
EDOS-Tools Tutorial: EDOS Tools for

Linux Distributions Dependencies

Management and Quality Assurance

François Déchelle1, Fabio Mancinelli2

1EDGE-IT, France

fdechelle@mandriva.fr
2PPS - Université Paris VII, France

fabio@pps.jussieu.fr

Abstract. Free and Open Source Software (FOSS) distributions are the results

of the effort of third party actors in collecting independently developed

software products, in a consistent and usable form. The widespread adoption

of these distributions as infrastructural components in many strategic contexts

of the information technology society has drawn the attention on the issues

regarding how to handle the complexity of assembling and managing a huge

number of (packaged) components and how to guarantee their quality. This

tutorial will describe how the EDOS project has tackled these issues. First it

will describe the problems related to the quality assurance of Linux

distributions and will present the tools that have been developed to manage

testing process. It will then introduce the problems that occur when managing

inter-package relations in large package repositories and will showcase tools

that can be used to analyze and manage large package repositories.

Description

The tutorial will be organized in two parts. The first part will introduce the issues

related to testing and quality assurance of heterogeneous Open Source packages and

present tools developed in the EDOS project for managing Linux distribution testing

and quality assurance processes. The second part will introduce the state of the art in

Linux package management systems and problems regarding the management of

inter-package relations (dependencies and conflicts) in large package repositories.

François Déchelle, Fabio Mancinelli364

1.1 Testing and quality assurance

The tutorial will detail the use of the following tools:

• Testrunner: a tool for conducting automatic and manual tests and reporting test

results. Testrunner uses an XML-based test specification and can report test

results using several reporting plug-ins, for instance to report results to the QA

portal using HTTP request.

• TULIP: a tool to test upgrades of Linux installations using virtual machines and

the distribution standard upgrade tools. TULIP can run automatic upgrades of

installed Linux distributions, test the upgraded distributions and reports results to

the QA portal using Testrunner.

• QA Portal: a web portal for test management, that allows testers and distribution

developers to have a real-time and accurate view of the distribution testing

process including available test suites, tests, reports of executed tests...

The tutorial will present how to install the tools, how to setup a complete

distribution testing environment and will feature a hands-on session on a realworld

distribution testing process.

1.2 Large package repositories complexity and dependency management

The second part will introduce the state of the art in Linux package management

systems and problems regarding the management of inter-package relations

(dependencies and conflicts) in large package repositories. A set of tool that can be

used by distribution editors to analyze and manipulate repositories in order to find

potential problems due to incorrect inter-package relation specifications will then be

showcased:

• DEB/RPMCheck: a dependencies correctness checker. DEB/RPMCheck

provides a fast way for analyzing whole package repositories and to spot

problems that can be present in package dependency meta-data.

• History: historical analysis and symbolic manipulation of package repositories.

History is powered by a powerful functional language called DQL that enables

the user to perform sophisticated queries on package repositories and to

manipulate them in a declarative way by using some advanced operators.

Moreover, History supports the analysis of historical data for tracking the

evolution of package repositories over time.

• Anla: a web service for package repository exploration. Anla is the web-oriented

counterpart of History that can be used by distribution editors to provide a direct

feedback on the distribution status to users, testers and developers. Advanced

queries can be performed using this interface and hyperlinked graphical results

are provided as output.

• Tart: an optimized “thinner” for building custom distributions. Tart enables

distribution editors to build custom distributions that met some constraints (e.g.

space or priority). By using Tart it is possible to create package sets that are

closed with respect to dependency relations and that satisfy the optimization

needs defined by the constraints.

