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Abstract—There is a worldwide growing demand for high
bandwidth, low latency and reliability. Software Defined Network
(SDN) emerged a few years ago as a new paradigm, separating the
control and the data planes to improve the network management.
The SDN concept applies to any type of network and is
indispensable in new generations of networks such as 5G. One of
the main problems in the data plane is the distribution of traffic.
Quality of service (QoS) characteristics such as throughput and
latency of each application can be affected by inefficient link
balancing. This paper proposes an algorithm for dynamic load
balancing the data plane traffic. The load balancing minimizes
the effects of intense network data traffic, mitigating bottlenecks.
The proposed algorithm dynamically changes the links flows
as the network utilization intensifies. The algorithm finds the
shortest paths and calculates the link cost choosing the best
link after identifying and kind of bottlenecks. This reduces
the latency and the packet loss in scenarios with network
congestion. Experiments were conducted using the Mininet and
the OpenDayLight controller. Through emulation results, it was
observed that there was a significant improvement in jitter, packet
loss, and throughput. Thus, the proposed algorithm can work in
any kind of SDN environment, balancing the data plane traffic
flow.

Index Terms—Dynamic Load Balancing, Data Plane, SDN

I. INTRODUCTION

The separation of the data plane and the control
plane, centralizing the control and allowing network
programmability, are the SDN goals. Among the SDN main
benefits it can be highlighted the network management policies
centralization and the resources dynamic allocation, according
to the demand [1]. On SDN-based networks, the devices have
flow tables that are filled by the controller, then the packets
flow through the network [2]. There are two ways of operation:
Reactive and Proactive. In the reactive, packets are sent from
network equipment to the controller make the decisions. In
the proactive way, rules are predefined on network equipment,
and packets do not need to be sent to the controller. This
model allows easy addition of new control policies, because
the network becomes programmable and the decision-making
is centralized in the controller [3].

With the emergence of SDN’s, new issues related to
availability also emerged. Maintaining network availability
requires efficient load balancing that deals with dynamic

topologies. In a dynamic environment, a load balancing
algorithm that efficiently manages constant topology changes
is indispensable.

In the model proposed by the SDN’s, where there
is centralization of network control, the load balancing
algorithms of legacy networks lose their efficiency. In this new
scenario, it is necessary to implement approaches to deal with
load balancing and ensure the efficiency of SDN’s. As new
network technologies will utilize SDN, efficient load balancing
is required to avoid bottlenecks.

This paper presents a load-balancing algorithm. It acts
reactively in the data plane, bypassing the flows as it detects
overload in the network equipment. Each possible path of
the flow to be desviated is executed by algorithm proposed
and checks the cost between the links, defining the best
path for flow deviation. The OpenDayLight controller and the
Mininet network emulator were used to evaluate the proposed
algorithm [4]. The algorithm developed uses information
from network equipments, through the controller, to identify
bottlenecks in the data plane and to redefine the route of
packets where there is a large data flow, taking into account the
best path at the time of transmission. The experiments results
show that the proposed algorithm promotes load balancing and
consequently reduces congestion at bottleneck points in the
network.

This paper is organized as follows: Section 2 presents the
related work; Section 3 presents the proposed approach for
dynamic load balancing in SDN; Section 4 describes the
methodology adopted; Section 5 presents the results obtained;
and Section 6 discusses the conclusions and propositions for
future work.

II. RELATED WORK

In the literature, load balancing proposals are found in SDN
networks in the data plane [5]. Among them, part proposes
to solve the problem of overloading servers and another part
proposes the diversion of traffic to the shortest path, with the
objective of avoiding overload and improving the data flow
in the network equipment, mitigating possible bottlenecks.
Previous works about the load balancing problem in SDN
networks, used in this work, are summarized in Table I.
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TABLE I
LOAD BALANCING IN SDN NETWORKS

Work Brief Description and features
Lan et al. [6] It performs load balancing on data center networks,

but does not demonstrate its operation in other
network environments.

Li et al. [7] Rules are installed by the controller with
dynamically adjusted paths according to the
network global view. The work does not present
results of the algorithm in dynamic networks.

Belyaev et al. [8] It provides a solution for DDoS attacks on servers,
but does not ensure the the entire network balance
taking into account its equipments.

Fizi and Askar
[9]

It provides algorithm for the load balancing in
datacenters using the POX controller in a fat-tree
topology.

Koryachko et al.
[10]

It provides dynamic balance proposal in SDN with
QoS and with weight assignment according to the
link´s flow and delay.

Liu and Xiang
[11]

The main proposal approach is to find the link that
be overloaded and, transfer it to the idle link on a
shorter distance.

Zakia and Yedder
[12]

It provides algorithm that aims to optimize the
link use in data center networks. Tests in dynamic
environments were not considered.

In Lan et al. it was proposed a dynamic path optimization
algorithm in SDN networks that may be suitable for different
network topologies. This algorithm change the flow path
during transmission to perform load balancing and to solve the
congestion problem in SDN based data center networks [6].
In Li et al. a fuzzy synthetic evaluation mechanism (FSEM)
was presented as an SDN based load balancing solution. In
this model, network traffic is allocated to the path operated by
the network device where rules are installed by the controller.
Paths can be dynamically adjusted by the FSEM according to
the network overview [7]. For Belyaev et al. it is necessary
to mitigate the effects of DDoS attacks. A two-tier solution
was proposed which includes traditional server balancing
and balancing between network devices. In the proposal, the
network survival time in DDoS attacks is higher than the load
balancing solutions already proposed in the literature for the
SDN networks [8].

In [9] an algorithm for load balancing in datacenters was
proposed using the POX controller, the Mininet emulator and
the Fat-Tree topology. The packet loss, throughput and the
size of the data received in a datacenter were verified. The
results showed an average improvement of 27.6%, 87.95% and
26.23%, respectively, in the results that used the algorithm for
load balancing. The proposed algorithm will be compared with
that of [9].

Koryachko et al. [10] proposes a dynamic balancing
approach in SDN with QoS. It has been proposed a
mathematical model that assigns weight according to link´s
flow and delay. The authors propose an algorithm that checks
the delay of each link and, through the Dijkstra algorithm,
calculates the route with the shortest execution time.

In [11] a dynamic mechanism has been proposed for load
balancing in data center. The proposal was to create a static
balance that proactively updates the rules in the network

equipment flow table and, reactively acts on the network to
balance the load and improve the link use. The main approach
is to find the link that is overloaded and, transfer it to the
idle link on a shorter distance. Through the simulation and
the theoretical calculation, the author is able to balance the
network load. This work also presents only one topology in
the tests.

Zakia and Yedder [12] propose an SDN-based algorithm
for load dynamic management, in order to optimize the link
use in data center networks. The algorithm finds the shortest
paths of each host and calculates the link cost. When occurs
congestion on a particular path, it replaces the congested path
to the best alternative path that has minimal link cost and less
traffic flow. The algorithm performance is evaluated by the
transfer rate measuring and, also the delay and loss of packets
in a fat-tree topology. The results show a better performance
in load balancing over time, as the algorithm executes, but
the results were presented only for data center networks, not
presenting tests in dynamic environments.

III. PROPOSED ALGORITHM

Load balancing in SDN networks can be applied to the data
plane and control plane. It aims to minimize the effects of
intense data traffic in the network, mitigating bottlenecks. One
of the main problems is the efficient distribution of data plane
resources.

This work presented algorithm has two modules: the
overload identification module and the load balancer module.
Figures 1 and 2 respectively show their flows. The dynamic
verification approach was used, where the network devices are
analyzed and the flow is deviated according to the demand.
The algorithm monitors the entire network according to the
information provided by the controller. When an overload
is identified on a equipment, the flow deviation module is
triggered. This module identifies the best path and deviate the
flow to it.

Fig. 1. Overload identification module.



Fig. 2. Load balancer module.

The proposed algorithm works as follows: N is the size
of the network, where N represents the total number of
network equipment, and a N x N table is created. In each
field of the table [row, column] is reserved a space to fill
the cost of the link and a space to fill in the date and time
at which the cost was measured. After the creation of the
table, for each equipment available in the network, statistics
are collected by the controller and monitored through the
algorithm implemented.

The load balancer module is triggered when the use of
some network equipment reaches a pre-defined percentage.
The network manager can change the default value that, in
this work, was 80% of the network equipment use, making
the algorithm parameterizable to meet the peculiarities of each
network type and size. This module searches the table for the
best path and deviates the overloaded flow to this new path,
reducing the overhead of the bottleneck equipment. For each
traffic flow that passes through the network equipment, the
balancer module identifies the best route. For each possible
path, it is checked whether the flow has already been updated
and whether its flow is still viable. If the path weight is
outdated in the table, the algorithm calculates the cost again
and updates the data. If the path weight is updated, the
algorithm uses the information stored in the table.

The Algorithm 1 shows the cost calculation. For each
possible path of the flow to be deviated, the Algorithm 1
is executed and checks the cost between the links, defining
the best path for flow deviation. The choice of the best path
does not only consider the shortest of them, because it has not
always the lowest cost. To deal with this problem, a equation
has been developed that assists this process. The algorithm
considers the transmission capability of the network device
and assigns a weight to each link according to its capacity. So
the higher is the score, the higher is the link congestion.

Algorithm 1 Calculate Weight
1: function CALCULATEWEIGHT(path)
2: if weight.update() then
3: readTable(path)
4: else
5: for node do 0 size(currentPath)
6: tx← bytesTransmitted
7: rx← bytesReceived
8: transmissionRate← tx + rx
9: time.sleep(1)

10: tx← bytesTransmitted
11: rx← bytesReceived
12: C ← capacitySwitch()
13: U ← tx + rx− transmissionRate
14: Weight← U/C ∗ 100
15: end for
16: updateTable(path,Weight)
17: end if
18: return Weight
19: end function

Equations (1) and (2) have been defined to ensure that the
larger paths will be used only in scenarios where the shortest
paths are overloaded. In this context, P represents the weight
of the link, U stands for utilization and C represents the total
capacity of the network device. The final weight of the path
is the sum of all the points of your links. The Algorithm 2
presents the pseudo code that performs this calculation.

dP e → U/C ∗ 100 (1)
n∑

i=1

→ P1 + P2 + ...+ Pn (2)

Algorithm 2 Set the best path
1: procedure BESTPATH
2: for currentPath do 0 nx.allSimplePaths()
3: for node do 0 range(len(currentPath))
4: path← currentPath[node]+” :: ”+currentPath[node+1]
5: calculateWeight(path)
6: cost← cost + weight
7: end for
8: tmp← str(currentPath[len(currentPath)− 1])
9: linkFinalCost[tmp]← cost

10: cost← 0
11: weight← 1
12: tmp← null
13: end for
14: bestPath← min(linkFinalCost)
15: deviateFlow(bestPath)
16: end procedure

After the cost calculation and the definition of the best path,
the procedure presented in the Algorithm 3 receives the best
path and deviates the flow.

Algorithm 3 Deviate the Flow
1: procedure DEVIATEFLOW(bestPath)
2: for currentNode do 0 range(len(bestPath))
3: sourceNode← bestPath[currentNode]
4: destinationNode← bestPath[currentNode + 1]
5: previousNode← bestPath[currentNode− 1]
6: inport← linkPorts[previousNode + ” :: ” + sourceNode]
7: outport← linkPorts[sourceNode + ” :: ” + destinationNode]
8: xmlSrcToDst← XMLSourceToDestination
9: xmlDstToSrc← XMLDestinationToSource

10: URLFlow ← XMLWithBetterPath
11: command← commandToFlowDeviation + XML
12: systemCommand(command)
13: end for
14: end procedure



The Algorithm 4 checks whether the cost is current or must
be recalculated.

Algorithm 4 Cost Update
1: function CHECKFLOW(path)
2: row ← path.split(” : ”, 1)[0]
3: column← path.split(” :: ”, 1)[1]
4: tableT ime← table[row, column, 1]
5: currentT ime← datetime.now()
6: if (currentT ime− tableT ime) <= 30s then
7: status← true
8: else
9: status← false

10: end if
11: return status
12: end function

The time that a flow can be considered up-to-date, in
this work, is thirty seconds. From that time, it was defined
that the flow will be outdated and a recalculation will be
necessary. This time is defined by the variable time. The value
is parameterizable and it is up to the manager to set the value.

The Algorithm 5 shows how the table is updated when the
information is not filled or if it is outdated.

Algorithm 5 Update Table
1: procedure UPDATETABLE(path, weigth)
2: row ← path.split(” : ”, 1)[0]
3: column← path.split(” :: ”, 1)[1]
4: currentT ime← datetime.now()
5: table[row, column, 0]← weigth
6: table[row, column, 1]← currentT ime
7: end procedure

The balancing algorithm proposed in this work fits the
complexity level O(n²) - upper asymptotic limit - in its worst
case, considering that an N x N matrix is created where N
represents the quantity of equipment in the network. The
calculation is performed only for the paths in which there
are possibility of the flow being deviated. In this way, we
can consider that, on average, the algorithm never uses the
complete matrix to perform its calculations and almost always
its cost will be less than O(n²).

IV. EVALUATION METHODOLOGY

A variety of controllers are available for SDN networks.
Network operating systems provide controllers with an
interface to a particular programming language, enabling
the security feature settings, management, virtualization, and
control [13]. The OpenDayLight is an open source code
driver, based on Java with Python support that implements
the OpenFlow protocol. It is widely used and it was this work
choice.

The Mininet emulator was used for the experiments. The
Mininet emulates a virtual network running on the kernel of
the physical or virtualized system. The emulator is open source
and also allows testing and development with SDN [14]. In the
performed tests, the Mininet was run on a physical machine
with Ubuntu 15.10 operating system, with 16GB of RAM and
an AMD FX 8300 processor with 8 cores. It is important to
note that these physical hardware resources were shared with
a virtual machine running 3 Linux 14.04 LTS servers in the

VirtualBox tool. For an emulation that better reflects the reality
of a network environment, the controller was run on a virtual
machine with the Ubuntu server 14.04 LTS operational system,
to verify the physical separation between the driver and the
network equipments. The driver used in this work was the
OpenDayLight - Carbon SR3 (ODL). The ODL driver is a
collaborative platform of open source code written in Java
and has broad support for SDN networks. The ODL uses APIs
REST, web interface and, provides support for large networks.

The algorithm proposed in this paper was tested in two
distinct scenarios. In the first scenario, presented in Figure
3, the same network topology as the authors [9] is used. The
objective of the algorithm proposed in this paper is different
from the objective proposed by the authors cited, but the
tests conducted show that this algorithm is equally efficient
in a scenario similar to that demonstrated by the authors
with the fat tree topology. The second simulated scenario,
presented in Figure 3, demonstrates the mesh topology used
in the performed tests. This topology was chosen because it
is decentralized and provides a conducive environment for the
application of new technologies, such as the use of equipment
and devices that are part of the Internet of Things.

Figure 3 shows the fat-tree topology emulated, following the
model presented in [9], for results comparison. The difference
of the environment presented by [9] was the bandwidth
(20 Mbps), because in the tests performed in this work a
network with a greater capacity, of 1 Gbps, was used. It is
important to note that in this topology, to perform the test
with all the available paths would be impracticable, due to
scalability issues, there were cases where there were more
than a thousand available paths to be calculated. Therefore, in
networks with more than thirty paths between one device and
another, by standard, only the shortest paths were calculated
to identify the best route for flow deviation.

Fig. 3. Fat-tree topology.

The mesh network topology used was defined with sixteen
network equipment and sixteen network devices connected
to these equipment. The mesh network is a widely used
topology that provides an environment where new network
devices can move in and out of the network at any time.
Network equipment can also change functions within the



environment, making the network dynamic and susceptible
to data load unbalance at unconventional times, requiring
constant monitoring. Figure 4 presents this topology.

Fig. 4. Mesh topology.

In this paper, the term Network Equipment (E) was used
for data plane equipments in SDN and the term Network
Device (D) refers to devices connected to network equipment.
The iPerf tool was used for traffic generation, which provides
bandwidth verification in networks by the UDP, TCP and
SCTP packets transmission. The packets capture was done
with the Wireshark tool that is a multiplatform tool, which
allows the following of all the packages that transit through the
network and has support for several protocols. With Mininet
running the network topology and the iPerf generating data
traffic between the devices, the load balancer algorithm has
been activated. All the paths with overflow were analyzed and,
in the balancing table, each stored network equipment weight
was analyzed.

The monitoring time was 60 seconds for the performed
experiments. The same experiments were also performed
without using the load balancing algorithm to compare the
performance gain. The experiments were repeated thirty times
with a confidence interval of 95%, being the highest and the
lowest results removed for each series.

V. RESULTS

A. Fat-Tree Results

Traffic between the devices was emulated and monitored.
The network workload was emulated to use 80% of
available bandwidth for the proposed algorithm evaluation.
The throughput, the number of lost packets and, the jitter were
analyzed and compared with the results that were presented
in [9]. The graphics represent the percentage of improvement
on a scale from 0 to 100% with the proposed algorithm
introduction. The graphics of Figures 5(a) and 5(b) present the
average values of the throughput improvement in the fat-tree
topology, with a transmission rate of 200 and 800 Mbps, with
the proposed load balancing and, with the [9] solution.

Using the proposed algorithm, the improvement of
throughput at a transmission rate between 200 Mbps devices
was 11.42%. This result was below the solution proposed by
the authors [9]. However, when the communication speed of

(a) Throughput at 200 Mbps

(b) Throughtput at 800 Mbps

Fig. 5. Throughput improvement percentage.

the devices increases to 800 Mbps, in a more overloaded
network, the throughput got a significant improvement of
78.16%. This improvement was more than the double of the
value shown in [9]. When the network is overloaded, the
tendency is to decrease the rate transmission. As the proposed
balancing algorithm deviates to a path without overhead,
the transmission rate returns to the normality, increasing the
improvement percentage.

The Figures 6(a) and 6(b) present the lost packets
comparison among the algorithm proposed in this paper and
the one presented in [9].

(a) Packet loss at 200 Mbps

(b) Packet loss at 800 Mbps

Fig. 6. Comparison of the average amount of packet loss.



In Figure 6(a), with an average transmission rate of 200
Mbps, the packet loss was reduced in about 99.16%. With the
800 Mbps transmission rate, this loss increased somewhat, but
the improvement rate remained high: 96.83% as shown in the
graphic of Figure 6(b).

The Figures 7(a) and 7(b) present the average value obtained
from the jitter. In Figure 7(a), the results show that the jitter
had a reduction of 75.25% on average. In the work presented
in [9] there is no information about the jitter. In Figure 7(b),
the jitter improvement percentage was 99.95% in relation to
the tests performed without the load balancer algorithm. This
significant improvement can be explained by the fact that in a
network where data is traveling with an overhead on some
of its types of equipment and, passes to use 80% of the
transmission link capacity for communication between two
devices, is going to have a great delay in the delivery of
the package, in case of the data be traveling on an already
overloaded equipment.

(a) Jitter at 200 Mbps

(b) Jitter at 800 Mbps

Fig. 7. Mean variation of Jitter.

As the load balancer algorithm has deviated the flow to
an idle device, the jitter had significant improvement. The
explanation for this significant improvement is the lower
packet retention in lines of equipment at rush times. With
the network less congested, thanks to the balancing, the
fluidity is improved, which reflects in the improvement of the
jitter. This result is highly beneficial to applications involving
the transmission of images and videos, the streaming class
applications.

B. Mesh Results

Figure 8 presents the comparison of the throughput between
the algorithm proposed in this work and the solution presented
by [9]. We can see that both had very close performance gains,
with an average difference of 0.40% between them. In tests

performed without the load balancing algorithm there was a
reduction in throughput due to network equipment overload.
The amount of data transferred was the same, but the lack of
balance caused many packets to be lost.

Fig. 8. Throughput improvement percentage.

Figure 9 presents the comparison between the results of the
algorithm proposed in this article and the solution presented
in [9]. Results were close, with an average difference of 6%
between them. However, we must take into consideration that
the proposed algorithm in [9] was simulated in a Fat-tree
network and is geared towards data center SDN networks
that are generally static environments, while the proposed
algorithm focuses on a dynamic network environment.

Fig. 9. Average performance gain on packet loss.

The results presented in Figure 10 show that jitter has been
reduced by an average of 75.42%. This reduction shows that
traffic on an overloaded and unbalanced network uses some
excess network equipment while other equipment is idle.

Fig. 10. Jitter improvement.



With the load balancer assigning weight to the paths, the
path that goes through the overloaded network equipment
will be heavier and the path that does not pass through this
equipment will be chosen even if it is a longer path. As the
algorithm transfers traffic to the less overloaded path, jitter
consequently decreases.

VI. CONCLUSIONS

This work presented a dynamic load balancing algorithm
for data plane traffic. Through Mininet and iPerf emulations,
it was possible to demonstrate the use of the algorithm in
SDN. The first goal of the algorithm was the link overload
identification. A table of link costs is maintained by the
algorithm it is and dynamic updated making possible its
second goal: a selection of a less overloaded link in case of a
possible network congestion.

Through the implemented algorithm, it was observed that
there was a significant improvement in jitter, packet loss,
and throughput for a fat-tree network topology, with high
transmission rates, characterizing congestion. With this, the
proposed algorithm is able to dribble congestion, making
dynamic the network load balancing. The proposed algorithm
can work in any kind of SDN environment. It is mainly
indicated for dynamic network environments where types
of equipment and devices can constantly enter and exit the
environment, changing the network structure and traffic.

As future work, the use of the algorithm in a
clustered environment, with other network topologies, can be
investigated. Another proposal is the parallelization of the
algorithm, to reduce the time of calculation of the path and
the realization of tests in real environment.
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