
Inferring Live Streaming Delays in the Wild
Megumi Ninomiya

IIJ Research Lab.
Kenjiro Cho

IIJ Research Lab.

Abstract—In live video steaming over HTTP, a client requests
a series of video segments created on the fly, using the standard
HTTP pull model. Fetching and buffering video segments are
under clients’ control, which incurs extra playback delay between
a real-world live event and its appearance in video playback for
the client. Previous studies, on the client side, show that playback
delay is in the order of tens of seconds, but they are limited to
small-scale measurement.

In this paper, we present a model of playback delays in
live streaming over HTTP by analyzing actual server logs, and
propose a practical method to infer playback delays for each
client only from Web server logs, in order to investigate playback
delays for the entire users. By applying the proposed method to
the server logs of a large-scale live streaming event, we have
captured the distribution of playback delays which are normally
distributed and found that the initial playback delay is the
dominant factor in playback delays. From the results, we have
identified two major factors of playback delays: segment length
and startup buffering on the client side. We found typical buffer
sizes used by different client types, and that the vast majority
of playback delays falls into the range: mean plus-or-minus two
segment-lengths.

I. INTRODUCTION

The protocols used for video streaming are shifting from
video-specific protocols to generic HTTP-based protocols,
because the HTTP-based protocols work over most firewalls
and are supported in popular Web browsers. Video streaming
service providers can use standard servers and load-balancers
designed for general Web services. Thus, video streaming over
HTTP is quickly becoming the mainstream for live streaming.

However, the playback delay in live streaming over HTTP
is much larger and more variable than dedicated streaming
protocols such as RTP over UDP [1]. In live streaming over
HTTP, clients request segment files which are created on the
fly. A segment file can be created only after the end of its
period, and a client could arrive just before a new segment
file becomes available. Thus, segmentation, by definition,
introduces at least one, but up to two segment long delay.
Furthermore, an additional delay is incurred by the network
condition as well as client implementations such as segment
fetching and buffering strategies. In practice, a client needs
to buffer multiple segments before starting playback to absorb
variability. As a result, users experience considerably different
delays even when watching the same live video.

The presence of playback delay is well known to content
providers and streaming service providers. Users are also
aware of the time lag from the corresponding TV broadcasting,
and sometimes experience news on SNS coming tens of
seconds earlier than the corresponding scene on the live
streaming.

Moreover, popular live streaming services are often com-
bined with other live feeds such as a live score feed for a
sporting event and a live feed from SNS on the event. For
such services, the provider needs to insert a certain delay to
the feeds, in order to avoid the news on the feeds appearing
earlier than the live streaming. The length of the inserted delay
is often determined only empirically. However, we could use
a statistical method if the distribution of playback delay were
available.

Traditional methods for measuring playback delay require
installing a measurement tool on the client side. As such, it is
difficult to scale up for a large number of clients.

In this paper, we present a model of playback delay in live
streaming over HTTP, and propose a method to infer playback
delays for each client only from Web server logs.

We have applied this method to real-world Web server
access logs collected from the “Summer Koshien” high school
baseball tournament, one of Japan’s most popular sporting
events. We first validate the proposed method by comparing
the inferred playback delays against the measurements at
sampled clients. Then, we infer the playback delays for the
entire clients in the server logs. We found that the initial
playback delay is the dominant factor in playback delays, and
the segment length and startup buffering on the client side are
two major contributing factors. We also found typical buffer
sizes used by different client types. From the inferred playback
distribution, we show that the vast majority of playback delays
falls into the range: mean plus-or-minus 2 segment lengths.

The contributions of the paper are (1) the proposed model of
playback delay for live streaming, (2) the proposed technique
to infer playback delays only from general server logs, (3)
identifying major delay factors contributing to our understand-
ing of live streaming behaviors, and (4) the Koshien results
showing practical delay bounds among users.

II. BACKGROUND

In this section, we provide the basics of content delivery
and playback methods in streaming over HTTP, and describe
the differences of live streaming and on-demand streaming.

A. HTTP Streaming

In streaming over HTTP, video data is divided into a series
of segment files by fixed time length, and placed on Web
servers for delivery. When starting video playback, a client
first requests a manifest file from the Web server using the
HTTP GET method. A manifest file contains a list of URLs
for available segment files, and the client requests segment files

in sequence referring to the list. A client initially buffers a few
segments, and then, starts playing the video. During playback,
a client repeatedly requests subsequent segment files trying to
keep the data volume in the buffer. There are different HTTP
streaming technologies such as HTTP Dynamic Streaming
(HDS) by Adobe, HTTP Live Streaming (HLS) by Apple,
Smooth Streaming (MSS) by Microsoft, and MPEG Dynamic
Adaptive Streaming over HTTP (MPEG-DASH) standardized
by ISO. They are similar in the concept, and our model applies
to all of these.

B. Differences between On-Demand and Live Streaming

There are two types of streaming over HTTP: one is on-
demand streaming and the other is live streaming. Both types
share the basic mechanisms using segmentation and HTTP,
but, in live streaming, segment files are created on the fly and
the manifest file is updated every time a new segment file
is created. Therefore, a client needs to repeatedly request the
manifest file and segment files one after another.

Furthermore, the buffering size at a client is different. For
on-demand streaming, since all the segment files exist before-
hand, clients can have sufficient buffering at the starting time
to avoid buffer underflow. On the other hand, in live streaming,
the amount of buffering is a trade-off between liveness and the
risk of buffer shortage. Larger buffering at the starting time
requires starting from an older segment, and thereby impairs
the liveness. Hence, clients usually use a smaller buffer for
live streaming than for on-demand streaming.

III. MODEL OF PLAYBACK DELAY

In this section, we propose a model for playback delay in
live streaming over HTTP. There are multiple factors which
contribute to playback delays. They are roughly divided into
two groups: the initial delay at the video starting time and the
pause delays caused by buffer underflows during the playback.

It is important to note that when no buffer underflow occurs
during the playback, the initial delay is kept for the whole
playback period. Thus, the initial delay is the major delay
factor when the playback is smooth. On the other hand, if
a buffer underflow causes a short pause for the playback,
the playback is delayed for this period of time. The pause
delays accumulate every time a pause occurs as long as video
segments are played in order without skipping any segment. In
this model, we consider only consecutive sequences and, when
a segment skipping occurs, we count it as another sequence.
Thus, it is enough to capture the initial delay and the pause
delays.

A. Initial Playback Delay

The initial playback delay is illustrated in Fig. 1. The camera
at the top captures video and the video is split into scenes
of fixed length l; Tr(i) is the start time of scene i. Then,
scene i is encoded into segment file i and uploaded to the
cache server along with the updated manifest file at Tu(i).
Typically, multiple cache servers are used for load balancing,
and we omit other intermediaries such as an encoding server

(d) Time(a)

Camera

i+1 i+2 i+3

Cache
server

i+1 i+2 i+3

(b)

manifest

segment

(c)

i-1

(e)

i+1 i+2i-1

l
Tr(i)

i

i

l

i

i

i

Tu(i)

l
client k starts at manifest i, plays from segment i � N . N = 2

i-2 i-1

(e)

Tu(i-2)

(b) (c)

S
ce

n
ar

io
M

od
el

Availability Time

cplay

(�init)
Initial player delay

�enc

Tm(i)

Ts(i-2)

Tp(i-2)

�dec

Nl

(Dinit)
The total length of
initial playback delay

�l

Tp(i)
display

client k i-2

i-2

Fig. 1. Scenario and model of initial playback delay

and a content source server in this model. At some point, client
k arrives and first downloads the latest manifest file at Tm(i).
The latest segment is i in the manifest, but for buffering (2
segments in the example), the client starts downloading from
segment (i − 2) at Ts(i − 2). The client feeds the download
segments into the decoder, and finally the scene (i−2) appears
on the display at Tp(i− 2).

We classify the initial playback delay into 5 factors:
(a) Encoder Delay is the total delay on the encoding side,

from the camera input to the upload time of the corresponding
segment file on the cache server. The encoder delay includes
the segmentation delay of l seconds, inherent to the video
segmentation. A segment file can be created only after the
corresponding period so that the delay is always larger than
l. The other factors include encoding time and file uploading
time; video can be encoded into multiple bit-rates for adaptive
bit-rate and there could be multiple data transfers between the
camera and the cache server. However, the encoder delay does
not change much for different segments and is considered a
constant.

(b) Arrival Timing Delay is the delay caused by the arrival
timing within the segment interval [0, l), which is also inherent
to video segmentation. When a client requests the manifest file
for the first time, this timing falls within the segment interval
[0, l) so that the latest manifest file is up to l seconds old from
its updated time on the cache server.

(c) Segment Request Delay is the time period between
requesting a manifest file and requesting the corresponding
segment. The segment request delay includes the manifest
processing time and the segment transfer time.

(d) Decoder Delay is the total delay on the decoder, after
the player’s placing the video data into the decoder input buffer
until the video appears on the display. The decoder delay also
does not change much for different segments so it is considered
a constant in our model.

S
eg

m
en

t
N

u
m

b
er

Time

Constantly
Playing

i) Resume
Playing

ii) Restart
Playing

bu�er
underflow

(f)

Fig. 2. Two types of pause recovery from buffer underflows

(e) Backtracking Delay is the delay caused by a player to
play back from older segments. For initial buffering, a player
needs to start from an older segment. For example, if the initial
buffering is 2 segments and the latest segment is i, a player
starts playing from (i− 2), adding 2l seconds to the delay.

B. Pause Delays by Buffer Underflows

When a client fails to download next segment in time,
the decoder buffer underflows, resulting in a pause in video
playback. There are two types of pause recovery, with or
without segment skipping, as illustrated in Fig. 2. If the client
is able to download the next segment only slightly behind
time, the client continues to play it in order without skipping
any segment. In this case, the pause incurs extra delay for
playback, and such delays are cumulative. On the other hand,
if it is far behind, the client gives up continuous play, and starts
over by downloading the latest manifest file. Some segments
are skipped as a result of the restart. In terms of playback
delay, this case is identical to a new arrival so that a restart
can be treated as a separate sequence. Thus, for investigating
playback delay, we consider only consecutive sequences and
extract pause delays in a sequence.

C. Model of Playback Delay

Based on the classified factors, we define a simple model for
the playback delay for client k. The delay for playing segment
i consists of the encoder delay (a), δenc, the player delay
(b)(c)(e) and pause delays by buffer underflows, Dplay(i), and
the decoder delay (d), δdec.

D(i) = δenc +Dplay(i) + δdec (1)

The player delay Dplay(i) can be inferred from server logs,
and consists of the initial player delay for the initial segment
and the accumulated pause delays:

Dplay(i) =

{
δinit if first segment
δinit +

∑
i P (i) otherwise (2)

Here, P (i) is the pause time for segment i and 0 when no
pause occurs. We will show how to infer P (i) in the next
section.

In the initial player delay, the arrival timing delay (b) is
a fraction of l and expressed as αl where α is [0, 1) and
E[α] = 0.5 for random arrival. The backtracking delay (e) is
Nl, where N is the number of backtracked segments for the
initial buffering and constant for a player implementation. The
segment request delay (c) can be approximated as a constant
cplay . Then, δinit becomes:

δinit = (α+N)l + cplay (3)

Note that δinit is equivalent to the time from the upload time
to the download time of the first segment (i − 2), as shown
by the bottom arrow in Fig. 1.
δenc and δdec is independent of segments, and approximated

as constants. Further, δenc includes the segmentation delay l
and the rest of the encoding delay. Then, δenc and δdec become
δenc = l + cenc and δdec = cdec. Thus, the initial delay for
client k is:

Dinit = δenc + δinit + δdec

= (1 + α+N)l + cplay + cenc + cdec

(4)

From the server logs, we cannot observe cenc and cdec, but
it is possible to obtain these values separately, for example,
by performing a simple lab test. The rest of the values can be
inferred from server logs.

Finally, the playback delay for client k is:

D(i) =

{
Dinit if first segment
Dinit +

∑
i P (i) otherwise (5)

IV. INFERENCE METHODOLOGY

There are limited information in server logs. We can extract
only request sequences of segment files for each client. Our
inference method is to retrofit segment request sequences into
the model presented in the previous section.

A typical server access log entry contains client IP address,
timestamp (the time the server finishes processing the request
in second), requested file name, status code, and User-Agent.
For manifest files and segment files, we can obtain only their
downloading times. We can distinguish different segment files
by file name, but not manifest files as its file name is always
the same. For distinguishing clients, we use the pair of client
IP address and User-Agent, and extract only request sequences
of consecutive segments.

A. Preprocessing

In the preprocessing, we extract the availability time of
each segment file, and consecutive request sequences for each
client.

Availability Time: The availability time of a segment file
is an approximation of the segment upload time on the server.
Because the upload time of a segment file is not available
in logs, we use the time for the first request of a given
segment file as the availability time, an approximated time
of the upload. We will validate this approximation in Sec VI.

Consecutive Request Sequences: To extract consecutive
request sequences for each client, we first classify requests by
unique pairs of IP address and User-Agent. Then, we extract
request sequences of consecutive segments for each client.
When there is a hole in a sequence, they are considered as
separate sequences. We exclude sequences which are too short
for video viewing analysis, empirically using 5 consecutive
segments as the minimum view length.

B. Inference Method

For each request sequence, we infer the initial player delay
δinit in Equation 3 and the pause delay of each segment P (i)
in the request sequence.

Once we have the availability time for each segment, δinit
for each request sequence is approximated as the difference
between the availability time for the first segment in the
sequence and the download time of this segment.

For the accumulated pause delays, we infer the finishing
time of playing each segment file, taking buffering into con-
sideration. If the download of a segment file is earlier than the
finishing time of the previous segment, the segment is buffered
without buffer underflow or pause. On the other hand, if the
download time is later than the finishing time of the previous
segment, buffer underflow occurs resulting in a pause.

Let Td(i) be the download time, and Tf (i) be the finishing
time for segment i. Assuming some delay cbuf between the
segment download time and its play’s starting time, we can
compute the finishing time as follows:

Tf (i) =

 Td(i) + l + cbuf if first segment or
Td(i) ≥ Tf (i− 1)

Tf (i− 1) + l otherwise
(6)

Then, the pause time for segment i is:

P (i) =

 0 if first segment or
Td(i) < Tf (i− 1) + cbuf

Td(i)− Tf (i− 1) + cbuf otherwise
(7)

In our analysis in Sec VII, we conservatively set cbuf = 0.
Using these methods, we can infer the playback delay for

each client only from Web server logs.

V. DATASETS

In this section, we present an overview of the live streaming
event and the data collection.

A. Overview of Summer Koshien Live Streaming

The National High School Baseball Championship at
Koshien Stadium, commonly known as “Summer Koshien”,
is the largest amateur sporting event in Japan [2].

The games have been live-streamed over HTTP since 2012
[3], and the number of accesses in 2015 was more than
doubled from the previous year [4]. The live streaming was
provided by www.asahi.com, which is a major website of
Japanese news company in 2015. Table I presents an overview
of the live streaming of Summer Koshien in 2015. Over the
two weeks of the tournament, there were approximately 4.6

TABLE I
OVERVIEW OF THE LIVE STREAMING OF SUMMER KOSHIEN 2015

period of time
total Sent # total # Unique

requests data clients IPs
(billions) (TB) (millions) (millions)

14days (122hours) 4.6 1,456 6.6 2.1

TABLE II
ACCESS RATIO BY CLIENT TYPE

Client Type PC Browsers Mobile Apps Mobile Browsers
requests 80% 4% 16%
clients 49% 9% 42%

billion total requests and 2.1 million unique IP addresses.
During the final game, the peak traffic of 238Gbps was
recorded.

For content distribution, up to 28 Web servers (nginx) were
used for load balancing at IIJ [5], an ISP in Japan. The original
content was encoded by Asahi Broadcasting [6] and uploaded
to the ingest server at IIJ using Real Time Messaging Protocol
(RTMP). Two types of content were generated at the ingest
server: HTTP Dynamic Streaming (HDS) for personal comput-
ers, and HTTP Live Streaming (HLS) for mobile devices. The
segment length is fixed to 8 seconds for all contents, which
is conservatively selected for stability rather than for liveness.
For both device types, the video was encoded into two bit-
rates, 450kbps and 750kbps, for adaptive bit-rate streaming.

We classify clients by User-Agent into 3 groups: PC
Browsers, Mobile Apps, and Mobile Browsers. The PC
Browsers includes IE, Chrome, Safari and Firefox. The Mobile
Apps are dedicated mobile applications for the event that
were available for iOS and Android. The Mobile Browsers
are general browsers on iOS and Android.

Table II compares client types by the number of requests and
clients. Clients are identified by client IP address and User-
Agent. The PC Browser is 80% in the number of requests,
but only 49% in the number of clients, because the average
viewing time of PC users is much longer than that of mobile
users. Within mobile users, the majority used general browsers
rather than the apps.

B. Server Logs

We collected all the access logs for the games from the
Web servers used for the content distribution. Table III lists
the logged items for each request; the log format is similar
to the Apache Combined Log Format. The timestamp is the
completion time of the request processing, represented in
seconds. Having only one second resolution in the timestamp
is a major limitation in our analysis, but it is a common
practise for server logs and still provides meaningful results
for the segment length of 8 seconds in our dataset.

C. Client Side Data

In order to evaluate the proposed inference method, we need
ground truth data of playback delays. To this end, we placed 3
types of players (Mac, iOS and Android) and TV side by side
at home, and recorded their displays by a video-camera during

TABLE III
SERVER LOG FORMAT

1 client IP address
2 server IP address
3 timestamp
4 HTTP request
5 response status code
6 content body size
7 referrer
8 User-Agent

TABLE IV
CLIENT SIDE DATA OVERVIEW

OS Player Network Content # samples
OS X Firefox CATV HDS 98510.9.5 40.0
iOS App.

LTE HLS
1088.1.2 (AppleCoreMedia)

Android App. 1034.4.2 (VisualOn OSMP+)

TABLE V
CONSECUTIVE REQUEST SEQUENCES

Client Type PC Mobile Mobile
Browsers Apps Browsers

consecutive request 18.2 1.1 3.7sequences(millions)
segment file 1.63 0.08 0.28requests(billions)

extracted segments 91.7% 89.9% 84.8%/ all segments
mean sequence size 89.6 77.0 77.8in segments

median sequence size 57 31 25in segments

the games. To observe variability in the initial playback delays,
we repeated measurement cycles that launches the player, runs
it for 2 minutes, terminates it, and waits for one minute. To
launch and terminate the player, we used the cron utility on
OS X over 12 sampled days, but did it manually on the mobile
devices over one sampled day each.

Later, we manually measured the delays in the streaming
playback from the recorded video, by identifying specific
scenes and then matching the same scenes appearing on the
TV and the streaming playback. The obtained delay samples
are 985 for Mac, 108 for iOS, and 103 for Android as shown
in Table IV. We used a video editing application to find the
same scenes manually. However, since we collected easy-to-
find scenes, we believe that the granularity of this method is
under one second.

Although this dataset is only from a single vantage point
and only for 3 clients, we can validate our proposed method
using this ground truth dataset as shown in the next section.

VI. MODEL VALIDATION

In this section, we validate our proposed model. First,
we validate the preprocessing methods, by examining the
availability time and consecutive request sequences extracted
from the server logs. Subsequently, we validate the proposed

0 10 20 30 40 50 60 70

Inferred playback delays from server logs (sec)

0

10

20

30

40

50

60

70

M
e
a
su

re
d
 p

la
y
b
a
ck

 d
e
la

y
s

fr
o
m

 v
id

e
o
 (

se
c)

cenc+cdeccenc+cdec

Mac:Firefox

Android:App

iOS:App

Fig. 3. Validation of playback delay inference

model by comparing inferred playback delays from the server
logs against the measured playback delays.

A. Validation of Preprocessed Data

Availability Time: we use the availability time of a segment
file as an approximation of the upload time of the segment file.
The assumption is that, if there are enough number of requests
for each segment file, the earliest request is close to the upload
time. The question here is how many requests per segment file
is required to use the availability time as approximation.

We validate the availability time by observing the time
intervals for consecutive segment files. The upload times of
consecutive segment files should be apart by the segment time
length l. Accordingly, the intervals of the availability time of
consecutive segment files should be l seconds.

We compute mean and standard deviation for intervals
of the availability time in consecutive segment files against
the number of requests per segment file. We confirmed that
both mean and standard deviation converge as the number of
requests per segment file increases; the point of convergence is
200 requests per segment file in our dataset. Thus, for delay
inference, we used the segment files having more than 200
requests, and consecutive sequences of such segments longer
than 450 segments (one hour in time length).

Consecutive Request Sequences: Table V summarizes the
extracted consecutive sequences. We have a sufficient number
of sequences that cover most of the segments in the logs. The
median sequence size is 57 segments (456 seconds) for PC
Browsers, 31 segments (248 seconds) for Mobile Apps, and
25 segments (200 seconds) for Mobile Browsers.

B. Validation of Playback Delay Inference

For evaluating the proposed method, we compare the
measured delays with the inferred delays derived from the
corresponding log entries. In this dataset, we observed only a
small number of pause delays so that the inferred delays are
mostly about the initial playback delays.

TABLE VI
COMPARISON OF MEASURED VALUE AND INFERRED VALUE

client

difference between
slope of correlation measured value

regression coefficient and
line inferred value

mean std.
Mac:Firefox 0.9519 0.97 20.1 2.4

iOS:App 0.9314 0.91 10.9 1.1
Android:App 0.9359 0.83 28.6 1.8

TABLE VII
CALCULATED INITIAL PLAYBACK DELAY

Client Type PC Mobile
Browsers Apps & Browsers

mean of the initial player delay (sec) 12 21
backtracking delay (sec) 8 17

number of backtracked segment (N) 1 2
calculated initial playback delay 20 28from the proposed model (sec)
inferred initial playback delay 20.7 29.4from server logs (sec)

Fig. 3 compares the inferred playback delay from the
server logs on the X-axis with the measured delay from the
captured video on the Y-axis. Each client constitutes a cluster
or two that are parallel to the diagonal line, meaning that
the differences are roughly constant for each cluster. The
difference is expected as we cannot observe the delays on the
encoder and the decoder that are cenc and cdec in Equation 5.
Table VI shows the details of the differences.

The results confirm that the proposed method successfully
infers the playback delay except constant delay components
on the encoder and the decoder sides. The actual delay can
be inferred by adding these missing constants that can be
measured separately, which we leave for future work.

As a side note, Android:App has two clusters but on
the same sampled day. We suspect that it is caused by the
client implementation, probably on the selection of manifest
files. As for the differences of client types, Android:App
has much longer playback delays than iOS:App, even though
the applications are similar in design and they use the same
HLS format. The difference is probably due to differences in
design and implementations of their system components. It
also suggests that different implementations have a significant
impact on the total playback delay.

VII. INFERRING STREAMING DELAY

In this section, we first estimate the number of backtracked
segments N for the initial buffering for different client types.
Next, we look at the distribution of pause delay. Finally, we
apply our method to infer playback delays for the entire server
logs, and look into the distribution of playback delays.

A. Calculating Initial Player Delay from the Model

In our inference method, the initial player delay δinit is
derived simply from the availability time and the download
time of the first segment in a sequence. Thus, we do not need

0 5 10 15 20 25 30 35

Distribution of initial player delays (sec)

0.0

0.1

0.2

0.3

0.4

P
D

F

Arrival timing
delay

within l: 91.6%

Arrival timing
delay

within l: 91.6%

Backtracking
delay

aaaaa8 sec

Arrival timing
delay

within l: 86.8%

Arrival timing
delay

within l: 86.8%

aaaaaaaaaaaaaa17 sec

Windows7:IE11 32bit

iOS8.4:Mobile Safari8

Fig. 4. Distributions of the initial player delays for two most popular User-
Agent types

10 12 14 16 18 20 22 24

Mean of initial player delays (sec)

84

86

88

90

92

94

96

98

R
a
ti

o
 o

f
a
rr

iv
a
l
d
e
la

y
 w

it
h
in

 l
 (

%
) Windows:IE

Windows:Chrome

Mac:Safari

iOS:App

Android:App

iOS:Browser:Mobile Safari

iOS:Browser:Mobile

iOS:Browser:AppleCoreMedia

Android:Browser:stagefright

Fig. 5. Mean initial player delays of different User-Agent types

the number of backtracked segments N for initial buffering
that is different for each client types.

However, we can derive N for different client types, by
applying inferred results to the model. Then, it becomes
possible to calculate the initial player delay δinit for a client
type from Equation 3, without using any dataset.

In a simple case, a client, on arrival, first downloads the
manifest file with the latest segment i, and then, downloads
the first segment (i − N). Because we can infer the latest
segment in the manifest file using the availability time, we
can infer N .

In reality, however, it is not that simple because many clients
downloads the manifest file multiple times before downloading
the first segment, and it often takes several seconds. As a
result, it is difficult to identify the corresponding manifest
download for the first segment file.

Thus, we extract sequences in which the first manifest
file and the first segment file are downloaded back to back,
within one second, the timestamp resolution of the logs. This
corresponds to (cplay = 0) in our model.

We used the extracted sequences and inferred the initial
player delay δinit from these sequences. Fig. 4 depicts the
distribution of δinit for the two most popular User-Agent
types: Windows7:IE11 32bit and iOS8.4:Mobile Safari8. The
distribution is supposed to be a mixture distribution of a

100 101 102 103

Pause delays by buffer underflows (sec)

10-6

10-5

10-4

10-3

10-2

10-1

100

C
C

D
F

PC Browsers

Mobile Apps

Mobile Browsers

Fig. 6. Distributions of pause delays

rectagular distribution for the arrival timing delay [0, l) and
a normal distribution for measurement variability. In fact,
each distribution in the figure looks like such a distribution,
and the vast majority of the values fall into the range of l
seconds caused by the arrival delay. Thus, the backtracking
delay corresponds to (mean−l/2), the left edge of the grayed
area in the figure.

We applied this method to other User-Agent types, and the
results are plotted in Fig. 5. In the figure, the mean value of
δinit is plotted on the X-axis and the population within the
range of l is plotted on the Y-axis.

The User-Agent types are clearly divided into two groups:
one for PC and the other for mobile. Each group includes
multiple User-Agent types with different versions. The back-
tracking delay is 8 seconds for PC Browsers, and 17 seconds
for Mobile Apps and Mobile Browsers. Therefore, we estimate
the number of backtracked segments N to be 1 for PC
Browsers and 2 for Mobile Apps and Mobile Browsers.

Applying these numbers for N and using (α = 0.5) and
(cplay = 0) in Equation 3, we obtain the initial player delay
δinit to be 20 seconds for PC Browsers, and 28 seconds for
Mobile Apps and Mobile Browser as shown in Table VII.

These numbers are derived only from the extracted se-
quences with (cplay = 0) but also match the original se-
quences. The inferred initial player delay from the original
sequences is 20.7 for PC Browsers and 29.4 seconds for
Mobile Apps and Mobile Browsers.

B. Impact of Pause Delay

The distribution of pause delay P (i) is shown in Fig. 6.
Less than 1% of the segments experienced pause delays. Large
pause delays seem to be caused by bugs in implementations
where a player does not restart after a long pause (likely
triggered by a user action) and continues fetching the stale
next segment. The longest pause delays are beyond 10 hours,
and they are certainly not what users intend to watch.

C. Inferring Playback Delay

Finally, we apply the proposed method to the entire server
logs of Summer Koshien 2015 in order to observe the distribu-

0 10 20 30 40 50 60
Inferred playback delays from server logs (sec)

0.00

0.05

0.10

0.15

0.20

0.25

P
D

F

mean ±1l: 96.3%

mean ±1l: 86.9%

mean ±1l: 94.7%segmentation
delay l

PC Browsers

Mobile Apps

Mobile Browsers

Fig. 7. Distributions of inferred playback delays for each client type

TABLE VIII
SUMMARY OF THE INFERRED PLAYBACK DELAYS

Client Type PC Mobile Mobile
Browsers Apps Browsers

mean playback delay (sec) 21.8 32.1 29.6
mean initial playback delay (sec) 20.7 30.8 28.8

mean pause delay (sec) 1.8 1.6 1.0
proportions of mean ±1 l 96.3% 86.9% 94.7%
proportions of mean ±2 l 98.2% 96.5% 99.5%

tion of playback delays for the entire users. We first removed
sequences considered to be non-live, using 60 seconds for the
threshold of the inferred playback delay. These values are clear
outliers of the distribution of proper live viewing in Fig. 7.
The outliers seem to be caused by bugs; for example, some
players restart from the beginning in the manifest file after the
live streaming ended.

Fig. 7 shows the distribution of inferred playback delays
for each client type. Each distribution looks like a normal
distribution. From Table VIII, more than 96.5% of delays are
in the range of ±2l from mean of the distribution. The tail of
the distribution is bounded, if we exclude clear outliers.

Because the encoder and decoder delays, cenc and cdec, are
not included in the plot, the actual delay distribution would be
shifted to the right by cenc + cdec. However, the basic shape
of the distribution would not change much, although the value
for cdec would be different for different implementations and
would contribute to higher variability.

Also, we can observe that the major delay factor is the initial
playback delay. The mean pause delay is less than 2 seconds
and its contribution to the playback delay is small. Hence,
the major playback delay factors are segment length l and the
backtracked segments N in the initial playback delay.

VIII. RELATED WORK

There are many viewers for large-scale live events such as
the Olympics, World Cup or Super Bowl [7], [8], and live
streaming of User Generated Content (UGC), like eSports

provided by twitch [9] and YouTube Live [10], have formed
a certain market in recent years [11], [12].

It is well known that the playback delay in live streaming
over HTTP is much larger and more variable than that in
dedicated streaming protocols [1]. There exist studies that
investigated into delays in live streaming over HTTP, but they
require measurement on the client side. Swaminathan et al.
introduced a delay model for HTTP-based live streaming, and
measured the delay by embedding time information in video
frames [13]. Li et al. looked into commercial Internet TV for
mobile devices, and analyzed delays combining server logs
and analytic modules on clients [14]. Kupka et al. analyzed
football live streaming, and showed delay from the download
time of a segment to the completion time of the playback [15].

In contrast, we propose a method to infer delays only from
server logs. Our proposed method enables to infer delays from
commonly used Web server logs, and allows providers to
estimate playback delays without implementing tools on the
client side.

Another contribution of our study is to have identified
startup buffering to be the major factor in playback delay,
which was not analyzed much in the previous studies.

In order to reduce playback delays, it helps using smaller
segment lengths [13], [16]. However, it also increases the
number of requests and server loads. Our proposed model
contributes to our understanding of this trade-off for tuning
server configurations.

We analyzed server logs from Summer Koshien in 2014, and
introduced an idea for inferring delays [17]. In 2014, however,
we did not have User-Agent recorded in the logs, or client-side
data for evaluating the results. In the present work, we were
able to analyze client behaviors classified by User-Agent, and
evaluate the results by the ground truth dataset measured on
the client side.

IX. CONCLUSION

We have proposed a simple model of playback delays in
live streaming over HTTP, and proposed a practical method to
infer playback delays for each client only from general Web
server logs. We have applied this method to server logs from
a large-scale live streaming event.

By comparing with the measured playback delays on the
client side, we have confirmed that the inferred playback
delays from server logs match the measured playback delays.
From the results, we have shown the distribution of playback
delay for the entire users, and found that more than 96.5%
of playback delays fall into the range: mean plus-or-minus 2
segment-lengths. Moreover, we have estimated the number of
backtracked segments for initial buffering for different client
types, which allows to calculate the initial player delay without
using further data.

Our proposed model and inference method are general
enough for applying to other live streaming events. Although
our results are specific to the analyzed event, we believe
that our findings are also general. Having a higher resolution

of timestamp in server logs would allow more accurate and
detailed analysis.

There are trade-offs to select an appropriate segment length
and the size of the startup buffering. Although the playback
delay is just one metric for live steaming services, it is an
important factor for certain types of live video streaming. One
of our contributions is to have identified the impact of startup
buffering on playback delay, which would be useful input for
designing live-streaming systems.

One limitation of our work is due to the lack of encoder
and decoder delays. As part of our future work, we plan to
improve the accuracy of our method by direct measurements
of these delays.

ACKNOWLEDGMENT

We would like to thank Dr. Tomohisa Akafuji of Asahi
Broadcasting Corporation, and the Asahi Shimbun Company
for providing a valuable dataset for this study. We also would
like to express our appreciation to Bunji Yamamoto, Daisuke
Okaniwa and Hiroshi Abe of IIJ for collecting the dataset and
providing the data analysis infrastructure.

REFERENCES

[1] V. Swaminathan, “Are we in the middle of a video streaming revolu-
tion?” ACM Trans. Multimedia Comput. Commun. Appl., vol. 9, no. 1s,
pp. 40:1–40:6, Oct. 2013.

[2] Wikipedia, “Japanese high school baseball championship,” http://en.
wikipedia.org/wiki/Japanese High School Baseball Championship.

[3] B. Yamamoto, “The latest streaming technology,” Internet Infrastructure
Review, vol. 25, November 2014.

[4] M. Ninomiya, “Report on Access Log Analysis Results for Streaming
Delivery of the 2014 Summer Koshien,” Internet Infrastructure Review,
vol. 27, May 2015.

[5] IIJ, “Internet initiative japan inc.” http://www.iij.ad.jp.
[6] ABC, “Asahi Broadcasting Corporation,” http://www.asahi.co.jp.
[7] C. O’Riordan, “The story of the digital olympics: streams, browsers,

most watched, four screens,” BBC Internet Blog, Tech. Rep., 2012.
[8] J. Erman and K. Ramakrishnan, “Understanding the super-sized traffic

of the Super Bowl,” in ACM IMC’13, Barcelona, Spain, 2013, pp. 353–
360.

[9] twitch, http://www.twitch.tv.
[10] “Now you can live stream on youtube,” http://youtubecreator.blogspot.

jp/2013/12/now-you-can-live-stream-on-youtube.html.
[11] M. Kaytoue, A. Silva, L. Cerf, W. Meira, Jr., and C. Raı̈ssi, “Watch

Me Playing, I Am a Professional: A First Study on Video Game Live
Streaming,” in ACM WWW ’12, Lyon, France, 2012, pp. 1181–1188.

[12] K. Pires and G. Simon, “YouTube Live and Twitch: A Tour of User-
generated Live Streaming Systems,” in ACM MMSys ’15, Portland,
Oregon, 2015, pp. 225–230.

[13] V. Swaminathan and S. Wei, “Low latency live video streaming using
HTTP chunked encoding,” in IEEE MMSP 2011, Oct 2011, pp. 1–6.

[14] Y. Li, Y. Zhang, and R. Yuan, “Measurement and Analysis of a Large
Scale Commercial Mobile Internet TV System,” in ACM IMC ’11,
Berlin, Germany, 2011, pp. 209–224.

[15] T. Kupka, C. Griwodz, P. Halvorsen, D. Johansen, and T. Hovden,
“Analysis of a Real-world HTTP Segment Streaming Case,” in EuroITV
’13, Como, Italy, 2013, pp. 75–84.

[16] N. Bouzakaria, C. Concolato, and J. Le Feuvre, “Overhead and perfor-
mance of low latency live streaming using MPEG-DASH,” in IISA 2014,
July 2014, pp. 92–97.

[17] M. Ninomiya and K. Cho, “How Live is Live Streaming over HTTP?
Inferring Playback Delay from Server Logs (in Japanese),” in Internet
Conference, 2015, pp. 43–50.

