
Hierarchical Layer Selection with Low Overhead in
Prioritized Network Coding

Marie Schaeffer, Roman Naumann, Stefan Dietzel, and Björn Scheuermann
Humboldt-Universität zu Berlin, Germany

Email: {marie.schaeffer, roman.naumann, stefan.dietzel}@hu-berlin.de, scheuermann@informatik.hu-berlin.de

Abstract—Network coding simplifies routing decisions, im-
proves throughput, and increases tolerance against packet loss. A
fundamental limitation, however, is delay: decoding requires as
many independent linear combinations as data blocks. Prioritized
network coding reduces this delay problem by introducing a
hierarchy of prioritization layers. What remains is the problem
of choosing a layer to approach two often-contradicting goals:
reduce delay until prioritized layers can be decoded and keep
the total number of transmissions low. In this paper, we propose
an algorithm for this problem that – based on limited feedback –
primarily minimizes per-layer delay but identifies opportunities
to reduce the required transmissions when per-layer delay is
unaffected. Our evaluation shows that our algorithm improves
per-layer delay compared to hierarchical network coding and is
close to the theoretical optimum number of total transmissions.

I. INTRODUCTION

Network coding (NC) is a widely studied approach to com-
munication systems [1]. Originally introduced by Ahlswede et
al. [2] as a technique to improve the throughput in networks,
NC has been proven to benefit many fields since, e. g., peer-to-
peer applications [3]–[5], network streaming [6], and combina-
tions thereof [7]. NC also improves robustness, which means
that the system better copes with packet loss. Distributed algo-
rithms can be simplified, and link capacities can be saturated
more effectively [1]. To implement these benefits, NC breaks
with traditional routing paradigms. Namely, nodes combine
two or more incoming packets and send these newly built
combinations instead of just forwarding the original packets.
In this paper, we discuss an improvement for the most broadly
studied class of network coding, linear network coding, where
original packets are combined into linear combinations [8].

One restriction inherent to NC is that it introduces additional
delay. With high probability, a receiver cannot retrieve any of
the original content as long as the number of received linear
combinations is lower than the number of messages that were
combined [9], [10]. Prioritized network coding (PNC) [11]
builds on linear network coding and reduces decoding delay
by introducing a hierarchy of priority layers on the original
messages. Linear combinations are computed per priority layer
rather than using the full message set. Consequently, a receiver
is able to decode a prioritized subset of messages with fewer
linear combinations. This encoding technique is also known
as expanding window random linear coding [12]. The order
in which different layers’ linear combinations are sent has
a direct impact on individual layers’ achievable decoding

performance and principal decodability at any given point in
time [13], [14]. In order to achieve a reduced delay and at the
same time avoid significant additional overhead, combinations
have to be built and sent in a sequence that reflects the layers’
individual priorities.

In summary, PNC can reduce per-message delay, but it only
does so under the right circumstances: all senders need to
carefully choose the correct layers for use in their next linear
combination. Otherwise, linear combinations either have an
increased chance of being linearly dependent, which results
in increased message overhead, or they introduce additional
per-packet decoding delay, which results in less effective
prioritization. This selection problem of PNC has not yet
been studied in detail for scenarios with limited knowledge
about the receivers’ decoder state. Existing approaches select
layers uniformly at random (e. g., [11], known as hierarchical
network coding (HNC)), or they use a weighted random
choice, giving higher weight to prioritized layers [12]. Both
strategies cause overhead, since they result in an increased
probability of non-innovative content being sent.

In this paper, we take a more structured approach to the
selection problem and analyze – based on limited feedback
messages –, which selection of layers (a) reduces the total
number of transmissions and (b) improves per-message de-
coding delay. We derive performance indicators that allow
a node to classify layer choices based on these two criteria
and propose an algorithm, eNhanced Prioritized nEtwork
Coding (iNsPECt), which implements a deterministic strategy
for choosing the layer that is used to generate the next
linear combination. Based on these performance indicators,
we instantiate a wireless multi-hop protocol that is based on
single-hop feedback messages, which concisely summarize
each node’s decoder matrix state. Our protocol thereby im-
plements prioritization with much less overhead than existing
approaches while retaining the low decoding delay.

The remainder of this paper is structured as follows. Sec-
tion II discusses related work, and Section III introduces our
system model. In Section IV, we approach the layer selection
problem with two performance indicators that guide layer
choices. We further introduce an algorithm that yields optimal
results under an analytical model, which we instantiate as
a practical network protocol in Section V. Our simulative
evaluation compares the protocols iNsPECt, HNC, and NC
in Section VI before Section VII concludes the work.ISBN 978-3-903176-08-9 c© 2018 IFIP

II. RELATED WORK

NC was introduced by Ahlswede et al. [2] to improve
throughput in communication networks. In their work, the
network model is a directed graph with one node as the source
and multiple nodes as receivers. Ahlswede et al. demonstrate
that the optimal throughput, which is given by the “minimum
cut” between the source node and any receiver in a network
graph, can be achieved when the nodes send linear combina-
tions of the original messages. Later, Ho et al. [9] showed
that randomly chosen linear coefficients c1, c2, . . . over a
finite field Fq are sufficient to achieve optimal flow rates;
this approach is called random linear network coding (RLNC).
With RLNC, linear combinations are built by multiplying the
n original messages m(1),m(2), . . . ,m(n) with the random
coefficients, the j-th linear combination X(j) being:

X(j) =

n∑
i=1

c
(j)
i m(i). (1)

When multiple such combinations are received, they form
a system of linear equations. The original messages can be
retrieved by solving the system with, for example, Gaussian
elimination (GE), once sufficient combinations have been
received. In general, it is not possible to decode a subset of
messages with fewer than n linear combinations. However,
all messages can be decoded immediately once enough linear
combinations were received. This has been described as the
“all-or-nothing property” [15].

As Nguyen et al. [11] note, for many applications, NC’s
delay is not tolerable. Consequently, Nguyen et al. propose
PNC, which is based on RLNC and reduces per-packet delay.
PNC introduces hierarchical layers R1, R2, . . . , R|R| of prior-
itized packets. That is, linear combinations of the l-th layer
encode only messages from m(1),m(2), . . . ,m(Rl):

x(j) =

Rl∑
i=1

c
(j)
i m(i), for a layer-l combination. (2)

An important question is how to determine which layer to
choose for generating new linear combinations. The most basic
approach, used by HNC [11], is to choose layers uniformly
at random. HNC generally provides lower per-packet delay
than RLNC, but increases the overhead due to non-informative
linear combinations, i. e., linear combinations from layers that
can already be decoded.

Esmaeilzadeh et al. [14] explicitly studied the layer selec-
tion problem both for systems without any knowledge about
the receivers’ decoder states and for systems with perfect
knowledge about the decoder states. The proposed layer selec-
tion algorithm is based on an exhaustive search through packet
erasures. In addition, finite-horizon Markov decision processes
are proposed for the perfect-knowledge system model. The
authors describe their perfect-knowledge model as idealistic,
since perfect knowledge is usually unavailable. Additionally,
both algorithms’ high computational complexity makes them
unusable for practical applications with greater numbers of
layers and/or users, but they may serve as a theoretical upper

bound. We, different to [14], assume limited knowledge of the
neighbors’ decoder states and derive a simpler performance
indicator that does not require exhaustive searching.

Naumann et al. [13] denote that all efficient layer selection
schemes for PNC will send linear combinations roughly in
order of priority, which they exploit to implement specialized
Gaussian-elimination-based decoders. Such decoders improve
both memory footprint and computational decoding complex-
ity by reordering rows and inverting certain GE elimination
steps in a joint decoder matrix for all layers. Our approach is a
natural fit for such decoders, as it is based on a greedy strategy
that sends in order of prioritization most of the time. Even
more so, we provide an upper bound on the limit of deviation
from this greedy strategy so that the asymptotic bounds on
computational decoding overhead described in [13] hold.

Shenglan Huang et al. [16] build upon HNC with uniform
random layer selection to minimize the amount of redundant
packets sent in a multi-sender use case. Their algorithm
estimates, according to loss rates and information about links,
the ideal number of linear combinations that each sender
should produce to reduce linearly dependent combinations.
The algorithm does not, however, provide layer selection
capabilities different from HNC.

Chau et al. [17] also use the HNC coding technique but
propose an additional coding scheme that combines messages
from more than one HNC-coded generation. Thereby, the
scheme provides additional redundancy, which protects against
packet loss, and reduces the number of transmissions until all
layers can be decoded. Our proposed layer selection technique
could be used in conjunction with their HNC-based coding
scheme, since it does not modify the coding format.

Approaches different from hierarchical PNC have been
proposed to reduce per-packet delay in NC: Shrader et al.
[18], for example, propose to employ a systematic coding
approach. Namely, a subset of the network’s nodes sends
uncoded packets in some circumstances. Due to the selection
of nodes, the level of error protection is not reduced, but the
non-encoded packets reduce per-packet delay as they do not
require decoding. Yan et al. [15] instead trade correctness of
decoded information for an increased chance of rank-deficient
decoding by regarding the decoder matrix as a collection
of underdetermined systems and implementing rank-deficient
decoders. Finally, Claridge et al. [19] demonstrate that rank
deficient decoding without chance of error is feasible when
using a small enough finite field. Such a small field, however,
also reduces the level of error protection and increases the
chance of linear dependency.

III. SYSTEM MODEL

A. Information model

We assume that the information to be transmitted by a
source node can be split into equally sized messages M =
(m(1),m(2), . . . ,m(n)). Each message m(i) consists of b

symbols (m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
b) over a finite field Fq . We are

concerned with prioritized messages, i. e., some messages
convey more information than others. In the following, and

416

w. l. o. g., we assume m(i) has higher priority than m(j) for
all 1 ≤ i < j ≤ n. PNC introduces hierarchical layers that
we formalize as the vector r = (r1, r2, . . . , r|r|) ∈ N|r|. Each
entry rl denotes the number of messages that the layer l adds,
so it holds that n =

∑|r|
l=1 rl. Analogously, we define R as

the cumulated layer vector with Ri =
∑i

l=1 rl.
To transmit information, each source creates a sequence

of network-coded packets; the j-th packet has the form
(c(j),x(j)). Here, c(j) is called the encoding vector and
consists of randomly chosen coefficients (c

(j)
1 , c

(j)
2 , . . . , c

(j)
n),

i. e., random symbols over Fq . The second component, x(j),
is called the information vector and contains the actual linear
combination. An information vector of the l-th (1 ≤ l ≤ |r|)
layer and j-th coded packet is encoded as follows [1], [12]:

x
(j)
k =

Rl∑
i=1

c
(j)
i m

(i)
k ∀1 ≤ k ≤ b (3)

Since finite field operations are generally performed over
all symbols of a message or information vector, we usually
omit the symbol index k, which reduces Equation (3) to
Equation (2). Multiple generations or multiple source nodes
fit the above definitions by executing the encoding mechanism
repeatedly in sequence or in parallel, respectively.

The finite field F28 is a typical choice for network coding
[1], [20] and is used in the following. With F28 , linear
dependencies between randomly generated combinations are
unlikely [9], and the elements’ binary representations occupy
one byte each, which is advantageous in practical systems.

B. Network model

Our network model is a wireless network with multiple
nodes. Nodes transmit information as broadcast messages.
Such messages may be received or lost by multiple nodes
independently. We allow several nodes to be source nodes,
which generate new messages M . Both source nodes and non-
source nodes receive, re-encode, and transmit information.

Before any transmission starts, a source node holds the
complete data set, which is to be transmitted via PNC to the
sink nodes. To simplify the system model, we assume in this
work that all nodes in the network are sink nodes, which is
a typical simplification for network coding. It alleviates the
need to share topology information and improves the network
capacity utilization [21]. The generality of our results is not
affected by this simplification: if all nodes within the network
receive the data, then any single sink or few sinks trivially
have the information, too. As a consequence, a source node
of one transmission is a sink node to other nodes, as well.

C. Problem statement

According to our information model, data to be transmitted
is partitioned into different priority layers. Given this partition,
the problem statement is to find an efficient transmission pro-
cess that implements the prioritization scheme that is defined
by the layers. Here, “efficient” comprises two aspects: low
per-layer delay and low number of total transmissions. The

per-layer delay for prioritized layers describes the prioritiza-
tion performance, whereas the total number of transmissions
describes the overhead that is introduced. Ideally, both aspects
are jointly optimized by implementing effective prioritization
without introducing overhead.

It is impossible, however, to achieve low delay at the same
time as low overhead in all situations, as these goals may
conflict. Rather, we propose a protocol that jointly optimizes
both whenever possible and prioritizes low delay in conflict
situations. To understand the connection between delay and
total transmission number, consider an example topology with
one source node S and three non-source nodes N1, N2, and
N3. Assume a simple PNC system with a generation size n =
4 and two priority layers r = (2, 2). We will now discuss two
scenarios: one where delay and overhead are in conflict and
one where both can jointly be optimized.

As the first scenario, assume nodes N1, N2, and N3 have
received 1, 1, and 0 linearly independent combinations of the
first layer, respectively, and only N3 has received 1 linear
combination of the second layer. Now, S sends two more linear
combinations of the first layer. Then, N1 and N2 can decode
the first layer after having received the first linear combination,
and node N3 can decode after having received both linear
combinations. However, two more linear combinations of the
second layer must be sent before all nodes can retrieve the
second priority layer. If, instead, S immediately starts sending
linear combinations of the second layer, all nodes must wait
for one more transmission before they can decode the first
layer. After only three transmissions in total (instead of four,
as before), all nodes can decode layer one and two.

As the second scenario, consider nodes N1, N2, and N3

have initially received 2, 1, and 0 independent combinations
of the first layer and 1, 2, 3 independent linear combinations
of the second layer, respectively. In this case, sending only
one combination of the (lower priority) second layer from the
beginning saves one transmission and achieves minimal per-
layer delay.

The important observation here is that the goals of pri-
oritization and not introducing extraneous transmissions can
conflict, but this is not always the case. Our goal is to provide
optimal prioritization first, but identify such occasions where
we can save transmissions without introducing per-layer delay.

IV. PROPOSED ALGORITHM

In this section, we approach the problem statement with
a simplified, theoretical model: nodes have knowledge of
their neighbors’ decoder matrix rank and each layer’s linear
subspace dimension. There are no packet losses or delays.
We describe the proposed algorithm, iNsPECt, from the per-
spective of an individual node. In Section V, we incorporate
packet losses, delays, and the need for feedback messages in
the design of a network protocol based on this algorithm.

Our proposed algorithm combines two complementary
strategies, which we term “Ord” and “SL,” that are used
to decide which layer to select for transmission of the next
linear combination. Both strategies (and our algorithm) make

417

use of the fact that when one node’s decoder matrix for a
given layer has a higher rank than its neighbor’s, sending a
linear combination is with high probability innovative. “Ord,”
short for in order, is a greedy strategy that selects layers in
strict order of prioritization; “SL” sends linear combinations
of a single layer only. Our key idea is to use strategy Ord
by default to minimize delay for prioritized layers. But we
resort to sending a lower priority layer (with strategy SL)
if it reduces the required total transmissions and does not
negatively affect per-layer delay. Strategy SL takes a target
layer i as a parameter; SL(i) sends only linear combinations
of layer i until layer i – and thus all higher priority layers, as
well – can be decoded. Obviously, SL(i) requires the minimum
number of transmissions until layer i can be decoded; and
strategy SL(|r|) equals RLNC. Strategy Ord instead sends
linear combinations of the highest priority non-decodable layer
until each neighbor can decode that layer. It then continues
with the next layer. Therefore, Ord ensures that high priority
layers are always decoded before lower-priority layers.

To determine which strategy to use, our algorithm models
the benefits of choosing one strategy over the other at any
point in time with two performance indicators. Each indicator
takes a parameter i and returns the benefits or drawbacks that
result from choosing strategy SL(i) over Ord.

The first indicator, Qrt(i), counts the savings in total number
of transmissions until each neighbor of a node can decode
layer i. Positive values indicate that using SL(i) is beneficial
over choosing Ord. The second indicator, Qdc(i), analogously
counts the additional per-layer delay (in transmissions) until
a node’s neighbors can decode layers 1 to i, cumulated over
the layers and all neighbors. Positive values indicate additional
overhead introduced by choosing SL(i). In the following, we
first derive the two indicators from our simplified system
model and then define the selection algorithm.

A. Performance indicators

1) Reduction in transmissions: We define RT(∗)
SL (i) as the

number of required transmissions until all neighbors can
decode layer i using the SL strategy. Analogously, RT(∗)

Ord(i)
denotes the number of required transmissions using the Ord
strategy. Consequently, the savings in transmissions are:

Qrt(i) = RT(∗)
Ord(i)− RT(∗)

SL (i). (4)

Next, we derive RT(∗)
Ord(i) and RT(∗)

SL (i). Let γ(x)
l be the number

of independent linear combinations of layer l that neighbor x
has received (and equivalently, the number of dimensions of
the linear subspace that pertains to layer l), and let Γ(x)

l be the
accumulated number of received combinations from layer 1 to
l of neighbor x. Let RT(x)

SL (i) be the number of transmissions
required for a single node x to decode layer i. Layer i can
be decoded once layer i’s linear subspace has full rank, i. e.,
when Γ

(x)
i = Ri. Alternatively, layer i may be decoded when

a lower priority subspace has full rank, i. e., Γ(x)
j = Rj for

some j > i. Thus,

RT(x)
SL (i) = min

(
Ri − Γ

(x)
i ,

|r|
min
j=i+1

(
Rj − Γ

(x)
j

))

⇔ RT(x)
SL (i) =

|r|
min
j=i

(
Rj − Γ

(x)
j

)
. (5)

To generalize RT(x)
SL (i) to RT(∗)

SL (i), we take the maximum over
all neighbors:

RT(∗)
SL (i) = max

x∈ Neigh.
RT(x)

SL (i). (6)

We construct RT(∗)
Ord(i) recursively. Since strategies Ord and

SL are identical for i = 1, it holds that

RT(x)
Ord(1) = RT(x)

SL (1), and

RT(∗)
Ord(1) = max

x∈ Neigh.
RT(x)

SL (1) = RT(∗)
SL (1).

(7)

Counting the required transmissions for the (i+1)-th layer,
we first count the transmissions from the i-th layer and then
add the remaining, maximum missing matrix rank over all
neighbor nodes:

RT(∗)
Ord(i+ 1) =

RT(∗)
Ord(i) + max

x∈ Neigh.

(
RT(x)

SL (i+ 1)− RT(x)
SL (i)

)
, (8)

which, if we define RT(x)
SL (0) = 0, reduces to

RT(∗)
Ord(i) =

i−1∑
j=0

max
x∈ Neigh.

(
RT(x)

SL (j + 1)− RT(x)
SL (j)

)
. (9)

2) Per-layer delay: Analogously, we define DC(x)
SL (i) and

DC(x)
Ord(i) as the cumulative per-layer delay (in transmissions)

until node x can decode each layer up to i with the SL and
Ord strategies, respectively. Similarly, DC(∗)

SL (i) and DC(∗)
Ord(i)

define this delay cumulatively for all neighbor nodes. Our
indicator,

Qdc(i) = DC(∗)
SL (i)− DC(∗)

Ord(i), (10)

gives the additional per-layer delay that results from choosing
strategy SL over Ord.

With the SL strategy, each node waits a timespan that is in-
dependent from the other nodes’ decoder matrix states, as each
node’s rank of layer i increases independently until full rank is
obtained. As the SL strategy only sends linear combinations
of layer i, each non-decodable layer below i of neighbor x

will become decodable after exactly RT(x)
SL (i) transmissions.

Therefore, we count the number of non-decodable layers
(right-hand factor) multiplied by the number of transmissions
required for decoding each layer (left-hand factor):

DC(x)
SL (i) = RT(x)

SL (i) ·
i∑

k=1

min
(
RT(x)

SL (k), 1
)
, (11)

DC(∗)
SL (i) =

∑
x∈ Neigh.

DC(x)
SL (i). (12)

Again, we derive the per-layer delay for the Ord strategy re-
cursively and in two steps. First, we derive the non cumulated
per-layer delay NC(x)

Ord(i) so that

DC(x)
Ord(i) =

i∑
j=1

NC(x)
Ord(j). (13)

418

Again, for i = 1 both strategies behave identically, thus
DC(x)

Ord(1) = NC(x)
Ord(1) = DC(x)

SL (1) and DC(∗)
Ord(1) = DC(∗)

SL (1).
For i+1, we distinguish between two cases based on whether
the (i + 1)-th layer can be decoded if the i-th layer can be
decoded, which formally is the proposition:

RT(x)
SL (i+ 1) = RT(x)

SL (i). (14)

If eq. (14) holds, the induction step is trivial, as no additional
delay comes from layer i + 1: NC(x)

Ord(i + 1) = NC(x)
Ord(i).

If eq. (14) does not hold, node x requires exactly as many
independent linear combinations as it is short of full rank to
decode layer i + 1, i. e., RT(x)

SL (i + 1) − RT(x)
SL (i). Since the

Ord strategy will not start sending linear combinations of rank
i+1 until all other neighbors can decode layer i, we also have
to wait for RT(∗)

Ord(i) transmissions before the (i+1)-th layer’s
rank increases:

NC(x)
Ord(i+ 1) =

NC(x)
Ord(i), if eq. (14) holds, else

RT(∗)
Ord(i) + RT(x)

SL (i+ 1)− RT(x)
SL (i).

(15)

For all nodes, we obtain:

DC(∗)
Ord(i) =

∑
x∈ Neigh.

DC(x)
Ord(i). (16)

B. Algorithm

We have defined the two performance indicators Qrt(i),
which counts the required transmissions until layer i can be
decoded by all neighbor nodes, and Qdc(i), which counts the
per-layer delay over all neighbors and layers up to i. We now
use these indicators in an algorithm that takes a node’s state
as input and returns the layer choice as output. Whenever a
node generates and transmits a linear combination, it executes
the algorithm iNsPECt first, which is given in Figure 1.

To keep computational overhead low in practical systems,
iNsPECt introduces a system parameter kahead, which bounds
the number of layers that a node may deviate from the Ord
strategy. For large numbers of layers, bounding the deviation
with kahead not only improves our algorithm’s performance,
but allows to use optimized decoding techniques [13].

In Figure 1 line 1, the Ord strategy is employed by default.
That is, a node selects the layer with the highest priority that
any of its neighbors cannot decode. To reduce the total number
of transmissions, our algorithm uses the previously defined
performance indicators in two steps:
(1) check if a lower priority layer can save transmissions by

computing Qrt and
(2) check if the lower priority negatively affects per-layer

delay by computing Qdc.
These steps are repeatedly performed in the conditional at
line 4 for all kahead candidate layers in the loop at lines 3
to 8. Whenever a candidate layer in the loop further reduces
transmissions compared to the last candidate and does not
increase per-layer delay, it is selected as next candidate.
Finally, the selected layer is returned in line 9.

Input: for each neighbor x ∈ Neigh., γ(x) and Γ(x)

Output: layer index
Have: n, r,R, and system parameter kahead

1: choice← start← first non decodable layer of Neigh.
2: lastrt ← Qrt(start)
3: for i← start + 1, . . . ,min(start + kahead, |r|) do
4: if Qrt(i) > lastrt ∧Qdc(i) ≤ 0 then
5: choice← i
6: lastrt ← Qrt(i)
7: end if
8: end for
9: return choice

Fig. 1. iNsPECt.

Type

1 bit

Generation
number

15 bits

Origin ID

32 bits

Source ID

32 bits

Data

Fig. 2. Message format: general header and message specific data part.

Dependent on m, the number of neighbors from which
feedback has recently been received, the algorithm’s runtime
is in O(mkahead |r|). For three layers, a common choice in
multimedia streaming [11], the runtime is linear in the number
of neighbors.

V. PROTOCOL DESIGN

We now describe a simple yet effective network protocol
that instantiates the layer selection algorithm for practical
systems. We describe the protocol for a single network coding
generation and a single source. The protocol is executed in
parallel when multiple sources exist in the network, and it is
run repeatedly for subsequent generations.

A. Message types

The protocol requires only two types of messages: data
messages, which contain linear combinations, and feedback
messages, which concisely encode a node’s decoder state. We
use UDP as the underlying transport protocol, because relia-
bility is ensured by network coding’s forward error correction
properties.

The general message format is shown in Figure 2: a leading
bit is used to denote message type, and the remaining 15 bits of
the first two octets encode the generation number that the mes-
sage belongs to. Origin node and source node, each encoded
using 32 bits, are used to manage neighbor state and assign
linear combinations to the correct decoding system. Each node
is assigned a unique number in the system; alternatively, the
IP addresses can be used for local topologies.

Data messages contain linear combinations, which consist
of an encoding vector and an information vector, as described
in Section III-A. If a linear combination from a layer with

419

higher priority is sent, not all coefficients in the encoding
vector are used; in that case, the remaining coefficients are
set to the additive identity (i. e., “zeroes”) of the finite field.
Thus, encoding vectors contain n coefficients, whereas the
information vector consists of b symbols. Each coefficient and
symbol are elements of the finite field F28 and can be encoded
as a single byte. Data messages, therefore, have a length of
b+ n+ 10 bytes.

Feedback messages encode γ(x); that is, they encode how
many linearly independent combinations of each layer a node
x has received. This is identical to the rank of each layer’s de-
coder matrix or the dimension of each layer’s linear subspace.
A feedback message encodes each rank with two bytes; thus,
the total feedback message length is 2 · |r|+ 10 bytes, where
|r| is the total number of layers. Since the feedback messages’
size does not depend on the generation size n nor on the chunk
size b, feedback messages are usually much smaller than data
messages.

B. Transmission mechanism

We employ a constant-rate approach to sending linear com-
binations. That is, every data message transmission interval
λdata, a linear combination is built according to Equation (3),
encoded as a data message, and sent when the generation
is not marked as fully transmitted. First, the iNsPECt algo-
rithm is executed to determine the ideal layer i for building
the next linear combination. If that layer-i’s decoder matrix
has insufficient rank to generate a linear combination, i is
incremented repeatedly until a linear combination can be built.
If, initially, no feedback is available, we default to sending a
linear combination of the highest priority layer.

Whenever a layer-i linear combination is sent, the feedback
vector γ(x) for each neighbor x is incremented, presuming the
linear combination’s successful reception. In addition, a flag is
set that indicates that the feedback vector is assumed instead
of authoritative. If an assumed feedback vector indicates the
generation is fully transmitted, the node continues to send
linear combinations until an authoritative feedback message is
received as confirmation. Thereby, nodes avoid delays at the
end of each generation. By handling assumed and authoritative
feedback in this way, we ensure that layers of lower-than-ideal
priority may be selected, but never layers of higher priority.
This bias may lead to increased per-layer delay for the current
layer. It does not, however, cause additional overhead from
linearly dependent combinations, nor does it affect the lower
priority layers’ decoding delay.

On reception of a linear combination, a node first counts the
trailing number of additive identity elements in the encoding
vector to determine the combination’s layer. Next, the linear
combination is inserted into each decoder matrix that pertains
to a lower or equal priority than the linear combination’s layer.
Whether the newly received linear combination is innovative
is determined using GE. If the rank of the matrix increases,
the combination was innovative; otherwise, the new row is
reduced to additive identity elements [1].

C. Feedback mechanism

Feedback is broadcast periodically and cumulatively for
a generation’s layers: once every feedback interval λfb, a
feedback message is created for each incomplete generation.
Usually, feedback messages are only sent when the generation
is incomplete, i. e., the node’s decoder matrix state does not
have full rank for all layers. If, however, a linear combination
for a complete generation is received, a feedback message that
indicates successful reception of the whole generation (with
Γ|r| = R|r|) is sent once.

The feedback’s purpose is not only to inform other nodes
about the current decoder state, but it also allows other nodes
to learn about their neighborhood. When a node receives a
feedback message from a node x, it includes x in its neighbor
set (Neigh. in Figure 1) and updates γ(x) with the rank
vector that is included in the feedback message. If a feedback
message is received where the combination of origin identifier
and generation number is unknown, that message is ignored,
as the feedback contained is not helpful. Feedback vectors
and neighborhood states expire after a timeout that should
be chosen as a multiple of the feedback interval to avoid
incomplete neighbor sets.

The proportion between the data interval λdata and λfb is
important for the performance of the proposed algorithm. The
smaller the feedback interval, the better each node’s stored
feedback represents its neighbors’ decoder state, since it is
updated more often. On the other hand, even tough feedback
messages have a small size, more frequent feedback means
more network capacity is used for traffic that does not directly
contribute to the delivery of the sources’ information.

VI. EVALUATION

We compare iNsPECt to PNC’s HNC variant and RLNC,
which we both described in Section II. As a lower bound on
decoding delay, we additionally show the decoding time of the
first layer, which results from sending only linear combinations
of the first layer. We evaluate all protocols in three scenarios:
a small-scale topology with a single source and small gen-
erations that comprise few source messages to evaluate the
impact of varying feedback rates, a larger topology to show
multi-hop capabilities and support for multiple sources, and
finally a set of larger, randomized topologies to support the
generality of our results.

A. Methodology

We evaluate using the discrete event network simulator ns-3
(version 3.25) [22]. Wireless links between nodes are modeled
via YANS Wifi model [23] with 802.11g MAC and 2.4 GHz
PHY. We simulate the physical channel with the log-distance
propagation loss model1 and the Rayleigh fast fading model,
one superimposed on the other [24]. Nodes send actual linear
combinations in the simulation, so there is a (small) chance
for linear dependency even if a layer’s decoder matrix does

1We choose the path-loss exponent γ = 3.0 and configured path loss at
the reference distance 1 m according to Friis’ model for 2.4 GHz, which is in
line with a range of office and industrial environments [24], [25].

420

N1 N2

N3 S

N4

30 m

30 m

30 m 30 m

30 m

(a) Small scale topology

S1 S2 S3 S4

N5 N6 N7 N8

N9 N10 N11 N12

N13 N14 N15 N16

x x x

x x x

x x x

x x x

x

x

x

x

x

x

x

x

x

x

x

x

(b) Larger network topology

Fig. 3. Simulated topologies.

not have full rank. Each simulation is run for 200 s simulated
time and executed 5 times. Each repeated simulation uses
a separate sub-stream of ns-3’s MRG32k3a pseudo-random
number generator to ensure uncorrelated results [26]. Pseudo-
randomness is used in the simulation’s wireless fading model,
the ns-3 bit error model, which is affected by fading and
path loss, generation of NC coefficients, and exponentially
distributed variations in packet send times that we use to avoid
collisions and other synchronization effects. Since generations
take much less than 200 s to transmit, hundreds of transmitted
generations contribute to a statistically meaningful sample
size. All figures in this section show the sample mean and 95%
confidence intervals (assuming normal distribution). Error bars
may not be visible when the confidence is very high.

B. Small-scale topology

Figure 3a shows the small-scale topology: one source S
and four nodes N1 to N4 are arranged in a partial grid with
30 m grid width. Due to the grid layout, nodes N1 and N2

have 30 m distance from the center-positioned source, whereas
nodes N2 and N4 are 42 m away, which results in lower packet
delivery probability (PDR) for these nodes. We evaluate a
small generation (n = 10) with small layers r = (2, 2, 3, 3) to
highlight the effects of the layer selection and feedback rates.

The mean time until all sink nodes are able to decode layers
1 to 4, respectively, is given in Figure 4 for two different
feedback rates. Results for frequent feedback are shown in
Figure 4a: the y-axis shows the average time from beginning
to transmit the current generation until a layer can be decoded
by a node. The x-axis gives the individual layers, which
are inherently cumulative due to the hierarchical nature of
layers. It can be seen that using RLNC, the time until all
layers can be decoded is identical for all layers. Since RLNC
offers maximum protection against erasures and has the lowest
chance to send linearly dependent combinations, it gives us the
optimal decoding time for layer 4 (and thus all layers) in the
last column. The HNC strategy, being fully randomized and
independent of any feedback, provides faster recovery of the
highest prioritized first layer, identical decoding time for the
second layer, and significantly worse delay than RLNC for

Layer 1 Layer 1–2 Layer 1–3 All layers
0

1

2

1.22 1.22 1.22 1.22

0.91

1.24

1.76

2.23

0.25

0.58

1.01

1.43

0.24

Cumulative layers

Ti
m

e
in

s
(l

es
s

is
be

tte
r)

RLNC
HNC

iNsPECt
Lower bound

(a) High feedback rate (λdata/λfb
= 1/1)

Layer 1 Layer 1–2 Layer 1–3 All layers
0

1

2

1.22 1.22 1.22 1.22

0.89

1.22

1.72

2.24

0.26

0.75

1.14

1.45

0.25

Cumulative layers

Ti
m

e
in

s
(l

es
s

is
be

tte
r)

RLNC
HNC

iNsPECt
Lower bound

(b) Low feedback rate (λdata/λfb
= 1/3)

Fig. 4. Small topology results: per-layer delay for different feedback rates.

the third and fourth layer. The proposed algorithm, iNsPECt,
consistently outperforms HNC between 35.9 % and 72.3 %.
Also, the delay is just 4.5 % higher than the lower bound for
the most highly prioritized 1st layer (compared to 277.5 %
for HNC). The layer 4 decoding delay of iNsPECt is only
17.3 % higher than the optimal RLNC delay. These 17.3 %
analogously give the overhead imposed by the prioritization
scheme, since the additional delay corresponds to the number
of linearly dependent combinations that are due to prioritiza-
tion. In comparison, this overhead is 83.1 % for HNC.

In a second step, we lowered the feedback rate to 1/3 ·λdata,
which is quite low compared to the individual layer sizes: with-
out losses, another layer has to be selected every two or three
linear combinations or all subsequently sent combinations are
linearly dependent. The results are shown in Figure 4b in
a format identical to Figure 4a: RLNC and HNC, working
without feedback, are unaffected by the change. iNsPECt is
still faster than HNC for all layers, but due to the lack of recent
feedback and the resulting uncertainty about the neighbors’
decoder states, the algorithm resorts to sending layers of lower
priority than necessary, which have a much lower chance of

421

20 40
0

5

10

Distance in m

Ti
m

e
in

s
(l

es
s

is
be

tte
r)

RLNC
HNC

iNsPECt
Lower bound

(a) Layer 1

20 40
0

5

10

Distance in m

Ti
m

e
in

s
(l

es
s

is
be

tte
r)

RLNC
HNC

iNsPECt

(b) Layers 1–2

20 40
0

5

10

15

Distance in m

Ti
m

e
in

s
(l

es
s

is
be

tte
r)

RLNC
HNC

iNsPECt

(c) All layers (1–4)

Fig. 5. Larger topology results: per-layer delay for different (cumulative) layers and varying distances.

Layer 1 Layer 1–2 Layer 1–3 All layers
0

2

4

6

8

4.99 4.99 4.99 4.99

3.65

4.27

5.75

6.56

0.93

2.03

3.64

5.24

0.93

Cumulative layers

Ti
m

e
in

s
(l

es
s

is
be

tte
r)

RLNC
HNC

iNsPECt
Lower bound

Fig. 6. Random topology results: average per-layer delay.

linear dependency. The downside of this approach can best be
seen in the second and third layers, where decoding delay is
still 38.8 % and 33.8 % better than HNC, but also increases
by 28.6 % and 13.1 % compared to the better feedback rate
scenario. A positive aspect of resorting to lower priority linear
combinations is that linear dependency is less likely, which can
be seen best at the fourth layer, where decoding time is not
significantly different from the former scenario. This means
that albeit iNsPECt’s per-layer delay is not as low as before,
it is still better than HNC and total prioritization overhead
compared to RLNC does not increase at all.

C. Larger topology and random topology

We now demonstrate scalability to larger ad-hoc networks
with multi-hop requirements. The larger network topology is
shown in Figure 3b and has 16 nodes in total: 4 source nodes
and 12 non-source nodes. As before, nodes are arranged in a
grid, but now we have four nodes in each row. We simulate
a larger generation with n = 50 and 4 layers with layer
sizes r = (10, 10, 15, 15). Figure 5 shows the simulation
results for medium feedback rate (λdata/λfb = 1/2) and varying

grid distances x between neighbor nodes from 10 m to 50 m.
Figures 5a to 5c give decoding delay for layer 1, layers 1–2,
and layers 1–4, respectively.

iNsPECt allows nodes to retrieve the most highly prioritized
1st layer 74.1 %, 74.7 %, and 72.6 % faster than HNC for node
distances of 10 m, 30 m, and 50 m, respectively. Also, the first
layer’s retrieval time with iNsPECt almost matches the lower
bound; only at 40 m and 50 m distance, the results show 2.4 %
and 9.0 % delay for the 1st layer.

Results look similar for the second layer in Figure 5b, where
iNsPECt yields a 52.9 % to 51.2 % reduced per-layer delay
over HNC. Interestingly, the benefit of HNC over RLNC for
prioritized layers diminishes with greater distances between
nodes (and thus lower PDR): at 40 m distance between nodes,
HNC gives roughly the same per-layer delay as RLNC. We
attribute the poor performance of HNC with low PDR in the
large-scale scenario to inefficient multi-hop capabilities: when
the source has few opportunities to successfully transmit linear
combinations to the inner nodes in the network, low priority
linear combinations are more useful, because they have much
higher chance of being innovative.

As expected, Figure 5c shows that the last layer – and
thus all layers due to the hierarchical layer structure – is
decoded the fastest with RLNC, which has the highest level
of error protection against packet loss and the lowest chance
of sending linear combinations of layers that already have full
rank in neighbors. The delay given in Figure 5c is a direct
indicator for the total number of transmissions required for
sending one full generation. Therefore, it is also indicative
for achievable throughput. For distances at or below 30 m,
iNsPECt has at most 5.4 % overhead compared the optimum
RLNC. This overhead increases to 8.5 % at 40 m distance
between neighbors and 19.2 % at 50 m. HNC, in comparison,
results in a message overhead of 55.1 % over RLNC.

Last, we verify the system’s properties in a set of larger
randomized topologies. Figure 6 shows mean per-layer delay
for twenty different topologies where the nodes’ locations are
selected uniform at random in a 90m × 90m square. Again,

422

we see a better performance of iNsPECt than HNC for all
layers and a low total overhead of only 5.1 % compared to
RLNC. Notably, iNsPECt enables decoding the most highly
prioritized first layer 74.5 % faster than HNC.

D. Summary

We evaluated iNsPECt in both smaller and larger scenarios
and compared it to HNC and RLNC for different feedback
rates, distances, and topologies. iNsPECt significantly outper-
forms HNC in every scenario that we tested. Having only
sporadic feedback and thus outdated decoder state information
has no effect on the system’s overhead in terms of linear
dependency, but it increases decoding delay for some layers,
albeit keeping delay significantly lower than HNC. Remark-
ably, in all scenarios, that is, for small and large distances, for
high and low feedback rates, and for the small and larger-scale
scenarios, the most highly prioritized layer’s decoding delay
was within 10 % of the optimum. The overhead of iNsPECt
compared to RLNC over all scenarios is consistently less than
20 %, which we consider a low cost for having prioritization.

VII. CONCLUSION AND FUTURE WORK

We describe a protocol that addresses a principal problem
of existing prioritized network coding protocols. Namely, we
answer the question which layer to use for generating linear
combinations. Towards this end, we propose a novel, dis-
tributed algorithm, iNsPECt, that leverages limited feedback
containing each layer’s subspace dimension. iNsPECt defines
two performance indicators that enable it to deviate from
a greedy strategy in order to reduce prioritization overhead
without affecting prioritization performance. Our evaluation
shows that the proposed algorithm consistently outperforms
HNC and, under good network conditions, approaches the
lower bound on required transmissions that is achieved by
non-prioritized RLNC. In addition, the highest priority layer’s
decoding delay is nearly optimal in all scenarios. Our results
demonstrate that (1) prioritized network coding can be realized
with low overhead, and (2) that even small feedback messages
are sufficient for effective prioritization in such systems.

A future research direction is to observe the algorithm’s
performance in a more sophisticated network protocol: it
is conceivable that observed channel conditions and limited
network topology information supplied by such a protocol
could be utilized to better estimate neighbors’ decoder state if
recent feedback is unavailable. In particular, we would expect a
reduced per-layer delay for mid-priority layers when expected
packet-loss rates are incorporated into the layer selection
process that is used for generating linear combinations.

ACKNOWLEDGMENTS

We thank Sebastian Henningsen for helpful discussion.
Also, we thank our anonymous reviewers for their constructive
feedback.

REFERENCES

[1] C. Fragouli, J.-Y. Le Boudec, and J. Widmer, “Network coding: An
instant primer,” 2006.

[2] R. Ahlswede, N. Cai, S. Y. R. Li, et al., “Network information flow,”
Jul. 2000.

[3] Baochun Li and Di Niu, “Random Network Coding in Peer-to-Peer
Networks: From Theory to Practice,” 2011.

[4] Christos Gkantsidis, John Miller, and Pablo Rodriguez, “Comprehen-
sive view of a live network coding P2P system,” presented at the
Internet Measurement Conference, 2006.

[5] X. Chu and Y. Jiang, “Random linear network coding for peer-to-peer
applications,” Jul. 2010.

[6] E. Magli, M. Wang, P. Frossard, et al., “Network coding meets
multimedia: A review,” 2013.

[7] M. Wang and B. Li, “Lava: A reality check of network coding in
peer-to-peer live streaming,” in IEEE INFOCOM 2007 - 26th IEEE
International Conference on Computer Communications, May 2007.

[8] S.-Y. Li, Q. Sun, and Z. Shao, “Linear network coding: Theory and
algorithms,” Mar. 2011.

[9] T. Ho, R. Koetter, M. Medard, et al., “The benefits of coding over
routing in a randomized setting,” 2003.

[10] O. Trullols-Cruces, J. M. Barcelo-Ordinas, and M. Fiore, “Exact
Decoding Probability Under Random Linear Network Coding,” Jan.
2011.

[11] K. Nguyen, T. Nguyen, and S. c Cheung, “Peer-to-peer streaming with
hierarchical network coding,” in 2007 IEEE International Conference
on Multimedia and Expo, Jul. 2007.

[12] D. Vukobratović and V. Stanković, “Unequal error protection random
linear coding for multimedia communications,” in Multimedia Signal
Processing (MMSP), 2010 IEEE International Workshop On, IEEE,
2010.

[13] R. Naumann, S. Dietzel, and B. Scheuermann, “Best of both worlds:
Prioritizing network coding without increased space complexity,” in
2016 IEEE 41st Conference on Local Computer Networks (LCN), Nov.
2016.

[14] M. Esmaeilzadeh, P. Sadeghi, and N. Aboutorab, “Random Linear Net-
work Coding for Wireless Layered Video Broadcast: General Design
Methods for Adaptive Feedback-Free Transmission,” Feb. 2017.

[15] Z. Yan, H. Xie, and B. W. Suter, “Rank deficient decoding of linear
network coding,” in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, May 2013.

[16] Shenglan Huang, Michele Sanna, Ebroul Izquierdo, et al., “Optimized
scalable video transmission over P2P network with hierarchical net-
work coding,” presented at the ICIP, 2014.

[17] P. Chau, S. Kim, Y. Lee, et al., “Hierarchical random linear network
coding for multicast scalable video streaming,” in Asia-Pacific Signal
and Information Processing Association, 2014 Annual Summit and
Conference (APSIPA), IEEE, 2014.

[18] B. Shrader and N. M. Jones, “Systematic wireless network coding,”
in MILCOM 2009 - 2009 IEEE Military Communications Conference,
Oct. 2009.

[19] J. Claridge and I. Chatzigeorgiou, “Probability of Partially Decoding
Network-Coded Messages,” 2017.

[20] Y. Wu, P. Chou, K. Jain, et al., “A comparison of network coding and
tree packing,” in Information Theory, 2004. ISIT 2004. Proceedings.
International Symposium On, IEEE, 2004.

[21] S. Chachulski, M. Jennings, S. Katti, et al., “MORE: A network coding
approach to opportunistic routing,” 2006.

[22] T. R. Henderson, M. Lacage, G. F. Riley, et al., “Network simulations
with the ns-3 simulator,” 2008.

[23] M. Lacage and T. R. Henderson, “Yet another network simulator,”
in Proceeding from the 2006 Workshop on Ns-2: The IP Network
Simulator, ACM, 2006.

[24] H. Hashemi, “The indoor radio propagation channel,” 1993.
[25] S. Phaiboon, “Space Diversity Path Loss in a Modern Factory at

frequency of 2.4 GHz,” 2014.
[26] P. L’Ecuyer, R. Simard, E. J. Chen, et al., “An Object-Oriented

Random-Number Package with Many Long Streams and Substreams,”
Dec. 2002.

423

