VNF-Consensus: A Virtual Network Function

for Maintaining a Consistent
Distributed SDN Control Plane

Giovanni Venancio*, Rogério C. Turchetti’, Edson T. Camargo:E and Elias P. Duarte Jr.*
*Federal University of Parand, Curitiba, Brazil
TFederal University of Santa Maria, Santa Maria, Brazil
fFederal Technological University of Parand, Toledo, Brazil
Emails: gvsouza@inf.ufpr.br, turchetti@redes.ufsm.br, edson@utfpr.edu.br, elias @inf.ufpr.br

Abstract—Software Defined Networks (SDN) usually rely on a
centralized controller, which has limited availability and scalabil-
ity by definition. Although a solution is to employ a distributed
control plane, the main issue with this approach is how to
maintain the consistency among multiple controllers. Consistency
should be achieved with as low impact on network performance
as possible, and should be transparent for controllers, without
requiring any change of the SDN protocols. In this work
we propose VNF-Consensus, a Virtual Network Function that
implements Paxos to ensure strong consistency among controllers
of a distributed control plane. In our solution, controllers can
perform their control plane activities without having to execute
the expensive tasks required to keep consistency. Experimental
results are presented showing the cost and benefits of the pro-
posed solution, in particular in terms of low controller overhead.

I. INTRODUCTION

Software Defined Networks (SDN) separate the control
plane from the data plane, which improves their flexibility,
programmability, and management [1, 2]. The control plane is
usually centralized, consisting of a single controller, while the
data plane consists of numerous network devices distributed
across the network. While a centralized approach is attractive
as it is simpler to operate and manage, it represents a vulnera-
bility as the controller is a single point of failure with a direct
impact not only in terms of resilience (i.e. if a controller fails
there is another to keep the network running), but also on
performance and scalability [3] (e.g. it allows load sharing
as the number of flow requests grows). The solution is to
distribute the control plane, employing multiple controllers
that share responsibilities [4]. Several different strategies have
been proposed to distribute the SDN control plane [5, 6].

The advantages of employing multiple controllers should
thus be clear. However there is a cost: in order to employ a
distributed control plane it is necessary to employ techniques
to guarantee the consistency among the multiple controllers
[7]. Actions performed on the control plane by multiple SDN
controllers need to be synchronized, and this is not a trivial
endeavor [5]. An alternative is to employ a straightforward
master-slave architecture [8]. Consistency violations can cause
problems such as for instance the installation of conflicting
forwarding rules on multiple SDN switches, which may result
in the creation of loops or routes bypassing important services.

978-3-903176-23-2 (©) 2019 IFIP

Canini et al. [9] argue that maintaining a consistent dis-
tributed control plane is one of the main open problems in
SDN. This has to be solved without causing a significant
impact on network performance and obviously preserving the
correct operations executed on the data plane. Some of the
existing solutions for building a distributed and robust SDN
control plane are done at the control plane itself. In this
case, the controllers themselves incorporate new features in
order to synchronize the control plane. The major drawback
of this approach is the overhead it represents on the controllers
themselves [7, 9, 10]. In contrast, there exist other solutions
that avoid increasing controller workload by having switches
synchronizing their actions [5, 11]. In general, these solutions
have disadvantages as they require modifications of the SDN
protocol.

In this work, we propose a solution for keeping the consis-
tency of a distributed SDN control plane that takes advantage
of NFV (Network Function Virtualization) [12] technology
and which is particularly efficient in terms of the load it
imposes on the controllers. NFV enables the implementation in
software of network services that run in the network core and
can be executed on off-the-shelf hardware. Our solution relies
on a Virtual Network Function (VNF) called VNF-Consensus
that implements Paxos [13] to guarantee the strong consistency
of the distributed control plane synchronizing the actions
performed by the multiple SDN controllers. In this way, the
execution of any operation on different controllers always
leads to the same result. Furthermore, our VNF-Consensus
inherits Paxos properties: safety is guaranteed even if the
system is asynchronous and liveness is guaranteed despite
controller failures.

In order to synchronize the actions among all controllers our
solution enables each controller to access a VNF-Consensus
instance which is executed on a separate host from the
controllers. This instance allows an SDN controller to receive
decisions and send actions to be synchronized. Note that
all decisions handled by VNF-Consensus are systematically
performed without the direct participation of the controller.
The advantage of the proposed strategy is that VNF-Consensus
maintains the consistency of a distributed control plane leaving

controllers free to perform their regular control plane activities.
As a consequence, the proposed strategy does not increase the
load on the controllers and on the computational resources of
the controllers, as VNF-Consensus is executed on a separate
host. We note that VNF-Consensus can keep the control plane
consistent regardless of the number of controllers. Finally, it is
important to note that our strategy can be implemented without
any changes to the SDN protocol nor the switches.

Experimental results are reported and show the performance
improvements that can be obtained by using VNF-Consensus
without the direct participation of SDN controllers. In par-
ticular, we show that it is possible to synchronize the control
plane without increasing the controller load. Results also show
that this strategy performs significantly better than having
the controllers themselves responsible for synchronizing and
guaranteeing the consistency of network operations.

The rest of this work is structured as follows. Section II
gives an overview of strategies that enable the synchronization
of the control plane in SDN networks. Section III describes the
proposed architecture. The experimental results are described
in Section IV. Section V concludes the work.

II. RELATED WORK

In this section we describe some of the main strategies
previously proposed for the synchronization of multiple SDN
controllers. The major difference between these strategies and
our solution is that we support consistent synchronization in
a distributed control plane using a virtual network function.

A synchronization framework for control planes based on
atomic transactions is proposed in [5]. Switches are syn-
chronized in order to guarantee the consistency of network
operations. In particular, the authors propose synchronization
primitives which allow a controller to represent multiple data
plane configuration commands as an atomic transaction. The
framework modifies the OpenFlow protocol [16] in order
to avoid the controllers to install inconsistent rules on the
switches. The authors also report an implementation to show
the efficiency of the proposed solution.

Another proposal explores the implementation of the Paxos
consensus algorithm on SDN switches [11]. The authors
describe two different approaches: the first involves imple-
menting the full Paxos logic, that is, without any optimiza-
tion; the second implements an optimistic protocol called
NetPaxos which does not require the Paxos coordinator. The
authors claim that implementing consensus within the switches
reduces the complexity, and message latency, and increases
transaction throughput. A major disadvantage however is that
in order to run Paxos on switches firmware modifications are
required.

In order to reach a consistent state among SDN controllers
a version of the Paxos consensus algorithm called Fast Paxos-
based Consensus (FPC) is proposed in [10]. FPC is imple-
mented in SDN controllers. According to the authors, FPC is
less complex than the original Paxos algorithm; FPC does not
have a predefined coordinator. Any FPC process can become a
leader (called chairman). Once all FPC processes (controllers)
have performed an update, the chairman changes its role and

finishes the consensus round. The authors compare FPC to the
Raft [17] consensus algorithm and conclude that FPC is faster.

Onix [7] is a platform that implements a distributed SDN
control plane that maintains a global network view. Onix runs
on a cluster of physical servers. A controller stores the network
state in a data structure called NIB (Network Information
Base). Network control applications are implemented by read-
ing and writing to the NIB. Onix replicates and distributes the
NIB among multiple running network instances. Onix employs
ZooKeeper [18] to synchronize the multiple instances.

Another proposal [9] defines a formal model to describe
the communication between the data plane and a distributed
control plane. The distributed control plane consists of a set of
controllers which can fail by crashing. The authors address the
consistency problem which occurs when network polices are
updated at one or more switches. Informally, they guarantee
that every packet traversing the network must be processed
by exactly one global network policy, even when the network
policy itself is updated. An algorithm allows the controllers
to directly apply their updates on the data plane and resolve
conflicts. A protocol based on the state machine approach is
proposed in order to implement a total order on policy updates.

The OpenDayLight (ODL) [19] control plane allows the
synchronization of multiple SDN controllers. A “clustering”
strategy is defined that allows each controller to store data
locally. Data replication is based on the concept of distributed
caches. The Raft consensus algorithm is employed to ensure
consistency across multiple controllers. Another clustering
strategy has also been proposed for the ONOS SDN controller
[14]. The controllers themselves implement the consensus
algorithm.

An adaptive strategy that employs on line clustering tech-
niques to allow tunable consistency levels is presented in
[15]. The strategy receives as input an indicator of application
performance and then selects a consistency level indicator.
Empirical results show that the strategy is feasible, an ex-
periment is described that maps performance indicators of a
load balancing application to different consistency levels.

Table I compares the multiple strategies described in this
section. A major difference between our proposal and the
other strategies is where the tasks for keeping the consistency
of the distributed control plane are executed: as presented
in the next section, we decouple the consensus algorithm
from the controllers to avoid extra controller overhead. With
this approach, consistency is provided as a service to the
controllers.

III. A VNF TO KEEP THE CONTROL PLANE CONSISTENT

In this section, we first give a brief overview of NFV, after
which we define the problem of building a consistent SDN
control plane. Finally, we describe the architecture of our
VNF-based solution to solve the problem.

A. Network Function Virtualization

Currently, most networks employ multiple types of mid-
dleboxes which are implemented in hardware, e.g. gateways,
firewalls, intrusion detection and prevention systems, traffic

TABLE I
COMPARISON OF THE STRATEGIES.

Related Work Algorithm for Maintaining the Consistency Algorithm Executed by
[5] Atomic transactions using compare-and-set (CAS) SDN switch
[11] NetPaxos consensus algorithm SDN switch
[10] Fast Paxos-based consensus algorithm (FPC) Controller
[7] Zookeeper tool Controller
[9] Policy Serialization algorithm based on state machine replication Controller
ODL Platform Raft consensus algorithm Controller
[14] ONOS Clustering Controller
[15] Apache Cassandra Controller

shapers, among several others. Middleboxes represent an im-
portant fraction of network OPerational EXpenditures (OPEX)
and CAPital EXpenditures (CAPEX), being usually expensive
to deploy, manage, and complex to troubleshoot [20].
Network Function Virtualization (NFV) has been proposed
as a way to address these challenges by leveraging virtualiza-
tion technologies to offer a new way to design, deploy and
manage networking services [12]. In particular, NFV employs
virtualization to deploy network services as software that
runs on commodity hardware. A middlebox or any network
service is implemented as a software instance which is called
a VNF (Virtual Network Function). NFV technology is usually
implemented taking advantage of another related technology:
Software Defined Networking (SDN) [21]. Using NFV it
is possible to create, deploy and manage middleboxes in a
fraction of the time required for hardware counterparts.

B. Problem Description

A consistent distributed SDN control plane guarantees that
a given sequence of operations issued by a set of controllers
are eventually executed in the same order. Controllers issue
network operations concurrently and must synchronize the
network operations executed. Operations change the network
state, for example by installing rules that establish new routes
or rules for packet filtering. Keeping a distributed control plane
consistent is thus essential to avoid pathological scenarios that
result from inconsistent configurations.

Traditionally, an SDN switch communicates with a con-
troller and the controller manages the switch. Decisions taken
at the control plane often imply changes on the data plane.
The controller adds a flow entry to the switch flow table
both reactively, in response to a message from the switch,
and proactively [16]. Two types of communication strategies
are described for SDN components [22]: Switch-to-Controller
and Controller-to-Controller, both are described next.

Switch-to-Controller communications support the interac-
tion between a switch and a controller. This occurs for example
when an OpenFlow switch forwards a packet_in message to
the controller when there is no match in the switch’s flow
table. In response, the controller returns a flow_mod message
to allow or deny the installation of a new flow entry. When
multiple controllers are employed on a distributed control
plane, a decision to add a new flow entry must be synchronized
among all controllers. This is necessary to avoid network
misconfigurations, such as inconsistent routes that are only

partially defined and may cause packets to be dropped or result
in loops. It is of course also necessary that switches install
Sflow_mod messages in their flow tables in a consistent way.
However, it can be complex and expensive to guarantee that
updates of the data plane are always consistent. Furthermore
several issues have to be dealt with, such as the fact the real
networks are not synchronous, in the sense that an upper bound
on message transmission delay cannot be always forecast. In
this paper we propose a strategy to build a consistent control
plane that guarantees the synchronization of the data plane.

Controller-to-Controller communications allow the di-
rect interaction among controllers. To achieve controller-to-
controller consistency, controllers are required to share the
same network state view. The consistency can be either strong
or eventual [22]. Both guarantee the consistency of write
operations, which alter the state. On the other hand, strong
consistency implies that a given read operation executed by
any controller always leads to the same result, while eventual
consistency allows different results (for a short period of
time). In the proposed architecture we use the Paxos consensus
algorithm which provides strong consistency.

C. VNF-Consensus

VNF-Consensus implements Paxos, which is briefly de-
scribed next. Paxos is a distributed consensus algorithm de-
signed for state machine replication [13]. Informally, consen-
sus allows a set of processes that propose different initial
values to decide (i.e., agree on) one of those values. Paxos
is safe under asynchronous assumptions, live under weak
synchronous assumptions, ensures progress with a majority
of non-faulty processes, and assumes a crash-recovery failure
model.

Paxos distinguishes the following roles that a process can
play: proposers propose a value, acceptors choose a value,
and learners learn the decided value. A single process can
assume any of those roles, and multiple roles simultaneously.
Paxos is resilience-optimum: to tolerate f failures it requires
2f 4+ 1 acceptors — that is, to ensure progress, a quorum of
f + 1 acceptors must be non-faulty. To solve consensus, an
instance of Paxos proceeds in rounds of two phases each. One
of the proposers is elected as the coordinator, which receives
a value and submits that value on a consensus round. In the
first phase the coordinator proposes a unique round number.
When a quorum of acceptors accept that round number, this
means that they will not accept any proposal with a lower

round number. Consensus is reached in the second phase as
the value associated with the largest round number is accepted
by a quorum of acceptors. After consensus is reached, learners
get to know the decided value.

In our proposed strategy, consensus is executed for each
OpenFlow rule. After a decision is reached by VNF-
Consensus, each controller receives the decided value and
installs the corresponding rule on the data plane. This can
be done by letting each SDN controller behave as a learner
of the Paxos algorithm. As Paxos provides strong consistency,
all controllers eventually will have the same set of rules.

In order to synchronize the network state, each controller
communicates with a VNF-Consensus instance. A controller
both receives decisions from VNF-Consensus and sends ac-
tions to be synchronized. Note that all decisions taken in the
context of VNF-Consensus are made outside the controller, i.e.
the process does not use controller resources as it runs as an
independent VNF. After a decision is reached, the controller
executes the action received from VNF-Consensus.

Figure 1 shows the interaction of controllers with VNF-
Consensus. When a new network rule needs to be synchro-
nized, the controller forwards it to VNF-Consensus. Mean-
while, the controller can keep on handling requests from the
SDN network. After a decision has been taken, all controllers
receive the final result and then update the state as required.
Although Figure 1 shows several VNF instances, a single
instance can be employed by all controllers, or more instances
as dictated by scalability requirements.

Consider a host in Figure 1. Assume that this host has just
started sending a packet flow which reaches an OpenFlow
switch. The OpenFlow switch maintains a flow table and all
packets it receives are compared against the flow table entries.
When a switch receives the first packet of a given flow, if a
matching entry is not found in the flow table, a packet_in
message is sent to the controller. In the proposed strategy,
after the controller receives this message from the switch,
the corresponding rule is forwarded to VNF-Consensus before
it is installed. A VNF-Consensus instance receives the rule,
executes the consensus algorithm and sends the decision back
to the controllers, which install the decided rule.

Each time a new packet_in message arrives at the controller,
it must be redirected to VNF-Consensus. In order to do check
packets and do the redirection when required, we employ a
Filter module to classify and forward packets. The classifica-
tion is done by matching each packet against a set of rules that
determine the destination, e.g. VNF-Consensus (Figure 2). The
Filter consists of a Classifier and a Forwarder. Classifier is a
module that performs packet classification using the stored
rules. After the classification, the traffic can be forwarded
along the corresponding path by the Forwarder module. Figure
2 shows the interaction of these modules: packets arrive at
the Filter (step 1) from the controller. If a match is found
(step 2) then the packet is sent to the Forwarder module (step
4). Otherwise the packet is returned to the controller to take
another action (step 3). The Forwarder module is responsible
for delivering traffic to a specific VNF, in this case VNF-

[Controller)

ID[[O1U0D)-0}-ID[[0UOD)

@Switch-to-COntroller

SDN Network

Fig. 1. A SDN with VNF-Consensus.

Consensus (step 5). Finally the traffic is forwarded from the
VNF to the controller (step 6).

VNF-Consensus
___» Data flow - -

rrrrrr » Database access

Acceptor|

.

[Proposer

Virtual Environment

(FILTER @ [srp
o - . ~
> - P
Classifier Forwarder
P
. ® R

\.

Fig. 2. Architecture: synchronization of the control plane.

In VNF-Consensus the Paxos proposer is also the coordi-
nator. Remember that consensus is executed to guarantee the
consistency of rules in the network. The coordinator receives
a rule from the Forwarder module and starts the execution of
consensus, which consists of two phases as described next.

In the first phase, the coordinator selects a unique round
number and sends a prepare request with this round number
to the acceptors. Upon receiving a prepare request with a
round number that is larger than any round number previously
received, the acceptor sends a reply to the proposer promising
that it will reject any future requests with smaller round
numbers. However, if the acceptor had already accepted a
rule, this rule is returned to the proposer. After the coordinator
has received positive replies from a quorum of acceptors, it
proceeds to the second phase.

In the second phase, after the coordinator has received
responses to its prepare requests from a quorum of acceptors, it
sends an accept request to each of those acceptors. Each of the
acceptors then sends an acknowledgement to the coordinator
and to the learners, unless the acceptor has already received
yet another request with an even higher round number in its

first phase. When a quorum of acceptors confirm the accept
request, consensus is reached.

After VNF-Consensus decides on a rule, that rule is de-
livered to the SDN controllers, which are the learners of
our Paxos implementation. Each controller can then issue the
network updates accordingly.

IV. EXPERIMENTAL EVALUATION

In this section we report results of several experiments
executed to evaluate VNF-Consensus. The experiments were
executed on 32 Intel Core i7 processors at 2 GHz each with
4 cores and running Ubuntu 18.04. Ryu' controllers were
employed. libPaxos?> was the Paxos library employed. VNF-
Consensus uses a REST interface (REpresentational State
Transfer) to communicate with the controllers.

Each VNF-Consensus instance is hosted on a container
using the Docker platform. Note that each rule causes an
individual instance of Paxos to be executed. As result, we
have totally independent and isolated VNFs. We also hosted
the Ryu Controller on a container.

Most of the experiments in this section compare the VNF
approach (VNF-Consensus curve) with the execution of con-
sensus on the SDN controller itself (Consensus on Controller
curve). The consensus on controller approach was imple-
mented by having the Paxos algorithm run as a process directly
accessed by the controller, both in the same container.

Results are reported for four sets of experiments. The first
set was executed to evaluate the cost of executing consensus
for keeping the distributed SDN control plane consistent.
The second set of experiments was designed to evaluate the
consensus throughput, i.e. the number of consensus decisions
per time instant. The third set of experiments was executed
to evaluate the performance of our proposed solution as the
number of SDN controllers grows. Finally, the last set of
experiments evaluate VNF-Consensus in the presence of VNF
faults. Comparisons are presented with an alternative imple-
mentation in which the controllers themselves are responsible
to run consensus and keep a consistent control plane.

A. The Cost to Keep the Distributed Control Plane Consistent

In the first set of experiments, we compare the performance
VNF-Consensus with that of controllers which are themselves
in charge of maintaining the consistency of the distributed
control plane. Figure 3 shows results for three metrics: CPU
usage, the number of data flows per second handled by the
controller, and the time it takes for a controller to install a set
of rules on switches.

Figure 3(a) consists of three curves that show: (1) the
controller CPU usage as it executes its regular operations while
VNF-Consensus is responsible for maintaining the control
plane consistency (Controller baseline curve). In this case
the controller just forwards rules to VNF-Consensus. It is
important to note that the controller is not blocked while
waiting for replies from VNF-Consensus. The second curve

Uhttps://osrg.github.io/ryu
Zhttps://bitbucket.org/sciascid/libpaxos

100 T

VNF-Consensus — = —
Consensus on controller —=—
Controller baseline ——

80
70 - A / A A A
50 {
40 ¥
30| I__«A,‘f.h/\.__\/_._\/dw\/\/
20 | P i N

10J

CPU Usage (%)

0 10 20 30 40 50 60
Time (s)

(a) CPU usage.

2288 r VNF—‘COnSeI‘lSuS I |
Consensus on controller ——

2200

2000
1800
1600 R
1400
1200
1000 /
800 N
600 |

400
200

Flows/s per switch

1 2 4 8 16 32 64
Number of switches

128

(b) Flows/second (controller).

500 .

T T
VNF-Consensus — =
Consensus on controller ——/

400

300

200

Response time (s)

100

L b

512 1024 2046
Number of rules installed

=
128 256

4096

(c) Time for a controller to install a set of rules on a switch.

Fig. 3. Keeping the consistency of the control plane: performance evaluation.

(2) shows controller CPU usage as it runs Paxos besides its
regular activities (Consensus on controller curve). The third
curve shows (3) VNF-Consensus CPU usage (VNF-Consensus
curve). Each experiment lasted 60 seconds and was repeated
three times. The network topology consists of three controllers
and three VNF-Consensus instances.

Note that when the controller executes the consensus al-
gorithm, the CPU usage is on average 62.1% (Consensus on

controller curve). On the other hand, by using VNF-Consensus
the controller load drops to around 34.4%. The CPU usage of
VNF-Consensus is on average 25.5%. This experiment clearly
shows the advantage of uncoupling the execution of consensus
from the controller. As a consequence, the controller does
not have any extra overhead and is free to execute regular
control plane tasks, as the tasks for keeping the consistency
are executed by VNF-Consensus.

Figure 3(b) measure the overhead for maintaining strong
consistency on a controller. The network consisted of three
controllers and three VNFs and the number of switches
increased from 1 up to 128. Each experiment was executed
for 1 minute. As the number of switches increases, a large
number of data flows is created. As shown in Figure 3(b), when
VNF-Consensus is employed, the controller is able to handle a
larger number of packets. The reason is that the controller has
a lower load in comparison to when it is also performing in
parallel the tasks for keeping the consistency of the distributed
control plane. The difference is significant, close to 53% and
thus remains along the x-axis.

In the third experiment shown in Figure 3(c), a script was
employed to spawn 128 jobs in parallel that continuously
creates random requests to the controller, simulating a scenario
under a heavy load. We measured the time taken to install a
set of rules, taking into consideration the whole path traversed
(i.e. Host —> Switch —> Controller —> Switch —> Host).
In parallel, flows are generated requiring the execution of
consensus to guarantee the consistency of the control plane.
In this experiment we employed three controllers and three
VNFs. Each controller manages exactly one switch. In Figure
3(c), the VNF-Consensus curve shows a reduction of up to
18.5% of the response time, outperforming other strategies
that execute consensus on the controller itself.

B. Consensus Throughput

In this set of experiments we measured the throughput of
consensus. In Figure 4(a) requests are continuously submitted
to the controller. However, the controller is not performing any
other task in parallel, i.e., it only runs consensus for after each
update request. The Consensus on Controller curve shows the
consensus throughput in this case. The VNF-Consensus curve
shows the throughput when the VNF is in charge of executing
consensus. Upon starting the consensus execution, the con-
trollers send requests to and receives decisions from VNF-
Consensus. Thus, in this case, the VNF-Consensus throughput
is lower due to this extra communication steps between
controller and VNF-Consensus. Paxos based on controller has
a throughput 11.4% higher than that of VNF-Consensus.

In contrast, in the experiment shown in Figure 4(b), the
controller both handles data flows and performs the tasks
required to keep the distributed control plane consistent. That
is, as the controller is executing more tasks in parallel it
presents a higher load. As a result, note that the throughput
drops significantly in both cases. However the VNF-Consensus
throughput is 3.6 times higher than that of the alternative of
doing everything in the controller. Thus it can be concluded

1200 T . :
VNF-Consensus — = —

1100 r .

Consensus on controller —=—

1000
900
800
700 |
600
500
400
300
200
100

0 | | |
0 30 60 90

Time (s)

Throughput (consensus/s)

150

120 180

(a) Throughput without extra tasks on the controllers.

1200 , . —
1100 |- VNF-Consensus

Consensus on controller ——
1000

900
800
700
600
500
400
300
200 |
100

0 | |
0 30 60 90

Time (s)

Throughput (consensus/s)

120 150 180

(b) Throughput including parallel tasks on the controllers.

Fig. 4. Comparing the Paxos throughput.

that the proposed VNF-Consensus provides an efficient solu-
tion for dealing with scenarios under a heavy load.

C. Increasing the Number of Controllers

The experiment shown in Figure 5 evaluates the latency and
throughput of consensus as the number of SDN controllers
varies. Initially, the network topology consists of one switch
per controller and three VNF-Consensus instances. Then,
the number of controllers increases up to 22. This value
was determined experimentally as the point from which the
throughput drops significantly in both cases. In the Consensus
on Controller curve the number of consensus instances is
exactly the number of controllers. This is required because
when consensus is executed on the controller, each controller
participates as an instance of the consensus.

Figure 5(a) shows the Paxos latency when it is running on
the controllers and on VNF-Consensus. While the execution of
consensus on the controllers has an average latency of about
0.003 ms, the latency of VNF-Consensus is close to 0.001 ms.
Thus VNF-Consensus reduces 67% of the Paxos latency in
comparison with the execution on the controller.

Figure 5(b) shows a comparison between VNF-Consensus
and Consensus on Controller in terms of the number of
consensus executions completed per second while the number

VNF-Consensus —=—

0.014 1 Consensus on controller —=— |
— 0.012
)
E
— 0.01
[5)
5
= 0.008
—
&, 0.006
©
[//’\—.——*’*//
>
<<

0.004 V//
0.002 S -
2 4 6 8 10 12 14 16 18 20 22
Number of Controllers

P —

(a) Average Paxos latency.

- 4000 VNF-Consensus — =
g Consensus on controller ——
@ 3500

c ~—
[4
2 3000 //

[}

= 2500

3

< 2000

S P

£ 1500

= /

% 1000 — ///

§ soob . .-

<<

2 4 6 8 10 12 14 16 18 20 22
Number of Controllers

(b) Average Paxos execs/second

Fig. 5. Comparing the scalability.

of controllers increases up to 22. As can be observed VNF-
Consensus presents a throughput about 2.6 times higher than
Consensus on the Controller as the number of controllers
increases. It is important to note that with more than 20
controllers, the performance is degraded due to the limitations
of the environment in which we executed the experiments.

D. Robustness of VNF-Consensus

VNF-Consensus is a robust solution in the sense that the
control plane remains consistent even after VNF instances
crash. Since VNF-Consensus implements Paxos, 2 f+1 accep-
tors are required to tolerate f crashes. Thus, this experiment
was executed to measure the impact of VNF crashes on the
throughput and latency of consensus. We measured the impact
considering one up to five VNF crashes (f = 5).

The experiment was executed on three controllers and three
switches. To tolerate up to five failures, VNF-Consensus was
configured with 11 VNF instances: one of the instances is
configured as proposer and acceptor, the 10 other instances
are acceptors only. VNF failures are simulated by destroying
the container which runs a particular instance of the VNF.

Figure 6(a) shows the variation of the latency as VNFs
crash. Note that for up to five failures, the latency decreases
by 12.9%. This variation happens because the number of
acceptors decreases due to the failures. Therefore, the number

of consensus participants also decreases, reducing the number
of messages transmitted in the network, which consequently
decreases the latency.

The throughput variation is shown in Figure 6(b). The
throughput increases as VNFs crash, but the impact is low: the
difference for a single crashed VNF instance and five crashed
VNF instances is only 3.8%. The increase is a consequence
of the variation of the latency, as explained above.

0.005
0.0045
0.004
0.0035
0.003
0.0025
0.002
0.0015
0.001
0.0005
0

Latency (ms)

(0] 1 2 3 4 5
Number of VNF crashes

(a) Latency of VNF-Consensus as VNF instances crash.

600
550
500
450
400
350
300
250
200
150
100

50

Throughput (consensus/s)

0 1 2 3 4 5
Number of VNF crashes

(b) Throughput of VNF-Consensus as VNF instances crash.

Fig. 6. Performance evaluation in the presence of VNF crashes.

Overall the results clearly indicate that running the tasks
to keep the consistency of a distributed control plane using
VNF-Consensus is significantly more efficient than having
the controllers implement this task. In particular, the VNF
approach is more scalable, as there is a limit to the amount of
tasks a controller can handle. Moreover, the results shows that
VNF-Consensus keeps the performance levels nearly unaltered
in the presence of failures.

V. CONCLUSION

Much attention has been given recently to the design of
distributed SDN control planes, which solve problems related
to the dependability and performance that appear when a
single controller is employed. However, a distributed control
plane that consists of multiple controllers requires consistency
guarantees. In this work we proposed a solution to this
problem that is based on NFV technology. VNF-Consensus
is a VNF that implements the Paxos algorithm to guarantee

the strong consistency of network operations on a distributed
control plane. Using the proposed approach, controllers do
not execute the tasks for keeping the consistency, and this
has an obvious impact on the performance and in particular
the scalability of the system. Furthermore, VNF-Consensus
does not require any change of the SDN protocol neither
of the SDN switches. Experimental results are presented,
comparing VNF-Consensus with the alternative of having
controllers themselves being responsible for keeping their
consistent actions. VNF-Consensus was shown to improve
the performance in terms of resource requirements, Paxos
throughput and scalability.

Future work includes the definition of a fail-over mechanism
to be executed by the controllers to re-allocate switches
after failures. As the number of requests grows substantially,
adopting a load balancing strategy as well as optimizing the
placement of VNF-Consensus instances will become impor-
tant. Another future work is the evaluation of other consensus
algorithms such as Raft [17], to check how they compare
with Paxos in this setting. Investigating effective strategies
for the synchronization of the data plane in SDN networks
is also another possible strategy, i.e. instead of controllers, the
consistency is guaranteed among switches.

ACKNOWLEDGMENTS

This work was partially supported by CAPES Finance Code
001 and CNPq grant 311451/2016-0.

REFERENCES

[1] F. Bannour, S. Souihi, and A. Mellouk, “Distributed
sdn control: Survey, taxonomy, and challenges,” IEEE
Communications Surveys Tutorials, vol. 20, no. 1, pp.
333-354, 2018.

[2] J. A. Wickboldt, W. P. D. Jesus, P. H. Isolani, C. B.
Both, J. Rochol, and L. Z. Granville, “Software-defined
networking: management requirements and challenges,”
IEEE Communications Magazine, vol. 53, no. 1, pp. 278—
285, 2015.

[3] F. Benamrane, M. Ben mamoun, and R. Benaini, “An
east-west interface for distributed sdn control plane,”
Comput. Electr. Eng., vol. 57, pp. 162-175, 2017.

[4] M. Karakus and A. Durresi, “A survey: Control plane
scalability issues and approaches in software-defined
networking (sdn),” Computer Networks, vol. 112, pp.
279-293, 2017.

[5] L. Schiff, S. Schmid, and P. Kuznetsov, “In-Band Syn-
chronization for Distributed SDN Control Planes,” SIG-
COMM Comput. Commun. Rev., vol. 46, no. 1, 2016.

[6] E. Sakic and W. Kellerer, “Response time and availability
study of raft consensus in distributed sdn control plane,”
IEEE Transactions on Network and Service Management,
vol. 15, no. 1, pp. 304-318, 2018.

[7] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. In-
oue, T. Hama, and S. Shenker, “Onix: A Distributed
Control Platform for Large-scale Production Networks,”
in OSDI, 2010.

[8] T. Hu, P. Yi, Z. Guo, J. Lan, and Y. Hu, “Dynamic slave
controller assignment for enhancing control plane robust-
ness in software-defined networks,” Future Generation
Computer Systems, vol. 95, pp. 681-693, 2019.

[9] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “A
distributed and robust SDN control plane for transac-
tional network updates,” in INFOCOM, 2015.

[10] C. C. Ho, K. Wang, and Y. H. Hsu, “A fast consensus
algorithm for multiple controllers in software-defined
networks,” in ICACT, 2016.

[11] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and
R. Soulé, “Netpaxos: Consensus at network speed,” in
SOSR/SIGCOMM, 2015.

[12] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten,
F. De Turck, and R. Boutaba, “Network function virtual-
ization: State-of-the-art and research challenges,” IEEE
Communications Surveys & Tutorials, vol. 18, no. 1, pp.
236-262, 2016.

[13] L. Lamport, “The Part-time Parliament,” ACM Transac-
tions on Computer Systems (TOCS), vol. 16, no. 2, 1998.

[14] A. S. Mugaddas, P. Giaccone, A. Bianco, and G. Maier,
“Inter-controller traffic to support consistency in onos
clusters,” IEEE Transactions on Network and Service
Management, vol. 14, no. 4, pp. 1018-1031, 2017.

[15] M. Aslan and A. Matrawy, “A clustering-based consis-
tency adaptation strategy for distributed sdn controllers,”
in 2018 4th IEEE Conference on Network Softwarization
and Workshops (NetSoft), 2018, pp. 441-448.

[16] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner,
“Openflow: Enabling innovation in campus networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp.
69-74, Mar. 2008.

[17] D. Ongaro and J. Ousterhout, “In Search of an Under-
standable Consensus Algorithm,” in USENIXATC, 2014.

[18] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed,
“ZooKeeper: Wait-free Coordination for Internet-scale
Systems,” in USENIXATC, 2010.

[19] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Open-
daylight: Towards a model-driven sdn controller archi-
tecture,” in 2014 IEEE 15th International Symposium on.
IEEE, 2014, pp. 1-6.

[20] L. Bondan, M. F. Franco, L. Marcuzzo, G. Venancio,
R. L. Santos, R. J. Pfitscher, E. J. Scheid, B. Stiller,
F. De Turck, E. P. Duarte et al., “Fende: Marketplace-
based distribution, execution, and life cycle management
of vnfs,” IEEE Communications Magazine, vol. 57, no. 1,
pp- 13-19, 2019.

[21] M. S. Bonfim, K. L. Dias, and S. F. Fernandes, “In-
tegrated nfv/sdn architectures: A systematic literature
review,” ACM Computing Surveys (CSUR), vol. 51, no. 6,
p. 114, 2019.

[22] T. Zhang, A. Bianco, and P. Giaccone, “The role of inter-
controller traffic in sdn controllers placement,” in IEEE
NFV-SDN, 2016, pp. 87-92.

