
Performance Evaluation of the ONOS Controller
Under an DDoS Attack

Sebastián Gómez Macı́as
Universidad de Antioquia

Medellı́n, Colombia
sebastian.gomez3@udea.edu.co

Juan Felipe Botero
Universidad de Antioquia

Medellı́n, Colombia
juanf.botero@udea.edu.co

Abstract—Distributed denial-of-service (DDoS) has been iden-
tified as one of the biggest threats in Software Defined Networking
(SDN) architecture due to it is highly effective, hard to detect and
easy to deploy characteristics that exploit the vulnerabilities that
this new architecture still present. This paper discusses one of
the ways to deny the services of an ONOS controller, exhausting
their resources when a huge number of packets in with spoofed
source mac address are sent to the controller from different
zombie hosts. Metrics as ONOS controller CPU consumption
and traffic latency on the network are measured to demonstrate
the attack consequences.

Index Terms—SDN, Security, DDoS, ONOS, CPU, Latency

I. INTRODUCTION

Software Defined Network (SDN) has been cataloged as
a promising architecture to supply the limitations of current
networks, thanks to the logical centralization of the network
control. This new architecture has brought several advantages
that ease network management due to a global network view
and the possibility to define network behaviour by applications
developed into the control plane [1].

In spite of the great improvements that this new architecture
provides, the following vulnerabilities and security issues have
been identified: a lack of authentication mechanisms of the
packet sender, the controller as a single point of failure, the
OpenFlow reactive mechanism to install flow rules [2] [3],
among others. These vulnerabilities have allowed different
approaches attempting to attack the availability, integrity and
the confidentiality of both the controller and the end devices.
Some of these attacks are the well-know denial of service
(DoS) and distributed denial of service (DDoS) attacks. Both
have been adapted to the SDN architecture targeting the
controller in order to stop the processing of the requests that
come from the switches. If the controller is compromised by
any of these attacks, the forwarding consequences will be
noticed in the entire network due to the centralization of the
network control, resulting in a greater impact in comparison
with one in traditional networks.

Existing literature shows that DoS and DDoS attacks have
already been targeting different SDN controllers as Flood-
Light, NOX, POX, among others. ONOS is considered one
of the newest and robust controllers for SDN environments.
To the best of our knowledge, there is not any rigorous study
about DoS and DDoS attacks deployed over ONOS controller.

Therefore, the main goal of this paper is to measure how much
impact the DDoS attack can cause in this specific controller.

The remainder of this paper is structured as follows. In
section II, we discuss recent work related to DoS and DoSS
attacks in SDN architecture. In section III, we explain Open-
Flow protocol fundamentals. In section IV we describe the
proposed DDoS attack deployed in our testbed. In section V
we show the testbed used and perform a deep analysis of the
obtained results. In section VI we conclude the paper with
final remarks and perspective for future work.

II. RELATED WORK

In [4] authors has developed a DoS attack able to fill up
the switch table of a FloodLight controller, which saves the
identification of each switch (DPID) connected to the con-
troller. According to the authors, the attack sends persistently
spoofed OpenFlow messages to the controller with different
DPID values, therefore the controller adds a new switch table
entry by each spoofed message received. This attack causes
that the switch table consumes all memory resources available
in the controller resulting in the disconnection of the linked
switches from the controller.

Kandoi et al. [5] take advantage of the vulnerabilities that
the OpenFlow reactive mechanism has in order to install new
flow rules at the switches. These vulnerabilities were used by
the authors to deploy a DoS attack in a SDN topology with a
NOX controller. The authors has studied two different effects
that this attack can cause: exhaust the bandwidth of the control
plane and fill up the flow rule tables of the switches. The attack
was deployed using the hping3 tool to send a huge quantity
of UDP packets with spoofed sources. This heuristic has the
objective of ensuring that all sent packets must be processed by
the controller. This paper also shows the increase of dropped
packets when the idle timeout field of the flow rules and the
control plane bandwidth are increased.

Mousavi et al. [6] took advantage of the same vulnerabilities
used in [5] to deploy DoS attack to a POX controller. In this
case, authors used the Scapy python library to create and send
a lot of UDP packets with spoofed source IP address. This
attack makes the controller unreachable for the newly arrived
legitimate packets and may bring the controller down causing
the loss of the SDN architecture.

978-3-903176-23-2 c© 2019 IFIP



In [7] authors mention the possibility to deploy a DoS attack
against the ONOS controller resources using a technique
called the half-open SYN flood attack. On the other hand,
in [8] authors claim that sending a lot of big packets to be
processed by ONOS, the memory could be totally consumed.
We consider that both references do not present metrics that
prove the fall of the controller and other consequences of
the attack. Our contribution in this paper is to choose one
of the possible forms to exhaust the ONOS controller (DoS
or DDoS attacks) and prove the success of the attack showing
consumption and latency metrics.

III. OPENFLOW FUNDAMENTALS

OpenFlow is the most used protocol in the southbound
interface that allows software applications to program flow
tables of the network devices to control different tasks like the
packets forwarding or collect flow statistics. The OpenFlow
architecture is formed basically by three main components:
switches OpenFlow, a secure channel and a controller [9].
The devices, better known as switches, have a list of flow
entries in their flow tables. Each entry has several match
fields for identifying an specify flow, counters and actions.
A flow can be defined as a group of packets belonging to
the same time interval and sharing the same specific features.
The secure channel is the interface that exchanges control
information between the controller and the switches via TCP
with an optional encryption mechanism, named transport layer
security (TLS). The controller is responsible for managing the
switch’s flow tables. OpenFlow allows the controller to request
information of switches or sends instructions to add or remove
entries in the flow tables.

The process to forward packets in a OpenFlow switch is
depicted in Fig.1. When the packet arrives to the switch, the
header fields are extracted in the parser process for matching
purposes. Then the header fields are compared in descendent
order with the flow rules stored in the flows table looking
for a match. In this step two events might happen: first, the
matching system finds a flow rule that match the packet with a
flow already defined, in this case, the switch applies the action
specified. The second probably event is the matching system
does not find a match, in this case the switch sends packet
information into an OpenFlow packet called PACKET IN to
the controller to be processed. Finally, the controller instances
a new rule in the switch indicating the action to apply to the
packets belong to this flow [9].

Fig. 1: Forwarding packets with OpenFlow

Fig. 2: Attack deployed

IV. DISTRIBUTED DENIAL OF SERVICE ATTACK IN SDN

A DDoS attack is a denial of service attack (DoS) launched
by multiple compromised hosts (agents) called zombies, tar-
geting in this case the ONOS controller. The owner of the
attacking device is usually unaware of the malicious program
that is running on his/her device installed before by the
attacker due to the found vulnerabilities [10].

The DoS attack designed, leverages the limited resources of
the controller and the OpenFlow reactive mechanism to deploy
the attack. The heuristic used tries to send a huge quantity
of spoofed packets toward the controller to be processed and
this way exhaust the resources (see Fig.2). We have noticed
that for each new packet in processed, the ONOS forwarding
application instances a new flow rule specifying the physical
port in, the source and destination MAC addresses in the match
criteria fields.

Knowing that, one python script was developed using Scapy
library to create and send several ICMP packets per second
with spoofed source MAC address, that means, each packet
will have a random source MAC address. When those packets
arrive to any switch, all of them must be sent to the controller
into a packet in because is highly probable that in the flow
rule table does not exist any flow rule with the same random
mac address in its match criteria. Deploying this attack from
various compromised hosts, it is possible to reach enough
number of spoofed packets arriving to the controller per second
and exceed the overhead limit. ICMP packets were chosen
instead UDP packets due to scapy spends less time creating
and sending them getting higher rate.

V. EVALUATION

A. Testbed

To do tests in an emulated environment, we used a laptop
with the next specifications: Core i5 5200, 8 GB RAM, Ubuntu
18.04 LTE, OpenFlow 1.4 and mininet 2.2.2. The testbed
is depicted in Fig.6. The ONOS controller was located in
a virtual machine with 2 cores and 3 GB RAM delegated.
The topology defined in mininet is 3 switches, 4 hosts and 2
principal links with 100 MB of bandwidth.

In each attacking host, the attack was deployed using 4
different threads, this set-up permitted to reach a maximum
rate in average equal to 100 packet/sec, that is 4.2 kilobytes/sec
per attacking host. In spite of the scapy library is slow for



0 100 200 300 400 500 600
t (seconds)

0

20

40

60

80

100
Co

ns
um

pt
io

n 
(%

)
CPU Consumption - 2 zombie hosts

CPU Consumption
The attack begins

0 100 200 300 400 500 600
t (seconds)

0

500

1000

1500

2000

La
te

nc
y 

[m
s]

Link(sw1-sw3) Latency - 2 zombie hosts
Link Latency
The attack begins
The app falls

0 100 200 300 400 500 600
t (seconds)

0

100

200

300

400

La
te

nc
y 

[m
s]

Latency in Flow Rule Instance - 2 zombie hosts
FR Latency
The attack begins
The app falls

Average CPU consumption
Before Attack After Attack

4,10% 75,66%

Average Link Latency
Before Attack After Attack

3,7 ms 82,2 ms

Avg flow rule instance Latency
Before Attack After Attack

1,9 ms 4,2 ms

Fig. 3: Metrics measured with 2 attacking hosts.

0 100 200 300 400 500 600
t (seconds)

0

20

40

60

80

100

Co
ns

um
pt

io
n 

(%
)

CPU Consumption - 3 zombie hosts

CPU Consumption
The attack begins

0 100 200 300 400 500 600
t (seconds)

0

500

1000

1500

2000

La
te

nc
y 

[m
s]

Link(sw1-sw3) Latency - 3 zombie hosts
Link Latency
The attack begins
The app falls

0 100 200 300 400 500 600
t (seconds)

0

100

200

300

400

La
te

nc
y 

[m
s]

Latency in Flow Rule Instance - 3 zombie hosts
FR Latency
The attack begins
The app falls

Average CPU consumption
Before Attack After Attack

4,06% 91,39%

Average Link Latency
Before Attack After Attack

4,29 ms 156,7 ms

Avg flow rule instance Latency
Before Attack After Attack

1,6 ms 5,2 ms

Fig. 4: Metrics measured with 3 attacking hosts.

0 100 200 300 400 500 600
t (seconds)

0

20

40

60

80

100

Co
ns

um
pt

io
n 

(%
)

CPU Consumption - 4 zombie hosts

CPU Consumption
The attack begins

0 100 200 300 400 500 600
t (seconds)

0

500

1000

1500

2000

La
te

nc
y 

[m
s]

Link(sw1-sw3) Latency - 4 zombie hosts
Link Latency
The attack begins
The app falls

0 100 200 300 400 500 600
t (seconds)

0

100

200

300

400

La
te

nc
y 

[m
s]

Latency in Flow Rule Instance - 4 zombie hosts
FR Latency
The attack begins
The app falls

Average CPU consumption
Before Attack After Attack

4,13% 95,83%

Average Link Latency
Before Attack After Attack

2,6 ms 304.4 ms

Avg flow rule instance Latency
Before Attack After Attack

0,9 ms 16,3 ms

Fig. 5: Metrics measured with 4 attacking hosts.

creating and sending spoofed packets, it is enough for seeing
the DDoS attack consequences in this testbed.

The performance metrics were measured based on the
number of devices deploying the DoS attack. The measures
were taken over 10 minutes from 2, 3 and 4 hosts deploying
the attack at the same time. The DDoS attack always started
at the second minute of the simulation time. The average rate
of packet in arriving to the controller to be processed in each
attack scenario is described in the table I.

Fig. 6: Evaluation Scenario

Before Attack After Attack
2 attacking 3 pkt/sec 647 pkt/sec
3 attacking 7 pkt/sec 970 pkt/sec
4 attacking 7 pkt/sec 1218 pkt/sec

TABLE I: Average of Packet In quantity

B. Metrics

The metrics chosen to measure the attack performance are:
ONOS controller CPU consumption, the link latency and
flow rule instance latency. To measure the CPU consumption
was used the psutil python library where each 2 seconds
the consumed CPU percentage in that moment, is taken and
stored. To measure the other 2 metrics was created a ONOS
application. The link latency is the time spent by one packet
to pass a link; in this paper just was measured the link latency
into the link 2 (see Fig.6). The strategy developed into the
ONOS application to measure the link latency is depicted in
the Fig.7. Each 2 seconds a UDP packet with an arbitrary
Eth Type value is sent from the controller to pass through
the link 2. when the package finishes passing the link, it is
returned to the controller due to the flow rule instanced before
at the switch. Knowing the total time spent by the UDP packet



turning around (Ttotal) and the T1 and T2 times, the link
latency is calculated.

Fig. 7: Link Latency Calculation

C. Results
In the Fig.3, 4 and 5 depict the performance metrics under

the DDoS attack depending of the number of attacking hosts.
When the attack is running we can clearly see an increase in
the average values of the metrics when the number of attacking
hosts in the DDoS attack increase. On the other hand, as the
link latency and flow rule instance latency were measured by
a ONOS application, we have noticed that the application is
not recording data during all 10 minutes of simulation time
because in any moment the application falls due to a jam in the
controller (see green vertical line). This was a sign to know the
moment that the controller begins to fail. Knowing that, with
4 attacking hosts we got the lowest time around 5 minutes.

Analyzing the CPU consumption in the three cases (left
hand side of Fig.3, 4 and 5), in the moment that the number
of attacking hosts are increased, the consumption fluctuation
decreases and it tends to achieve the constant maximum value,
saturating the controller. The case with 4 attacking hosts, the
controller has reached 95% of average CPU consumption,
being our best case. On the other hand, the time spent by
one UDP packet to pass through of the link 2 is increased
significantly under the attack (center side of Fig.3, 4 and
5), that means a huge delay in the packets circulation on
the network, especially when the attack is deployed from 4
attacking hosts. For instance, if we had a audio communication
in this testbed we would have a distorted communication
because the latency accepted over IP protocol is 200 ms and
the average link latency obtained with 4 attacking hosts is
around 364 ms. Analyzing the last metric (right hand side of
Fig.3, 4 and 5), the time spent by the controller to instance
a new flow rule at any flow rule table suffers a notorious
increase in some measures taken into the 10 minutes but the
increases do not happen as frequent as in the link latency
metric. As these average latency value are not significant, the
attack (either by 2, 3, or 4 attacking) does not affect enough
the flow rule instance processes.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have defined and deployed a DDoS
attack into a SDN architecture to deny the services of an
ONOS controller. The evaluation results show that the CPU
consumption in the controller and the traffic delay into the
network are severely affected by the DDoS attack. The CPU
consumption graphs demonstrated how the overhead in the
ONOS controller is increased when the number of packet in
processed per seconds increased, getting the best results with
4 hosts. Summarizing, we can conclude that the success of
the DDoS attack, in any proposed SDN setup, depends of the
ONOS controller resources and the attack power (number of
zombie hosts) in order to be able to stop the ONOS controller
operation.

The future work is to develop at the controller an intrusion
detection system (IDS) based on software to detect the attack
in an early stage. This module will use machine learning
algorithms to classify the traffic into normal and anomalous
using the features extracted periodically from the network flow
statistics. The traditional mechanisms to extract the features
as OpenFlow functionality or sFlow technology, may generate
overhead at the controller and low accuracy. For this reason,
the strategy that might be used is based on the implementation
of the P4 language at the network switches to extract the
features and decide whether it is necessary to send them to the
controller to be classified or not, reducing the communication
overhead between data and control planes.

REFERENCES

[1] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
Jan 2015.

[2] C. Yoon, S. Lee, H. Kang, T. Park, S. Shin, V. Yegneswaran, P. Porras,
and G. Gu, “Flow wars: Systemizing the attack surface and defenses
in software-defined networks,” IEEE/ACM Transactions on Networking,
vol. 25, no. 6, pp. 3514–3530, Dec 2017.

[3] K. Kalkan, G. Gur, and F. Alagoz, “Defense mechanisms against ddos
attacks in sdn environment,” IEEE Communications Magazine, vol. 55,
no. 9, pp. 175–179, Sep. 2017.

[4] J. M. Dover., “A switch table vulnerability in the open
floodlight sdn controller.” urlhttp://dovernetworks.com/wp-
content/uploads/2014/03/OpenFloodlight-03052014.pdf, 2017.

[5] R. Kandoi and M. Antikainen, “Denial-of-service attacks in openflow
sdn networks,” in 2015 IFIP/IEEE International Symposium on Inte-
grated Network Management (IM), May 2015, pp. 1322–1326.

[6] S. M. Mousavi and M. St-Hilaire, “Early detection of ddos attacks
against sdn controllers,” in 2015 International Conference on Comput-
ing, Networking and Communications (ICNC), Feb 2015, pp. 77–81.

[7] O. ADENUGA-TAIWO and S. SHAH HEYDARI, “Security analysis
of onos software-defined network platform,” Tech. Rep., 2016.

[8] R. K. Arbettu, R. Khondoker, K. Bayarou, and F. Weber, “Security
analysis of opendaylight, onos, rosemary and ryu sdn controllers,”
in 2016 17th International Telecommunications Network Strategy and
Planning Symposium (Networks), Sep. 2016, pp. 37–44.

[9] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using
openflow: A survey,” IEEE Communications Surveys Tutorials, vol. 16,
no. 1, pp. 493–512, First 2014.

[10] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and
ddos defense mechanisms,” SIGCOMM Comput. Commun. Rev.,
vol. 34, no. 2, pp. 39–53, Apr. 2004. [Online]. Available:
http://doi.acm.org/10.1145/997150.997156


