Cohen, E.; Kim, D.; Ober, R., "Cramér-Rao Lower Bound for Point Based Image
Registration with Heteroscedastic Error Model for Application in Single Molecule
Microscopy," in Medical Imaging, IEEE Transactions on, vol.PP, n0.99, pp.1-1
doi:10.1109/TM1.2015.2451513

keywords: {Accuracy;Covariance matrices;Image registration;Maximum likelihood
estimation;Measurement errors;Measurement uncertainty;Microscopy;Cram’er-Rao
lower bound;Image registration;fluorescence microscopy},

URL.: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7140799&isnumber
=4359023



http://ieeexplore.ieee.org.lib-ezproxy.tamu.edu:2048/stamp/stamp.jsp?tp=&arnumber=7140799&isnumber=4359023
http://ieeexplore.ieee.org.lib-ezproxy.tamu.edu:2048/stamp/stamp.jsp?tp=&arnumber=7140799&isnumber=4359023

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation infor|

10.1109/TMI.2015.2451513, IEEE Transactions on Medical Imaging

SUBMITTED IEEE TRANSACTIONS ON MEDICAL IMAGING, APRIL 2015REVISED VERSION SUBMITTED, JUNE 2015. 1

Craner-Rao Lower Bound for Point Based Image
Registration with Heteroscedastic Error Model for
Application in Single Molecule Microscopy

E.A.K. Cohen, D. Kim and R.J. Ober

Abstract—The Cramér-Rao lower bound for the estimation
of the affine transformation parameters in a multivariate het-
eroscedastic errors-in-variables model is derived. The muel is
suitable for feature-based image registration in which bol sets of
control points are localized with errors whose covariance ratrices
vary from point to point. With focus given to the registration of
fluorescence microscopy images, the Cra@n-Rao lower bound for
the estimation of a feature’s position (e.g. of a single moteile)
in a registered image is also derived. In the particular case
where all covariance matrices for the localization errors ae
scalar multiples of a common positive definite matrix (e.g. he
identity matrix), as can be assumed in fluorescence microspy,
then simplified expressions for the Cranér-Rao lower bound are
given. Under certain simplifying assumptions these expreasons
are shown to match asymptotic distributions for a previousy
presented set of estimators. Theoretical results are verdd with
simulations and experimental data.

Index Terms—Image registration, Cramér-Rao lower bound,
generalized least squares, fluorescence microscopy.

I. INTRODUCTION

Fig. 1: A diagram illustrating fiducial markers visible in
both images (left). Each fiducial marker’s position is |l@cht
with a measurement error. Registration requires finding the
transformation that best aligns the fiducial markers ()igtith

MAGE registration is the process of overlaying two or morgespect to an appropriate minimization problem.
images of the same scene [1]. Image registration techniques

can be divided into two categories; intensity-based regjisin
where gray scale values are correlated between images,

[2] [3], [4], and feature-based registration, whereby eerr
spondence between the two images is determined through
matching of distinct features common in both images e.g. [

[6].

This project is motivated by an important problem

single molecule microscopy, a recent major advancement

ﬁt%rescent markers. The biological information is obtdine
frOéTl the relationship between the two labeled sets of pnetei
hé imaging experiment consists of taking one exposure

r each of the labeled proteins, often using two cameras,

irgaach equipped with a wavelength dependent optical filter to

(:I%pture the emission of the fluorescence for the correspgndi
proteins. In this fashion we obtain two different imagesheac

displaying different aspects of the sample. In order to el
ese images they need to be registered, as it cannot be
assumed that the cameras are aligned to the degree that is
pecessary to guarantee the nanometer level accuracy wvehich i

techniques and individually localized with accuracies e t
very low nanometer range [7], [8], [9]. In a typical experime
two different proteins in a cell are labeled with differen
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required to obtain the appropriate information. Regigirats
typically achieved by incorporating fiducial markers, usua
small nanometer size beads, into the sample whose fluotescen
properties are such they can be imaged in both cameras.
These fiducial markers can therefore serve as control points
(CPs) for feature-based registration. The characteoizatif

the registration errors is critical in assessing the detation

of the localization accuracy of a single molecule due to the
registration. A number of further single molecule micrgsgo
experiments lead to the same underlying registration probl
One important such example arises from the correction &f dri

in time lapse experiments.
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Previous statistical studies on CP registration [10], [12], using a spatial stiffness model they derive expressionghor
[13], [14], [15], [16], [17] assume one set of positions foet root mean square TRE. An overview of these methods is given
control points is taken as truth and errors exist in only tha [22], together with procedures for the optimal selectain
second set of positions. In such examples a multivariagatin fiducial markers with respect to minimizing the TRE.
regression is used for the data model and the set of lodalizat In [18] asymptotic distributions were found for the TRE
errors are sometimes referred to as the fiducial localizatiander the multivariate errors-in-variables data model and
errors (FLES) [17], [16]. In contrast, a recent study [18%pr affine transformation assumption required for fluorescence
sented a multivariate errors-in-variables (EIV) formidatof microscopy. Further to this, in [18] the asymptotic distitibn
the control point image registration problem importanttie t was also found for the localization registration error (DRE
microscopy application. The errors-in-variables forniolais a newly defined measure of registration error that combines
necessary to model the situation when a ground truth for theth a localization error and the TRE of a feature (e.g. singl
CP locations is unavailable and the errors in measuring the @olecule) that is not used in the registration.
locations are present in both images that are to be registere The quality of a single molecule experiment is assessed by

Importantly, the microscopy application dictates that & hethe accuracy with which single molecules are localized & th
eroscedastic model is used as the measurement errors haygatticular experiment [23]. Here the localization accyrée
be assumed to have different covariance matrices for diifer interpreted as the standard deviation of an unbiased @cati
CPs. A central aspect of the registration problem is thestimator [24]. In [24] and [25] the fundamental limit of
estimation of the registration transformation. There Hasen localization accuracy was introduced as the Cramér-Raerio
attempts in [19], [20] to estimate registration paramefers bound (CRLB) for the location estimation problem, in the
heteroscedastic errors under an EIV model when the transfoontext of ideal experimental conditions such as an infsiie
mation is assumed rigid (rotation and translation onlyhulite photon detector without pixilation artefacts and withothery
heteroscedastic EIV (HEIV) algorithm; an iterative progel extraneous noise sources. This measure has proved aeeliabl
that finds an optimal solution to the HEIV model. Howevempredictor for the best possible accuracy that can be aadtieve
estimator distributions were only determined through boowith a specific single molecule experiment [26], [27].
strapping methods. In the microscopy setting we take theDue to the importance of registration in single molecule
more general assumption that the registration transfoomatexperiments the question therefore arises how the unogrtai
be affine, allowed due to the high geometrical precision aftroduced during the registration process influencesaball
modern microscope objectives. In [18] we have shown that f@ation accuracy for a single molecule that has been regitte
this data model a generalized maximum likelihood estimatdp this end, a major aspect of this manuscript consists of the
is equivalent to a generalized least squares estimatongUsderivation of the CRLB for the registration problem for sele
prior results we were able to obtain asymptotic results alata models that are of relevance here.
the distributions for the estimators for the transformatio The CRLB has been derived for registration problems
parameters. For a specific heteroscedastic noise modeewHeazfore. The work of [28] and [29] consider the CRLB for
covariance matrices are scalar multiples of a known peasitifeature-based and intensity-based registration perfocmin
definite matrix, closed form expressions for estimatorshef t several scenarios of more general affine transformations be
affine transformation parameters were derived. This pdeic tween the two images, as well as a polynomial based non-
model is applicable in a fluorescence microscopy setting@&hdinear transformation. However, they restrict themseteethe
fiducial markers (e.qg. fluorescent beads) act as the CPs déutl@mmoscedastic case, i.e. when all CP measurement erras hav
each localized with differing degrees of accuracy. equal covariance matrix and consider only the CRLB of the

Registration performance is typically quantified by th&ansformation parameters themselves.
fiducial registration error (FRE), which is the root mean- This paper provides the CRLB for registration performance
square distance between fiducial markers after registradied when a general affine transformation is assumed and in the
most importantly the target registration error (TRE) whish case of heteroscedastic CP measurement errors assumed zero
the difference between corresponding points (other than timean and Gaussian. We give particular focus to a fluorescence
fiducial markers) after registration. The distributionlo€fTRE microscopy setting and not only consider the CRLB in esti-
has been of much interest. Under the multivariate lineaeseg mating the transformation parameters, but place emphasis o
sion model (which as stated is inappropriate in fluoresceniteding the lower bound for the covariance matrix of the LRE,
microscopy) [10], [11] derive approximate expressionstf@ a concise and informative measure of registration perfanea
root mean square of the TRE’s absolute value and [12] givEke square root of the diagonals of this covariance matrix
its approximate distribution in the case where the redistna (the standard deviation of the LRE in each dimension) is
transformation is assumed rigid (rotation and translatioly) the accuracy with which single molecules are localized -post
and FLEs are independent and identically distributed (iidggistration in each dimension.
zero-mean Gaussian. Readers interested in the effectsddia In Section Il we formulate the registration problem and
FLEs are directed to [21]. Anisotropic iid FLEs are firstefine the LRE as introduced in [18]. In Section Il we
considered in [15] and [16] derives the maximum likelihooderive the CRLB for the affine transformation parameters in
estimators for the rigid transformation parameters aloiity wthe most general heteroscedastic setting. In Section IV we
the associated Cramér-Rao Lower Bounds on their variance flerive the CRLB for estimating the unknown position of a
this model. Heteroscedastic FLEs are considered in [17] afechture in the registered image, in turn giving a lower bound
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on the variance of the LRE. In Section V we consider thedependent withkth columne = [e] ,, €5 ,]” having mean
specific case when the covariance matrices of the measutenzemo and known positive definite covariance matrix

errors are a scalar multiple of a common matrix as is the

case in a fluorescence microscopy setting. In fluorescence O, = cov{er} = { Q(l)”“ QO ] , 2
microscopy it is reasonable to approximate the covariance 2,k

matrices as multiples of the identity matrix. Further, it isyhere cov{v} denotes the covariance matrix of a random
common for the affine transformation matrix to be a scalggctory.

multiple of a unitary matrix (a combination of scaling, & nodels of type (1) are called errors-in-variables models.
and reflection). In such a scenario we derive an expliGi{hen covariance matrice§;,, k = 1,..., K} all equal the
expression for the lower bound of the covariance matrix @fme matrixQ?, > 0 we have a homoscedastic errors-in-
the LRE that reveals a more intuitive view of these compleygriaples model. Under the homoscedastic assumption (1)
expressions. Importantly, this expression is identicathial s equivalent to the registration formulation of the CRLB
of the asymptotic covariance of the LRE. This was derivegydy by [28] and [29]. When thé< covariance matrices
in [18] under equivalent assumptions when the registratiqmy, 1 — 1, ... K are in general not equal then we have a het-
parameters are estimated using the corresponding gemeeraliproscedastic errors-in-variables model. It is the hetedsstic
least-squares or equivalent maximum likelihood estimdtor 4ssumption that this study focuses on.

Section VI we verify the theory with simulation studies and Image registration requires estimating the transformatio
show the generalized least-squares estimator of [18]”8ttabarameters4 and s whose elements we can represent in the
this lower bound. We conclude by considering real microgcog ansformation parameter vectoy = [vec(A)T,s7]T. In the

imaging data and show the CRLB results presented in thigjct homoscedastic case [30] defines the generalized leas

paper are appropriate in an experimental setting. squares (GLS) estimators of and s and shows them to be
equivalent to the maximum likelihood (ML) estimators under
Il. FORMULATION the assumption of CP measurement errors being Gaussian.

Further to this, closed form expressions for the estimators

We consider the registration eXperiment formulated In[l%f A and s are given a|0ng with their joint and margina]
There areK’ CPs located in both image 1, denotBdC R?,  asymptotic distributions. The work of [31] considers thesto
and in image 2, denoted, C R’ (d = 2 or 3). These general heteroscedastic model, where under the assumption
CPs have true location$z1, € T,k = 1,...,K} and of Gaussian measurement errors the maximum likelihood
{z2r € I,k = 1,..., K}, respectively, and these CP coorestimators forA and s are presented along with an iterative
dinates are related by the affine transformafionR? — R method for their computation and their joint and marginal
where zz ), = T(z1x) = Aziy + s, k = 1,..., K, with  asymptotic distributions. Recently in [18], a heterosstida
invertible A € R™¢ and s € R?. The true positions of generalized least squares estimator is defined in an estensi
the CPs are not known in either image and instead must fgethe homoscedastic formulation of [30] and is shown to be
measured with errors. We therefore observe the CP locatigfifuivalent to the maximum likelihood estimator considered
as{yix € I,k =1,..., K} and{y2x € Z5,k = 1,..., K}, in [31]. In the special case where covariance matrices for
where y; i = zjx + €5, k = 1,..,K, j = 1,2. The the measurement errors are of the foftp = 1,0, where
terme;, € R? is a random measurement error, sometimgs ¢ R+ and 2, > 0 — termed theweighted covariance
referred to as the fiducial localization error (FLE), and af@odel — then [18] gives closed form expressions for the
each assumed zero mean and to have individual Covaria@%mators ofd ands and determines their joint and marginal
matrix€2; > 0 (where we use notatioh/ > 0 if matrix M is  asymptotic distributions. This in turn is used to give ceaci
positive definite and\/ > 0 if it is non-negative definite). All expressions for the first and second moment of the TRE and
measurement errors are assumed to be pairwise indepengdgit, measures of registration error that we now formally

across the CPs. define.
Let us define theR¥*X matricesX; = [zj1,...,7j.x],
Y} = [yj,h ---;yj,K] and Ej = [Gj,l, ...,€j7K], 7 = 1,2.

The measured control point locations can be convenienfly Registration Errors

represented ag; = X +& andY; = X+ &. The latter of  As has been stated in Section |, the TRE is a commonly
these can be equivalently representetfas- AX;+s1%+&, used measure of registration performance. Here we give its
where™ is the matrix transpose anty is a column vector definition when the registration transformati@his assumed

of length K with every element taking the value If we affine with matrix parameted and vector parameter (see
further define thestackedR2¢* X matricesX = [XlT,XQT]T, Figure 2).

_ T 117 — JeT T T
Y = [YW,Y)'] and€ = [£f.&5] then the system of peginiion 1.1, Let A ands be the registration transformation
equations can be condensed into the single matrix equatiog,rameters and lefi and s be their respective estimators. The
target registration error (TREY : Z; — R¢ for an arbitrary
Y = AX 1. +¢ 1 : : . o
phale s, @) point z; € Z; with corresponding mapped position # of
wherea = [07, s7]7 andA = [I;, AT]", with I, representing %2 = Az1 + s is defined asr(z1) = @z — (A, +3) =
the d-dimensional identity matrix. The columns o are Azi+s— (Azi+3).
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i . R . (2T, 2T, ..., 2T 7 is the R4 vector of CP location pa-
' ; : . :
% L Aeas ! rameters. We make the assumption that measurement errors
ST 1 X2 = 1 . . .
S . . are independent, are zero-mean (validated in [26]) and are

Gaussian (validated in Section VI) with covariance mafejx
of form (2), i.e.ex ~ N24(0, Q). The likelihood function is
therefore given as [18],[31]

1
- ]
N !
1
| i
I
N f
feu
&
+
s [
/
-—F--
1
M
el
m

L L
K
Fig. 2: A diagram illustrating the target registration eres  L(6r¢|y1, ..., yx) = _ H ||~/
. it . . (2m)Kd/2
the difference between the true position of an arbitrarnpoi k=1
in Z, (black/upper cross) and its registered position using the 1 X
. . . TH—-1

estimated registration parameters (green/lower cross). X exp (—5 Z(yk — )" Q. (ke — /%)) ,

k=1

megel . where y, = [z, 23 ,]", |Q| denotes the determinant of
Qr and yq,...,yx are the stacked vectors of measured CP
locations. The corresponding log-likelihood is

LOrc|yr, ... yx) =
K

Kd 1 1
e 771n(27r)75];1nlﬂk|—5 ;(ywuk)Tﬂgl(yruk)-

Fig. 3: A dlagram llustrating the Iocallzatlon_ regista It is well established that for the multivariate normal dist
error as the difference between the true position of feature

. ) : o . “bution with covariance that is independent of parametegs th
in Z, (black/upper cross) and its registered position using i sher information matrix (FIM) for the parameter ve
estimated position if; (green/lower cross) and the estimate enoted (¢ is given as [32 47]p ctoic,
registration parameters. rc), i g » P
K
oul 0

K Q]zl /v,;k : (3)

drc ® 001

=1

J(0rc) =
The LRE is defined in [18] and is of particular use in k
fluorescence microscopy registration experiments. Suppes and the CRLB matrix is given a8(6r¢) = J 1 (6rc). With
have a feature (e.g. a single molecule) that is visible ingenathe CRLB matrix denoted as
1 but not in image 2 (and therefore is not involved in the C C
registration process). The LRE gives the error with which it C(orc) = [ CTT CTC } ;
is localized in image 2 after registration (see Figure 3). or oo

(4)

o } ) . the diagonals ofCrr are the CRLBs for estimating the
Definition I.2. Let A ands be the registration transformation {ransformationparameters and the diagonals@#c are the
parameters and letd and s be their respective estimators.cr| Bs for estimating thecontrol point locations. We are
For a feature (e.g. single molecule) i, with true and therefore primarily interested in the diagonals @fr. It is
measured locations,  andy,, r = x1,r + €1, T€SPectively, shown in Appendix A that
the localization registration error (LRE)r is defined as the X
difference between the true position Ia, given byzs p = J(Ore) = Z HEQ; ) Hy HIQ; Gy,

Az r + s, and the registered positiofy p = Ay, r + 3, i.€. re)= GEQy  He FIQ Fe+GEQ, Gy |7

- ~ k=1
EF = T2, F — X2F-

k k

The standard deviation of an element/ef is the accuracy where Fi, = (ef)" (%,)Id’ Gy = ()" ® A Hy -
with which a feature/single molecule can be localized i d®x1T,kad}- Here, e;/” represents thgth standard basis
that dimension post-registration. The covariance matox fvector of R?, (i.e. vector of lengthp with 1 placed in thejth
¢, denoted(),, is identical to the covariance matrix fore€ntry and zeros everywhere else) andenotes the Kronecker
the estimatori, » and therefore the CRLB for estimatingProduct. It follows from the block matrix inversion of(fz¢)
zo.r is a lower bound for, i.e. if we denote the CRLB that
matrix for estimatingr, » as Crr thenQ, > Crr (Where
notationQ, > Crr means{)y; — Crr > 0, i.e.Qy, — Cpr is
non-negative definite). Further discussion on the relatign
between the TRE and LRE can be found in [18].

—1
Crr = (SHH — Suc (Srr + Sae) ™! S?IG) )

whereSyy = S HEQy ) Hy, Sue = Yy HEQ53Gr,
Srr =Yy FIQ L Fy andSee = Yy G, Gy This
is the CRLB for the transformation parameters in the most

Ill. CRLB FOR AFFINE TRANSFORMATION PARAMETERS general heteroscedastic errors-in-variables model deresi

The vector of unknown parameters is given 63@2 = in [31]. Equations (12), (13) and (14) in Appendix A pro-
[0F,605)7, where 07 = [vec(A)T,sT]" is the R4 vide expressions for the sunfsy, Sye and Srr + Sca,
vector of affine transformation parameters afdd = respectively.
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IV. FEATURE LOCALIZATION V. CRLB EXPRESSIONS FOR WEIGHTED COVARIANCE

. . . o MODEL
Let us now consider including the localization of a feature ] ) o )
(e.g. single molecule) into the expression. For this wetidel Section IV provides the CRLB for localizing a feature/simgl

the termy, - the observed location of the featureZi, and molecule in the most general heteroscedastic registration
the unknown parameter, » - the true position of the feature model. While these re;ults pr.ovide. a very general solution
in Z, that we wish to estimate. The associated localizatidf OUr problem, we will now investigate special cases that
error has covariance matri®, ». As previously stated in &€ of interest in their own right through their relevance

Section II-A, the LRE/p € RY is the difference betweeniN applications. In addition, in these special cases we can
the estimatotis » — Ay, » + 3 and the true valug, » and ©Ptain significant simplifications of the above expressitias

hence the CRLB for estimating, » provides a lower bound provide useful insights for experimental design consitiena.
for Q, the covariance matrix 0@_ In this section we look to thaveighted covariancenodel

The combined log-likelihood function for all parameterformulated in [18], in which we make the assumption that
Oprc = (07,67 0L]7, wheredp = x4, given the observed covariance matrices for the measurement errors are of the fo
data is now ’ Qi = Qo Wheren, € RT andQy >0, forallk=1,..., K.
Here, we consider the following further assumption.
Assumption |.Covariance matrices have the form&; o =

d 1
LOrrclys, - yx,y1r) = =5 W27) — 5 [Qp| 03ol2, Qa0 = 03¢, Y p = o2, and transforma-

1 T 1 Kd tion matrix A = <R, where R is a unitary matrix (rota-
- E(y“w —Hr) 4 p(YLr — pr) - 2 In(2) tion/reflection) ands € Rt is a scaling factor.
1. E 1 X oy The transformation vectar is arbitrary. The assumption here
—5 Zln || — 3 Z(yk — k)" (yx — k). (6)  that the covariance matrices are some scalar multiple of the
k=1 k=1 identity matrix is a reasonable assumption in fluorescenee m

In terms of the unknown paramet@f = x> » we can write CrOSCOpY and exact in the case of a non-pixelated detectgr [2
pir = A"Y (22 — 5). The FIM for the cofnplete parameterThe assumption on the transformation matrix is a common

vectorfzrc is shown in Appendix B to be given as type of transform experienced in registration.
J(Oprc) = A. CRLB for estimating transformation parameters
CTe-1 4— Let us define the following quantities that will be used here:
A"TQ LAY Dpr 0 Ko it
Dllqwi Drr + Suu Sua ., 7= (1/11(() Dm1 s Xk = :(Cl)kxlTk (k=1.,K)E=
0 Sta Srr + Sac (1K) Sy X Xik = €3 ® aiy (i =1,2andk =

ro-1 To—1 . L., K), 71 = (1/K) Zszl 77;;1151,1@, )9 = e(;) @zt (i =
where Drr = D7Qy pDr and Dpr = DpQy Dy, with 1,2), U == -y lz,27 andl; =+ ' XW (i = 1,2).

o Under Assumption | it is shown in Appendix D that the
_ 1,F

Dyp = T —AY expression folCrr in (5) simplifies to
F
1 2 _2 2
Dr = ag;f =-A" 2l p® I 1] .- Crr =% (SFoto+020)
T vl0 -7
Representing the inverse FIM 6f-r¢ as X 0 vt -3 ) . (9
-1 —-I'y ’}/_1[2 +’}/_1 FlXT+F2XT
Crr Crr Crc (T X )
COrrc) =J '(Orrc) = | Crr Crr Crc |, B. CRLB for estimating the location of a feature/single

Cocr Ccor Cecc molecule in the registered image

1) General model:Under Assumption | it is shown in
Appendix E that the CRLB matrix for estimating the location
r of a feature/single molecule is given as

it is shown in Appendix C that the sub-blogk."” £7¢ ] is

C
identical to C(6r¢) in (4) (as one would expeTct from the

fact that the feature/single molecule is not involved in thié?:

registration process), and the CRLB matrix for estimating 1
x2,r, the location of a feature/single molecule in the registere Crp = | 55— I2—
image, is given by I1F
1 1 1 prt T
-1 T LFT] p  ZLF
~T-1 4 1y Neh|—-— ) I
CFF = (A TQL%A L DFT(DTT + Cle“) 1D£T) s g40.411714_‘ [xva ] ® 12 <§203F [ m{F 1 :| ® 12
(8) T 7y -1
whereCrr is the CRLB matrix for estimating the transforma- ) 5 N1 K . Xk 0 Lk
tion parameters given in (5). Thediagonal elements afpp  + (S0%0 +050) D7k 0 xk  Xgu
are the CRLBs for estimating the respective elements,of, k=1 Xie Xogp I
and withQ, > Crr offers the lower bounds on the variances T T )—1
= 1 I 10
of the respective elements of the LRIz. x [21p 1] ® 1 (10)
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2) Simplified model:Let us consider the case whejyg is VI. SIMULATIONS AND EXPERIMENTAL VERIFICATION

independent of CP position and CPs are centrally and symmety, iyis section we verify the CRLB results given in this

rically distributed in the image space. This model lead$® tpaher with computational simulations and a real data experi
following set of assumptions that are appropriate for lakge ,aont.

and asymptotically exact. These assumptions naturalkeari

for example, when considering the experimental dispasibio , . )

fluorescent beads in a specific microscopy experiment gettif Simulation Studies

where the beads can be assumed to have a circular Gaussidn these computational simulation studies we consider a

spatial distribution [18]. microscopy experiment where we register a pair of different
Assumption |l Approximate(1/K) Zszl ne 'xx = 21> and coloured monochromatic images each captured using an op-
(1/K) Zfﬂ nk—lXj ke =0. tical system with identical numerical aperture and popread

Under Assumption | and Il it is shown in Appendix F thafunction. The measurement error in localizing thiéy CP in
the CRLB matrix for estimating the feature/single moleculéh imageZ; (j = 1,2) has zero mean and covariance matrix

location z, - is given as (Gi/Njx)I2 where §; = A%, /(4w®nf;) [24]. The photon
) wavelength); ., associated with each image is 540nm and
1 ar 650nm respectivel is the numerical aperture and assigned

Crr =03 gl + — (%01 o+ 03 <1 + —> L. _ P Yir ) P 9
mr L K~ ( vo 2’0) v ) ? a typical value of 1.4 andV, ;. is the photon count associated

3) Applying to a microscopy settingSonsider a fluores- With the kth cr?ntrol point in thejth image. _ _
cence microscopy example were Assumptions | and Il arel) Rotation: CPs are arranged in a square grid of side
satisfied. That is, we have the weighted covariance modal wien9th 8km in the object space with varying numbers of

m. = N~} whereN, ;. is the number of photons associate®@©ints within that grid, and thereforés’ is restricted to
- 1,k s -
with control pointk in 7y, k = 1,..., K, andQ, = 0?7012 the square numbers from 4 to 64. The photon counts as

whereo? ) = ¢; ando2, = (»/c [33]. Constant;, j =1,2, sociated with each control point are observed realisations

is a known localization accuracy parameter associatedJyith ofla uniformly distribut(_ad ran_do:n inte]gerl on the ?r_]ter-
and is a function of the numerical aperture, photon waveten al [5000,10000]. InZ; is a singie molecuie at position
and point spread function (see [18, p. 6296]). Constais 16pm,20um) from the center, with which a photon count of

the constant of proportionality assumed in [18] to existhsuclooo_ is associated. Affine transformatlon matdixs a rotation
that No . — cN, , where N, are the number of Iohotonsmatrlx of angle30 degrees and affine transformation vector

associated with théth CP inZ,. This gives s [4.8um,4.8.m]". o

We look to verify the CRLB for estimating the trans-
1 ( Gl 0 ) formation parameters as given in (9) and the CRLB for
"~ Nig 0 '@l /- estimating the position of the single molecule in the reyesd
image (equivalently the lower bound 6f,) in (11). This is
achieved by estimating the transformation parametergubsin
generalized least squares estimator for the weighted e
model as developed in [18]. The empirical standard dewiatio
of interest are computed using® simulations and shown in

1 Nyr? Figure 4.
Crr = S’QUiFIz + = (cQg + C——2> <1 + 1 > I>. 9

Qp

In this situation we havey = N; where N; is the mean
photon count for the CPs ifi;. Therefore the CRLB matrix
for estimatingxs r, the location of the single molecule i,
is given as

K N, Ny 2 2) Shear: CPs are arranged in a square grid of side length

Phot i ind dent of CP ii d th 81um in the object space witk = 9. The photon counts
ofon counts are independent o position an elsociated with each control point are observed realisatio

f02re urldeg the (asymptoﬂc?(lly exact [218]) assumption thﬂrf a uniformly distributed random integer on the interval
ve = Nir*, where (1/K) >,y xr = #°I> (& measure of 1540 10000] and covariance matrices for the measurement
the spread of the CPs), then errors are of the same form as in Section VI-Al.7q is

1 r2 a single molecule at position (16&,20:m) from the center,
Q> Cpr =0l plhh+ I7d (§2]€7_11 + Jif_z) (1+ ﬁ) I>- \ith which a photon count of 1000 is associated. Affine

(11) transformation matrixA is a shear matrix of typel = (} 1)

This expression for the CRLB in estimating, r, and hence where shear parametaris varied between values of 0.1 and
the lower bound forQ),, exactly matches the larg& ex- 0.9. Transformation vectos is [4.8:m,4.8m]7.
pression forQ), found in [18, p. 6297] when the generalized We look to verify the CRLB for estimating the trans-
least squares estimator for the weighted covariance madefdarmation parameters as given in (9) and the CRLB for
used. The fundamental limit (i.e. the theoretical lowermu estimating the position of the single molecule in the reyesd
of localization accuracy for a single molecule in a pair ofnage (equivalently the lower bound 6f;) in (11). This is
registered images is therefore bound by a term that depemadhieved by estimating the transformation parameterg ke
on K (the number of CPs used in the registration procesggneralized least squares estimator for the weighted iconar
and their associated photon counts, along witithat gives a model as developed in [18]. The empirical standard dewiatio
measure of the spread of the CPs in the image. We note thefénterest are computed usiri@® simulations and shown in
is no dependence on the translation parameter Figure 5.
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Fig. 4: The line indicates the square root of the CRLB arfdd- 5: The line indicates the square root of the CRLB and
the crosses mark the sample standard deviation plotted a#& crosses mark the sample standard deviation plotted as a
function of the number of CP& for the following estimated function of shear parametex for the following estimated
parameters: (a) the first dimension of the unknown singk&rameters: (a) the first dimension of the unknown single
molecule position parameter, r, (b) s, the first element Molecule position parameter, r, (b) s1, the first element

of transformation vectos, (c) a1, the leading element of Of transformation vectos, (c) a11, the leading element of
transformation matrix4, (d) ao1, the (2,1)th element of4. transformation matrix, (d) a1, the (2, 1)th element ofA. In

In this simulation study CPs are in a grid configuration ani@is simulation study there are nine CPs in a grid configanati
the transformation consists of a rotation and translatzee ( (See Section VI-A2 for more details). The vertical axes in (a
Section VI-Al for more details). The vertical axes in (a) anand (b) have units as nanometers, the vertical axes in (c) and
(b) have units as nanometers, the vertical axes in (c) and (g) are unitless and are on the scalg0~*. Results are based
are unitless and are on the scalé0~°. Results are based onOn & sample of0° simulations.

a sample ofl0° simulations.

general weighted covariance model. This result is genecl a

3) Asymptotic covariance versus CRLB:has been men- Not specific to the microscopy setting.
tioned in Section V-B3 that under Assumption | and Il the 4) Low SNR: To demonstrate that the CRLB is an ap-
lower bound forQ, in (11) matches the largél covari- propriate bound for low signal strengths we consider the
ance matrix of the LRE given in [18] when transformatiosame simulation study as in Section VI-Al but where the
parameters are estimated using the generalized leastesquphoton count associated with each control point is a unifprm
estimator. We now consider relaxing Assumption | such thdistributed random variable on the intery200, 700] and300
Qo is no longer the identity matrix and look at how the CRLBphotons are collected for the single molecule. Figure 7 show
for estimatingz,, » compares with the more general large the CRLB is still appropriate in this setting.
covariance matrix expression in [18, p. 6295].

We have exactly the same experimental set-up as in Section
VI-Al except the measurement error in localizing thth 5) Estimating the CRLBFor the simulations studies pre-
CP in jth imageZ; (j = 1,2) now has covariance matrix sented thus far the theoretical values of the CRLB have been
(¢;/Nj.x)S where S = (15 %%). The CRLB for estimating possible to calculate due to artificial knowledge of the true
the single molecule location,  is calculated using the moreparameter values that form the parameter veéerc. As
general expression (8). In Figure 6 the square root of idis is the very thing that needs estimating the theoretical
leading diagonal is compared to the ladgestandard deviation values of the CRLB is obviously unavailable to experimesnter
for the first dimension of the LRE given in [18, p. 6295] whernd therefore it becomes important to know how well we can
registration is performed using the generalized least reguaestimate the CRLB given the estimated parameter values.
estimator. It is clear to see that the two expressions takg ve We consider the same simulation set-up of Section VI-A2
similar values, particularly for large values &f, and hence the and now estimate the CRLB from (11) using estimated values
close association between the CRLB expressions derivexl hdr 3, y1,r and {y1 1, ...,y1,x }, instead of true valuesl, s,
and the largeX results of [18] can be extended to the mores r and {z; 1,...,z1 x }, respectively. In Figure3 we plot
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Fig. 6: The line indicates the square root of the CRLB fdpoSition parameter,, - (the leading diagonal in (11)) in object

the first dimension of the unknown single molecule positiopPace dimensions, plotted as a function of shear parameter

parameterz, » (and hence a lower bound for the standar§h® "<’ marks the minimum value of the estimated CRLB

deviation of the LRE) in object space dimensions, plotted!d the "+ marks the maximum value of the estimated CRLB

as a function of the number of CPs. CPs are in a ng&ke” over10°® ;lmulauons. Right — a magnification of the

configuration (see Section VI for more details). The crossédt plot for a single value of shear parameter.

are the theoretical standard deviation of the LRE assunhiag t

large K distribution given in [18].

coverslip (Zeiss, Thornwood, NY, USA). A standard inverted
microscope (Zeiss Axiovert 200) was configured with a

~ ° 6'2 . 63x1.46 numerical aperture Zeiss Plan Apochromat objective

g 2: % @ % _ 55 ®re lens. The beads were excited by a 488nm diode laser (Toptica,

g 4'4 g s Victor, NY, USA) and a 635nm diode laser (OptoEngine, Mid-

3 3 45 vale, UT, USA). The emission light from the beads was split

%‘ 2 E 3.‘51 into two wavelength ranges, 502.5nm-537.5nm and 657.5nm-

E 3; E 3 694.5nm, using a dichroic filter set (FF560-Di01-25x36; E+0

g 3’6 25 520/35-25; FF01-676/37-25; Semrock, Rochester, NY, USA),

'4 1; and imaged using two identical charge-coupled device (CCD)

491625 36 49 64 T 491625 36 49 64 cameras (iXon DU897-BV; Andor, South Windsor, CT, USA).
Number of Control Points — K Number of Control Points — K

The imaging experiments were carried out by illuminating
Fig. 7: Low SNR example (see Section VI-A4 for moreahe beads with two lasers in 100ms pulse width over 599 repeat
details). The line indicates the square root of the CRLB aratquisitions. To estimate the coordinates of the beadsrecju
the crosses mark the sample standard deviation plotted a$o@n each camera, we first selected region of interests (ROls
function of the number of CPX  for the following estimated containing a bead and fitted a Gaussian model using maximum
parameters: (a) the first dimension of the unknown singli&elihood estimation. All computations were performedngs
molecule position parametes r, (b) a11, the leading element custom written software in MATLAB (MathWorks, Natick,
of transformation matrix4. In this simulation study CPs areMA, USA).
in a grid configuration and the transformation consists of a Acquisitions 300-599 (a total of 300) were used in our
rotation and translation. The vertical axis in (a) has uais analysis as they showed the greatest stability in photontsou
nanometers, the vertical axis in (b) is unitless and on théeschetween acquisitions and hence localization errors arsidon
x10~*. Results are based on a samplel6f simulations.  ered approximately iid. An example pair of images from each
camera that need to be registered are shown in Figure 9.

1) Verification of Gaussian distributed measurement er-

the theoretical value of the CRLB for estimating ., together o - Throughout this paper localization errors have been
with the maximum and minimum value of the estimated CRLBsq ;e Gaussian in order to form the likelihood function

over 10% simulations, clearly demonstratiqg that estimategom which the CRLBs are derived. Here, we verify this
parameter values can be used by experimenters 0 get,@Q,mption by analysing the empirical localization estira
excellent estimate of the CRLB. for the beads. Figure 10 shows quantile-quantile (QQ) plots
. o for the distribution of the localization estimates. The weur
B. Experimental verification is produced by ordering the 300 independent estimates for
Here we describe the experimental set up used to ver#ither thex or y localization coordinate into increasing order
the theoretical results of this paper. A bead sample was size. The probability of a value less than tjth ordered
prepared by adsorbing a dilute solution of 100-nm Tetrdspeestimate (sample quantile) is approximategly = ;/301.
microspheres (Thermo Fisher, Waltham, MA, USA) on PolyFhe corresponding theoretical quantile of the standardnabr
L-Lysine (Sigma-Aldrich, St. Louis, MO, USA) coated glasdglistribution is the value; such thatp; = F(t;), whereF(-)
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Fig. 10: QQ-plots (see Section IV-B1 for details) for theandy coordinates of the localization estimates in both cameras.
Each row of plots corresponds to one of two beads analysed.

transformation parameter estimates (example values gkthe
are A = [29970054] and 5 = [1.000,1.000]” (each to 3
d.p.)). Figure 11 displays the results. The four plots spoad

to four random permutations of the beads we register with.
It is clear that in this experiment the CRLB, to a close
approximation, is attained.

VIlI. CONCLUDING REMARKS

We have derived the CRLB for image registration per-
formance under the heteroscedastic multivariate errors-i
Fig. 9: Example (acquisition 599) of the pair of images ofariables model. Particular focus has been given to the case
the bead sample to be registered, taken with the two sepaiteere the covariance matrices for the errors in localizhey t
cameras as described in Section VI-B. CPs are all scalar multiples of a common positive definite

matrix, a suitable model for fluorescence microscopy. Un-
der this model the CRLB for estimating the location of a
_ ) ) _ feature/single molecule has been found and is equal to the
is the cumulative density function of the standard normgjyer hound of the covariance matrix of the LRE, the error in
distribution. The values, ..., t300 are plotted on the horizontal |o¢4izing a feature/single molecule in the registeredgedn
axis against the ordered e.stlmate.s on the vertical axes. Thjo simplified case of that common matrix being the identity
is done forz and y coordinates in both cameras for tWoyn the affine transformation between the pair of imagesgbein
separate bea_lds_ (one row _of QQ plots for e_ach bead). Th&caled version of a unitary matrix, it has been shown that
straight line indicates the ideal fit for Gaussian samples. 4,q |ower bound for the covariance matrix of the LRE exactly
is clear the Io_callz_anon estimates are Ga_u35|an d_|s€_rd)tct & matches the previously published largé expression when
close approximation, except for some minor deviations @t thansformation parameters are estimated with the weighted
distribution tails. covariance generalized least squares estimators. The@fb)

2) Registration performanceFourteen of the fluorescentcan now be considered to be the lower bound for the accuracy
beads that were present in the field of view for all acquiswith which we can localize a single molecule in a registered
tions and able to be pair-matched were considered for imagege. Beyond this, it could also be used in future to develop
registration. One of the beads was isolated as a featureegnd strategies for the placement of the control points so that th
istration performed using the weighted covariance geizexél estimation errors can be reduced.
least squares estimators fdrands [18] with 8,9,10,11,12and  Simulations comparing the sample standard deviation of the
13 of the remaining beads. Calculating the sample variahcetansformation parameters and an element of the LRE with
the LRE in thez-direction across the 300 acquisitions, weheir respective theoretical lower bounds confirm that gisin
compare it to the CRLB as given in (8) estimated using ththe weighted covariance generalized least squares estinat

0278-0062 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation infor|
10.1109/TMI.2015.2451513, IEEE Transactions on Medical Imaging

SUBMITTED IEEE TRANSACTIONS ON MEDICAL IMAGING, APRIL 2015REVISED VERSION SUBMITTED, JUNE 2015. 10
K 1 1
AlO . 10 WhereSHH :Zk 1HTQ Hk, SHG—Zk IHTQQ ka,
(3 X . K
§ 8 0O o . 8 Sprp = Zk:l Fngkuk and Sca = Zk:l GTQ 2.k Gk.
3 6 . Q o 6 o o 2 e g Dealing with each term individually, we can Write
3 . . .
§ . . . * . é ® @
s 4 4 SuH =
©
= T -1 T -1 T -1
8 2 2 Xl,kQ2,kX17k X1,sz,kXd7k X1,sz,k
S K . . .
0 8 9 10 11 12 13 0 8 9 10 11 12 13 Z T : 1 T : 1 T : 1 ’
k=1 Xd,leZkXLk Xd,kQIQ,kXd,k Xd,leZk
Q;le,k e Q;kXd,k Q;k
10 10 (12)
B
£ 8 8
Iy ® X
g : - T S =
3 OB Qg 5 298 50 4 HGT LT wT el AT ol
; . Co . T Xi1851A7  X{,05,4% -+ X1,KQ2,KA
K : :
g2 2 T 14T T -1 4T T |’
3 Xd,1912,1A Xd,2912,2A e XY K?z KA
—1 AT —1 AT T
0 8 9 10 11 12 13 0 8 9 10 11 12 13 92,1’4 92,2‘4 QQ,KA
Number of Control Points (K) Number of Control Points (K) (]_3)
Fig. 11: Experimental data results. The crosses indicae th ATQTA 0 0
square root of the sample variance of the first dimension 0 ATQPA - 0

of the LRE. The dots are the bootstrapped 95% confidenée' s + Scc = : : . : ;
interval. The circles indicate the square root of the CRLB in

e - - - 0 0 o ATQUIA
the first dimension as calculated from (8) using the estitchate K (14)
transformation parameters. whereA — [Iu, AT]T and X, — e((i) o7 i=1,..dand
k=1,.. K.
for the affine parameters appears to be efficient even for low
numbers of control points. Experimental data validates the APPENDIXB
theory presented. Here we derive the FIM for the parameter vecthrrc
under the most general heteroscedastic model. The FIM is
APPENDIXA defined as
Here we derive the FIM for the parameter vedigt: under  j(0prc) = E { OLOrrc, T2, 7 |Y1, s YK, Y1.7)
the most general heteroscedastic model. We note that umgler t rrc
affine transformation assumed thep € R??, the mean vector OLOFTC, 2,7 |Y1s s YK Y1, F)
for the measuredth CP locationsy, = [y{ ;43 ,]" is given 0L . '
as - Given (6) this can be expressed as
_ 1
Mk_[AICLkJrS] 0 0

J(6rre) = [ ] T JrOrre),  (15)
Therefore we have 0 J(brc)

8,le o 0 Fy.
Hi Gy

where J(6r¢) is as given in (3) and
|

Z opi p oL o, r

(0 .
F10) e T 0T,

where F, = (6&?))71 ® Iy, G, = (ey;))T ® A, H, =
[Id ® x{k, Id] From (3) we have The zeros in the right-hand-side of (15) are a consequence of
the control point localizations being independent of thegdes

K T -1 location. We have the following identities
J0re) =3 | & Hp [ e O 0 B )
FkT G{ 0 Q2 k H, Gy aﬂl F -

o ’ 6—’ = A" p) 4~ (ICQ F— S) = fAflp(Z])xLF’
ZK: { HTQ; LH, {25 4C ] o

- : _ 11, F _
e GT92 ;Hk FIOT P+ GIO5 G 6—15 ——AY

_ Sum SHa aMI,F —0

| SLo Ser+Sce |’ 0z ’
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where PUJ) is ad x d matrix of zeros except for a 1 placedZ,. It follows that
in the (4, j)th element. It follows from these identities that
Crp = (AT AT

_ Opmr ’

-1
e 895 o —[DFr,0] [ Drr 4 Suw Sue }_1 [ DJTPT ) '
Dr = 0591%}? =—A"! [xlTF ® Ia,14] - 7 Sk Srr + Sca 0 )
_ = (477Q7 LA™ = DirMu Dy )
Define Dry = DEQ; .Dr and Dpr = DEQ; .Dr and
Drp = DFQ; LD = Dfy. It follows that where
Jr(Oprc) = : d 21 22 G rr + Sca

69FTC I’Faech

AT LA™Y Der 0
= DI Drp 0
0 0 0

We therefore recognise that we can wriie r as in (8).

APPENDIXD

Here we deriveC'rr, the CRLB matrix for estimating the

The zeros in the final row and column can be interpreted ggnsformation parameters, under Assumption |. Conside e
arising because estimating the feature locatiorZinoccurs term in (5) with Q, o = 02 oI, Qa0 = 021, and A = ¢R

before registration and therefore has no dependence on {¥sre R is a unitary matrix (rotation/reflection) ande R+

CP locations. The expression in (7) follows from (15). is a scaling factor. Then from (12), (13) and (14) we have
K Xk 0o XI,
1 5
APPENDIXC S = Z — 0 e XL |,
We consider the CRLB block matrix k=120 | Xop Xog I
Crr Crr Crc whereyx;, = ml,kx{lﬁ
C0rrc)=J YO0rrc)= | Crr Brr Brc
Ccr Ber Beco Sua =
—25%T AT —2vT AT ... —2 T AT
where we initially use the notation87r, Brc, Ber and U%ilfﬁT U%%ilT’QﬁT “agﬁ;KjT
Bee to distinguish these from the matric€sr, Cre, Cor 72172108 02270240 T T2 KK
and Cc¢ considered in (4) and (5). o214 0324 09,4
We note that and
Brr Bre | _ [ Drr + Sun Sua ] Spp 4 S —
BCT BCC SEG SFF+SGG ] e Gf';_ 9 -2
DT . -1 (01,1 +< 02,1) 0
- 6 ]AQI,FA [DFTaO]) : : ® Is.
_ ( [ Drr + Sun Sua ] 0 e (‘7173( + §205,§<)
| She Srr + 956G | This gives
[ DL, AQ pATDpr 0 1) _
1 0 0 : Sua (Ser+ Saa) ™ She
. . T T K 2 Xk 0 X1T,k
It is straightforward to show tha7.AQy p A* Dpp = Dpp _ Z s 0 N ¢
) = :
and hence k=1 Ug,k(alvk + §202ak) X1 Xop 1o
Brr Bre | _ | Sun Sua - and therefore
Ber  Bee She Srr+ Scc -1 T
[ Crr Cre Sun — Sua (Srr + Saa)” Sua
Cor Cecc equals

recovering the inverse FIM from Section Ill in which only the ) Y 0o X7,
transformation parameters and CP locations are considered o2 _ N 0 i xI
an expected result stemming from the fact that the featuse ha {— 2k a;{k(o;i + c%;j) Xio Xox 122”“
no involvement in estimating either the parameters and CP ’ ’

T

locations. L& Xe o0 Xy
. . . _ ( 252 4 52 ) -1 0 XT

We are interested in the ter@ir» whose diagonals are the =& 01,07 920 § :”k Xk 2,k
CRLB for the localization of the feature/molecule in image k=1 Xip Xop I
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and a e + 81KV — a?(a”! + KyB~ )_1@ = (a +
- Kv)718)710 + 371 K121,, where® = xy gzl .. If a =
1 T (K~ 2, LFT] p-
Crr = (SHH —Sne (Srr + Sac) SHG) (0-+(K7)15) " andb = 5 LK1? then(A~ BD”1C) !
becomes (a® + bl)~t = b= (b + ar?)~! (a®* + bly), where@* =
RORT, with R the 7/2 rotation matrix. This give§A —
Crr = (%07 o+ 030) BD'C) ' = K2 (af~t + Kv?2 + 12 + Kv?)~1O* +
g1 7 0 ’ T cly, wherec = (B71Kv? + (a + (Kv)718)"r?)~L. In a
-t

further condensing of notation we defife= (1/K)vy~ 5.

X 0 vt -7 : B .
Ty Ty 4yt~ (I XT 4+ ToXY) With ©*z, p = 0 it can be shown that
Crr=(a'—a?(cr? -2
wherey = (1/K) St =215 2T wherez = (o » a_i(ci er(a” _) o )
(1K) ey, and 20 = (1/K) S8,y e, (@™ +6 >2 +erfa” ( ﬂ D7)
_ —1
andT; = v 1X,;¥ whereX; = Zkzl e Xig = eé) ® 77, =a(l—aer*(@ o + 87 ) 1)+
i=1,2. (@' +5 ") 'L
1 cr’a’ 1, g-1\-1 -
APPENDIXE =a (1 —a- (m +(@ ™ +87)" )) I
Here we considerCrr, the CRLB for estimating the 2 5\ -1
. . . , . crea I}
location of the feature/single molecule in the registeradge, =« ( — - — _) I
under Assumption |. Appendix D shows that (@+B)* a+p
& - 0 XTI, With 2 2 B
Crp = (ot +030) 277;;1 0 Xk ngk ; e V_(a—l Y3 Y +al (a+ )"
Xip Xop Do (a4 p3)2  \ 2
under the weighted covariance model and ity = o7 oI, it follows that
QQ,O = US’OIQ, QLF = O'%FIQ and A = ¢R whereR is a 2 . =1 1 -1 B -1
unitary matrix (rotation/reflection) and € R* is a scaling O — ) (W(O‘ ) +a ) B I
factor, it follows that N (a+ D) Y 2
1 T FTl 5 T1p
Dpr = [ Tl T @I, _ “1y -1
20 o] g 1 o — (%(a—l YA+ aﬂ)
1 = = 12
DFT:@T [21p 1] ® I, ath
’ -1
Therefore the result follows from (8). ~ 1
=ala+p) | a—-— — I
APPENDIXF (W(O‘_l +B_1)+O‘_1)
Here we deriveCrr under Assumptions | and II. With B a_Q( 1 Jrﬂ—,l) -1
(1/K) X5y my ' xu = 2 and (1/K) S50 1 X = 0 =ala+f) | ———— I
(10) becomes (#(or1 + 871+ a—l)
Crp = (a1 — ~ 1
FF ( 2 . =(a+p) |1+ . . I
_ - T1,FT L1,F X (a— -
« 2 [l‘{p; 1} ®I2 (Oé 1 [ m?;"F 1 ] ®IQ a (2 _7“2 (a +ﬂ ))
> r
—1 > 75
L[ Kvi, 0 - T =(a+p8) |1+ = | L
+8 1[ ZE) ? KV]@IQ) [21p,1] ®12> o+
2
g
- - T -1 =a+p (1 + —) I
= (a 1[2—@ Q[CCTF’ ]®IQ (L ®IQ) [xlF,l} ®IQ) y2
_ 1 72
_ _ _ T 1 — = -
= (e - ([plp 1) 27 o1 1) ) 0 1) = ot g f (1+ VQ)IQ'
where
—1 T —1 2 —1
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