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Abstract

The local robustness properties of Generalized Method of Moments

(GMM) estimators and of a broad class of GMM based tests are in-

vestigated in a uni�ed framework. GMM statistics are shown to have

bounded in
uence if and only if the function de�ning the orthogona-

lity restrictions imposed on the underlying model is bounded. Since in

many applications this function is unbounded, it is useful to have pro-

cedures that modify the starting orthogonality conditions in order to

obtain a robust version of a GMM estimator or test. We show how this

can be obtained when a reference model for the data distribution can

be assumed. We develop a 
exible algorithm for constructing a robust

GMM (RGMM) estimator leading to stable GMM test statistics. The

amount of robustness can be controlled by an appropriate tuning con-

stant. We relate by an explicit formula the choice of this constant to

the maximal admissible bias on the level or (and) the power of a GMM

test and the amount of contamination that one can reasonably assume

given some information on the data. Finally, we illustrate the RGMM

methodology with some simulations of an application to RGMM test-

ing for conditional heteroscedasticity in a simple linear autoregressive

model. In this example we �nd a signi�cant instability of the size and

the power of a classical GMM testing procedure under a non-normal

conditional error distribution. On the other side, the RGMM testing

procedures can control the size and the power of the test under non-

standard conditions while maintaining a satisfactoy power under an

approximatively normal conditional error distribution.
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1 Introduction

This paper analyzes the local robustness properties of estimators based

on the GMM (cf. Hansen (1982)) and of test statistics based on a GMM esti-

mator. We characterize the local robustness of GMM estimators, of Hansen's

speci�cation test and of GMM based tests that are GMM versions of the clas-

sical Wald, score, and likelihood-ratio test (cf. Newey and West (1987a) and

Gourieroux et Monfort (1989)) by a single property: the boundedness of the

underlying orthogonality function. Since many available econometric mod-

els are based on an unbounded orthogonality function, we propose a simple

uni�ed setting for constructing a robust GMM (RGMM) estimator yielding

at once the local robustness of all GMM based tests.

The need for robust statistical procedures for estimation, testing and

prediction has been stressed by many authors both in the statistical and

econometric literature; cf. for instance, Hampel (1974), Koenker and Bas-

sett (1978), Huber (1981), Koenker (1982), Hampel et al. (1986), Peracchi

(1990, 1991), Markatou and Ronchetti (1997), Krishnakumar and Ronchetti

(1997). This paper focuses on locally robust GMM estimation and testing

and contributes to the current literature in the following directions.

First of all, our results extend the application of robust instrumental vari-

ables estimators proposed by Krasker and Welsch (1985), Krasker (1986) and

Lucas, van Djik and Kloek (1994) to a general GMM setting with nonlinear

orthogonality conditions and where some stationary ergodic dependence in

the underlying data generating process is admitted.

Secondly, the paper generalizes the robust testing framework developed

by Heritier and Ronchetti (1994) to a general GMM setting. It uni�es and

simpli�es the theory by proposing a RGMM estimator leading to robust

Wald, score and likelihood-ratio type tests for general nonlinear parameter
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restrictions.

Finally, the paper provides some robust versions of Hansen's speci�cation

test. This yields RGMM model selection procedures that were not available

before.

RGMM analysis focuses implicitly on econometric models de�ned by some

sets of orthogonality conditions that are at best ideal approximations to the

reality. This task is accomplished by de�ning a reference distribution for

the data playing the role of a reference model for the underlying data gen-

erating process. Of course, this entails a lack of generality compared to a

standard nonparametric GMM situation. However, in many applications of

the GMM, the reference model distribution is already implied by the prob-

lem under investigation (for instance in the case of normality of the error

distribution). Furthermore, when no natural reference model is supplied we

claim that it is often useful to impose one in order to obtain GMM statistics

that behave suÆciently well at least over a restricted set of relevant model

distributions. The implied orthogonality conditions are then approximate in

the sense that they should be satis�ed by any model distribution "near" - in

some appropriate sense - to the given reference model. When translating this

argument in terms of the empirical distribution of the data, this means that

in a RGMM framework a small fraction of the observations can deviate from

the rest of the sample without a�ecting the empirical moment conditions in

a dramatic way. Therefore, the derived parameter estimates and statistics

are representative for the structure of the "majority" of the data. In other

words, robust GMM procedures pay a small "insurance premium" in terms

of eÆciency at the reference model in order to be robust in a neighbourhood

of it.

At least in linear models with normal serially independent errors, the
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e�ects of di�erent kinds of distributional deviations from the assumptions

are well studied and known to have an important impact on the asymptotic

properties of a GMM estimator; cf. Krasker and Welsch (1985), Krasker

(1986) and Lucas, van Djik and Kloek (1994). For the time series context

important work has been done by K�unsch (1984) and Martin and Yohai

(1986) within the framework of (linear) autoregressive models. Since there

is a priori no reason to generally believe that in a nonlinear model with

stochastic time dependence these e�ects should be less serious, a general

RGMM framework can o�er a powerful complement to the classical GMM

in many applications.

In this paper we focus on locally robust GMM estimation and particularly

on GMM testing, that is on smooth GMM functionals that can be locally

approximated by means of their in
uence function (IF); see Hampel (1968,

1974) and Hampel et al. (1986) for basic de�nitions and K�unsch (1984)

and Martin and Yohai (1986) for the time series context. Boundedness of

the IF implies that in a neighbourhood of the model the bias of an estimator

cannot become arbitrarily large. In the testing framework this implies that in

a neighborhood of the model the level of the test does not become arbitrarily

close to 1 (robustness of validity) and the power does not become arbitrarily

close to 0 (robustness of eÆciency). Hence, a bounded in
uence function is

a desiderable local stability property of a statistic.

Since in applications the IF of a GMM statistical functional is often un-

bounded (some examples are listed in Section 2), we propose a robusti�ed

version of a GMM estimator that is shown to induce at the same time (lo-

cally) robust GMM testing procedures. The RGMM estimator is constructed

by applying a basic truncation argument of the theory of robust statistics

modi�ed to the particular GMM situation. An important feature of the pro-
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posed estimator is that the amount of robustness imposed can be controlled

by a tuning constant which is related by an explicit formula to both the

maximal local bias in the level and the power of a GMM test and to the

magnitude of the given model deviation; see Section 4.

As an illustration of these general principles consider for instance a simple

AR(1) model with ARCH(1) (cf. Engle (1982)) errors for a random sequence

(yt)t2N:

yt = �0 + �1yt�1 +
p
htut ; ht = �0 + �1u

2
t�1 ; (1)

where (ut)t2N is a standardized i.i.d sequence with unknown distribution.

A natural set of orthogonality conditions for a GMM estimation of the

parameters (�0; �1; �0; �1) is given by:

E[�t] = 0 ; E[�tyt�1] = 0 ; E[�t � ht] = 0 ; E[�t�t�1] = 0 ;

(2)

where

�t = yt � �0 � �1yt�1 ; �t = �
2
t : (3)

We will see that the unboundedness of the orthogonality function de�ning

these orthogonality conditions implies a lack of robustness of GMM esti-

mators and tests. For this case we propose a small simulated application

to testing for a conditional heteroscedasticity speci�cation in the linear au-

toregressive model. In this simple experiment we observe that for relevant

sample sizes the classical GMM procedure is unstable even under relatively

small distributional deviations from the normality of the error distribution.

Speci�cally, the GMM speci�cation test often produces sizes that are higher

than theoretically expected and power curves that are already much 
atter
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than under normality for conditional error distributions very near to the nor-

mal (for instance a t9 distribution). On the other side, when introducing a

normal reference model for the error distribution it is possible to control for

the empirical bias in the level and the power of a RGMM test under non-

standard situations. Of course, imposing more robustness on a RGMM test

has an impact on the power of the test at the reference model. However,

in the proposed application it seems that the loss in power of the RGMM

test at the reference model is quickly compensated by a strong gain in power

under non-normality of the error distribution.

One could argue that local robustness is not suÆcient and global relia-

bility should be the target in order to guarantee resistance in the presence

of a large amount of contamination. This would require the development

of high-breakdown estimators, but it seems diÆcult to extend the available

results for regression models (see for instance Rousseuw and Leroy (1987)) to

a general GMM setting. Indeed, the latter does not show the high degree of

structure which is exploited in the de�nition of high-breakdown estimators

for regression models. Moreover, although we believe that high-breakdown

estimators play a useful role in the exploratory and estimation part of any

data analysis, we feel that small deviations from the model are more mean-

ingful for inference.

The paper is structured as follows. In Section 2 we derive the in
uence

function of a GMM estimator and show that GMM estimators have bounded

IF if and only if the function inducing the natural orthogonality conditions of

the model is bounded. We then give some examples of GMM estimators with

unbounded IF. Section 3 is devoted to the de�nition and construction of a

RGMM estimator suited to induce stable GMM testing procedures. Section 4

analyses the local robustness of tests constructed from a GMM estimator and
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derives some basic expansions for the power and level functionals of a GMM

test. These expansions provide a useful asymptotic bound for the asymptotic

bias of level and power of a GMM test under small deviations from the model

distribution. The bound is proportional to a particular supremum norm of

the underlying orthogonality function. Therefore, it can be used to obtain

RGMM estimators that explicitly control the maximal bias of level and power

of a GMM test under deviations from the assumptions. It is this bound that

allows us to derive the explicit link between the "degree" of robustness of

the RGMM estimator of Section 3, the amount of contamination that can be

reasonably assumed given some information on the data, and the maximal

bias in level and power of a RGMM test. Section 5 presents the results of

our simulations of a RGMM test for conditional heteroscedasticity in the

errors of an autoregressive model and Section 6 concludes the paper with

some summarizing remarks and suggestions for further research.

2 Robustness Properties of GMMEstimators

Let X := (Xn)n2N be a stationary ergodic sequence de�ned on an underlying

probability space (
;F ;P) and taking values in R
N . Without loss of gen-

erality, we index the family P := fP�; � 2 �g of distributions on R
N by a

parameter vector � 2 �. �0 is the parameter vector corresponding to the

model distribution (the reference model) for X1. This notation is used in

order to write several GMM statistics used in the paper as functionals on a

subset of P.

The GMM consists in estimating indirectly some functional a : P ! A :=

a(P) � R
k of parameters of interest by introducing a function h : RN �A !
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R
H enforcing a set of orthogonality conditions

E�0h(X1; a(P�0)) = 0 ; (4)

on the structure of the underlying model. Let W := (Wn)n2N be a sequence

of weighting symmetric positive de�nite matrices converging a.s to a positive

de�nite matrix W0.

A generalized method of moments estimator (GMME) associated with

W is a sequence (~a(P�n))n2N of (functional) solutions to the optimization

problem:

~a(P�n) = argmin
a2A

E�nh
>(X1; a)WnE�nh(X1; a) ; n 2 N ; (5)

where P�n := 1
n

Pn

i=1 ÆXi
is the empirical distribution of X1; ::; Xn; and Æx

denotes the point mass distribution at x 2 R
N . This functional notation

of the GMM minimization problem is useful for investigating the functional

structure of a general GMM statistic later on.

Under appropriate regularity conditions (see Hansen (1982)) the GMME

exists, is strongly consistent and asymptotically normally distributed at the

model with an asymptotic covariance matrix given by

��0(W0) = S�0(W0)E�0

@h
>(X1; a(P�0))

@a
W0V0W0E�0

@h(X1; a(P�0))

@a>
S�0(W0);

where

V0 := E�0 [h(X1; a(P�0))h
>(X1; a(P�0))] ; (6)

(the covariance matrix of h(X1; a(P�0)) at the model P�0) and

S�0(W0) :=

�
E�0

@h
>(X1; a(P�0))

@a
W0E�0

@h(X1; a(P�0))

@a>

��1
: (7)

The GMME associated to a sequence W such that

W0 = V
�1
0 ; (8)
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is asymptotically best in the sense of Hansen (1982) and yields a "smallest"

asymptotic covariance matrix given by:

��0(W0) =

�
E�0

@h
>(X1; a(P�0))

@a
V
�1
0 E�0

@h(X1; a(P�0))

@a>

��1
: (9)

We will adopt in the sequel the following shortened notation:

S0 := S�0(W0) ; �0 := ��0(W0) ; a(�0) := a(P�0) :

To analyze the asymptotic local stability properties of a GMME we consider

the asymptotic optimality problem

min
a2A

E�0h
>(X1; a)W0E�0h(X1; a); (10)

corresponding to (5). Its unique solution is assumed to be a(P�0) and to be

in the interior of A. The sequence of necessary (functional) equations�
E�n

@h
>(X1; ~a(P�n))

@a

�
Wn [E�nh(X1; ~a(P�n))] = 0 ; (11)

de�ning the GMME then converges a.s to the implicit (functional) equation:

E�0

@h
>(X1; a(P�0)))

@a
W0E�0h(X1; a(P�0)) = 0 : (12)

In order to describe the stability properties of a GMME in a neighborhood of

P�0 we introduce the following well known concept from the theory of robust

statistics; cf. also Hampel et al. (1986).

De�nition 1 The in
uence function IF (�; ~a; P�0) of a statistical functional1

~a is given by

IF (x; ~a; P�0) = lim
�!0

~a((1� �)P�0 + �Æx)� ~a(P�0)

�
; (13)

for all Æx such that this limit exists.

1In the following we will always assume that the domain of the given statistical func-

tional is an open convex subset of P containing P�0 and all empirical measures.
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As a consequence, the in
uence function of a statistical functional de-

scribes the linearized asymptotic bias of a statistic under single point con-

taminations Æx of the assumed model distribution P�0. An unbounded IF

implies an unbounded asymptotic bias of a statistic under single point con-

taminations of the model. Therefore, a natural robustness requirement on a

statistical functional is the boundedness of its in
uence function.

The in
uence function of a GMME is obtained by implicitly di�erentiat-

ing the necessary condition (12) in an arbitrary direction Æx. Straightforward

calculations then yield2:

IF (x; ~a; P�0) = �S0E�0

@h
>(X1; a(�0))

@a
W0h(x; a(�0)) : (14)

Note that in deriving this expression we used condition (4) which is satis�ed

by assumption at the model P�0. As a consequence, we can see that:

� The IF of a GMME is linearly related to the orthogonality function of

the model h(�; a(P�0)).

� The IF of a GMME is bounded if and only if the orthogonality function

of the underlying model is bounded.

Expression (14) covers as special cases well known situations where h is linear,

as in Krasker and Welsch (1985), Krasker (1986) and in Lucas, van Dijk and

Kloek (1994).

2In the exactly identi�ed case (k = H) this expression simpli�es to:

IF (x; ~a; P�0) = �

�
E�0

@h>(X1; a(�0))

@a

��1

h(x; a(�0)) ;

the standard expression for an M-estimator de�ned by a score function h; cf. for instance

Huber (1981).
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It is well known that many econometric estimators can be interpreted as

GMME, see Hansen (1982). Unfortunately, many of these turn out to be non-

robust, because the corresponding function h is unbounded in the observa-

tions. Well-known examples in the (linear) intrumental variables framework

were analyzed for instance in Krasker and Welsch (1985).

In addition to M-estimators that are de�ned through the roots of an

implicit equation (these estimators can in fact be interpreted as particular

GMME), there is a broad class of nonlinear GMME where the given nonlin-

earity is in contrast with the basic robustness principle of a bounded in
uence

function3. Some examples are listed below.

Example 1: Nonlinear instrumental variables estimators (cf. Amemiya

(1974)). Let (Xt)t�0 := (X
(1)
t ; X

(2)
t ; X

(3)
t )t�0 be a data generating process,

with (for brevity) X
(1)
t a scalar endogenous variable, X

(2)
t a scalar exogenous

variable and X
(3)
t some instrumental variable inducing the orthogonality re-

strictions:

E

h
X

(3)
1 (X

(1)
1 �m(X

(2)
1 ; a))

i
= 0 ;

for some given nonlinear function m. Since the function

(x(1); x(2); x(3); a) 7�! x
(3)
�
x
(1) �m(x(2); a)) ;

is unbounded at least in x(1) and x(3) all these estimators have unbounded

IF. Moreover, for di�erent nonlinear forms of m the robustness problems

of a given instrumental variables estimator can be quite di�erent. For in-

stance, di�erent polynomial forms of m can induce very di�erent biases for

the corresponding estimator under a slight single point contamination of the

3This point is even more important for deriving robust GMM testing procedures; cf.

Section 4.
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underlying model. It is then useful to have a general procedure for bounding

this maximal bias indipendently of the general form of m.

Example 2: GMM estimation of autoregressive models with conditionally

heteroscedastic errors. Let (yt)t2N be the ARCH process as de�ned in (1)

with associated orthogonality conditions (2). The function de�ning these

orthogonality conditions is unbounded. Moreover, note that the observation

yt�1 enters in the last of these four orthogonality conditions as a polyno-

mial of degree four. Therefore, for some choices of the model parameters

the in
uence function of the implied GMM estimator can be steep in some

contamination directions. In Section 5 we will apply the RGMM methodol-

ogy to this particular example by deriving a RGMM testing procedure for

conditional heteroscedasticity in some simulation experiments.

Example 3: GMM estimation of nonlinear empirical asset pricing models

(cf. for example Bansal, Hsieh and Viswanathan (1993)). Let a nonlinear

pricing kernel (Gt)t2N be de�ned by

Gt = G(Rf;t; RM;t) = �0 + �1Rf;t +
X

j=1;3;5

�j;M(RM;t)
j

; (15)

where (Rf;t)t2N and (RM;t)t2N are some corresponding series of yields to ma-

turity of the Treasury bill and of an aggregate equity index, respectively.

Given a set of instrumental variables (Zt)t2N and a set of n contingent

claims pay-o�s (x
(1)
t ; ::; x

(n)
t )t2N, the natural orthogonality conditions implied

by the given asset pricing equation are:

E[Gt+1(x
(i)
t+1 � 1)Zt] = 0 ; i = 1; ::; n : (16)

These orthogonality conditions are again unbounded. Moreover, RM;t+1 en-

ters in all orthogonality conditions as a polynomial of degree �ve. Therefore,

for some choices of the model parameters the in
uence function of the implied

GMM estimator is again steep in some contamination directions.

13



3 Robust GMM Estimation

It is not possible to construct robust GMME that are optimal in the sense

of Hampel et al. (1986), because a best ML-estimator of a(P�0) at the model

is not generally available, even when its in
uence function is not required to

be bounded. Speci�cally, the covariance matrices of the GMME induced by

two di�erent non-nested sets of orthogonality conditions are not generally

rankable.

Instead, we require the bound on the IF to be satis�ed in a norm that is

self-standardized with respect to the covariance matrix of the given GMME.

This norm measures the in
uence of the estimator ~a relative to its variability

expressed by its covariance matrix. We will see in Section 4 that this is the

appropriate norm for obtaining robust GMM testing procedures.

Formally, we look at GMME with a bounded self-standardized IF, that

is satisfying:

kIF (x; ~a; P�0)k��1
0

:= k��
1

2

0 IF (x; ~a; P�0)k � c ; (17)

where c is a given prespeci�ed positive constant. We can satisfy this condition

for our RGMM estimator by bounding the self-standardized norm

kh(x; a(�0))kV �1
0

:= kV � 1

2

0
h(x; a(�0))k (18)

of h.

Indeed, (17) is satis�ed when the self-standardized norm of h is bounded

by c because4:

4In the exactly identi�ed case (H = k) this inequality becomes an equality. In this

situation the bound on the self-standardized IF of a GMM estimator provided by a bounded

self-standardized norm of h is exact and the following arguments in this Section and in

Section 4 still hold.
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kIF (x; ~a; P�0)k
2

��1
0

= h
>(x; a(�0))W0E�0

@h(X1; a(�0))

@a>

�
�
E�0

@h
>(X1; a(�0))

@a
W0V0W0E�0

@h(X1; a(�0))

@a>

��1

�E�0

@h
>(X1; a(�0))

@a
W0h(x; a(�0))

� kh(x; a(�0))k2V �1
0

;

by the orthogonal projection property of the matrix:

V

1

2

0 W0E�0

@h(X1; a(�0))

@a>

�
E�0

@h
>(X1; a(�0))

@a
W0V0W0E�0

@h(X1; a(�0))

@a>

��1

�E�0

@h
>(X1; a(�0))

@a
W0V

1

2

0 :

To construct a GMME with self-standardized in
uence function bounded by

c, we introduce the Huber function Hc : R
H ! R

H ; y 7! ywc(y) , de�ned

by wc(y) := min
�
1; c

kyk

�
for y 6= 0 and wc(0) := 1, and a new mapping

h
A;�
c : RN �A ! R

H given by

h
A;�
c (x; a) := Hc(A[h(x; a)� � ]) = A[h(x; a)� � ]wc(A[h(x; a)� � ]) ; (19)

for x 2 R
N and a 2 A. The nonsingular matrix A 2 R

H�H and the vector

� 2 R
H are determined by the implicit equations5:

E�0h
A;�
c (X1; a(P�0)) = 0 ; (20)

and

E�0h
A;�
c (X1; a(P�0))h

A;�>

c (X1; a(P�0)) = I : (21)

5It is important to note that no further model assumptions are needed in order to

perform this construction.
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a(�0) can be estimated by the sequence of �xed-points of the algorithm de-

scribed by (19), (20) and (21). Note that the bound imposed on the self-

standardized in
uence of our GMME cannot be chosen arbitrarily small.

Indeed, c �
p
H, cf. Hampel et al. (1986), p. 228.

In some robust applications in the iid framework, the functional form im-

plied by (20) for the dependence of � on a and A can be determined explicitly.

For instance, in linear regression models with normal errors, symmetry im-

plies � = 0; cf. Hampel et al. (1986), ch. 6.

To apply the algorithm to a general GMM situation we propose to esti-

mate A via the sequence of solutions to the empirical version of (21) and to

determine � as the solution of (20) under the model probability P�0. In some

models - as for instance in the RGMM application presented in Section 5 -

this will require a simulation procedure.

Speci�cally, for a given bound c >
p
H on the self-standardized in
uence

of ~a, the computation of the robust GMME can be performed by the following

four steps.

� Fix a starting value a0 for a(�0) and initial values �0 := 0 and A0 such

that

A
>
0 A0 =

�
E�n(h(X1; a0)h

>(X1; a0))
��1

:

� Compute new values �1 and A1 for � and A de�ned by

�1 :=
E�0 [h(X1; a0)wc(A0(h(X1; a0)� �0))]

E�0wc(A0(h(X1; a0)� �0))
; (22)

and

(A>1 A1)
�1 := E�n

h
(h(X1; a0)� �0)(h(X1; a0)� �0)

> �

w
2
c(A0(h(X1; a0)� �0))

i
: (23)

16



� Compute the optimal GMME a1 associated
6 to the orthogonality func-

tion hA1;�1
c .

� Replace �0 and A0 by �1 and A1, respectively, and iterate the second

and third step described above until convergence of the sequence of

optimal GMME (an)n2N associated with the sequence (hAn;�n
c )n2N of

bounded orthogonality functions.

The robust GMME obtained in this way can be interpreted as the GMME

induced by the truncated orthogonality conditions hA;�c when satisfying the

orthogonality condition (20) for � and when simultaneously estimating A

through the empirical version of (21).

h
A;�
c is a truncated version of h. Because of the truncation, h must be

shifted by � in order to satisfy the orthogonality condition (20). More-

over, (21) ensures that c is an upper bound on the self-standardized in-


uence function of the corresponding GMME, because { by construction {

the self-standardized norm of hA;�c is equal to its euclidean norm which itself

is bounded by the constant c.

Existence and uniqueness of a solution (a(P�0); �(P�0); A(P�0)) are implied

by the implicit function theorem and the Fr�echet di�erentiability of the equa-

tion system de�ning the GMME of (a(P�0); �(P�0); A(P�0)) in a neighborhood

of P�0 , which itself is implied by the boundedness of the function h
A;�
c ; cf.

for example Clarke (1986), Bednarski (1993). More speci�c conditions for a

special model can be found in Krasker and Welsch (1985). Regularity condi-

tions for consistency and asymptotic normality of a GMM estimator at the

model P�0 are provided in Hansen (1982).

6Note that (by construction) the optimal asymptotic weighting matrix associated to

this particular GMME is the identity matrix.
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Whereas the original moment conditions h are usually dictated by eco-

nomic theory, the truncated version hA;�c takes into account the realistic case

that only the "majority of the data" can reasonably �t the original moment

conditions. The weights wc(A[h(x; a) � � ]) assigned to each observation x

can be used to detect outlying points. The tuning constant c 2 (
p
H;1)

controls the degree of robustness imposed on the procedure. It can be chosen

by the analyst as a trade-o� between her theoretical moment conditions and

those supported by the data. Some objective guidelines for the choice of c are

presented in the next section where we directly focus on RGMM hypothesis

testing. There we show that for a given amount of model contamination the

constant c can be determined so that the maximal bias in the level or the

power of a GMM test remains below a given bound.

As pointed out by a referee, one possible disadvantage of the RGMM

estimator de�ned above could be the well-known poor performance in small

samples of GMM estimators when the asymptotic covariance matrix of the

given orthogonality function is estimated; cf. for instance Koenker, Machado,

Skeels, Welsh (1994). Some protection in this respect should be supplied by

the fact that the orthogonality function hA;�c behind our RGMM estimator is

bounded; nevertheless we expect the issue of a covariance matrix estimation

in our RGMM framework to be particularly important when the number of

orthogonality conditions is "high" (for example of an order higher than n
1

3 ;

cf. Koenker and Machado (1999)).

One possibility to improve the small sample performance of our RGMM

estimator is to use an empirical likelihood version of GMM as proposed by

Imbens, Spady and Johnson (1998). Speci�cally, one can use as estimating

equations for the empirical likelihood those given by formula (5), p. 337 or

(9) p. 339 in their paper with (in their notation)  (z; �) = h
A;�
c (z; �). The

18



boundedness of the function hA;�c will preserve the robustness properties of

the estimator while the empirical likelihood version should improve the �nite

sample performance.

4 Robust Inference with GMM Estimators

This section is devoted to the robustness properties of GMM based test

statistics. The key idea in deriving RGMM procedures is to construct GMM

estimators based on a bounded self-standardized norm of the given orthogo-

nality function, as for instance in the case of the RGMM estimator de�ned

in the last section. For simplicity of notation we will derive all results for

the case of an optimal GMME (that is a weighting matrix W0 = V
�1
0 ) based

on a bounded orthogonality function. Modi�cations to the general case are

straightforward7.

Several tests derived from a GMME can be constructed, for testing some

misspeci�cation of the model or some set of parameter restrictions on a.

The GMM speci�cation test proposed by Hansen (1982) is a test of the

overidentifying restrictions implied by the null hypothesis given by (4), for

the case where H > k.

The asymptotic distribution of the statistic de�ning Hansen's test with

respect to a sequence of local misspeci�cations is a noncentral X 2(H � k; �)

distribution. At the model � = 0; see Newey (1985).

The GMM versions of the classical ML-tests are used to test a null hy-

7Only the results obtained for the likelihood ratio statistic are not available in the

non-optimal GMM case since the corresponding statistic is then no longer asymptotically

equivalent to a symmetric functional form (see below).
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pothesis

g(a(�0)) = 0 ; (24)

for a smooth function g : A! R
r such that @g>

@a
(a(�)) is of full column rank

for all � 2 �.

TheWald, score and likelihood-ratio statistics induced from a best GMME

are all asymptotically equivalent under the null hypothesis (24) and with re-

spect to a sequence of local alternatives to a(�0). They are asymptotically

noncentral X 2(r; �) distributed, with a noncentrality parameter � = 0 at the

model under the null hypothesis (24).

We restrict our attention to GMM test statistics that can be written (at

least asymptotically) as simple quadratic forms of a functional U . Speci�-

cally, we consider functionals � de�ned asymptotically by a symmetric form

n�(P�n) = nU(P�n)
>
U(P�n) ; n 2 N ; (25)

and consider the following test statistics.

Hansen's test: Hansen's statistic (�M) is of the symmetric form (25) with

a functional U de�ned by

U
M (P�n) :=W

1

2

0 E�nh(X1; ~a(P�n)) : (26)

A consistent estimator of W0 is given by the sequence W of positive de�nite

estimators.

Wald-type test: The statistic of a GMM based Wald-type test (�W ) is of

the form (25) with a functional U de�ned by

U
W (P�n) :=

�
@g

@a>
(a(�0))�0

@g
>

@a
(a(�0))

�� 1

2

g(~a(P�n)) : (27)

Practically,

@g

@a>
(a(�0))�

�1
0

@g
>

@a
(a(�0)) ;
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is approximated by estimating �0 with ��n(Wn) and a(�0) with ~a(P�n).

Score Type Tests: The statistic of a GMM based score-type test (�S) is

of the form (25) with a functional U de�ned by

U
S(P�n) := �̂

1

2

0E�n

@h
>(X1; â(P�n))

@a
WnE�nh(X1; â(P�n)) ; (28)

where â(P�n) is a solution to a constrained GMM minimization problem:

â(P�n) = arg min
a2A;g(a)=0

E�nh
>(X1; a)WnE�nh(X1; a) ; (29)

and �̂0 is the covariance matrix (9) evaluated at a = â(P�0). In applications

�̂0 can be consistently estimated by �̂�n(Wn).

Likelihood ratio-type test: The GMM likelihood ratio type-test is con-

structed with a statistic �R that can be written asymptotically as a symmetric

form. It is de�ned by

�
R(P�n) := E�nh

>(X1; â(P�n))W0E�nh(X1; â(P�n))

�E�nh
>(X1; ~a(P�n))W0E�nh(X1; ~a(P�n)) :

Asymptotically one has

�
R(P�n) = U

H(P�n)
>
U
H(P�n) + op(1) ;

with a functional UH that is explicitly given by (47) in the proof of Theorem

1.

As mentioned in the introduction, the general goal of robust testing pro-

cedures is to control the maximal bias on the level and the power of a test

that can arise because of a slight distributional misspeci�cation of a null or

an alternative hypothesis. This is called robustness of validity and eÆciency,

respectively.

To analyze the asymptotic local stability properties of these tests we

follow the general approach proposed by Heritier and Ronchetti (1994). In
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order to apply this methodology to the GMM setting we can assume the

following uniform convergence to normality of a robust GMME.

Property 1 Let a bounded in
uence GMME ~a of a(P�0) be given. It then

follows:

p
n(~a(P�n)� ~a(P 0

�;n;Q))! N (0;�0) ; n!1 ; (30)

in distribution, uniformly over the sequence (U�;n(P�0))n2N of (�; n)-neighbor-

hoods of P�0 de�ned by

U�;n(P�0) :=
�
P

0
�;n;Q :=

�
1�

�
p
n

�
P�0 +

�
p
n
Q j Q 2 dom(~a)

�
; (31)

where the assumptions on dom(~a) are given in Footnote 1.

The neighborhood de�ned by (31) is probably the simplest way to formal-

ize local perturbations of the model P�0 . Note that dK(P
0
�;n;Q; P�0) � � for

all n 2 N and Q 2 dom(~a), where dK denotes the Kolmogoro� distance.

Alternatively, one could use more involved notions of distance between dis-

tributions.

Property 1 is stronger than the requirement of the existence of the in-


uence function. Generally, one needs a stronger smoothness condition like

Fr�echet di�erentiability in order to obtain uniform convergence; cf. Clarke

(1986) and Bednarski (1993). However, under appropriate regularity condi-

tions (cf. Clarke (1986) and Heritier and Ronchetti (1994)), bounded in
u-

ence statistical functionals can be shown to be Fr�echet di�erentiable. As a

particular case, the robust RGMM estimator proposed in the last section is

Fr�echet di�erentiable.

The next theorem provides a maximal asymptotic bias of the level of a

GMM test8.

8The proofs of all theorems are given in the Appendix.
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Theorem 1 Let ~a be a GMME induced by a bounded orthogonality func-

tion h and denote by � the level functional of the tests based on �
M , �W ,

�
S and �

R, respectively. Let further (P 0
�;n;Q)n2N be a sequence of (�; n; Q){

contaminations of the underlying null distribution P�0 , each of them belong-

ing to a corresponding neighborhood U�;n(P�0), as de�ned in (31).

Then:

lim
n!1

�(P 0
�;n;Q) = �0 + �

2
�






Z
RN

IF (x;U; P�0)dQ(x)






2

+ o(�2); �! 0 ;

(32)

for all Q 2 dom(�), where U(�) is the U -functional corresponding to each

test,

� = �
@

@�
Hr(�1��0 ; �)j�=0 =

(1� �0)

2
�
1

2
Hr+2(�1��0 ; 0) ;

Hr(�; �) is the cumulative distribution function of a noncentral X 2(r; �) dis-

tribution with r degrees of freedom and noncentrality parameter � � 0, �1��0

is the 1��0 quantile of a X 2(r; 0) distribution and �0 = �(P�0) is the nomi-

nal level of the test. Moreover, the bias of �(P 0
�;n;Q) is uniformly bounded by

the inequality:

lim
n!1

j�(P 0
�;n;Q)� �0j � �

2 � � � sup
x

jjh(x; a(�0))jj2W0
+ o(�2) :

As a consequence of the theorem, the maximal asymptotic bias of the level

of a GMM test that is derived from the robust GMME of the last section

can be bounded by the inequality

lim
n!1

j�(P 0
�;n;Q)� �0j � � � (�c)2 + o(�2) : (33)

For robust testing purposes the asymptotic bound (33) can be used to choose

c depending on both the maximal amount of contamination (�) expected by
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the researcher { given some prior information on the nature of the data {

and the maximal bias for the level (maxbias) he or she is willing to accept:

c =
1

�
�

s
maxbias

�
: (34)

The following table presents the implied c values for � = 5%, maxbias=+/-

0.5% and �0 = 5%.

Insert Table 1 about here

By regressing log� vs. log r and for the case of a nominal level �0 = 5%

at the model, one can obtain the simple approximation:

c �
3

�
r
0:3(maxbias)1=2 : (35)

We now come back to the robustness of eÆciency properties of a GMM test

and �rst investigate the case of a GMM speci�cation test.

Let

(P alt
�;n)n2N :=

��
1�

�
p
n

�
P�0 +

�
p
n
P�1

�
n2N

(36)

be a sequence of local alternatives to P�0 and

U�;n(P alt
�;n) :=

�
P

1
�;n;Q :=

�
1�

�
p
n

�
P
alt
�;n +

�
p
n
Q j Q 2 dom(~a)

�
;

(37)

be the corresponding asymptotic neighborhood of P alt
�;n, for given n.

A natural restriction on the magnitude of the contamination is j�j <

j�j. This allows us to distinguish the neighborhood U�;n(P alt
�;n) of the local

alternative from the given null hypothesis. On the other side, one could of

course compare a given neighborhood U�0;n(P�0) of the null hypothesis with
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a neighborhood U�;n(P alt
�;n) of the local alternative. In this case a natural

restriction will be j�0j+ j�j < j�j.

The next theorem is the "power" counterpart of Theorem 1 for the GMM

speci�cation test. Similarly to the case of the level, the theorem yields an

explicit asymptotic bound by which the maximal asymptotic bias of the

power can be bounded.

Theorem 2 Let ~a be a GMME induced by a bounded orthogonality function

h and denote by � the power functional of the test based on �M . Let further

(P 1
�;n;Q)n2N be a sequence of (�; n; Q){contaminations of the underlying local

alternatives P alt
�;n, each of them belonging to a corresponding neighborhood

U�;n(P alt
�;n), as de�ned in (37).

Then:

lim
n!1

j�(P 1
�;n;Q)� �(P alt

�;n)j = 2���

Z
RN

IF
>(x;UM

; P
alt
�;n)dQ(x)

�
Z
RN

IF (x;UM
; P�0)dP�1(x) + o(�); (38)

with � de�ned as in Theorem 1. Moreover, the bias of the asymptotic power

functional � is uniformly bounded by the inequality:

lim
n!1

j�(P 1
�;n;Q)� �(P alt

�;n)j � 2��� max
fPalt

�;n;P�0g
sup
x

kh(x; ~a(�))k2W0
+ o(�):

(39)

Similarly to the case for the level, the maximal asymptotic bias of the

power of a GMM speci�cation test derived from the RGMM estimator of the

last section can be estimated by the inequality:

lim
n!1

j�(P 1
�;n;Q)� �(P alt

�;n)j � 2���c2 + o (�) : (40)

As in the case of the level (see (33)) this inequality can be used to relate

the tuning constant c of our RGMM estimator to the maximal bias in the
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power of the GMM speci�cation test, given a nominal level �0 at the model.

For instance, assuming H � k = 1 and � = 5%, a bound of 0:5% on the

bias from a nominal level of 5% implies c = 4:18 and � = 0:1145 (cf. Table

1). This yields an absolute maximal bias in the power of a corresponding

RGMM speci�cation test given by 0:20�. For example for � = 15% the

implied maximal bias in the power is approximatively 3%.

Theorem 2 illustrates the trade o� existing between power and robustness

of a GMM speci�cation test. Indeed, for a given maximal bias over the

contaminated neighborhood U�;n(P alt
�;n) one cannot impose stronger robustness

requirements on a RGMM estimator (that is a lower constant c) without

simultaneously looking at local alternatives that are more distant in the

given direction P�1 (that is with a higher constant �). On the other side,

imposing stronger robustness requirements by a lower constant c reduces the

maximal bias from the power of the given local alternative P alt
�;n. However,

for near local alternatives (and therefore low values of �) this will correspond

to a low power of the RGMM speci�cation test over the full contaminated

neighborhood U�;n(P alt
�;n).

We conclude this section by discussing the robustness of eÆciency prop-

erties of the GMM based Wald, score, and likelihood ratio tests. Consider

again the neighborhood de�ned by (31). For P 0
�;n;Q 2 U�;n(P�0) we de�ne a

sequence of parametric local alternatives to (24) by

g

�
a(�0) +

�
p
n

�
= 0 ; (41)

with a non-zero vector � 2 R
k .

Similarly to the case of the GMM speci�cation test, a natural restriction

on the magnitude of the contamination is j�j < j�j. This allows us to distin-

guish the neighborhood U�;n(P�0) of the local alternative from the given null

hypothesis. The next theorem is the power counterpart of Theorem 1 for the

26



maximum-likelihood-type GMM tests. Similarly to Theorem 2 an explicit

asymptotic bound for the maximal bias in the power of a parametric GMM

test is provided.

Theorem 3 Let ~a be a GMME induced by a bounded orthogonality function

h and denote by � the power functional of the test based on �W , �S and �R,

respectively.

Then, the bias of � is uniformly bounded by the inequality:

lim
n!1

j�(P 0
�;n;Q)� �(P�0)j � 2��k�k��1

0

sup
x

kh(x; a(�0))kW0
+ o(�) ;

(42)

where � is de�ned as in Theorem 1.

Similarly to the case for the power of a GMM speci�cation test, the maximal

asymptotic bias of the power of a parametric GMM test derived from the

RGMM estimator of the last section can be estimated by the inequality:

lim
n!1

j�(P 0
�;n;Q)� �(P�0)j � 2��k�k��1

0

c+ o (�) : (43)

This bound can be used to relate the choice of c to the maximal bias in the

power of a parametric GMM test, given a nominal value �0 at the model.

5 An Application to RGMMTesting for Con-

ditional Heteroscedasticity

In this section we consider a simple application of our RGMM methodology

to a test for ARCH structures in the errors of a linear autoregressive model.

The goal is not to perform a full analysis of the robustness properties of

ARCH testing procedures but to outline the performance of the RGMM in
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a simple application as well as the algorithm used to compute the RGMM

estimator of Section 3.

Let (yt)t2N be the autoregressive process (1) with ARCH(1) error terms

presented in Example 2. Moreover, consider the orthogonality conditions

given by (2) and (3).

A test for a constant conditional variance speci�cation of �t could be

a Hansen speci�cation test for the overidentifying orthogonality conditions

implied by the null hypothesis �1 = 0 against an alternative hypothesis

�1 > 0.

Note that in the present formulation we treat all parameters that have to

be estimated under the null hypothesis symmetrically . Of course, one could

easily develop a two-stage RGMM testing procedure if (�0; �1) is treated as

a vector of nuisance parameters.

To construct a GMM test for conditional heteroscedasticity behaving sat-

isfactorily under local deviations from normality, we consider as a reference

model for yt an autoregressive model with normally distributed errors ut and

compute the RGMM estimator presented earlier for a given choice of the

tuning constant c (see below). By construction, the above RGMM test of

induced by this RGMM estimator maintains "good" level and power prop-

erties under local deviations from the given reference model in a way that is

formalized through the inequalities obtained in Theorem 1 to 3.

To compare the performance of the given GMM and RGMM tests for

ARCH we simulate the following distributions "near" the normal distribution

as candidate models of a possible data generating process for ut.

1. Standard normal

In this experiment we compare the eÆciency of the RGMM and the

classical GMM testing procedures at the given reference model.
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2. Contaminated normal CN(�;K2)

F (x) = (1� �)�(x) + ��
�
x

K

�
; x 2 R ; (44)

where � is the cumulative distribution function of a standard normal

random variable. Here, we investigate the performance of the classical

GMM and the RGMM under a known maximum distance � from the

standard normal model and a given degree of contaminating variance

K
2. We simulate this case for a distance � = 0:05 and a very high con-

taminating variance K2 = 100. This choice is quite extreme. However,

it allows us to compare the performances of the RGMM and the GMM

under dramatic symmetric deviations from normality that could occur

over a short time period in real data.

3. Student t� with � degrees of freedom

We consider the cases � = 5; 9 that allow for the existence of the fourth

and the eighth conditional moments of ut, respectively. Note that the

t9 and t5 distributions are already very near to the normal. As a con-

sequence, in this example we can compare the numerical performance

of the robust and the classical GMM when very small deviations from

normality are present. Moreover, in the t5 case we can investigate the

impact of the non-existence of some theoretical conditional moments

of ut (assumed �nite by the GMM).

4. Double exponential DE

This distribution has a symmetric convex density. It is therefore quali-

tatively di�erent from the normal already in the center of the distribu-

tion. Furthermore, it displays fat tails somewhere between the t5 and

the CN(0:05; 102) distribution.
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All simulated error distributions were scaled in order to have variance 1. This

small simulation design covers a good spectrum of tail behaviours for distri-

butions of ut that have heavier tails than the normal and still satisfy minimal

moment requirements. Indeed, the tail indices (cf. Gasko and Rosenberger

(1983) p. 322) of these distributions are 1 for the standard normal distri-

bution, 1.16 and 1.34 for the Student t9 and t5 distributions respectively,

1.63 for the double exponential, and 3.42 for the contaminated normal. For

comparison, a standard Cauchy distribution has a tail index of 9.22.

We simulate (1) for the parameter choice (�0; �1; �0) = (0:4; 0:3; 0:25)

and for di�erent values of �1, ranging from 0 to 0.3, under the di�erent

distributions for ut presented above and for sample sizes T = 250; 500; 1000.

Note that for �1 >
1
3
the fourth unconditional moments of ut do not exist

even under normality of ut.

As an illustration, some QQ plots9 of the unconditional distribution of a

process (yt) without and with ARCH e�ects (�1 = 0 and �1 = 0:2 respec-

tively) for some of the distributions considered above are presented in Figure

1 and 2.

Insert Figure 1 and 2 about here

From these graphs one can see that the e�ects on the unconditional dis-

tribution of yt of a "slight" modi�cation of the conditional distribution of ut

can be quite important, when ARCH e�ects are present. This is particularly

true for the tails of the induced distributions. As expected, a given tail index

of a conditional distribution for ut induce fatter tails in the unconditional

distributions of yt when ARCH structures are present.

Each model is simulated 1000 times. The corresponding empirical rejec-

tion frequency for the RGMM and the GMM Hansen's test is calculated for

9All QQ plots are based on simulated samples of 5000 observations.

30



a �xed nominal level of 5%. The estimated standard error of the empirical

rejection frequency p̂ is given by (using the binomial distribution)
�
p̂(1�p̂)

1000

� 1

2

.

It is 0:7%, 1:0% and 1:5% for p̂ = 5%; 20%; 50%, respectively.

The tuning constant for the RGMME was set at c = 2:09. This allows to

obtain a maximal bias of +/{ 0.5% in the level of the RGMM test also for

contaminations � = 10% (cf. Table 1 above) of the unconditional distribution

of yt. We imposed such a strong robustness restriction on our RGMME

because the unconditional distribution of yt shows even fatter tails than the

conditional distribution of ut when ARCH e�ects are present, a fact that

can make the distance between the induced unconditional distributions of yt

larger than the distance between the assumed conditional distributions of ut

For each simulation run we used a0 = (0:2; 0:2; 0:2) as a starting point for

the algorithm and always obtained convergence.

In the �rst step of the algorithm we set � = 0 and updated the matrix

A after having estimated the covariance matrix of h(X1; a0) with a Newey

West (1987b) covariance matrix estimator. In the second step of the al-

gorithm we simulated an ARCH process corresponding to the parameter

choice a0 and computed the expectations needed to solve (22) and thereby

obtain �1. A1 is obtained after having estimated the covariance matrix of

(h(X1; a0) � �0) � wc(A0(h(X1; a0) � �0)) with a Newey-West (1987b) co-

variance matrix estimator. Note that at this stage of the algorithm an

autocorrelation robust covariance matrix estimator is necessary even when

(h(Xt; a0))t2N is conditionally uncorrelated because this does not generally

imply that (hA0;�0
c (Xt; a0))t2N is uncorrelated. In the third step we com-

puted the GMME a1 associated to the orthogonality function h
A1;�1
c . The

second and third step above are then iterated until convergence of the se-

quence (an)n2N of GMME associated to the sequence (hAn;�n
c )n2N� of bounded
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orthogonality functions.

The results are presented in Table 2 to 6. Although the goal of this

simulation is not to perform a full analysis of the robustness properties of

ARCH testing procedures, some of the features obtained are worth noting.

Insert Table 2 to 6 about here

First of all, the RGMM test yields empirical sizes that are very stable

across all simulated distributions (generally between 0.02 and 0.03). On

the other side, the empirical sizes of the classical GMM tests are far less

stable ranging between 0.05 (for the normal distribution and for a sample size

T = 1000) and 0.11 (in some experiments with the DE and t5 distributions)

for distributions that are not "too far" from the normal. In the case of heavier

tails (the contaminated normal case) the classical GMM test breaks down.

Although this simulation is too limited to draw �nal conclusions, we observe

empirical sizes re
ecting a rather "conservative" behaviour of the RGMM test

and a drastic liberal behaviour of the classical GMM test. Indeed, already

under normality the empirical sizes of the classical GMM test are often higher

than the given nominal level of 5% (for sample sizes T = 250; 500).

Secondly, the RGMM test yields empirical power curves that are fairly

stable for almost all the simulated distributions. In particular, for distri-

butions that are not "too far" from the normal (the DE, the t9 and the

t5 distributions) the empirical asymptotic power when T = 1000 deviates

from that obtained under normality by no more than +/{ 0.09 (with a max-

imal absolute deviation of 0.09 obtained for the DE case when �1 = 0:2).

In the contaminated normal case di�erences are larger. However, note that

in this case the classical GMM test does not even produce a monotonically

increasing power curve.

32



The stability of the RGMM is paid for through a loss in power under

normality, compared to the classical GMM test. For instance, when �1 = 0:1

the power of the robust GMM test under normality is half that of the classical

one. Somehow surprisingly however, this clear power advantage is already

lost for very small deviations from normality. Indeed, for the di�erent sample

sizes the classical and robust power curves in the t9 experiment are quite

comparable, with some small advantages for the GMM (RGMM) for large

(small) sample sizes. For larger deviations, (the t5, the DE and the CN case)

the power of the RGMM is clearly higher than that of the classical test. This

suggests that in real data applications already very small contaminations of

the underlying model could a�ect the eÆciency of classical GMM testing

procedures. On the other side, a RGMM procedure could then be helpful in

maintaining this eÆciency loss below a given bound.

6 Conclusions

We derived a RGMM estimator that generates robust tests for a broad class

of GMM test statistics. Special cases are Hansen's speci�cation test and

likelihood-type GMM tests like the Wald, the score and the likelihood ratio

test.

We presented an algorithm to compute our RGMM estimator, in which

the degree of robustness required by a researcher can be controlled through

the choice of an appropriate tuning constant c.

We explicitly related the choice of this tuning constant to two key vari-

ables: the amount of contamination that one can realistically assume with

respect to a given data set and to the available data information, and the

maximal bias of level and (or) power of a GMM test that one is ready to
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admit for the given test.

In some simulated experiments we presented evidence that the optimal

performance of a GMM test at the model can be strongly worsened even

when small deviations are present. In these experiments the RGMM testing

procedure behaves well in controlling for small distributional deviations from

the assumptions. Moreover, the eÆciency loss at the model of the RGMM

procedure seems to be reasonable when considering its performance under

small model misspeci�cations.

Further research on RGMM testing includes the study of its performance

under more general model structures and model deviations (for instance

asymmetric deviations) than those presented above. Applications to more

complex macroeconomic and �nancial models where a reference model for

the data distribution can be assumed could produce interesting robust re-

sults that can be compared with those obtained with classical methodologies.

Finally, a further issue is the small sample behaviour of RGMM statistics.
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Appendix

Proof of Theorem 1: We prove the statement of the theorem only for the score

and likelihood ratio statistics. Those for �M and �W can be proved by similar

arguments. As noted after Property 1 ~a is Fr�echet di�erentiable10. This implies

the Fr�echet di�erentiability of US . A �rst order von Mises (1947) expansion of US

then gives up to terms of order o(�)

p
n(US(P�n)� US(P 0

�;n;Q))! N (0; Ir) ; n!1 ; (45)

in distribution uniformly for all Q 2 dom(US), using (30). As shown by Heritier

and Ronchetti (1994) the asymptotic level under contamination of the correspond-

ing symmetric test functional induced by US can be then approximated by the

second order expansion given by (32) with U = US . Note that the equality for �

in the statement of the theorem is obtained by a result of Johnson and Kotz (1991),

ch. 28, p. 132, formula 1. Then, by (4) and using the hypothesis g(a(P�0)) = 0,

we obtain:

IF (x;US ; P�0) = �
1

2

0E�0

@h>(X1; a(�0))

@a
W0 ��

E�0

@h(X1; a(�0))

@a>
IF (x; â; P�0) + h(x; a(�0))

�
:

The constrained GMM estimator (â(P�n); �̂(P�n)) is de�ned by the system of �rst

order conditions

E�n

@h>(X1; â(P�n))

@a
WnE�nh(X1; â(P�n))�

@g>

@a
(â(P�n))�̂(P�n) = 0

g(â(P�n)) = 0 ;

where �̂ : dom(�̂) ! R
r is the corresponding statistical functional of Lagrange

multipliers. Di�erentiating implicitly the limit version of these necessary condi-

tions in direction Æx 2 dom(â) { while imposing (4) and �̂(P�0) = 0 { and solving

the corresponding system of implicit equations gives

IF (x; â; P�0) = (I � �0M0)IF (x; ~a; P�0) ; (46)

10See Clarke (1986), Bednarski (1993) and Heritier and Ronchetti (1994).
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where

M0 =
@g>

@a
(a(�0))

�
@g

@a>
(a(�0))�0

@g>

@a
(a(�0))

��1
@g

@a>
(a(�0)) :

Inserting this result in (46) and using (14) with W0 = V �10 yields

kIF (x;US ; P�0)k
2 =





M0�0E�0

@h>(X1; a(�0))

@a
W0h(x; a(�0))






2

�0

:

Moreover, by the orthogonal projection property of M0�0 (with respect to the

scalar product induced by �0):

kIF (x;US ; P�0)k
2 �





E�0

@h>(X1; a(�0))

@a
W0h(x; a(�0))






2

�0

� kh(x; a(�0))k2W0
:

This proves the theorem for �S .

To apply the approximation (32) to the likelihood-ratio statistic remember that

~a is Fr�echet di�erentiable. A second order von Mises (1947) expansion of �R under

the hypotheses (4) and g(a(P�0 )) = 0 then gives up to terms of order o(�2):

�R(P 0
�;n;Q) =

�2

n

h Z
RN

[E�0

@h(X1; a(�0))

@a>
IF (x; â; P�0) + h(x; a(�0))]

>dQ(x)W0 �Z
RN

[E�0

@h(X1; a(�0))

@a>
IF (x; â; P�0) + h(x; a(�0))]dQ(x)

�
Z
RN

[E�0

@h(X1; a(�0))

@a>
IF (x; ~a; P�0) + h(x; a(�0))]

>dQ(x)W0 �Z
RN

[E�0

@h(X1; a(�0))

@a>
IF (x; ~a; P�0) + h(x; a(�0))]dQ(x)

i
:

This expression can be simpli�ed by using (46), (14) with W0 = V �10 , and the or-

thogonal projection property of M0�0 (with respect to the scalar product induced

by �0), to obtain:

�R(P 0
�;n;Q) =

�2

n

h Z
RN

(IF (x; â; P�0)� IF (x; ~a; P�0))
>dQ(x)��10 �Z

RN

(IF (x; â; P�0)� IF (x; ~a; P�0))dQ(x)
i
+ o(�2) ; �! 0 :

The expression on the right hand side of this formula is the second order von

Mises expansion under the hypotheses (4) and g(a(P�0 )) = 0 of a Hausman
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functional �H : dom(�H) ! R
+ , de�ned by the symmetric form �H(P�n) :=

UH(P�n)
>UH(P�n), where

UH(P�n) := �
� 1

2

0 [â(P�n)� ~a(P�n)] ; (47)

cf. Hausman (1978) and Holly (1982). As a consequence the di�erence between the

levels under contamination of the likelihood ratio test and a Hausman test de�ned

by the critical region fn�H(P�n) � �1��0g, where �1��0 is the 1��0 quantile of a

X 2(r; 0) distribution, is of order o(�2). Hence, the asymptotic bias under a given

P 0
�;n;Q{contamination of the level of the likelihood ratio test can be equivalently

investigated by analyzing that of the Hausman test. Similar arguments to those

developed above for US can be now applied to UH . The IF of UH is given by

IF (x;UH ; P�0) = ��
1

2

0M0IF (x; ~a; P�0)

= �
1

2

0M0�0E�0

@h>(X1; a(�0))

@a
W0h(x; a(�0));

using (46) and (14). Furthermore, again by the properties of orthogonal projec-

tions, this quantity can be bounded by the self-standardized norm of h as follows:

kIF (x;UH ; P�0)k
2 = kM0�0E�0

@h>(X1; a(�0))

@a
W0h(x; a(�0))k2�0

� kE�0

@h>(X1; a(�0))

@a
W0h(x; a(�0))k2�0

� kh(x; a(�0))k2W0
:

This proves the theorem for the level functional �R of the likelihood-ratio type

test. 2

Proof of Theorem 2: By the Fr�echet di�erentiability of ~a, n�M(P�n) is

asymptotically uniformly X 2(r; �(�)) distributed with �(�) = nkUM (P 1
�;n;Q)k

2.

Moreover, up to order O(1=n) we have �(P 1
�;n;Q) = 1 � Hr(�1��0 ;�(�)). A �rst

order Taylor expansion then yields

�(P 1
�;n;Q)� �(P alt

�;n) =
@�(P 1

�;n;Q)

@�

���
�=0

� �+ o(�) ;
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up to terms of order O(1=n).

Some calculations then yield:

@�(P 1
�;n;Q)

@�

���
�=0

= � �
@�

@�

���
�=0

= 2�n �
@UM (P 1

�;n;Q)
>

@�

���
�=0

UM (P alt
�;n)

= 2�
p
n �
�Z

RN

IF>(x;UM ; P alt
�;n)dQ(x)

�
UM (P alt

�;n) : (48)

up to terms of order O(1=n). Writing:

UM (P alt
�;n) = UM (P�0) +

�
p
n

Z
RN

IF (x;UM ; P�0)dP�1(x) + o(�) ; (49)

we obtain:

j�(P 1
�;n;Q)� �(P alt

�;n)j � 2��� max
fPalt

�;n;P�0g
sup
x
kIF (x;UM ; �)k2 + o(�)

� 2��� max
fPalt

�;n
;P�0g

sup
x
kh(x; ~a(�))k2W0

+ o(�) ; (50)

using UM (P�0) = 0. This concludes the proof of the theorem. 2

Proof of Theorem 3: The functional UW is asymptotically equivalent to US

and UR at the model under the local alternatives given by (41); cf. Gourieroux

and Monfort (1989). Moreover the Fr�echet di�erentiability of ~a implies that this

equivalence is uniform. It is therefore suÆcient to prove the theorem for the

functional UW . The statistic n�W (P�n) is asymptotically uniformly X 2(r; �(�))

distributed with �(�) = nkUW (P 0
�;n;Q)k

2. Again, up to order O(1=n) we have

�(P 0
�;n;Q) = 1�Hr(�1��0 ;�(�)). As in the proof of Theorem 2 a �rst order Taylor

expansion then yields

�(P 0
�;n;Q)� �(P�0) =

@�(P 0
�;n;Q)

@�

���
�=0

� �+ o(�) ; (51)

up to terms of order O(1=n).

Similar calculations to those in the proof of Theorem 2 then give:

@�(P 0
�;n;Q)

@�

���
�=0

= � �
@�

@�

���
�=0

= 2�n �
@UW (P 0

�;n;Q)
>

@�

���
�=0

UW (P�0)

= 2�
p
n �
�Z

RN

IF>(x;UW ; P�0)dQ(x)

�
UW (P�0) ;
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up to terms of order O(1=n).

Expanding UW (P�0) with respect to � we have:

UW (P�0) = �
�
@g

@a>
(a(�0))�0

@g>

@a
(a(�0))

�� 1

2 @g

@a>
(a(�0)) �

�
p
n
+ o

�
�
p
n

�
:

(52)

Since

IF (x;UW ; P�0) = �
�
@g

@a>
(a(�0))�0

@g>

@a
(a(�0))

�� 1

2

�
@g

@a>
(a(�0))�0E�0

@h>(X1; a(�0))

@a
W0h(x; a(�0)) ;

(53)

we obtain up to terms of order o(�):

@�(P 0
�;n;Q)

@�

���
�=0

= 2� �
�Z

RN

h>(x; a(�0))dQ(x)

�
W0E�0

@h(X1; a(�0))

@a>
�0

�
@g>

@a
(a(�0))

�
@g

@a>
(a(�0))�0

@g>

@a
(a(�0))

��1
@g

@a>
(a(�0))� :

The Cauchy-Schwarz inequality then gives:�����
 
@�(P 0

�;n;Q)

@�

���
�=0

!����� � 2� �





Z
RN

h(x; a(�0))dQ(x)






W0

�



@g>
@a

(a(�0))

�
@g

@a>
(a(�0))�0

@g>

@a
(a(�0))

��1
@g

@a>
(a(�0))�





�0

+ o(�) :

Using again the properties of orthogonal projections we obtain:�����
 
@�(P 0

�;n;Q)

@�

���
�=0

!����� � 2� � sup
x
kh(x; a(�0))kW0

k�k
��1
0

+ o(�) : (54)

Finally, by inserting this expression in the Taylor expansion (51) we get:

j�(P 0
�;n;Q)� �(P�0)j � 2��k�k��1

0

sup
x
kh(x; a(�0)kW0

+ o(�) : (55)

This concludes the proof of the Theorem. 2
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Tables

Table 1: Values of the Tuning Constant c for Bounding the Maximal

Bias of the Level of a GMM test

The values of the tuning constant c are for a nominal level 5% at the model,

for a maximal bias given by maxbias = +=� 0:5% and for a model contamination

� = 5%. r is the number of degrees of freedom implied by the X 2-test under

scrutiny.

r �1��0 � c

1 3:84 0:1145 4:18

2 5:99 0:0749 5:17

3 7:81 0:0584 5:85

4 9:94 0:0490 6:39

5 11:07 0:0428 6:83

6 12:59 0:0383 7:22

7 14:07 0:0350 7:56

8 15:51 0:0323 7:87

9 16:92 0:0301 8:15

10 18:31 0:0283 8:41

1 0 1
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Table 2: GMM and RGMM Simulation Results under ut � N (0; 1)

Each entry in the Table corresponds to the empirical rejection frequency of the

hypothesis �1 = 0 obtained using 5% critical values for the X 2 test. The constant

c for the RGMM test was set to c = 2:09.

Rejection Rejection

frequency GMM frequency RGMM

�1 T = 250 T = 500 T = 1000 T = 250 T = 500 T = 1000

0:00 0:08 0:08 0:05 0:02 0:02 0:02

0:05 0:05 0:09 0:19 0:02 0:06 0:07

0:10 0:09 0:28 0:62 0:06 0:14 0:29

0:15 0:20 0:52 0:90 0:12 0:31 0:62

0:20 0:32 0:74 0:97 0:21 0:51 0:87

0:25 0:45 0:84 0:98 0:35 0:71 0:95

0:30 0:56 0:89 0:98 0:49 0:86 0:99
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Table 3: GMM and RGMM Simulation Results under ut � DE

Each entry in the Table corresponds to the empirical rejection frequency of the

hypothesis �1 = 0 obtained using 5% critical values for the X 2 test. The constant

c for the RGMM test was set to c = 2:09.

Rejection Rejection

frequency GMM frequency RGMM

�1 T = 250 T = 500 T = 1000 T = 250 T = 500 T = 1000

0:00 0:11 0:10 0:09 0:03 0:03 0:03

0:05 0:04 0:04 0:09 0:03 0:06 0:12

0:10 0:04 0:12 0:31 0:07 0:14 0:32

0:15 0:06 0:23 0:54 0:11 0:26 0:58

0:20 0:10 0:33 0:71 0:18 0:41 0:78

0:25 0:16 0:43 0:78 0:26 0:57 0:91

0:30 0:21 0:50 0:79 0:34 0:70 0:96
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Table 4: GMM and RGMM Simulation Results under ut � t9

Each entry in the Table corresponds to the empirical rejection frequency of the

hypothesis �1 = 0 obtained using 5% critical values for the X 2 test. The constant

c for the RGMM test was set to c = 2:09.

Rejection Rejection

frequency GMM frequency RGMM

�1 T = 250 T = 500 T = 1000 T = 250 T = 500 T = 1000

0:00 0:09 0:09 0:07 0:02 0:02 0:02

0:05 0:05 0:05 0:11 0:04 0:06 0:10

0:10 0:05 0:16 0:42 0:09 0:14 0:30

0:15 0:12 0:35 0:69 0:13 0:31 0:62

0:20 0:21 0:54 0:83 0:23 0:50 0:84

0:25 0:30 0:65 0:87 0:35 0:83 0:95

0:30 0:38 0:73 0:88 0:46 0:83 0:99
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Table 5: GMM and RGMM Simulation Results under ut � t5

Each entry in the Table corresponds to the empirical rejection frequency of the

hypothesis �1 = 0 obtained using 5% critical values for the X 2 test. The constant

c for the RGMM test was set to c = 2:09.

Rejection Rejection

frequency GMM frequency RGMM

�1 T = 250 T = 500 T = 1000 T = 250 T = 500 T = 1000

0:00 0:10 0:11 0:11 0:02 0:02 0:03

0:05 0:05 0:05 0:06 0:03 0:07 0:11

0:10 0:06 0:10 0:24 0:05 0:14 0:33

0:15 0:11 0:18 0:43 0:11 0:28 0:61

0:20 0:15 0:29 0:59 0:17 0:46 0:82

0:25 0:21 0:40 0:67 0:29 0:64 0:93

0:30 0:27 0:48 0:71 0:40 0:78 0:97
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Table 6: GMM and RGMM Simulation Results under

ut � CN(0:05; 100)

Each entry in the Table corresponds to the empirical rejection frequency of the

hypothesis �1 = 0 obtained using 5% critical values for the X 2 test. The constant

c for the RGMM test was set to c = 2:09.

Rejection Rejection

frequency GMM frequency RGMM

�1 T = 250 T = 500 T = 1000 T = 250 T = 500 T = 1000

0:00 0:35 0:51 0:48 0:02 0:01 0:02

0:05 0:16 0:19 0:17 0:02 0:03 0:06

0:10 0:09 0:08 0:05 0:03 0:06 0:14

0:15 0:06 0:04 0:02 0:06 0:11 0:24

0:20 0:04 0:03 0:03 0:07 0:16 0:36

0:25 0:04 0:03 0:06 0:10 0:22 0:48

0:30 0:04 0:04 0:11 0:13 0:28 0:60
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Figure 1: QQ Plot of the unconditional distribution of (yt) (sample size

5'000 observations) under standard normal, t5, double exponential and con-

taminated normal (� = 0:05, K = 10) errors. The ARCH parameter was set

to �1 = 0.
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Figure 2: QQ Plot of the unconditional distribution of (yt) (sample size

5'000 observations) under standard normal, t5, double exponential and con-

taminated normal (� = 0:05, K = 10) errors. The ARCH parameter was set

to �1 = 0:2.
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