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Abstract

A terminology and typology of uncertainty is presented together with a framework for the modelling process, its interaction with the broader
water management process and the role of uncertainty at different stages in the modelling processes. Brief reviews have been made of 14 different
(partly complementary) methods commonly used in uncertainty assessment and characterisation: data uncertainty engine (DUE), error propaga-
tion equations, expert elicitation, extended peer review, inverse modelling (parameter estimation), inverse modelling (predictive uncertainty),
Monte Carlo analysis, multiple model simulation, NUSAP, quality assurance, scenario analysis, sensitivity analysis, stakeholder involvement
and uncertainty matrix. The applicability of these methods has been mapped according to purpose of application, stage of the modelling process
and source and type of uncertainty addressed. It is concluded that uncertainty assessment is not just something to be added after the completion of
the modelling work. Instead uncertainty should be seen as a red thread throughout the modelling study starting from the very beginning, where the
identification and characterisation of all uncertainty sources should be performed jointly by the modeller, the water manager and the stakeholders.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

New guidelines on water resources management emphasise
the importance of integrated approaches, cross-sectoral plan-
ning and of public participation (GWP, 2000; EC, 2003;
Jønch-Clausen, 2004). The commonly accepted approach inte-
grated water resources management (IWRM) is defined as ‘‘a
process, which promotes the co-ordinated development and
management of water, land and related resources, in order to
maximise the resultant economic and social welfare in an
equitable manner without compromising the sustainability of

* Corresponding author. Tel.: þ45 38 142 776; fax: þ45 38 142 050.

E-mail address: jcr@geus.dk (J.C. Refsgaard).
1364-8152/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.envsoft.2007.02.004
vital ecosystems’’ (GWP, 2000). IWRM deals with complex
problems involving technological, environmental, economical
and societal aspects. In addition a wide range of uncertainties
ranging from ambiguity in defining problems and goals to un-
certainty in data and models have to be taken into account in
the management process.

The fundamental importance of uncertainty in water man-
agement can be illustrated by EU’s Water Framework Direc-
tive (WFD). The WFD is an outcome of EU environmental
policy, where one of the basic principles is ‘‘to contribute to
the pursuit of the objectives of preserving, protecting and im-
proving the quality of the environment in prudent and rational
use of natural resources, and to be based on the precautionary
principle’’ (EC, 2000). As the precautionary principle aims to
protect humans and the environment against uncertain risks by
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means of pre-damage control (anticipatory measures) it can
not be implemented without incorporating uncertainty assess-
ments into the decision making process.

Uncertainty assessment of model simulations is therefore
important, when models are used to support water management
decisions (Beven and Binley, 1992; Beven, 2002; Pahl-Wostl,
2002; Jakeman and Letcher, 2003; Refsgaard and Henriksen,
2004; Pahl-Wostl, 2007; Vandenberghe et al., 2007). Model un-
certainty is in practice often done as an ‘end of pipe’ analysis
that is carried out after model set-up, calibration and validation
have been completed. For integration of model results into the
broader water management process and to increase effective-
ness of knowledge production and use, Refsgaard et al.
(2005a) emphasise the importance of making uncertainty anal-
yses an ongoing theme from the beginning with problem defi-
nition and identification of modelling objectives and then
throughout the modelling process.

The objective of this paper is to analyse the need and role
for uncertainty analyses at the various stages of the modelling
process and to briefly review methodologies and tools suitable
for these various types of uncertainty assessments. The paper
focuses on uncertainty in the modelling process. As such it
touches upon aspects of uncertainty related to the broader pol-
icy and public participation processes, but it does not intend to
fully cover these broader aspects.

2. Modelling as part of the planning and
management process

A modelling study will involve several phases and several
actors. A typical modelling study will involve the following
four different types of actors:

� The water manager, i.e. the person or organisation responsi-
ble for the management or protection of the water resources,
and thus of the modelling study and the outcome (the prob-
lem owner).
� The modeller, i.e. a person or an organisation that develops

the model and works it, conducting the modelling study. If
the modeller and the water manager belong to different or-
ganisations, their roles will typically be denoted consultant
and client, respectively.
� The reviewer, i.e. a person that is conducting some kind of

external review of a modelling study. The review may be
more or less comprehensive depending on the require-
ments of the particular case. The reviewer is typically ap-
pointed by the water manager to support her/him to match
the modelling capability of the modeller.
� The stakeholders/public, i.e. an interested party with

a stake in the water management issue, either in exploiting
or protecting the resource. Stakeholders include the fol-
lowing categories: (1) competent water resource authority
(typically the water manager, cf. above); (2) interest
groups; and (3) general public.

The modelling process may, according to the HarmoniQuA
project (Refsgaard et al., 2005a; Scholten et al., 2007, http://
www.harmoniqua.org), be decomposed into five major steps
(Fig. 1), which again are decomposed into 48 tasks (not de-
tailed here). The contents of the five steps are:

� STEP1 (model study plan). This step aims to agree on
a Model Study Plan comprising answers to the questions:
Why is modelling required for this particular model study?
What is the overall modelling approach and which work
should be carried out? Who will do the modelling work?
Who should do the technical reviews? Which stake-
holders/public should be involved and to what degree?
What are the resources available for the project? The water
manager needs to describe the problem and its context as
well as the available data. A very important (but often over-
looked) task is then to analyse and determine what are the
various requirements of the modelling study in terms of the
expected accuracy of modelling results. The acceptable
level of accuracy will vary from case to case and must be
seen in a socio-economic context. It should, therefore, be
defined through a dialogue between the modeller, water
manager and stakeholders/public. In this respect an a priori
analysis of the key sources of uncertainty is crucial in order
to focus the study on the elements that produce most infor-
mation of relevance to the problem at hand.
� STEP 2 (data and conceptualisation). In this step the mod-

eller should gather all the relevant knowledge about the
study basin and develop an overview of the processes
and their interactions in order to conceptualise how the
system should be modelled in sufficient detail to meet
the requirements specified in the model study plan. Con-
sideration must be given to the spatial and temporal detail
required of a model, to the system dynamics, to the bound-
ary conditions and to how the model parameters can be de-
termined from available data. The need to model certain
processes in alternative ways or to differing levels of detail
in order to enable assessments of model structure uncer-
tainty should be evaluated. The availability of existing
computer codes that can address the model requirements
should also be evaluated.
� STEP 3 (model set-up). Model set-up implies transforming

the conceptual model into a site-specific model that can be
run in the selected model code. A major task in model set-
up is the processing of data in order to prepare the input
files necessary for executing the model. Usually, the model
is run within a graphical user interface (GUI) where many
tasks have been automated.
� STEP 4 (calibration and validation). This step is con-

cerned with the process of analysing the model that was
constructed during the previous step, first by calibrating
the model, and then by validating its performance against
independent field data. Finally, the reliability of model
simulations for the intended type of application is assessed
through uncertainty analyses. The results are described so
that the scope of model use and its associated limitations
are documented and made explicit.
� STEP 5 (simulation and evaluation). In this step the model-

ler uses the calibrated and validated model to make
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2. Data and Conceptualisation
• Collect and process data 
• Develop conceptual model 
• Select model code 
• Review and dialogue 

3. Model Set-up
• Construct model
• Reassess performance
  criteria
• Review and dialogue

4. Calibration and Validation   
• Model calibration
• Model validation
• Uncertainty assessment
• Review and dialogue

5. Simulation and Evaluation
• Model predictions
• Uncertainty assessment
• Review and dialogue

1. Model Study Plan
• Identify problem
• Define requirements 
• Assess uncertainties 
• Prepare model study plan 

Modelling Process

The Environment

Implementation

Problem
Identification

Water
Management

Decision

Public Opinion

Stakeholders

Competent
Authority

Government

Water Management Process

Fig. 1. The interactions between the five steps of the modelling process and the water management process (inspired from Refsgaard et al., 2005a and Pascual

et al., 2003).
simulations to meet the objectives and requirements of the
model study. Depending on the objectives of the study,
these simulations may result in specific results that can
be used in subsequent decision making (e.g. for planning
or design purposes) or to improve understanding (e.g. of
the hydrological/ecological regime of the study area). It
is important to carry out suitable uncertainty assessments
of the model predictions in order to arrive at a robust deci-
sion. As with the other steps, the quality of the results needs
to be assessed through internal and external reviews that
also provide platforms for dialogues between water man-
ager, modeller, reviewer and, often, stakeholders/public.

Fig. 1 shows the key actors in the water management pro-
cess and the above five steps in the modelling process. The
interactions between the modelling process and the water
management process are very clear at the beginning of the
modelling process (Step 1), where the modeller receives the
specifications of objectives and requirements for the model-
ling study from the water management process, and towards
the end of the modelling study (Step 5), where the modelling
results are provided as input to the water management pro-
cess. These two interactions are usually participatory in the
sense that not only the water manager, but also key stake-
holders, are involved in the dialogue with the modeller. In
this respect a participatory-based assessment of the most
important sources of uncertainty for the decision process is
important in Step 1 as a basis for prioritising the elements
of the modelling study. During the main modelling process
itself (Steps 2, 3, 4) the link between the water management
process and the modelling process consists of dialogue, re-
views and discussions of preliminary results. The amount
and type of interaction depend on the level of public partic-
ipation that may vary from case to case, from providing
information over consultation to active involvement (Henrik-
sen et al., submitted for publication).

The typical cyclic and iterative character of thewater manage-
ment process, such as the WFD process, is illustrated in Fig. 2,
where the interaction with the modelling process is illustrated
by the large circle (water management) and the four smaller
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supporting circles (modelling). The WFD planning process, as
most other planning processes, contains four main elements:

� Identification including assessment of present status, anal-
ysis of impacts and pressures and establishment of envi-
ronmental objectives. Here modelling may be useful for
example for supporting assessments of what are the refer-
ence conditions and what are the impacts of the various
pressures.
� Designing including the set-up and analysis of a programme

of measures designed to be able to reach the environmental
objectives in a cost effective way. Here modelling will typ-
ically be used for supporting assessments of the effects and
costs of various measures under consideration.
� Implementing the measures. Here real-time forecasting in

some cases may support the operational decisions to be made.
� Evaluation of the effects of the measures on the environ-

ment. Here modelling may support the monitoring tasks in
order to extract maximum information from the monitoring
data, e.g. by indicating errors and inadequacies in the data
and by filtering out the effects of climate variability.

3. Uncertainty terminology and classification

3.1. Definitions and taxonomy

Uncertainty and associated terms such as error, risk and
ignorance are defined and interpreted differently by different
authors, see Walker et al. (2003) for a review. The different
definitions reflect the underlying scientific philosophical way
of thinking and therefore typically vary among different scien-
tific disciplines. In addition they vary depending on their

ModellingWFD process

Modelling

Modelling

Modelling

Evaluation

Implementation Identification

Designing

Fig. 2. The role of modelling in the water management process within the

context of the EU Water Framework Directive (WFD).
purpose. Some are rather generic, such as Funtowicz and Rav-
etz (1990), while others apply more specifically to model
based water management, such as Beck (1987).

In this paper we will use the terminology of Klauer and
Brown (2004) that has emerged after discussions between so-
cial scientists and natural scientists specifically aiming at ap-
plications in model based water management. By doing so
we adopt a subjective interpretation of uncertainty in which
the degree of confidence that a decision maker has about pos-
sible outcomes and/or probabilities of these outcomes is the
central focus. Thus according to our definition a person is un-
certain if s/he lacks confidence about the specific outcomes of
an event. Reasons for this lack of confidence might include
a judgement of the information as incomplete, blurred, inaccu-
rate, unreliable, inconclusive, or potentially false. Similarly,
a person is certain if s/he is confident about the outcome of
an event. It is possible that a person feels certain but has mis-
judged the information (i.e. his/her judgement is wrong).

There are many different decision situations, with different
possibilities for characterising uncertainty. A first distinction is
between ignorance as a lack of awareness that knowledge is
wrong or imperfect, and uncertainty as a known degree of un-
reliability of knowledge, which translates into a state of confi-
dence. In this respect Brown (2004) has defined a taxonomy of
imperfect knowledge as illustrated in Fig. 3.

It is useful to distinguish between bounded uncertainty, where
all possible outcomes are deemed ‘known’ and unbounded uncer-
tainty, where some or all possible outcomes are deemed unknown.
Since quantitative probabilities require ‘all possible outcomes’ of
an uncertain event and each of their individual probabilities to be
known, they can only be defined for ‘bounded uncertainties’. If
probabilities cannot be quantified in any undisputed way, we often
can still qualify the available body of evidence for the possibility
of various outcomes in terms of plausibility or convincingness of
the evidence (e.g. Weiss, 2003). If outcomes but no probabilities
are known we have to rely on ‘scenario analysis’.

The bounded uncertainty where all probabilities are as-
sumed known (the lower left case in Fig. 3) is often denoted
‘statistical uncertainty’ (e.g. Walker et al., 2003). This is the
case that is traditionally addressed in model-based uncertainty
assessments. It is important to note that this case only consti-
tutes one of many of the decision situations outlined in Fig. 3,
and, in many situations, the main uncertainty in a decision sit-
uation cannot be characterised quantitatively.

3.2. Sources of uncertainty

Walker et al. (2003) describe uncertainty as manifesting itself
at different locations in the model-based water management pro-
cess. These locations, or sources, may be characterised as follows:

� Context and framing, i.e. at the boundaries of the system to
be modelled. The model context is typically determined at
the initial stage of the study where the problem is identified
and the focus of the model study selected as a confined part
of the overall problem. This includes, for example, the
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‘Unbounded uncertainty’

(not all outcomes known)

Certainty

(outcome known)

‘Bounded uncertainty’

(all possible outcomes known)

All probabilities known No probabilities knownSome probabilities known

(rare)

Some outcomes

and probabilities

Some outcomes,

No probabilities

No outcomes,

“Do not know” 

State of knowledge about ‘reality’ (uncertainty concepts)

Statistical Qualitative

Scenarios Recognised ignorance

Ignorance: unaware of imperfect knowledge

Fig. 3. Taxonomy of imperfect knowledge resulting in different uncertainty situations (Brown, 2004).
external economic, environmental, political, social and
technological circumstances that form the context of the
problem.
� Input uncertainty in terms of external driving forces

(within or outside the control of the water manager) and
system data that drive the model such as land use maps,
pollution sources and climate data.
� Model structure uncertainty is the conceptual uncertainty

due to incomplete understanding and simplified descrip-
tions of modelled processes as compared to reality.
� Parameter uncertainty, i.e. the uncertainties related to pa-

rameter values.
� Model technical uncertainty is the uncertainty arising from

computer implementation of the model, e.g. due to numer-
ical approximations, resolution in space and time, and
bugs in the software.

The total uncertainty on the model simulations, model output
uncertainty, can be assessed by uncertainty propagation taken
all the above sources into account.

3.3. Nature of uncertainty

Walker et al. (2003) explain that the nature of uncertainty
can be categorised into:

� Epistemic uncertainty, i.e. the uncertainty due to imperfect
knowledge.
� Stochastic uncertainty or ontological uncertainty, i.e. uncer-

tainty due to inherent variability, e.g. climate variability.
Epistemic uncertainty is reducible by more studies, e.g.
comprising research and data collection. Stochastic uncer-
tainty is non-reducible.

Often the uncertainty on a certain event includes both epi-
stemic and stochastic uncertainty. An example is the uncer-
tainty of the 100 year flood at a given site. This flood event
can be estimated: e.g. by use of standard flood frequency anal-
ysis on the basis of existing flow data. The (epistemic) uncer-
tainty may be reduced by improving the data analysis, by
making additional monitoring (longer time series) or by deep-
ening our understanding of how the modelled system works.
However, no matter how perfect both the data collection and
the mechanistic understanding of the system are, and, no mat-
ter for how long historical data time series exist, there will al-
ways be some (stochastic) uncertainty inherent to the natural
system, related to the stochastic and chaotic nature of several
natural phenomena, such as weather. Perfect knowledge on
these phenomena cannot give us a deterministic prediction,
but would have the form of a perfect characterisation of the
natural variability.

3.4. The uncertainty matrix

The uncertainty matrix in Table 1 can be used as a tool to
get an overview of the various sources of uncertainty in
a modelling study. The matrix is modified after Walker
et al. (2003) in such a way that it matches Fig. 3 and so
that the taxonomy now gives ‘uncertainty type’ in descrip-
tions that indicate in what terms uncertainty can best be de-
scribed. The vertical axis identifies the location or source of
uncertainty while the horizontal axis covers the level and
nature of uncertainty.
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Table 1

The uncertainty matrix (modified after Walker et al., 2003)

Taxonomy (types of uncertainty) Nature Source of uncertainty

Statistical
uncertainty 

Scenario
uncertainty

Qualitative
uncertainty

Recognised
ignorance

Epistemic
uncertainty

Stochastic
uncertainty

Context Natural, technological,
economic, social, political

System data
Driving forces

Inputs

Model structure
Technical
Parameters

Model

Model outputs 
It is noticed that the matrix is in reality three-dimensional
(source, type, nature). Thus, the categories type and nature
are not mutually exclusive, and it may be argued that the ma-
trix should be modified in such a way that the two uncer-
tainties within nature (epistemic and variability) should
become subcells within the type categories. This is not done
for graphical reasons.

4. Methodologies for uncertainty assessment

Many methodologies and tools suitable for supporting un-
certainty assessment have been developed and reported in
the scientific literature. We have selected 14 methods to repre-
sent the commonly applied types of methods and tools. Guid-
ance to the applicability of these methods is provided in
Section 5. In the following the 14 methods are briefly reviewed
in alphabetical order:

� Data uncertainty engine (DUE)
� Error propagation equations
� Expert elicitation
� Extended peer review (review by stakeholders)
� Inverse modelling (parameter estimation)
� Inverse modelling (predictive uncertainty)
� Monte Carlo analysis
� Multiple model simulation
� NUSAP
� Quality assurance
� Scenario analysis
� Sensitivity analysis
� Stakeholder involvement
� Uncertainty matrix

References to more detailed descriptions and to supporting
software tools are provided in Refsgaard et al. (2005b). For
several of the methodologies more extensive descriptions are
available in the RIVM/MNP Tool Catalogue, that served as
a starting point for the overview presented here (Van der Sluijs
et al., 2004). A summary of statistically based methods for
propagation of statistical uncertainty is given by Helton and
Davis (2003).
4.1. Data uncertainty engine (DUE)

Uncertainty in data may be described in 13 uncertainty cat-
egories (Table 2) depending on how data varies in time and
space (Brown et al., 2005). Each data category is associated
with a range of uncertainty models, for which more specific
probability density functions (pdfs) may be developed with
different simplifying assumptions (e.g. Gaussian; second-order
stationarity; degree of temporal and spatial autocorrelation).
Furthermore, correlation in time and space is characterised
by correlogram/variogram functions. Categorical data (3) dif-
fer from numerical data (1, 2), because the categories are not
measured on a numerical scale.

A software tool, the data uncertainty engine (DUE), for
supporting the assessment of data uncertainty within the above
framework has been developed within the HarmoniRiB project
(Refsgaard et al., 2005c). This software tool and a report with
reviews of data uncertainty for different types of data (Van
Loon and Refsgaard, 2005) can be downloaded from the pro-
ject website http://www.harmonirib.com.

Data uncertainty is an important input when assessing un-
certainty of model outputs. Assessment of data uncertainty is
an area that theoretically is complex and full of pitfalls, espe-
cially when considering the correlation structure and its link
with the scale of support.

4.2. Error propagation equations

The error propagation equations (e.g. Mandel, 1984) are
widely used in the experimental and measurement sciences

Table 2

The subdivision and coding of uncertainty-categories, along the ‘axes’ of

space-time variability and measurement scale (Brown et al., 2005)

Space-time variability Measurement scale

Continuous

numerical

Discrete

numerical

Categorical Narrative

Constant in space and time A1 A2 A3

4
Varies in time, not in space B1 B2 B3

Varies in space, not in time C1 C2 C3

Varies in time and space D1 D2 D3

http://www.harmonirib.com
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to estimate error propagation in calculations. The error propa-
gation equations are valid only if the following conditions are
met: (1) the uncertainties have Gaussian (normal) distribu-
tions; (2) the uncertainties for non-linear models are relatively
small: the standard deviation divided by the mean value is less
than 0.3; and (3) the uncertainties have no significant
covariance.

The error propagation equations for the most common oper-
ators can be seen in Box 1. The method can be extended to al-
low non-Gaussian distributions and to allow for co-variances.

The main advantage of the error propagation equations is that
they are easy and quick to use. The key limitations lie in the
underlying assumptions that seldom hold, especially not for
complex calculations. The error propagation equations are
therefore mainly suitable for preliminary screening analysis.

4.3. Expert elicitation

Expert elicitation is a structured process to elicit subjective
judgements from experts. It is widely used in quantitative risk
analysis to quantify uncertainties in cases where there are no
or too few direct empirical data available to infer on uncer-
tainty. Usually the subjective judgement is represented as
a ‘subjective’ probability density function (PDF) reflecting
the expert’s degree of belief. Typically it is applied in situa-
tions where there is scarce or insufficient empirical material
for a direct quantification of uncertainty, and where it is rele-
vant to obtain inscrutable and defensible results (Hora, 1992).

Several elicitation protocols have been developed amongst
which the much-used Stanford/SRI Protocol was the first one
(Spetzler and von Holstein, 1975).

Expert elicitation typically involves the following steps: (1)
Identify and select experts. (2) Explain to the expert the nature
of the problem and the elicitation procedure. Create awareness
of biases in subjective judgements and explore these. (3)
Clearly define the quantity to be assessed and choose a scale
and unit familiar to the expert. (4) Discuss the state of knowl-
edge on the quantity at hand (strengths and weaknesses in

Box 1. The error propagation equation

The error propagation equations for the most common
operators are (s is the standard deviation):

Addition and Subtraction: z ¼ x þ yþ/ or z ¼
x � y�/

sz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
s2

x

�
þ
�

s2
y

�
þ/

r
Multiplication by an exact number: z ¼ cx

sz ¼ csx

Multiplication and Division: z ¼ xy or z ¼ x=y

sz

z
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�sx

x

�2

þ
�

sy

y

�2

þ/

s

available data, knowledge gaps, and qualitative uncertainties).
(5) Elicit extremes of the distribution. (6) Assess these ex-
tremes: could the range be broader than stated? (7) Further
elicit and specify the distribution (shape and percentiles or
characterising parameters). (8) Verify with the expert that
the distribution that you constructed from the expert’s re-
sponses correctly represents the expert’s beliefs. (9) Decide
whether or not to aggregate the distributions elicited from dif-
ferent experts (this only makes sense if the experts had the
same mental models of the quantity for which a distribution
was elicited).

Expert elicitation has the potential to make use of all avail-
able knowledge that cannot easily be formalised otherwise.
The limitations are linked to the subjectivity of the results
that are sensitive to the selection of experts. In case of differ-
ences among experts it may be difficult to safely quantify the
uncertainties.

4.4. Extended peer review (review by stakeholders)

Extended peer review is the involvement of stakeholders in
the quality assurance of the modelling process. Stakeholders’
reasoning, observation and imagination are not bounded by
scientific rationality. This can be beneficial when tackling
ill-structured, complex problems. Consequently, the knowl-
edge and perspectives of the stakeholders can bring in valuable
new views on the problem and relevant information on that
problem. The latter is known as ‘‘extended facts’’. Stake-
holders can contribute to the quality of knowledge in a number
of ways. These include improvement of the quality of the
problem formulation and the questions addressed by the scien-
tists; the contribution of knowledge on local conditions which
may help determine which data are strong and relevant or
which response options are feasible; providing personal obser-
vations which may lead to new foci for empirical research
addressing dimensions of the problem that were previously
overlooked; criticism of assumptions made by the scientist,
which may lead to changes towards assumptions that better
match real-life conditions; and, creative thinking of mecha-
nisms and scenarios through which projected environmental
and hydrological changes may affect different sectors of soci-
ety (De Marchi, 2003).

The main strength of extended peer review is that it allows
the use of extra knowledge from non-scientific sources. The
key limitations lie in the difficulty for stakeholders to under-
stand the sometimes complex and abstract concepts, to ensure
representativeness of the selected stakeholders and in the
power asymmetries that may be reproduced.

4.5. Inverse modelling (parameter estimation)

Parameter values are often estimated through inverse mod-
elling. This is also denoted as automatic calibration (Duan
et al., 1994; Doherty, 2003). An optimal parameter set is sought
‘‘automatically’’ by minimising an objective function, often
defined as the summed squared deviation between the calibra-
tion targets (field data) and their simulated counterparts. Many
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software tools support inverse modelling and some universal
optimisation routines can be downloaded as freeware, e.g.
PEST (Doherty, 2003) and UCODE (Poeter and Hill, 1998).

Most inversion techniques have the benefit that they in ad-
dition to optimal parameter values also produce calibration
statistics in terms of parameter- and observation sensitivities,
parameter correlation and parameter uncertainties. An impor-
tant limitation of these parameter uncertainty techniques is
that the model calibration is based on a single model (with
one possible model structure). Errors in the model structure
will therefore wrongly be allocated to model parameter uncer-
tainties. The estimated parameter uncertainties are thus uncer-
tainties for the effective model parameter given both the model
structure and available observations. This also means that
estimated parameter uncertainties will not compensate ade-
quately for the model structure uncertainty, when the model
is used for prediction of conditions beyond the calibration
base (e.g. when calibrating on groundwater flow and subse-
quently using the model to simulate solute transport).

4.6. Inverse modelling (predictive uncertainty)

In addition to parameter estimation some of the inverse opti-
misation routines include the ability to estimate predictive
uncertainties. The method by which the predictive uncertainty
is derived varies among the inversion routines. But common
to many of the local optimisation routines based on non-linear
regression, is that the prediction of interest is treated as an obser-
vation, and the regression algorithm is then used to quantify the
effect of the parameter uncertainty on this ‘‘observation’’. Some
methods rely on a semi-analytical solution in which the regres-
sion algorithm is used to compute either a predictive uncertainty
interval for the output variable or uncertainty in the difference
between a reference case and a scenario simulation. Other
methods use the regression to seek the maximum or minimum
value of the prediction under the constraint that the model
must be calibrated at an acceptable level, which is defined by
some predefined acceptance level of the objective function.

This method provides an objective estimate of the predic-
tive uncertainty given the applied model structure. The main
limitation, apart from assumptions on linearity and normally
distributed residuals, is that uncertainty can only be predicted
for data types for which observations exist. This means that
uncertainties on variables that are interpolated or extrapolated
compared to the available field data cannot be quantified by
this method.

4.7. Monte Carlo analysis

Monte Carlo Simulation is a statistical technique for sto-
chastic model calculations and analysis of error propagation
in calculations. Its purpose is to trace out the structure of the
distributions of the model output. In its simplest form this dis-
tribution is mapped by calculating the deterministic results
(realisations) for a large number of random draws from the in-
dividual distribution functions of input data and parameters of
the model. As in random Monte Carlo sampling, pre-existing
information about correlations between input variables can
be incorporated. Monte Carlo analysis requires the analyst to
specify probability distributions of all inputs and parameters,
and the correlations between them. Both probability distribu-
tions and correlations are usually poorly known. Ignoring cor-
relations and co-variance in input distributions may lead to
substantial under- or over-estimation of uncertainty in model
outcome. Advanced sampling methods have been designed
such as Latin Hypercube sampling to reduce the required num-
ber of model runs needed to get sufficient information about the
distribution in the outcome (mainly to save computation time).

A number of commercial and free software packages are
available to do Monte Carlo analysis, e.g. Crystal Ball
(2000) and @risk (Palisade Corporation, 2000) and SimLab
(Saltelli et al., 2004). In addition Monte Carlo functionality
is built into many modelling software packages. EPA (1997)
provides a good guidance for use of Monte Carlo analysis.

The advantage of Monte Carlo analysis is its general appli-
cability and that it does not impose many assumptions on prob-
ability distributions and correlations and that it can be linked to
any model code. The key limitation is the large run times for
computationally intensive models and the huge amount of
outputs that are not always straightforward to analyse.

4.8. Multiple model simulation

Multiple model simulation is a strategy to address uncer-
tainty about model structure. Instead of doing an assessment
using a single model, the assessment is carried out using dif-
ferent models of the same system. For instance, this can be re-
alised by having alternative model codes with different
process descriptions (Linkov and Burmistrov, 2003; Butts
et al., 2004) or, in the groundwater case, by having different
conceptual models based on different geological interpreta-
tions (Selroos et al., 2001; Højberg and Refsgaard, 2005).

Refsgaard et al. (2006) present a new framework for deal-
ing with uncertainty due to model structure error, based on al-
ternative conceptual models and assessment of their pedigree
and adequacy.

The main advantages of this method are that the effects of
alternative model structures can be analysed explicitly and that
the robustness of the model predictions increases. An impor-
tant limitation is that we cannot be sure whether we have ad-
equately sampled the relevant space of plausible models and
that important plausible model structures could be overlooked.

4.9. NUSAP

The NUSAP system for multidimensional uncertainty as-
sessment (Funtowicz and Ravetz, 1990; Van der Sluijs et al.,
2005) aims to provide an analysis and diagnosis of uncertainty
in science for policy. The basic idea is to qualify quantities by
using the five qualifiers of the NUSAP acronym: numeral,
unit, spread, assessment, and pedigree. NUSAP complements
quantitative analysis (numeral, unit, spread) with expert judge-
ment of reliability (assessment) and systematic multi-criteria
evaluation of the different phases of production of a given
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knowledge base (pedigree). Pedigree criteria can be: proxy
representation, empirical basis, methodological rigor, theoret-
ical understanding, and degree of validation. Pedigree assess-
ment can be further extended to also address societal
dimensions of uncertainty, using criteria that address different
types of value ladenness, quality of problem frames, etc. NU-
SAP provides insight on two independent uncertainty-related
properties expressed in numbers, namely spread and strength.
Spread expresses inexactness whereas strength expresses the
methodological and epistemological limitations of the under-
lying knowledge base. The two metrics can be combined in
a Diagnostic Diagram, mapping strength of for instance model
parameters and sensitivity of model outcome to spread in these
model parameters. Neither spread alone nor strength alone is
a sufficient measure for quality. Robustness of model output
to parameter strength could be good even if parameter strength
is low, if the spread in that parameter has a negligible effect on
model outputs. In this situation our ignorance of the true value
of the parameter has no immediate consequences. Alterna-
tively, model outputs can be robust against parameter spread
even if its relative contribution to the total spread in the model
is high provided that parameter strength is also high. In the lat-
ter case, the uncertainty in the model outcome adequately re-
flects the inherent irreducible (stochastic) uncertainty in the
system represented by the model. Uncertainty then is a prop-
erty of the modelled system and does not stem from imperfect
knowledge on that system. Mapping components of the knowl-
edge base in a diagnostic diagram thus reveals the weakest
spots and helps in setting priorities for improvement.

The strength of NUSAP is its integration of quantitative and
qualitative uncertainty. It can be used on different levels of
comprehensiveness: from a ‘back of the envelope’ sketch
based on self elicitation to a comprehensive and sophisticated
procedure involving structured, informed, in-depth group dis-
cussions on a parameter by parameter format. The key limita-
tion is that the scoring of pedigree criteria is to a large extent
based on subjective judgements. Therefore, outcomes may be
sensitive to the selection of experts.

4.10. Quality assurance

Quality assurance (QA) may be defined as protocols and
guidelines to support the proper application of models. Impor-
tant aims of QA are to ensure the use of best practise, to build
consensus among the various actors involved in the modelling
process and to ensure that the expected accuracy and model
performance are in accordance with the project objectives.

Key elements of QA procedures include: (1) framing of the
problem and definition of the purpose of the modelling study;
(2) assessment of sources of uncertainties jointly by water
manager, modeller and stakeholders and establishment of ac-
curacy requirements by translation of the water manager and
stakeholder needs to preliminary performance criteria; (3) per-
formance of model validation tests, i.e. testing of model per-
formance against independent data that have not been used
for calibration in order to assess the accuracy and credibility
of the model simulations for situations comparable to those
where it is intended to be used for; and (4) reviews carried
out by independent auditors with subsequent consultation be-
tween the modeller, the water manager and possibly the stake-
holders at different phases of the modelling project.

Many QA guidelines exist such as Middlemis (2000) and
Van Waveren et al. (1999). The HarmoniQuA project (Schol-
ten et al., 2007; Refsgaard et al., 2005a) has developed a com-
prehensive set of QA guidelines for multiple modelling
domains combined with a supporting software tool, MoST
(downloadable via http://www.harmoniqua.org).

QA improves the chances that best practise is used, it makes
it possible to involve stakeholders into the modelling process in
a formalised framework, and it improves the transparency and
reproducibility. If not designed and performed thoroughly,
QA may become a ‘rubber stamp’ and generate false credibility.

4.11. Scenario analysis

Scenario analysis aims to describe logical and internally
consistent sequences of events to explore how the future
may, could or should evolve from the past and present (Van
Der Heijden, 1996). The future is inherently uncertain. Differ-
ent alternative futures can be explored through scenario anal-
ysis. As such, scenario analysis is also a tool to deal explicitly
with different assumptions about the future.

Different types of scenarios can be distinguished. For in-
stance, Alcamo (2001) discerns baseline vs. policy scenarios,
exploratory vs. anticipatory scenarios and qualitative vs. quan-
titative scenarios. Baseline scenarios present the future state of
society and environment in which no (additional) environmen-
tal policies do exist or have a discernible influence on society
or the environment. Policy scenarios depict the future effects
of environmental protection policies. Exploratory scenarios
start in the present and explore possible trends into the future.
Anticipatory scenarios start with a prescribed vision of the
future and then work backwards in time to visualise how
this future could emerge. Qualitative scenarios describe possi-
ble futures in the form of narrative texts or so-called ‘‘story-
lines’’. Quantitative scenarios provide tables and figures incor-
porating numerical data often generated by sophisticated
models. Finally, scenarios can be surprise-free or trend scenar-
ios, that extend foreseen developments, on the one hand or in-
clude surprises and exploring the extremes (e.g. best case/
worst case) on the other hand.

Scenarios can ensure that assumptions about future devel-
opments are made transparent and documented and are often
the only way to deal with the unknown future. A limitation
for qualitative scenarios is that it is difficult to test the under-
lying assumptions. For quantitative scenarios, the analysis is
limited to those aspects of reality that can be quantified. Fre-
quently, scenarios do not go beyond trend extrapolation and
are surprise-free.

4.12. Sensitivity analysis

Sensitivity analysis (SA) is the study of how the variation in
the output of a model (numerical or otherwise) can be

http://www.harmoniqua.org
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qualitatively or quantitatively apportioned to different sources
of variation, and of how the outputs of a given model depend
upon the information fed into it (Saltelli et al., 2000, 2004).

Depending on the complexity of a model’s output space SA
methods may range from the simple to the relatively complex. If
a model’s output space is linear or approximates a hyperplane,
SA may be conducted through a straightforward application of
differential analysis. This is typically done by taking partial de-
rivatives of the output with respect to one input, holding all
other inputs constant. If a model’s output space is non-linear
(or does not approximate a hyperplane) then the assumptions
for differential analysis do not hold. Differential analysis may
be conducted, but the analyst should be aware that the results
may apply only to a narrow range of the output space. For
this reason, differential analysis in this situation is referred to
as Local SA.

If the analyst wishes to conduct Global SA (i.e. SA across
the model’s entire output space) for non-linear (non-hyperpla-
nar) models, then other analytical methods should be used.
These include such methods as Monte Carlo analysis, Morris’
One-at-a-time method and various variance based methods
such as Fourier amplitude sensitivity test (FAST).

The strength of SA is that it provides insight in the potential
influence of all sorts of changes in input and helps discrimina-
tion across parameters according to their importance for the
accuracy of the outcome. A limitation is the tendency of SA
to yield an overload of information. Furthermore, SA most
often takes the model structure and system boundaries for
granted.

4.13. Stakeholder involvement

Stakeholder involvement in not only the decision making
process, but also in the modelling process, can help to assess
and manage complex (environmental) problems in a better
way. This potential can be tapped in three ways (Kloprogge
and van der Sluijs, 2006): (1) by enabling them to articulate
issues of concern and to improve the problem framing for re-
search and policy; (2) by utilising their own (non-scientific)
knowledge and observations and their capacity to invent new
options; and (3) by involving them actively in the quality con-
trol of the operational knowledge that is co-produced (ex-
tended peer review, See section 4.4).

The RIVM/MNP guidance for uncertainty assessment and
communication (Van der Sluijs et al., 2004) has a useful sec-
tion on stakeholder involvement, including an instrument for
discourse analysis. The HarmoniCOP project has developed
a typology to characterise tools to support the public participa-
tion process in relation to the implementation of the Water
Framework Directive (Maurel, 2003).

The key strengths of stakeholder involvement are that it in-
creases the level of public accountability and it may increase
the public support for implementation of subsequent manage-
ment decisions.

4.14. Uncertainty matrix

The uncertainty matrix (Walker et al., 2003; Janssen et al.,
2003) can be used to identify and prioritise the most important
uncertainties in a given model study. The matrix shown in
Table 3 is an example of a project specific adaptation of the
more general uncertainty matrix shown in Table 1.

For a specific application the different sources of uncertainty
are listed in the rows and the type of uncertainty associated to
each source is noted and characterised. This may be done either
quantitatively or, as in Table 3, qualitatively. The importance of
each source may then be characterised by weighting depending
on its impact on the modelling study in question. The sum of un-
certainty may then be assessed, e.g. by use of the error propaga-
tion equations (Section 4.2). It may not be possible to identify
all sources of uncertainty and/or assigning correct weightings
from the project start. The matrix may thus be reassessed at
each review, where new sources of uncertainty may be added
or the weight of the uncertainty adjusted as more insight into
Table 3

Example of use of the uncertainty matrix for an initial assessment of sources of uncertainty and their importance in a specific project context

Source of uncertainty Type of uncertainty Importance

Statistical

uncertainty

Scenario

uncertainty

Qualitative

uncertainty

Recognised

ignorance

Weighting (Uncertainty � weight)

Problem context

e Future agricultural practice Medium Medium Medium Large Medium

e Future climate Medium Medium Large Medium Medium

Input data

e Catchment data Medium Small Large Medium

e Nitrate load from agriculture Small Small Large Small

Parameter uncertainty

e Water quantity Small Small Medium Small

e Water quality Medium Medium Medium Small

Model structure (conceptual)

e Geology Large Large Medium Large Large

e Nitrate reduction in underground Medium Medium Large Large Large

Model technical uncertainty

e Numerical approximation Small Small Medium Small

e Bugs in software Medium Medium Small

SUM:
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the system is gained. An uncertainty matrix used interactively
during the modelling process supports the identification of all rel-
evant sources of uncertainty and a prioritising based on a qualita-
tive assessment of their importance. The matrix also provides
a framework to keep track of all sources of uncertainty during
the modelling process, so that sources identified early in the model
study are not forgotten at the end of the model study, where the
uncertainties are typically quantified by uncertainty simulations.

The uncertainty matrix is a good platform that may facili-
tate a structured dialogue between water managers, modellers
and stakeholders on possible sources and types of uncertainty,
which helps the key actors to approach a common understand-
ing on the uncertainties and their importance. Its main limita-
tion is that it strongly relies on expert judgement and mainly
yields qualitative insight.

5. Guide to select an appropriate methodology for
uncertainty assessment

Some of the more important types of methodologies and
associated tools that may be applied for assessing uncertainties
were briefly reviewed above. The next question is which method-
ology should be selected for different purposes and in different
situations. This is addressed from three different perspectives
in the following three subsections.

5.1. Methodologies according to modelling process and
level of ambition

Table 4 provides a list of applicable methodologies that are
considered to be adequate at different stages in the modelling
process. Furthermore, it includes hints for which methodolo-
gies are more suitable for comprehensive analysis with rela-
tively large economic resources for the study and which
methodologies correspond to a lower level of ambition (de-
noted as ‘‘basic’’ in Table 4).

Uncertainty aspects are important throughout the modelling
process. Considering the HarmoniQuA modelling protocol
with the five steps shown in Fig. 1 and described in Section
2 above, uncertainty should be considered explicitly in all
five modelling steps. However, it is treated in different ways
at different stages of the modelling process. The three main ac-
tions of dealing with uncertainty may be characterised as:

� Identify and characterise sources of uncertainty. The vari-
ous sources of uncertainty need to be identified and char-
acterised in Step 1 (model study plan). This should be
done by the water manager but typically after a dialogue
with relevant stakeholders. Depending on the framing of
the model study some of these uncertainties may be lo-
cated as external non-controllable sources. It is crucial
that uncertainty is considered explicitly so early in the def-
inition phase of the model study. Here uncertainties are
seldom quantified. It is also at this early stage that the first
analyses are made on the acceptable level of uncertainty
and the expected model performance.
� Reviews e dialogue e decisions. The last task in each of

the modelling steps is a dialogue or decision task where
a dialogue between water manager and modeller takes
place. Often independent reviews are conducted as a basis
for the decision and stakeholders and/or the general public
are involved in the dialogue. As part of this dialogue, un-
certainty aspects become important, e.g. when discussing
whether there are sufficient data to proceed with the mod-
elling, or whether the uncertainty of the model simulations
is at a level where the results can be expected to be useful.
The reviews and the stakeholder dialogues are also impor-
tant platforms for a reflection on whether the assumptions
made in the model are realistic and on how the study out-
come may be influenced by the implicit and explicit as-
sumptions made in the model. In many cases, more than
one assumption is scientifically tenable. If such assump-
tions influence the model outcome, then the ignorance re-
garding which assumption is the best assumption can be an
important source of uncertainty.
� Uncertainty assessment and propagation. Towards the end

of Step 4 an uncertainty analysis should be made of the cal-
ibration and validation results. This is used for evaluating
Table 4

Suitable methodologies to deal with uncertainty at various stages of a modelling process

Type of uncertainty aspect Step in the modelling process (cf. Fig. 1) Level of ambition/available resources

Basic Comprehensive

Identify and characterise

sources of uncertainty

Model study plan (Step 1) UM EPE, SI, UM

Reviews-dialogue-decisions Review of Step 2 QA EPR, QA (Update of) UM

Review of Step 3

Review of Step 4

Review of Step 5

Uncertainty assessment and

propagation

Uncertainty analysis of calibration and

validation (Step 4)

DUE, EPE, SA DUE, EPE, EE, IN-PA, IN-UN, MCA,

MMS, NUSAP, SA

Uncertainty analysis of simulation (Step 5) DUE, EPE, SA DUE, EPE, EE, IN-UN, MCA, MMS,

NUSAP, SC,SA, SI

Abbreviations of methodologies: DUE, data uncertainty; EPE, error propagation equations; EE, expert elicitation; EPR, extended peer review (review by stake-

holders); IN-PA, inverse modelling (parameter estimation); IN-UN, inverse modelling (predictive uncertainty); MCA, Monte Carlo analysis; MMS, multiple model

simulation; NUSAP, NUSAP; QA, quality assurance; SC, scenario analysis; SA, sensitivity analysis; SI, stakeholder involvement; UM, uncertainty matrix.
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possible biases in model simulations and assessing whether
the model performance is good enough compared to the
agreed accuracy requirements. Similarly, uncertainty analy-
sis of simulations should be carried out in Step 5. Here the
uncertainties in the problem framing (the context) and the
management scenarios are also taken into account.

5.2. Methodologies according to source and type of
uncertainty

Table 5 provides a list of applicable methodologies for ad-
dressing uncertainty of different types and originating from dif-
ferent sources. Note that the nature of uncertainty (epistemic or
stochastic) has been omitted as compared to the uncertainty
matrix in Table 1. The reason for this is that this is a third di-
mension and that each of the cells below may be divided into
reducible (epistemic) and irreducible (stochastic) uncertainty.

It is noted that none of the methods covers all the cells of
the table, implying that for all modelling studies a suite of un-
certainty methodologies has to be selected and applied. Some
more general methods, such as expert elicitation, are poten-
tially applicable for different types and sources of uncertainty,
while other more specialised methods, such as Monte Carlo
analysis, are only applicable for one type (here statistical un-
certainty) and a couple of sources of uncertainty.

5.3. Methodologies according to purpose of use

The methodologies can roughly be divided in five groups
that differ in purpose of use:

� Methods for preliminary identification and characterisation
of sources of uncertainty. This category is identical to the
first category in Section 5.1 and the first row in Table 4.
The uncertainty matrix used together with stakeholder in-
volvement is a suitable tool for this purpose. If a first rough
quantification is desired the simple error propagation equa-
tions may be suitable.
� Methods to assess the levels of uncertainty for the various
sources of uncertainty. This use is addressed in some de-
tails in Section 5.2 and in Table 5. As can be seen many
different methodologies may be suitable here. The exact
selection will vary from case to case. It is noted from Ta-
ble 5, that different methods apply to the different types of
uncertainty (e.g. statistical versus qualitative uncertainty).
� Methods to propagate uncertainty through models. When

all sources of uncertainty have been assessed they can
be propagated through a model to assess the total uncer-
tainty. In practise uncertainty propagation is often confined
to include the data/parameters/model characteristics that
have a significant effect on the total uncertainty. This se-
lection is often supported by a sensitivity analysis. The
methods suitable for uncertainty propagation are listed in
the last row in Table 5. It is noted that uncertainty propa-
gations is much easier to do for statistical and scenario un-
certainty, while NUSAP and the simple error propagation
equations are the only methods suitable for qualitative un-
certainty (and ignorance). In practise uncertainty propaga-
tion of mixed statistical/qualitative uncertainty is very
difficult to do in a rigorous manner.
� Methods to trace and rank sources of uncertainty. When the

total uncertainty has been estimated it is often interesting to
know how much the various sources contributed to the total
uncertainty. This can be analysed by used of Monte Carlo
techniques and sensitivity analysis as far as the statistical
uncertainty is concerned, while NUSAP may support such
analysis with respect to the more qualitative aspects.
� Methods to reduce uncertainty. When an uncertainty as-

sessment has been made it is often desired to evaluate if
some of the uncertainty can be reduced. The part of the un-
certainty that is epistemic may be reduced in different
ways. The classical approach in natural science is to col-
lect more data and carry out additional studies to gain
more knowledge. For modelling studies quality assurance
and extended peer reviews (stakeholder involvement in the
modelling process) may reduce the uncertainties as well.
Table 5

Correspondence of the methodologies with the source and types of uncertainty distinguished in the uncertainty taxonomy (inspired by Van der Sluijs et al., 2004)

Source of uncertainty Taxonomy (types of uncertainty)

Statistical uncertainty Scenario uncertainty Qualitative uncertainty Recognised ignorance

Context and

framing

Natural, technological,

economic, social, political

EE EE, SC, SI EE, EPR, NUSAP,

SI, UM

EE, EPR, NUSAP, SI, UM

Inputs System data DUE, EPE, EE, QA DUE, EE, SC, QA DUE, EE DUE, EE

Driving forces DUE, EPE, EE, QA DUE, EE, SC, QA DUE, EE, EPR DUE, EE, EPR

Model Model structure EE, MMS, QA EE, MMS, SC, QA EE, NUSAP, QA EA, NUSAP, QA

Technical QA

Parameters IN-PA, QA IN-PA, QA QA QA

Model output uncertainty

(via propagation)

EPE, EE, IN-UN, MCA,

MMS, SA

EE, IN-UN, MMS, SA EE, NUSAP EE, NUSAP

The bottom row lists methodologies suitable for uncertainty propagation. Abbreviations of methodologies: DUE, data uncertainty engine; EPE, error propagation

equations; EE, expert elicitation; EPR, extended peer review (review by stakeholders); IN-PA, inverse modelling (parameter estimation); IN-UN, inverse modelling

(predictive uncertainty); MCA, Monte Carlo analysis; MMS, multiple model simulation; NUSAP, NUSAP; QA, quality assurance; SC, scenario analysis; SA,

sensitivity analysis; SI, stakeholder involvement; UM, uncertainty matrix.
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6. Discussion and conclusions

A terminology and typology of uncertainty is presented
with the aim to assist the management of uncertainty in mod-
elling studies for integrated water resources management. Be-
cause we focus on the use of model studies in decision making,
we have adopted a subjective interpretation of uncertainty in
which the degree of confidence that a decision maker has about
possible outcomes and/or probabilities of these outcomes is the
central focus. Other authors define the term uncertainty not as
a property (state of confidence) of the decision maker but as
a property (state of perfection) of the total body of knowledge
or information that is available at the moment of judgement.
Uncertainty is then seen as an expression of the various forms
of imperfection of the available information and depends on the
state-of-the-art of scientific knowledge on the problem at the
moment that the decision needs to be made (assuming that
the decision maker has access to the state-of-the-art knowl-
edge). The state of perfection view goes well together with
a traditional natural science basis, while our definition allows
taking broader aspects of uncertainty, including those usually
dealt with in social science, into account. The broader view
is necessary if we want to consider all aspects of modelling un-
certainty when modelling is used as an element in the broader
water management process.

We have briefly reviewed 14 methods for assessing and char-
acterising uncertainty. These methods are very different in
nature, some originating from the statistical world, while others
have their roots in social science. The 14 methods have been
mapped against a framework for the modelling process, its inter-
action with the broader water management process and the role
of uncertainty at different stages in the modelling processes.

Numerous methods that deal with uncertainty exist. The 14
methods we have included are by no means exhaustive, but in-
tend to present a representative cross-section of commonly ap-
plied methods covering the various aspects of uncertainty in
water resources management. Many methods reported in litera-
ture naturally fall within one of the 14 ‘boxes’, while others fall
in between. An example of a method that does not fit well to our
selection of methods is the generalised uncertainty likelihood
estimation (GLUE) method (Beven and Binley, 1992; Beven,
2002). GLUE can be used both as a kind of calibration method
or as an uncertainty propagation method. It is based on the con-
cept of equifinality and can be seen as a method having similar-
ities in approach with three of the above 14 methods: Inverse
modelling (parameter estimation), Monte Carlo analysis and
multiple model simulation. Similarly many software tools
have functionality corresponding to a couple of the 14 methods.

None of these methodologies is applicable to address all the
different relevant aspects of uncertainty in the modelling in
relation to water resources management. Most of the methods
we have selected are complementary in approaches and con-
tent. However, there are also some important overlaps. The
best example of that is the quality assurance method that in re-
ality is a framework within which some of the other methods,
such as stakeholder involvement and extended peer review are
typically recommended. In the quality assurance tool MoST
(Refsgaard et al., 2005a; Scholten et al., 2007) all other
methods are incorporated.

The key conclusion of the analysis in this paper is that uncer-
tainty assessment is not just something to be added after the com-
pletion of the modelling work. Instead uncertainty should be seen
as a red thread throughout the modelling study starting from the
very beginning. Traditionally, uncertainty assessments are car-
ried out only at the end of a modelling study when the models
have been calibrated and validated. Standard techniques, often in-
cluded in the model GUIs, are then used to propagate and quantify
the uncertainty, e.g. sensitivity analysis or Monte Carlo analysis.
The major argument towards this type of uncertainty assessments
is that the standard techniques do typically only address one type
of uncertainty, namely the statistical uncertainty. By performing
the uncertainty analysis as an ‘add-on’ by standard techniques in
the end of the model study, and report this as the uncertainty anal-
ysis, it is implicitly assumed that the statistical uncertainty is the
most important uncertainty. The statistical uncertainty does, how-
ever, only comprise a limited space of the total uncertainty, as il-
lustrated in Fig. 3. Moving towards the use of models in a broader
perspective, such as water management plans and the participa-
tory processes in the WFD, other types of uncertainty emerged
that have not traditionally been addressed in a model study. It is
therefore crucial that the uncertainty assessment is introduced
in the introductory phase and tracked throughout the model study
and that the identification and characterisation of all uncertainty
sources are performed jointly by the modeller, the water manager
and stakeholders in connection with the problem framing and
identification of the objectives of the modelling study.
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