
Policy-oriented AQM Steering
Roland Bless, Mario Hock, Martina Zitterbart

Karlsruhe Institute of Technology
Karlsruhe, Germany

E-Mail: firstname.lastname@kit.edu

Abstract—Detecting and handling network congestion in the
Internet has, again, become a vital area of research. The
provisioning of low latency together with high throughput is of
particular interest due to the current mix of applications running
in the Internet. Active Queue Management (AQM) mechanisms
come with the promise of reducing queuing delays. They, however,
may adversely affect throughput and network utilization and
have proven to be difficult to configure. More recent AQMs,
such as CoDel, PIE, and GSP are easier to configure but work
with a fixed target delay setpoint. Depending on the traffic the
same setpoint value can result either in unnecessary large delays
or under-utilization of the link. Policy-oriented AQM Steering
automatically adapts the target delay setpoint to the current
traffic situation, in order to fulfill a given quality-of-service
policy. Such a policy consists of a utilization goal and an upper
delay bound. This improves AQM performance with varying
traffic situations and makes the impact of deploying an AQM
predictable. A prototypical implementation of AQM Steering for
GSP showed its performance advantages compared to static AQM
variants at speeds of 10 Gbit/s and 1 Gbit/s.

I. INTRODUCTION

In the last years, the reduction of latency in the Internet
has become an increasingly important topic. Applications that
especially benefit from low latencies are world-wide web
applications due to their transactional character as well as
interactive real-time applications such as Voice-over-IP or
online games. However, in the current Internet such traffic
is mixed with longer lasting and large data volume flows
like video streams and downloads. This can cause bandwidth
bottlenecks – often located at the consumer edge. As a result
packets will queue up in buffers at these bottlenecks, causing
an increased end-to-end delay. The “bufferbloat” studies [1]
revealed that there exist several places where significantly
large buffers are present and that they tend to get filled
by TCP’s loss-based greedy congestion control strategy. The
resulting queuing delay contributes significantly to the end-
to-end delay. In extreme cases, end-to-end delay can increase
up to several seconds, resulting in poor TCP performance and
unusable delay-sensitive applications.

An outcome of the fight against bufferbloat was to revive
the use of Active Queue Management (AQM) in order to
reduce queuing delay. The use of AQM provides several
benefits, including enabling Explicit Congestion Notification
[2]. Earlier efforts to deploy AQM suffered from their difficult
configuration (i.e., several parameters needed to be set and
their impact on performance was not obvious) and often from
their negative impact on network utilization (different kinds of

traffic required a different set of parameter settings to achieve a
good performance). Newer AQMs such as CoDel [3], PIE [4],
and GSP [5] are simpler to configure and have a target setpoint
that corresponds to the permitted delay limit.

However, the problem of a static configuration remains since
the resulting performance depends on the respective traffic.
Consequently, the chosen setting can lead to sub-optimal
performance [6], e.g., either a too low link utilization or a too
high queuing delay. For example, CoDel uses a fixed target
of 5 ms by default, which may be too low in some situations:
if only a few flows traverse the bottleneck, link utilization
is also low and could be increased by permitting a higher
target delay. In other situations even lower targets are possible.
Additionally, this means that AQMs with fixed target setpoints
cannot sufficiently adapt to the current traffic situation and
achieve only sub-optimal performance.

The goal of Policy-oriented AQM Steering is to provide an
automatic adaptation, i.e., adjusting the target delay setpoint to
the current traffic situation. Therefore, the AQM mechanism
is controlled within given bounds that are set by a provider
policy: a lower bound for link utilization and an upper bound
for a queuing delay target.

AQM Steering works a on a different time-scale than AQM
auto-tuning. Moreover, it is not integrated into an AQM itself.
Instead, it operates as an additional control loop outside of the
AQM, so that it can be easily applied to different AQMs.

II. PROBLEM ANALYSIS

A. Queuing Delay and Counter-Measures

As mentioned before, queuing delay often contributes sub-
stantially to the overall latency. Thus, a reduction of queuing
delay (i.e., buffer occupancy) is one approach to lower end-
to-end latency. Buffers in routers or switches are necessary in
order to absorb short-term bursts and to keep link utilization
high. There have been numerous debates about the right size
of buffers in the past [7], [8]. In addition to absorbing short-
term bursts, buffers have another effect on TCP performance.
A large buffer allows the congestion windows (CWnds) of the
TCP flows to inflate way beyond the bandwidth delay product
(bdp) without causing packet losses. This creates a so-called
standing queue within the buffer [3]. If such an inflated CWnd
is eventually reduced after a loss, it can still be above the bdp,
thereby maintaining full link utilization. With the well-known
“1-bdp Rule of Thumb” (buffer size = 1 · bdp) this is fulfilled
in almost any circumstances. However, if many flows share a
bottleneck and synchronized losses can be avoided, a smaller

ISBN 978-3-903176-08-9 c© 2018 IFIP

CWnd inflation and, thus, a smaller standing queue would
suffice to keep the link fully utilized [7].

There are two different approaches to reduce the standing
queue, while maintaining a high throughput:

• Use of a different congestion control that avoids to create
substantial standing queues and use different backoff
strategies, e.g., TCP LoLa [9] or BBR [10], which are
currently under development.

• Use of Active Queue Management mechanisms. They try
to reduce the standing queue by applying a control loop
that early discards packets while retaining the buffer’s
capability to absorb short-term bursts. Furthermore, AQM
mechanisms can support desynchronization of packet
losses among concurrent TCP flows.

Note that using smaller tail-drop buffers is not a viable
option. They lead to lower delays, but also to lower utilization:
A small tail-drop buffer cannot compensate for short-term
bursts and leads to synchronized packet losses. Both lead to
strong backoff reactions of the TCP flows, which reduce their
congestion windows way below the necessary size of 1 · bdp.

This paper focuses on Active Queue Management and
assumes that currently used congestion controls, such as
TCP Reno, CUBIC TCP or Compound TCP are in place.

B. Room for Improvement of Current AQMs

In contrast to earlier AQM approaches [11] newer AQMs
such as CoDel, PIE, and GSP explicitly distinguish short-
term bursts from standing queues and thus have a built-in
burst tolerance in order to avoid unnecessary packet drops
that would decrease the throughput. Moreover, earlier AQM
approaches possessed several parameters that needed to be
configured. The influence of the parameter setting on the
achieved network utilization was often not obvious. Moreover,
different traffic types required different parameter settings to
achieve the best performance, i.e., they were not “self-tuning”
in this respect. This turned out to be a major obstacle for their
deployment [12].

Thus, newer AQMs had the objective of being usable across
a wider range of scenarios without the need to adapt AQM
parameters. CoDel even tries to be “parameterless for normal
operation, with no knobs for operators, users, or implementers
to adjust”, by setting the default target value to 5 ms (5% of
a 100 ms measurement interval). Nevertheless, these AQMs
still have a configurable target setpoint that corresponds to the
permitted delay limit. This target setpoint often relates to an
internal threshold that triggers packet drops.

Even though newer AQMs are better in adapting to different
traffic scenarios, they still possess their configurable but fixed
target setpoint. This creates two-sided drawbacks, depending
on the current traffic situation, which is mainly characterized
by the number of dominant flows at the bottleneck, i.e., flows
that contribute substantially to the overall in-flight data.

• Unnecessary high delay – In case the number of dominant
flows traversing the bottleneck is large enough, the AQM
can enforce its delay limit while full link utilization

can be achieved, due to good loss desynchronization.
However, the delay target may be excessively high
(cf. Fig. 1a). It could be set to a lower value without
sacrificing utilization (as in Fig. 1b).

• Under-utilization – In case the number of dominant flows
traversing the bottleneck is low (e.g., < 10) or they are
having a large RTT, the AQM cannot achieve full link
utilization (see Fig. 1c). The reason is the multiplicative
decrease backoff of the current TCP congestion controls.
With only a few dominant flows or high RTT flows at
the bottleneck, the amount of inflight data can easily fall
below the bdp. In this case, a higher delay target would
maintain a good link utilization (see Fig. 1d).

For the transfer of scientific data, for example, it is a typical
pattern that a low number of high volume flows can appear
(and disappear) as dominant flows at a bottleneck, at any
time. Usually they last for a long time, e.g., hours. Thus, the
traffic situation at the bottleneck is significantly changed and
a bottleneck (with a fixed setpoint AQM) could fall from an
unnecessary high delay to under-utilization.

The goal of Policy-oriented AQM Steering is to find the best
trade-off by automatically adjusting the target setpoint within
given performance bounds that are specified by a provider
policy: a lower bound for link utilization (ulow) and an upper
bound for a queuing delay target (targetmax).

III. DESIGN OF AQM STEERING

The basic principle of Policy-oriented AQM Steering is
to observe how well the momentarily applied target setpoint
works with the current traffic situation. If the setpoint is larger
than necessary, it can be decreased without violating the lower
bound for link utilization (ulow). If the setpoint is too small
to fulfill this bound, the setpoint has to be raised, as long as
the upper bound (targetmax) is not reached. In order to assess
the impact of the current target setpoint, the control loop of
AQM Steering works outside of the AQM control loop and on
a different timescale.

Fig. 2 shows the interplay of the different control loops
that interact with each other. The TCP congestion control
actually controls the load on the network by reacting on
congestion signals (usually packet loss or ECN markings [2]).
The AQM tries to find the right amount of congestion signals
to emit, in order to effectively control the queue. For this,
the reaction of the flows on the congestion signals has to be
constantly monitored by the AQM. An important property of
this interplay is that it takes at least one RTT for the congestion
control to react. As soon as the AQM effectively controls
the queue, AQM Steering can determine how well the target
setpoint works for the current traffic situation by getting actual
values for queuing delay and throughput. It also gets notified
of certain events such as packet drops and then determines
whether an adjustment is necessary to fulfill the given policy.

A. How can AQM Steering detect when to react?

Three different states have to be distinguished: 1) Link is
no bottleneck 2) The AQM is still adjusting to the current load

137

A
m

o
un

t o
f I

nf
lig

ht
 D

at
a

B
uf

fe
r

L
in

k

Time

(a) Target too high – unnecessary high
delay

Inflight Data

Packet Drop

Target Delay

Time

(b) Adapted target – Lower delay

A
m

ou
nt

 o
f I

n
fli

gh
t D

at
a

B
u

ffe
r

Li
nk

Time

(c) Target too low – Under-utilization

Time

Data Inflight

Packet Drop
Target Delay

(d) Adapted target – Full utilization

Fig. 1. Sketches illustrating two-sided drawbacks of AQMs with fixed target delay values

AQM

Traffic
In

Target
Setpoint

Actual Value
+ Events

AQM Steering

Policy:
<Utilization, max. Delay>

Traffic
Out

TCP Congestion Control Loop

AQM
Control
Loop

AQM Steering Loop

Receivers

Senders

Fig. 2. Interaction of AQM Steering, AQM, and TCP Congestion Control

3) The AQM effectively controls the queue.
If the queue is persistently above the target, the AQM has

not yet adapted to the traffic. In this case it is not expedient
to change the target. After the AQM control loop has found a
dropping rate that is suitable to effectively control the traffic,
the queue will be fluctuating around the target. Now, AQM
Steering can assess the impact of the current target setpoint.
If the AQM, in contrast, does not drop any packets, the link is
no bottleneck, i.e., the queue length is persistently below the
target (except for bursts that are ignored by the burst protection
of the AQM). Table I summarizes states, causes, and needs for
action of AQM Steering.

TABLE I
AQM STEERING – STATES AND NEEDS FOR ACTION

State of Queue Cause Adaptation of Target
(1) persistently
below target

no bottleneck, no AQM
action

not necessary

(2) persistently
above target

bottleneck, traffic source(s)
did not respond (yet)

not useful

(3) fluctuating
around target

bottleneck, AQM active possible

B. How does AQM Steering determine a new target setpoint?

Actually, two different strategies are required: one for
lowering and one for raising the target setpoint. The reason
is that one can use measured queue parameters to determine
how much reduction of the target is required whereas it is
impossible to calculate a required increment in case of under-
utilization. Both cases are sketched in Fig. 3 and will be

explained in the following (the congestion window increment
is sub-linear in reality due to the increasing queuing delay).

∆d

Target
setpoint

~∆d

Reno Flows

Lowered target
setpoint

Time

A
m

ou
nt

 o
f I

nf
lig

ht
 D

at
a

Li
nk

B
uf

fe
r

(a) Lowering the target setpoint

Reno Flows

A
m

ou
nt

 o
f I

nf
lig

ht
 D

at
a

Raised target setpoint

Under utilization

?

CWnd
min

CWnd
BDP

Target
setpoint

Time

Li
nk

B
uf

fe
r

(b) Raising the target setpoint

Fig. 3. Target adaptation problems

1) Lowering the Target Setpoint: If the target setpoint
is too high, as shown in Fig. 3a, a persistent minimum
standing queue can be measured that does not dissipate even
after packet drops. Thus, AQM Steering can determine the
minimal queuing delay ∆d and reduce the target setpoint by
approximately this amount. The key point behind this strategy
is that the reaction of TCP flows on a congestion signal
depends only marginally on the actual value of the target
setpoint. This means that even with the lower setpoint, the
queue will not underflow after a congestion signal. Thus, the
queuing delay is reduced without harming throughput.

However, if multiple flows are present at a bottleneck, their
CWnd i differ in size and the effect of the individual backoff
of each flow might be different. A single ∆d as sketched in the
simplified exemplary situation shown in Fig. 3a is therefore
not sufficient: ∆d will actually vary. Thus, an average ∆d of
measured minima ∆di and their variance (σn) are calculated.
The new target setpoint is calculated as follows:

targetnew = min
(
targetold −∆d+ γσn, targetold

)
,

with σn =
√

1
n−1

∑n
i=1(∆di −∆d)2. γ > 1 defines a

protective margin so that an adaptation does not occur too
often if the fluctuation is high. A smaller γ leads to a smaller
target value and thus more likely to under-utilization.

2) Raising the Target Setpoint: If the target setpoint is too
low to achieve full utilization, it is impossible to calculate
the required increment for the target setpoint, because there
is no directly usable correlation without knowledge of the
flow’s bdp, that depends on its RTT . Further dependencies
are the backoff factor β (which is different for CUBIC TCP
and TCP Reno) and the number of flows. This knowledge is

138

not typically available at the intermediate system that operates
the AQM. Therefore, an approach for a stepwise increment is
used.

In order to quickly restore a reasonable throughput when
under-utilization has been detected, the target setpoint is
restored to a reasonable default value (threshmin,up). Since
one goal of the AQMs that use a fixed setpoint is to provide
a reasonable default value, we recommend to use their default
value as threshmin,up . If the under-utilization persists, the
setpoint is multiplicatively increased (e.g., by a factor 2) until
the lower utilization bound ulow is fulfilled or the upper limit
for the setpoint targetmax is reached:

targetnew = min
(

max (targetold · 2, threshmin,up) ,

targetmax

)
The adaptation happens only if a short-term smoothed value

as well as a longer-term smoothed value of the measured data
rate is below the lower utilization bound ulow . The short-
term smoothed value is simply the mean data rate measured
since the last packet drop. This value then contributes to a
time-dependent longer-term smoothed value. Further details
are given in Sec. IV.

C. Policy Option: Under-utilization

Policy-oriented AQM Steering also allows to define an
upper bound utarget on the utilization with ulow ≤ utarget ≤
100%. The advantage of using utarget is that queuing delay
is avoided while there is still a lot of room for short-lived
flows as well as other more bursty short-lived traffic. Some
providers, for example, avoid utilizations above 50% in order
to provide enough failure protection capacity.

To achieve this goal it may be necessary to discard packets
earlier, even before any packets queue up. To achieve this,
AQM Steering can optionally switch the AQM from the
physical queue to a virtual queue. For this a virtual egress
rate ratevirtual (with ratevirtual < ratephysical) is defined. The
virtual queue tracks the notional buffer utilization that would
have built up if the egress link had a data rate of ratevirtual .
The switch to the virtual queue is performed as soon as the
target setpoint has reached the minimum value and the current
utilization u is still larger than utarget . This way, the burst
tolerance and loss desynchronization provided by an AQM
can still be used, even without any physical queue.

It has to be noted that the virtual queue is just a pas-
sively computed number, i.e., the traffic is not shaped to
the virtual egress rate, since this would induce real queuing
delay. Therefore, the link utilization can be above ratevirtual
for short periods of time. Still, the average link utilization
will be below or equal to ratevirtual . Otherwise the virtual
queue would increase indefinitely, which is prevented by the
AQM. Whether the average link utilization is actually equal
to ratevirtual depends on the traffic and the level of loss
synchronization. This means that the AQM Steering control
loop is still necessary to keep ulow ≤ u ≤ utarget . However,
on the virtual queue AQM Steering does not control the

target setpoint. Instead, it adjusts ratevirtual in the range
of utarget · ratephysical ≤ ratevirtual < ratephysical . If
ratevirtual = ratephysical is necessary to avoid u < ulow ,
the AQM is seamlessly switched back to the physical queue.
More details are provided in Sec. IV.

D. Discussion

AQM Steering cannot always achieve ulow . If the link is no
bottleneck, it will inevitably be underutilized. Also, a larger
standing queue than allowed by targetmax might be necessary
to attain ulow . Hence, targetmax can be understood as maxi-
mal delay one is willing to trade for higher throughput. Often
large tail-drop buffers are deployed to get a high throughput
at the cost of delay. When converged, the link utilization of
AQM Steering will be at least min

(
ulow , thr td(targetmax)

)
,

with thr td(. . .) being the throughput of a tail-drop buffer of
the given size would achieve with the same traffic. Due to the
burst protection and loss desynchronization provided by an
AQM, the throughput of AQM Steering can actually be larger
than thr td(targetmax).

During the convergence of the AQM Steering control loop,
throughput can be below thr td(targetmax). Therefore, AQM
Steering is tuned to quickly converge towards larger target set-
points (i.e., improving link utilization). Reducing the setpoint
(i.e., lowering delay) is performed more conservatively.

IV. IMPLEMENTATION

We chose to use the GSP AQM [13], [5] as basis for
our prototype implementation as it is simple to implement
and achieves comparable results to CoDel and PIE. GSP’s
target setpoint is the packet queuing delay in form of a
threshold. If the threshold is exceeded (the sojourn time of
the last dequeued packet was larger than threshold) on packet
arrival, it immediately discards the arriving packet. GSP then
pauses discarding for a time span (called interval) allow
the congestion control to react on the drop. The interval
is adapted according to the situation, i.e., if the congestion
control reaction was not effective enough to let the queuing
delay fall below the threshold, the interval becomes shorter,
so that GSP drops more aggressively.

Due to performance and simplicity reasons, AQM Steering
was integrated into the GSP implementation, although the
general concept allows for a more modular and separated real-
ization. The threshold adaptation of GSP with AQM Steering
(GSP-AS) is hooked-in into the threshold exceeded event, i.e.,
tsojourn > threshcurr but is carried out before a packet drop
is performed. This way, an increase of the threshold will defer
a packet drop until the increased threshold is exceeded. If the
threshold is kept unchanged or lowered, a packet is dropped
as usual.

Table II shows different variables that are also used in the
following description. Policy-oriented AQM Steering allows
to set threshmax as well as ratetarget,min as parameters.
Optionally, a third parameter ratetarget can be set if the
desired operational mode is under-utilization (see Sec. III-C).
The short-term link utilization is calculated by ratebd =

139

TABLE II
SELECTED VARIABLES

Name Default Explanation
threshmax *) configurable upper bound for the target setpoint
threshmin 0,2 ms lower bound for the target setpoint
ratebd – data rate since last packet discard
ratebd,avg – longer-term smoothed data rate
ratemax – maximum link speed, corresponds

to u = 100%
ratetarget,min *) configurable lower bound on rate, corresponds

to ulow

ratetarget *) optionally
configurable

rate that corresponds to target uti-
lization utarget

*) policy is expressed by these parameters

∑n
i=0 packet ti .size/(t − t0), where t0 is the time of last

packet discard, packet ti denotes a packet that arrived at time
ti ∈ [t0, t]. Based on these values the longer-term ratebd,avg is
calculated with the TDRM-UTEMA-CPA smoothing function
[14].

Algorithm 1 Lowering the Target Setpoint
1: procedure ATGSPINTERVALADAPTATION
2: . . .
3: trq_min ← min(tcurrent_sojourn , trq_min)
4: . . .
5: V, Vavg ← 0 . Initialize at start
6: threshcurr , trq_min ← [threshmin , threshmax]
7: procedure ATGSPPACKETDISCARD
8: if trq_min < threshcurr then
9: ∆trq_min ← threshcurr − trq_min

10: ∆trq_min_avg ←SMOOTHUTEMA(∆trq_min , now)
11: ESTIMATEVARIANCE(∆trq_min)
12: threshdown ← threshcurr − (∆trq_min_avg + γ

√
Vavg)

13: threshdown ←bthreshdown/threshdown_minc · threshdown_min

14: if threshdown > 0 and ratebd,avg > ratetarget,min then
15: threshcurr ← max(threshcurr − threshdown , threshmin)

16: trq_min ← threshcurr

17: . . .

Algorithm 1 shows the pseudocode for lowering the target
setpoint. As discussed above, the target setpoint should not
be adjusted if the queue is persistently above the target (see
Table I). Therefore, the minimum packet sojourn time trq_min

(rq indicates the real queue, vq the virtual queue) that occurs
between two packet discards is tracked and the adaptation is
only performed if trq_min < threshcurr (line 8). This can be
done when the GSP interval is adapted anyway (see line 3).

As visualized in Fig. 3, the adaptation amount is calculated
based on ∆trq_min = threshcurr − trq_min . This value is
smoothed with the UTEMA function [14] and a variance
is calculated. The threshold decrement gets rounded to an
integral multiple of threshdown_min (the minimal allowed
threshold value, e.g., 0.2 ms) to avoid too small adjustments
(see line 13). This also increases the stability for very low
thresholds in combination with smoothing of the measured
values. To improve the stability of the mechanism, the new
threshold is only applied if the longer-term measurement for
the data rate ratebd,avg is above the configured lower bound
rate ratetarget,min (line 15).

If a target utilization goal utarget is specified, the decrement
by threshdown may not be sufficient to get there. Therefore,
a step-wise multiplicative reduction is applied until the mini-
mum threshold threshmin is reached (shown in algorithm 3).
If a further reduction is required, the AQM Steering switches
to operate on the virtual queue.

Algorithm 2 shows the pseudocode for raising the target. A
precondition is that the queue has been drained empty after
a packet drop (line 3). If the link is no bottleneck, raising
the threshold will not increase the utilization. If a drop will
not cause the buffer to empty, link utilization already is at
100 %. Thus, increasing the threshold is not necessary. If line 3
is true, the short-term ratebd and the longer-term ratebd,avg
are checked against the configured minimum ratetarget,min

(ulow). If both are below this target, the threshold is raised
(line 10). Otherwise, ratebd > ratetarget,min alone would
often trigger too early, whereas ratebd,avg > ratetarget,min

alone could lead to an unnecessary raise, because of the inertia
of ratebd,avg , i.e., the necessary threshold could have been
reached already in the meantime. If the increase conditions
are met, the threshold is multiplicatively increased by a factor
α = 2. However, if the threshold is very low, the reaction
on a sudden load change could be too slow. Therefore, the
threshold is at least set to threshmin,up := 0.025interval init .
We decided to set this value similar to the default GSP
parametrization. This way, the throughput with GSP-AS will
be at least as high as with regular GSP after an under-
utilization has been detected.

Algorithm 2 Raising the Setpoint Target
1: procedure ATGSPPACKETARRIVAL
2: . . .
3: if (queue empty) and (packet was discarded) then
4: threshup ← true

5: if tsojourn > threshcurr and now > timeoutexpiry then
6: ratebd ← Data rate since last packet discard
7: if threshup = true then
8: if ratebd < ratetarget,min and ratebd,avg < ratetarget,min then
9: threshcurr ← min(max(threshcurr · α,

10: threshmin,up), threshmax)

11: threshup ← false
12: else
13: ratebd,avg ← SMOOTHTDRM(ratebd ,now)
14: GSPPACKETDISCARD
15: . . .

Algorithm 3 shows the switch to the virtual queue in
case the configured target ratetarget has not been reached
by lowering the threshold as shown in algorithm 1. However,
the threshold adaptation cannot be applied in the same way
as for the real queue, because the virtual queue does not
effectively delay packets. In order to maintain the AQM’s
property of achieving desynchronization, the virtual departure
rate ratevq is adapted instead (line 12). Since the flows conges-
tion windows will fluctuate, ratevq will be often higher than
ratetarget , but leading to an effective measured ratetarget due
to the oscillations. Therefore, ratevq ∈ [ratetarget , ratemax]. If
the average rate ratebd,avg is lower than the target ratetarget

140

then ratevq will be raised. If ratevq reaches ratemax then
the operation uses the real queue again. This is shown in
algorithm 4.

Algorithm 3 Rate adaptation and switch to virtual queue
1: boolean vqactive . Packet discard according to virtual queue
2: procedure ATGSPPACKETDISCARD
3: . . .
4: ratebd ← Data rate since last packet discard
5: ratebd,avg ← SMOOTHTDRM(ratebd ,now)
6: if ratebd,avg > ratetarget and ratetarget < ratemax then
7: if vqactive = false and ratebd > ratetarget then
8: threshcurr ← max(threshmin , threshvq , threshcurr · 0.75)
9: if threshcurr = threshvq then

10: vqactive ← true

11: if vqactive = true then
12: ratevq←max(ratetarget , ratevq+α(ratetarget − ratebd,avg))

13: . . .

Algorithm 4 Rate adaptation and change to real queue
1: boolean vqactive . Packet discard according to virtual queue
2: procedure ATGSPPACKETARRIVAL
3: . . .
4: if vqsize > threshvq and now > timeoutexpiry then
5: ratebd ← Data rate since last packet discard
6: if threshup = true then
7: if ratebd<ratetarget,min and ratebd,avg<ratetarget,min then
8: ratevq ←min(ratemax , ratevq +α(ratetarget − ratebd,avg))
9: if ratevq = ratemax then

10: vqactive ← false

11: threshup ← false
12: else
13: ratebd,avg ← SMOOTHTDRM(ratebd ,now)
14: GSPPACKETDISCARD
15: . . .

V. EVALUATION

We evaluated Policy-oriented AQM Steering at speeds of
1 Gbit/s and 10 Gbit/s. One objective was to compare the per-
formance of AQM Steering with tail-drop buffers (small and
large) and AQM approaches with fixed targets (namely CoDel
and GSP). Another objective was to evaluate the adaptivity
of AQM Steering with respect to changing traffic situations.
The following experiments were performed: Steady state with
long-lived flows, steady state with long-lived and short-lived
flows, and transition behavior for changing traffic situations.
An additional experiment (with utarget = 95%) was performed
to evaluate the virtual queue feature. Every experiment was
repeated in 10 different runs. Due to space restrictions we
present only the results of the 10 Gbit/s experiments, the results
for the 1 Gbit/s experiments are very similar.

A. Testbed

Fig. 4 shows the configuration of the testbed where the
experiments were conducted. Sender and DPDK-based switch
were dual processor servers equipped with Intel Xeon E5-
2630, the receiver was a dual processor Intel Xeon E5-2640.
All servers were equipped with 128 Gbyte RAM and Intel

X710 4-port 10 Gbit/s network cards. The Ubuntu 16.04 Linux
distribution was used as operating system, Kernel versions
4.9.0 and 4.4.0 were used. Generic Receive Offload and
Generic Segmentation Offload were active. The DPDK switch
used bursts of 32 packets and had a configured limit for the
send and receive ring buffers of 256 packets.

Sender DPDK Switch

qelem_delay

qelem_delay AQM

Receiver

10 Gbit/s

10 Gbit/s

Linux DPDK

qelem_delay

Linux

10 Gbit/s

10 Gbit/s

10 Gbit/s

10 Gbit/s

10 Gbit/s

HP5920 Switch

Fig. 4. The Testbed in its 10 Gbit/s Configuration

The DPDK-based switch1 implemented the AQMs CoDel,
GSP as well as GSP-AS. It also allows for monitoring internal
AQM state such as packet drops and queue length. Moreover,
the module qelem_delay generates artificial delay, since
netem is not able to generate reliable behavior at such high
speeds. The RTT for all experiments was set to 50 ms. As
tools TCPlog2, CPUnetLOG3, and iperf3 were used.

B. Steady State – Long-lived Flows

This experiment shows that AQM Steering adapts to the
traffic situation and achieves higher throughput at the lowest
possible queuing delay in comparison to static AQMs or
simple tail-drop buffers. Fig. 5 shows GSP-AS in comparison
with statically configured GSP and CoDel as well as small
(2.5 ms) and large (30 ms) tail-drop (TD) buffers. Static GSP
and CoDel were used with target setpoints of 2.5 ms. The
upper delay limit threshmax was set to 30 ms, utarget was set
to 100%, and ulow to 99%. CUBIC TCP flows were used (with
their standard βCubic = 0.7) as traffic load and the number of
flows was varied as follows: 2, 3, 6, 9, 12, 18, 24, 36. For
clarity Fig. 5a shows only results for 2, 9, and 36 flows.

As expected, the throughput is lower for static AQMs and
the small tail-drop buffer if the number of flows is low (in this
setting, < 9). This shows that GSP-AS increases the delay in
order to achieve higher throughput as desired by the policy.
In contrast to the tail-drop buffer, it only increases the delay
as necessary, i.e., GSP-AS stays clearly below the allowed
30 ms, as shown in Fig. 5b. This as well as other plots show
the average of the 95%-quantile across the 10 runs, the error
bars their respective min/max values. The curve for GSP-AS
show that if the number of flows becomes higher, GSP-AS
can reduce queuing delay even further by lowering the target
setpoint. While the static variants of GSP and CoDel also
accomplish good throughput values, because of the achieved
desynchronization, they stay at their fixed targets of 2.5 ms,
whereas GSP-AS can go as low as 0.825 ms.

1https://git.scc.kit.edu/TM/DPDK_AQM_Switch (branch: AQM_Steering)
2https://git.scc.kit.edu/CPUnetLOG/TCPlog
3https://git.scc.kit.edu/CPUnetLOG/CPUnetLOG

141

 8.8

 9

 9.2

 9.4

 9.6

 9.8

 10

2 9 36

Th
ro

ug
hp

ut
 [G

bi
t/s

]

Number of Flows

TD 2,5ms
CoDel

GSP
GSP-AS

TD 30ms

(a) Throughput

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35

Q
ue

ui
ng

 D
el

ay
 [m

s]

Number of Flows

Queuing Delay q-95, CoDel
Queuing Delay q-95, GSP

Queuing Delay q-95, GSP-AS
Queuing Delay q-95, TD 2.5ms
Queuing Delay q-95, TD 30ms

(b) Queuing Delay

Fig. 5. Throughput and Queuing Delay for Different Numbers of Long-Lived Flows

C. Steady State – Long-lived and Short-lived Flows

This experiment shows that AQM Steering still works if
short-lived flows disturb the AQM control: static AQMs loose
throughput whereas AQM Steering achieves high throughput
at lowest possible queuing delays. Several experiments were
made where long-lived TCP flows are disturbed by short-lived
TCP transfers of 64 MByte every two seconds. The short-lived
flows are usually finished before their slow start phase ends.
Although AQMs like CoDel, PIE, and GSP have a kind of
burst protection already, short-lived transfers may still decrease
the throughput significantly. Fig. 6a shows that static AQM
variants perform much worse with a lower number of flows
(cf. Fig. 5a). Bursty traffic causes packet drops and it is likely
that long-lived flows are affected. The queue within the small
tail-drop buffer drains completely between drops as can be
seen by the very low throughput values and the practically non-
existing delay (Fig. 6b). GSP-AS is able to keep the throughput
high (even higher than TD 30 ms), at the cost of increasing
the queuing delay. With 36 flows GSP-AS is able to reduce
the delay without hurting the throughput.

D. Transition Behavior

This experiment shows how AQM Steering adapts when a
sudden change of the traffic situations happens. In contrast
to the previous experiments, the traffic situation (here the
number of flows) changes during the experiment. At first, only
two data flows are started and get to steady state when at
t = 180 s 34 additional flows are started that last for 80 s.
Fig. 7a shows how AQM Steering smoothly lowers the target
setpoint as the number of flows is higher and raises the target
setpoint relatively quickly after the remaining two flows have
raised their CWnd up beyond the bdp (that takes 18 s) after
the 34 flows have ended at second 260. Conceptually, AQM
Steering cannot compensate the time TCP requires to claim
free bandwidth after other flows have finished, therefore, the
target setpoint is not adapted in absence of any packet drops.

Fig. 7b shows results of an experiment where the situation
is repetitively changed before the adaptation of AQM Steering
has converged. Every 40 s, 34 additional flows arrive that
disappear again after 20 s. During convergence AQM Steering

favors high link utilization over a quick reduction of the queu-
ing delay. Indeed, the threshold almost reaches the same upper
values as it settled on in the previous experiment. Reduction
of the target setpoint, in contrast, is more conservative.

E. Policy Option: Under-utilization

To evaluate the virtual queue feature some experiments
were performed with utarget = 95% and ulow = 94%. The
generated traffic is the same as in Sec. V-B. Fig. 8a shows
that the achieved throughput stays within the utilization bounds
[0.94, 0.95] (see upper curve and right y-axis). Furthermore,
starting at six flows the real queue length is effectively zero (as
shown by the queue length curves of the average and the 95%
quantile), since the AQM triggers regularly packet discards
based on the virtual queue. For a lower number of flows, the
virtual queue length fluctuates more (as explained in Sec. II),
thus often overshooting into the real queue, as also indicated
by the difference of the 95% quantile and the average queue
length. Fig. 8b shows the virtual queue length and packet
discard actions from a run with 36 concurrent flows. As with
the physical queue, the virtual queue length fluctuates around
the target. Since the virtual queue is almost never empty, the
egress rate is close to ratevirtual , on average. AQM Steering
adjusts ratevirtual in order to keep ulow ≤ u ≤ utarget .

VI. RELATED WORK

The first major AQM mechanism RED faced severe deploy-
ment difficulties, due to its sensitivity to parameters, which
were hard to tune. Since then auto-tuning has become a
standard functionality of subsequent AQMs, like Adaptive
RED (ARED) [15], BLUE [16], Optimal Drop-Tail/Optimal
BLUE [17]. The latter approach tries to optimally trade-off
delay versus throughput based on utility functions. [11] gives
an exhaustive survey of existing AQMs. Newer AQMs like
CoDel [3], PIE [4], and GSP [5] try to be mostly parameter-
less, due to inherent auto-tuning and reasonable default values.
But due to their fixed delay target setpoint, the performance
still depends on the traffic characteristics and is, therefore,
hard to predict. Policy-oriented AQM Steering focuses on an
automatic adjustment of this parameter, in order give better
and more predictable performance.

142

 2

 4

 6

 8

 10

2 (64MB) 9 (64MB) 36 (64MB)

Th
ro

ug
hp

ut
 [G

bi
t/s

]

Number of Flows

TD 2.5ms
CoDel

GSP
GSP-AS

TD 30ms

(a) Throughput

 0

 5

 10

 15

 20

 25

 30

2 9 36

Q
ue

ui
ng

 D
el

ay
 [m

s]

Number of Flows

TD 2.5ms
CoDel

GSP
GSP-AS

TD 30ms

(b) Queuing Delay

Fig. 6. Throughput and Queuing Delay for Different Numbers of Long-Lived Flows Disturbed by Short Flows (64 MByte)

0

2

4

6

8

10

12

14

16

18

180 200 220 240 260 280 300 320

Q
u
e
u
in

g
 D

e
la

y
 [

m
s]

Time [ms]

Queuing Delay
Threshold

Packet discard

(a) Slow changes

0

2

4

6

8

10

12

14

16

18

180 200 220 240 260 280 300 320

Q
u
e
u
in

g
 D

e
la

y
 [

m
s]

Time [s]

Queuing Delay
Threshold

Packet Discard

(b) Faster changes

Fig. 7. Transition Behavior

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35
 90

 91

 92

 93

 94

 95

 96

Q
ue

ui
ng

 D
el

ay
 [m

s]

Th
ro

ug
hp

ut
 [%

]

Number of Flows

Queue Length q-95
Queue Length Average

Throughput

(a) Achieved Throughput and Queuing Delays

0

100

200

300

400

500

600

700

800

200 201 202 203 204 205

Q
u
e
u
e
 L

e
n
g

th
 [

kB
y
te

]

Time [s]

Virtual Queue
Threshold

Packet Discard

(b) Length of the Virtual Queue (36 flows)

Fig. 8. Behavior for utarget = 95%, ulow = 94% and upper delay limit 2.5 ms

The work in [6] assesses the operating ranges and the
tunability of the AQMs CoDel and PIE. The authors conclude
that “manual tuning can hardly be avoided” for some use-cases
that lie outside the operating range of the default parameter set.
But even for scenarios within the operating ranges, different
trade-offs between queuing delay and throughput are possible.

These trade-offs can be tuned by altering the target setpoint.
Policy-oriented AQM Steering does exactly this but in an
automatic manner. The authors of [6] also found that adapting
the update interval λ to the actual RTTs might be useful in
some cases. Our mechanism does not tune this parameter,

since the RTTs are usually not known by routers/switches.
Furthermore, GSP (which our implementation is based upon)
does not have such a fixed update interval as CoDel and PIE.

The concept of virtual queues was first introduced as
part of [18]. Based on this concept the AQMs AVQ [19]
and HULL [20] have been developed. HULL uses so-called
phantom queues that simulate queue buildup for a virtual
egress link that runs at a fixed fraction of the actual link
(e.g., 95 %), with the goal to leave “bandwidth headroom”.
HULL is designed to be used in conjunction with DCTCP [21].
AVQ simulates a virtual tail-drop queue with a variable virtual

143

egress rate. The virtual rate is adjusted according to the length
of the physical queue, in order to achieve a certain ingress
rate (≤ 100%). Our approach also uses a virtual queue, if
an upper utilization target is set that cannot be achieved by
operating on the physical queue. It further differs from the
other approaches by using an AQM in order to achieve a good
loss desynchronization in combination with an outer control
loop that regulates the virtual egress rate.

VII. CONCLUSION

Policy-oriented AQM Steering provides an external control
loop that dynamically adjusts the target setpoint of newer
AQMs. Depending on the traffic this can lead either to
lower queuing delays or higher utilization of the bottleneck
link. Without AQM Steering, AQMs provide a trade-off be-
tween link utilization and delay that is hard to determine,
since it changes under different traffic situations. With AQM
Steering a simple to grasp policy can be set, consisting
of: 〈ulow , targetmax〉 and optionally utarget . This makes the
deployment of AQM more predictable and can even improve
the performance, e.g., if traffic patterns change over time or
are different than expected.

As shown in the evaluation, AQMs can cause a significant
drop in link utilization (down to 60 %–80 %) under certain
circumstances. Network providers could, therefore, be reluc-
tant to deploy AQMs. In these cases, higher link utilization
can be attained at the cost of permitting a larger queuing
delay. AQM Steering’s policy allows network providers to
specify how much queuing delay they are willing to trade for
high throughput. But in contrast to large tail-drop buffers (or
statically configured AQMs with high target setpoints), AQM
Steering only permits these delays when necessary. Otherwise,
the delay is reduced to the minimal value that is required
to achieve the desired throughput. In addition to that, AQM
Steering can optionally switch the AQM to a virtual queue,
which allows to specify upper utilization targets. This enables
policies that focus on zero queuing delay by enforcing spare
capacity. The evaluation has shown that the concept works well
for different traffic situations. When traffic patterns change,
AQM Steering requires some time to adapt. But due short-term
and longer-term smoothing, quickly changing traffic situations
do not destabilize the control. Investigation of AQM Steering
in more complex scenarios and with different traffic mixes is
planned as future work.

ACKNOWLEDGMENT

The authors would like to thank Moritz Kunze for his
contributions, thorough and intensive work on the topic, im-
plementation, and evaluation. This work was supported by the
bwNET100G+ project, which is funded by the Ministry of
Science, Research, and the Arts Baden-Württemberg (MWK).
The authors alone are responsible for the content of this paper.

REFERENCES

[1] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”
Queue, vol. 9, no. 11, pp. 40:40–40:54, Nov. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2063166.2071893

[2] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP,” RFC 3168 (Proposed Standard),
RFC Editor, Fremont, CA, USA, pp. 1–63, Sep. 2001.

[3] K. Nichols and V. Jacobson, “Controlling Queue Delay,” Queue,
vol. 10, no. 5, pp. 20:20–20:34, May 2012. [Online]. Available:
http://doi.acm.org/10.1145/2208917.2209336

[4] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian,
F. Baker, and B. VerSteeg, “PIE: A lightweight control scheme to address
the bufferbloat problem,” in High Performance Switching and Routing
(HPSR), 2013 IEEE 14th International Conference on, July 2013, pp.
148–155.

[5] W. Lautenschlaeger and A. Francini, “Global Synchronization Protection
for Bandwidth Sharing TCP Flows in High-Speed Links,” in Proceedings
of 16th International Conference on High Performance Switching and
Routing (IEEE HPSR 2015), Jul. 2015, budapest, Hungary.

[6] N. Kuhn, D. Ros, A. B. Bagayoko, C. Kulatunga, G. Fairhurst, and
N. Khademi, “Operating ranges, tunability and performance of CoDel
and PIE,” Computer Communications, vol. 103, no. Supplement C,
pp. 74–82, 2017. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0140366416302717

[7] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing Router Buffers,”
SIGCOMM Comput. Commun. Rev., vol. 34, no. 4, pp. 281–292, Aug.
2004. [Online]. Available: http://doi.acm.org/10.1145/1030194.1015499

[8] A. Vishwanath, V. Sivaraman, and M. Thottan, “Perspectives on
Router Buffer Sizing: Recent Results and Open Problems,” SIGCOMM
Comput. Commun. Rev., vol. 39, no. 2, pp. 34–39, Mar. 2009. [Online].
Available: http://doi.acm.org/10.1145/1517480.1517487

[9] M. Hock, F. Neumeister, M. Zitterbart, and R. Bless, “TCP LoLa:
Congestion Control for Low Latencies and High Throughput,” in 2017
IEEE 42nd Conference on Local Computer Networks (LCN), Oct 2017,
pp. 215–.218.

[10] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-Based Congestion Control,” ACM Queue, vol. 14,
no. 5, pp. 50:20–50:53, Oct. 2016.

[11] R. Adams, “Active Queue Management: A Survey,” IEEE Communica-
tions Surveys Tutorials, vol. 15, no. 3, pp. 1425–1476, Q3 2013.

[12] F. Baker (Ed.) and G. Fairhurst (Ed.), “IETF Recommendations Regard-
ing Active Queue Management,” RFC 7567 (Best Current Practice), RFC
Editor, Fremont, CA, USA, pp. 1–31, Jul. 2015.

[13] W. Lautenschlaeger, “Global Synchronization Protection for Packet
Queues,” Internet-Draft draft-lauten-aqm-gsp-03, May 2016, work in
progress, https://tools.ietf.org/html/draft-lauten-aqm-gsp-03.

[14] M. Menth and F. Hauser, “On Moving Averages, Histograms, and
Time-Dependent Rates for Online Measurement,” Proceedings of
the ACM/SPEC International Conference on Performance Engineering
(ICPE), Apr. 2017, preprint. [Online]. Available: https://atlas.informatik.
uni-tuebingen.de/~menth/papers/Menth17c.pdf

[15] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An Algorithm
for Increasing the Robustness of RED’s Active Queue Management,”
AT&T Center for Internet Research at ICSI, Tech. Rep., 2001.

[16] W. Feng, K. G. Shin, D. D. Kandlur, and D. Saha, “The BLUE
Active Queue Management Algorithms,” IEEE/ACM Transactions on
Networking, vol. 10, no. 4, pp. 513–528, Aug 2002.

[17] R. Stanojević and R. Shorten, “Trading link utilization for queueing
delays: An adaptive approach,” Computer Communications, vol. 33,
no. 9, pp. 1108–1121, 2010. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0140366410000897

[18] R. J. Gibbens and F. P. Kelly, “Resource pricing and the evolution of
congestion control,” Automatica, vol. 35, no. 12, pp. 1969–1985, 1999.

[19] S. S. Kunniyur and R. Srikant, “An Adaptive Virtual Queue
(AVQ) Algorithm for Active Queue Management,” IEEE/ACM Trans.
Netw., vol. 12, no. 2, pp. 286–299, Apr. 2004. [Online]. Available:
http://dx.doi.org/10.1109/TNET.2004.826291

[20] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is More: Trading a Little Bandwidth for Ultra-low
Latency in the Data Center,” in Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, ser.
NSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 19–19.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2228298.2228324

[21] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data Center TCP
(DCTCP),” SIGCOMM Comput. Commun. Rev., vol. 40, no. 4, pp.
63–74, Aug. 2010. [Online]. Available: http://doi.acm.org/10.1145/
1851275.1851192

144

