time series based on
adaptive kernel density estimations and mar-
tingale scores.

DetectSpikeBySsa predicts spikes in time series using Singular
Spectrum Analysis (SSA) [7].

DetectAnomalyBySrCnn detects time series’ anomalies using SR-
CNN algorithm [8].

TABLE II
REGRESSION/PREDICTION ALGORITHMS

Algorithm Description
Predict linear regression algorithm [9]

The anomaly detection algorithms take as input a list of
values and generate, as outcome, a list with the position of the
values that preceded each anomaly detected. The prediction
algorithm takes as input a list of pairs (time, value being
analyzed), ordered by time, and the value of the time to be
predicted. The result is the value predicted itself.

D. Query Processor

The tool uses a JSON based language that emulates a
simplified SQL syntax to retrieve data, as can be seen in
Listing 2. It offers the traditional “select”, “where” and “group
by” statements to, respectively, select, filter and group/fold
data. The language also offers the command “ml.net” to
request some A.I. analysis over the outcome data retrieved by
the previous statements. In the example, the query initially
requests a time based histogram (group-by over hours) of
the “hsd” values (“select”: “hsd”) with events occurred in
a specific time interval (“where” clause) and subsequently
submits the outcome as a time series to the ML.NET anomaly
detection algorithm DetectSpikeBySsa.

{

"select": "hsd",

"where":[["hours", "between",

1561935756, 1561982738]],

"group-by": "hours",

"ml.net": ["DetectSpikeBySsa", "hsd",

"98 12 10 3"]

}

Listing 2: Query example

E. User Interface

The Figure 3 illustrates how the collected geo-temporal
data can be displayed by the tool. The image reflects five
minutes of RNP backbone network traffic in Brazil. The data
being displayed corresponds to the amount of input bytes
(ibytes) that each POP collects with 1-second resolution. On
the temporal chart, the tool summarizes, for each second, the
value of ibytes collected in all POPs being displayed. On the
map, the tool summarizes, for each POP location, the value

Fig. 3. Heatmap for input bytes (ibytes)

of ibytes collected by the POP in the period of time selected.
After that, the total amount calculated is shown over the map
as colored spot forming a heatmap.

Fig. 4. Anomalies (spikes) detected

III. CASE STUDY

The tool has been used with data collected by RNP routers
from POP-RJ. The fields listed on Listing 1 were extract from

the actual Netflow files and written in a CSV format using the
“nfdump” tool. The coordinates of the POP-RJ were added
into data for geographic reference.

Figure 4 shows the visual result of applying the query in
Listing 2 when the tool is loaded with POP-RJ data. The
“ml.net” field of the query requires that the DetectSpikeBySsa
algorithm must be applied over the raw query outcome. The
result of this class of anomaly detection algorithm is a series
of points whose are plotted as markers over the chart.

IV. CONCLUSION AND FURTHER WORKS

In this paper, we presented a tool with the capability
to explore different machine learning algorithms over geo-
temporal data collected from network backbone operation. The
ability of acting as a statistic fast in-memory database, allows
the centralization of real-time collect data that can be visually
explored and analyzed with A.I. techniques.

The tool offers many scientific and technical opportunities
for future developments. One the scientific aspect, it is possible
to explorer different existent A.I. algorithms. On technical
side, it is possible to optimize the communication between
the Tinycubes implementation (written in C) and the ML.NET
framework (DOTNET domain), replacing the file-based inter-
face by a faster memory-based interface. It is also possible
to develop a more human-friendly query language that allow
users to submit manually written queries via consoles. Another
possible experiment would be the use the actual location of
the communication peers obtained by GEO-IP service, instead
of POPs location, what could allow the investigation of how
regions of the world impact the network traffic.

ACKNOWLEDGMENT

This research was partially supported by the Rede Nacional
de Pesquisa (RNP) through the project “Microsoft’s Artificial
Intelligence Challenge”. We also thank the RNP team who
provided monitoring data collected from the network back-
bone.

REFERENCES

[1] “Ml.net documentation - tutorials, api reference — microsoft docs,”
https://docs.microsoft.com/en-us/dotnet/machine-learning/, 2019.

[2] L. Lins, J. T. Klosowski, and C. Scheildegger, “Nanocubes for real-time
exploration of spatiotemporal datasets,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 19, 2013.

[3] J. Gray, A. Bosworth, A. Layman, and H. Pirehesh, “Data cube: A
relational agregation operator generalizing group-by, cross-tab, and sub-
totals,” Data Mining and Knowledge Discovery, vol. 1, pp. 29–53, 1997.

[4] D. B. West, Introduction to Graph Theory. Pearson Education Inc.,
2001.

[5] R. A. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval
on composite keys,” Acta Informatica. Springer-Verlag, vol. 4, pp. 1–9,
1974.

[6] T. J. A. Cover, T. M., Elements Of Information Theory. Wiley-
Interscience., 2006.

[7] V. N. Golyandina, N. and A. Zhigljavsky, Analysis of Time Series
Structure: SSA and related techniques. Chapman and Hall/CRC, 2001.

[8] X. K. H. S. L. Y. Y. Xie, F. Xing, “Be-yond classification: Structured
regression for robust cell detection using convolutional neural network,”
Medical Image Computing and Computer-Assisted Intervention - MIC-
CAI, pp. pp. 358–365, 2015.

[9] S. H. Draper, N.R., Applied Regression Analysis, 3rd ed. John Wiley,
1998.

