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I. Introduction

The value of a particular issue of corporate debt depends essentially
on three items: (1) the required rate of return on riskless (in terms of
default) debt (e.g., government bonds or very high-grade corporate bonds);

(2) the various provisions and restrictions contained in the indenture (e.g.,
maturity date, coupon rate, call terms, seniority in the event of default,
sinking fund, etc.); (3) the probability that the firm will be unable to
satisfy some or all of the indenture requiremeuts (i.e., the probability of
default).

While a number of theories and empirical studies has been published
on the term structure of interest rates (item 1), there has been no systematic
development of a theory for pricing bonds when there 1s a significant proba-
bility of default. The purpose of this paper is to present such a theory
which might be called a theory of the risk structure of interest rates. Tue
use of the term '"risk" is restricted to the possible gains or Losses to bond-
holders as a result of (unanticipated) changes in the probability of default
and does not include the gains or losses inherent to ail bonds caused by
(unanticipated) changed in interest rates in general. Throughout most of
the analysis, a given term structure is assumed and hence, the price differ-~

‘entials among bonas will be solely caused by differences in the probability

of default.



In a seminal paper, Black and Scholes [1] present a complete
géneral equilibrium fheory of option pricing which is particularly attract-
ive because the final formula is a function of "observable' variables.
Therefore, the model is subject to direct empirical tests which they [2]
performed with some success. Merton [5] clarified and extended the Black-
Scholes model. While options are highly specialized and relatively unim-
portant financial instruments, both Black and Scholes [1] and Merton [5, 6]
recognized that the same basic approach could be applied in developing a
pricing theory for corporate liabilities in general,

In Section II of the paper, the basic equation for the pricing
of financial instruments is developed along Black-Scholes lines. In
Section III, the model is applied to the simplest form of corporate debt,
the discount bond where no coupon payments are made, and a formula for com-

puting the risk structure of interest rates is presented. In Section IV, com-

'parative statics are used to develop graphs of the risk structure, and the

question of whether the term premium is an adequate measure of the risk of
a bond is answered. In Section V, the validity in the presence of bank-
ruptcy of the famous Modigliani-Miller theorem [7] is proven, and the re-
quired return on debt as a function of the debt-to-equity ratio is deduced.

In Section VI, the analysis is extended to include coupon and callable

bonds.
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. A ‘II. On the Pricing of Corporate Liabilities

. To develop the Black-Scholes-type pricing model, we make the
following assumptions:

A.1 there are no transactions costs, taxes, or problems with indivis-
ibilities of assets.

A2 .there are a sufficient number of investors with comparable wealth
levels so that each investor believes that he can buy and sell as
much of an asset as he wants at the market price.

A.3 there exists an exchange market for borrowing and lending at the
same rate of interest.

A.4 short-sales of all assets, with full use of the proceeds, is allowed.

- A.5 trading in assets takes place continuously in time.
| - A.6 the Modigliani-Miller theorem that the value of the firm is
invariant to its capital structure obtains.

A.7 the Term-Structure is '"flat'" and known with certainty. I.e., the
price of a riskless discount bond which promises a payment of one
dollar at time T in the future is P(T) = exp[-rT] where r is the
(instantaneous) riskless rate of interest, the same for all time.

A.8 The dynamics for the value of the firm, V, through time can be
described by a diffusion-type stochastic process with stochastic

n differential equation
dv = (av - C) dt + oVdz

where
. o is the instantaneous expected rate of return on the firm per unit

time, C is the total dollar payouts by the firm per unit time to
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either its shareholders or liabilities-holders (e.g., dividends

or interest payments) if positive, ana it is the net dollars

received by the firm from new financing if negative; 02 is the

instantaneous variance of the return cn the firm per unit time;

dz is a standard Gauss-Wiener process.
Many of these assumptions are not necessary for the model to obtain but are
chosen for expositional convenience. In particular, the "perfect market"
assumptions (A.1 -A.4) can be substantially weakened. A.6 is actually proved
as part orf the analysis and A.7 is chosen so as to clearly distinguish risk
structure rrom term structure éffects on pricing. A.5 and A.8 are the critical
assumptions. Basically, A.5 requires ihat the market for these securities
is oﬁen for trading most of time. A.8 requires that ﬁrice movements
are continuous and that the \unanticipéted) returns on the securities be
serially independent which is consistent with the "efficient markets hypochesis"
of Fama [ 3] and Samuelson [ 9 ].l/

Suppose there exists a security whose market value, Y, at any point in

time can be written as a function of the value of the firm and time, i.e.,
Y = F(V,t). We can formally write the dynamics of this security's value

in stochastic differential equation form as
d¥ = [a.¥ - C_] dt + o_Ydz 1
[ y Y] y v @

where

Qy is the instantaneous expected rate of return per unit time on this
security; Cy is the dollar payout per unit time to this security; 02y is
the instantaneous variance of the return per unit time: dz_ is a standard
Gauss-Wiener process. However, given that Y = F(V,t,), éhere is an

explicit functional relationship between the ay, Gy’ and dzy in (1) and
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the corresponding variables o, 0, and dz defined in A.8. 1In particular,

2/

by Ité's Lemma~', we can write the dynamics for Y as

1 2
dev + Fvv(dv) + F, (2)

dy 2

1 292 -C)F :
[ 7 O v FVV + (av C)Fv + Ft] it + GVFde, from A.8,

where subscripts denote partial derivatives. Comparing terms in (2) and

(1), we have that

—_— l 272
= = 3 -C)F .
ocyY ocyF —2—0 v Fvv + (aV C).v + Ft + Cy (3.a)
oY = OF = OVF (3.b)
y y v
dz = dz (3.c)
y

Note: from (3.c) the instantaneous returns on Y and V are perfectly cor-
related.

Following the Merton derivation of the Black-Scholes model presented
in [ 5, p. 164], consider formiug a three-security "portfolio" containing
the firm, the particular security, and riskless debt such that the. aggregate
investment in the portfolio is zero. This is achieved by using the proceeds
of short~sales and borrowings to finance the long positions. Let Wl be the
(instantaneous) number of dollars of the portfolio invested in the firm,

W, the number of doliars invested in the security, ana W, (E-[W1+W2])
be the number of dollars invested in riskless debt, If dx is the instan=

taneous dollar return to the portfolio, then
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(dy+c )
_ (dv+Cdt) v
dx = w1 — + w2 3 + W3rdt 4)

[wl(cx-r) + WZ (ay—r)] dt + W_odz + wzcydzy

1

[Wl(a—r) + wz(ay—r)] dt + [W10+ chy] dz, from (3.c).

¥
Suppose the portfolio strategy Wj = Wi » 1s chosen such that the coefficient

%
of dz is always zero. Then, the dollar return on that portfolio, dX , would

be nonstechastic. Since the portfolio requires zero net investment, it must

portfolio with this strategy is zero. 1I.e.,
Wi o+ Wt = 0 ( isk) (5.a)
10 ) oy = no ris .a

Wl* (o-r) + Wz*(ay-r) = 0 (no arbitrage) (5.b)

*
A nontrivial solution (Wj # 0) to (5) exists if and only if

o - r y
(=) = (=5 ) (6)

But, from (3a) and (3b), we substitute for ay and Oy and rewrite (6) as

a-r _ 1 202 _ : - '
T ( nd v FW + (av C)Fv + Ft + Cy rF)/oVFV 6",

and by rearranging terms and simplifying, we can rewrite (6') as

R P _ _ |
0 = 50 v FVV + (rV C)FV rF + Ft + Cy N

Equation (7) is a parabolic partial differential equation for F, which must
be satisfied by any security whose value can be written as a function of

the value of the firm and time. Of course, a complete description of the

e




partial differential equation requires in addition to (7), a specification
of two boundary conditions and an initial condition. It is precisely
these boundary condition specifications which distinguish one security
from another (e.g., the debt of a firm from its equity).

In closing this section, it is important to note which variables
and parameters appear in (7) (and hence, affect the value of the security)
and which do not. In addition to the value of the firm and time,'F depends
on the interest rate, the volatility of the firm's value (or its business
riék) as measured by the variance, the payout policy of the firm, and the

-promised payout policy to the holders of the security. However, F does not
depend on the expected rate of return on the firm nor on the risk-preferences
of investors nor on the characteristics of other assets available to in-
vestors beyond the three mentioned. Thus, two investors with quite differ-
ent utility functions and different expectations for the compan&'s future
but who agree on the volatility of the firm's value will for a given
interest rate and‘current firm value, agree on the value of the particular
security, F. Also all the parameters and variables except the variance
are directly observable and the variance can be reasonably estimated from

3

time series data.
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II1. On Pricing "Risky" Discount Bonds

.As a specific application of the formulation of the previous sectiom,
we examine the simplest case of corporate debt pricing. Suppose the corpor-
ation has two classes of claims: (1) a single, homogenous class of debt andA
(2) the residual claim, equity. Suppose further that the indenture of the
bond issue contains the following provisions and restrictions: (1) the firm
promises to pay a total of B dollars to the bondholderé on the specified
calendar date T;(2) in the event this payment is not met, the bondholders
immediately take over the company (and the shareholders receive nothing):

(3) the firm cannot i1ssue any new senior (or of equivalent rank) claims on
the firm nor can it pay cash dividends or do share repurchase prior to the
maturity date of the debt.

If F is the value of the debt issue, we can write (7) as

1 242 =
Z0°VF _+tVF - rF-F = 0 (8)
where C_ = 0 because there are no coupon payments; € = 0 from restriction

y
B); T=T-t is length of time until maturity so that Ft = —FT. To solve
(8) for the value of the debt, two boundary conditions and an initial con-
dition must be specified. These boundary conditions are derived from the
provisions of the indenture and the limited liability of claims. By

definition, V = F(V,T) + £(V,T) where f is the value of the equity. Because

both F and f can only take on non-negative values, we have that
F(0,T) = £(0,T) = O ' (9.2)

Further, F(v,T) < V which implies the regularity condition




F(V,T)/V <1 (9.b)

which subétitutes for the other boundary condition in a semi-infinite boundary
problem where 0 < V < ®, The initial condition follows from indenture
conditions (1) and (2) and the fact that management is elected by the equity
owners and hence, must act in their best interests. On the maturicy date T
(i.e., T = 0), the firm must either pay the promised payment of B to the
debtholders or else the current equity will be valueless. Clearly, if at time
T, V(T)>B, the firm should pay the bondholders because the value of equity
will be V(¥) - B > 0 whereas if they do not, the value of equity would b¢

- zero. If V(T) £ B, then the firm will not make the pa&ment and default

the firm to the bondholders because otherwise the equity holders would have

to pay iJ additional money and the (formal) value of equity prior to such
payments Vould be (V(T) - B) < 0. Thus, the initia) conaition for the debt

at T =0 is

F(V,0) = min[V,B] (9.c)

Armed with boundary conditions (9), one could solve (8) directly for the
value of the debt by the standard methods of Fourier tfansforms or separ-
ation of variables. However, we avoid these calculaiions by looking at a
related problem and showing its correspondence to a problem already solved
in the literature,

To determine the value of equity, £(V,T), we note that f£(V,T)

= V- F(N,T); and substitute for F in (8) and (9), to deduce the partial

differential equation for f. Namely,
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1 2.2 _

50 \Y fvv + erV - rf - fT =0 (10)
Subject to:

£(v,0) = Max[0, V - B] (1)

and boundary conditions (9.4) and (9.b). Inspection of the Black-Scholes
equation [ 1 , p.643 ; (7 )] or Merton [ 5 , p. 65] equation (34) shows
that (10) and (11) are identical to the equations for an European pall
option on a non-dividend-paying common stock where firm value in (10)—(11)
corresponds to stock price and B corresponds to the exercise price. This
isomorphic price relationship between levered equity of the firm and a call_
option not only allows us to write down the solution to (10)-(11) directly,
but in addition, allows us to immediately apply the comparative staties
results in these papers to the equity case and hence, to the debt. From

Black-~Scholes equation (13) when 0% is a constant, we have that

£V, 1) = V& (x) - Be '’ & (x,) | 12)
where

& (x) = ;ﬁ— {Z exp [- %-zz] dz
and |

x, = {log [V/B] + (+3 02} foVT
and

X = x, - o/t

1
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From (12) and F = V - f, we cam write the value of the debt issue
as
-rT 2 1 2
F[V,T] = Be {® [h,(d,0 D] +3 @[hl(d,a e (13)
where
d = Be_rT/V
hy (d,0%1) = -[30°T - log(d)1/0V T

hy(d,0%1) = -[30°T + log(@)1/0¥ T

Because it is common in discussions of bond pricing to talk in terms of yields

rather than prices, we can rewrite (13) as

R(T) - r = == log {a[h,(d,0%T)] + % @[hl(d,czr)]} (14)

where

exp [- R(T)Tt} = F(V,T)/B

and R(T) is the yield-to-maturity on the risky debt provided that the firm

does not default. It seems reasonable to call R(t) - r a risk premium in

which case equation (14) defines a risk structure of interest rates.

For a given maturity, the risk premium is a function of only
two variables: (1) the variance (or volatility) of the firm's operationms, 02
and (2) the ratio of the present value (at the riskless rate) of the promised
payment to the current value of the firm, d. Because d is the debt-to-firm
value ratio where debt is valued at the riskless rate, it is a biased up-
ward estimate of the actual (market-value) debt-to-firm value ratio.

Since Merton [5] has solved the option pricing problem when the
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term structure is not "flat" and is stochastic, (by again using the iso-
morphic correspondence between options and levered equity) we could deduce
the risk structure with a stochastic term structure. The formulae (13) and
(14) would be the same in this case except that we would replace "exp[-rT]"
by the price of a riskless discount bond which pays oﬁe dollar at time T in

the future and.'sz" by a generalized variance term defined in [5, p. 166].

Examination of equation (13) shows that the value of the debt
can be written, showing its full functional dependence, as F[V, T, B, 62, L:.
Because of the isomorphic relationship between levered equity and an
European qall option, we can use analytical results presented in [5], to

show that F is a first-degree homogeneous, concave function of V and B.§/

Further, we have thatﬁj
By = 1-fp 2 05 Fp o= ~fy >0 (15)
FT = --fT < 03 FUZ = 'fGZ < 03
F. = -f. ¥ 0

where again subscripts denote partial derivatives. The results presented
in (15) are as one would have expected for a discount bond: namely, the
value of debt is an increasing function of the current market value of the
firm and the promised payment at maturity, and a decreasing function of the
time to maturity, the business risk of the firm, and the riskless rate of
interest.

Since we.are interested in the risk structure of‘interest rates
which is a cross-section of bond prices at a point in time, it will shed

more light on the characteristics of this structure to work with the price
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ratio P = F[V,71]1/B exp[~-rt] rather than the absolute price level F. P is the
price today of a risky dollar promised at time 7 in the future in terms of a
dollar delivered at that date with certainty, and it is always less ‘than or
equal to one. From equation (13), we have that

P[4,7] = olh,(d,D)] + 3 o[h; (d,D)] (16)

where T = UZT. Note that, unlike F, P is completely determined by d, the
"quasi'" debt-to-firm value ratio and T, which is a measure of the volatility
of the firm's value over the life of the bond, and it is a decreasing function

of both., I.e.,

L~
|

2
g = (hl)/d < 0 a7

and

Pp = - @'(hl)/(Zd/T) < 0 | (18)

where ¢'(x) = exp[-xz/Z])VZE is the standard normal density function.

We now define another ratio which is of critical importance in ana-
lyzing the risk structure: namely, g = gy/g where gy is the instantaneous
standard deviation of the return on the bond and 3 is the instantaneous standard
deviation of the return on the firm. Because these two returns are instantane-

ously perfectly correlated, g is a measure of the relative riskiness of the

bond in terms of the riskiness of the firm at a given point in time.éj From
(3b) and (13), we can deduce the formula for g to be
(9]
L =
= VFV/F
= ¢[h,(d,T)]/(P[d,T]d) (19)
= gld,T].

In Section V, the characteristics of g are examined in detail. For the pur-
poses of this section, we simply note that g is a function of d and T only, and

that from the "no-arbitrage" condition, (6), we have that

Q. . .
L= = gla,T] (20)
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where (dy - r) is thebexpected excess return on the debt and (0 - r) is the
expected excess return on the firm as a whole. We can rewrite (17) and (18)
in elasticity form in terms of g to be
de/P = -g[d,T] (21)
and . .
TP, /P = -gld,T]VTe' (h;)/(2%(h,)) (22)
As mentioned in Section III, it is common to use yield to maturity

in excess of the riskless rate as a measure of the risk premium on debt., If

we define [R(T) - r] = H(d,T, 62), then from (14), we hav. that

Hy = o eld,T] > 03 (23)
B2 = S BlGTI (/0] > 0; (24)
B, = (log(p] + XL g[4,11(0'(h) /b D /P 2 0 (25)

As can be seen in Figures 1 and 2, the term premium is an increasing function
of both d and 02. While from (25), the change in the premium with respect to
a change in maturity can be either sign, Figure 3 shows that for

d > 1, it will be negative. To complete the analysis

of the risk structure as measured by the term premium, we show that the pre-

mium is a decreasing function of the riskless rate of interest. TI.e.,

dH ad
ar - Haar
(26)
= —g[dsT] < 0.

It still remains to be determined whether R - r is a valid measure
of the riskiness of the bond. I.e., can one assert that if R - r is larger
for one bond than for another, then the former is riskier than the latter? To
answer this question, one must first establish an appropriafe definition of
"riskier." Since the risk structure like the corresponding term structure

is a "snap shot" at one point in time, it seems natural to define the riskiness




Table I.

Representative Values of the Term Premium, R - r
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in terms of the uncertainty of the rate of return over the next trading in-
terval. In this sense of riskier, the natural choice as a measure of risk
is tﬁe (instantaneous) standard deviation of the return on the bond oy = og[d,T]
= 6(d,0,T). In addition, for the type of dynamics postulated, I have shown
elsewhere that the standard deviation is a sufficient statistic for comparing
the relative riskiness of securities in the Rothschild-Stiglitz [8] seﬁse.
However, it should be pointed out that the standard deviation is not sufficient
for comparing the riskiness of the debt of different companies in a portfolio
sensezj because the correlations of the returns of the two firms with other

i assets in the economy may be different. However, since R - r can be compufqd
for each bond without the knowledge of such correlations, it can not reflect
such differences except indirectly through the market value of the firm. Thus,
as, at least, a necessary condition for R - r to be a valid measure of risk,
it should move in the same direction as G does in response to changes in the

underlying variables. From the definition of G and (19), we have that

o2 () 2'(h)) 2'(hy)

%a = 7 Ty Ty Y EEy Tt R 27)
S
G, = g - ¢ () IFI - 20 + B4 sy (28)
> 0;
. G = ﬂ;ﬁ%—i—:—% [;;‘-(1 - 2g) + —1—"-5_,5—31 (29)

AllV

0 as d

VIA

1‘

Figures 4-6 plot the standard deviation for typical values of d, o, and T.
Comparing (27) - (29) with (23) - (25), we see that the term premium and the

standard deviation change in the same direction in response to a change in
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the "qﬁasi"debt—to—firm'value ratio or the business risk of the firm. How-
ever, they need not change in the same direction with a change in maturity
as a comparison of Figures 3 and 6 readily demonstrate. Hence; while compar-
'~ ing the term premiums on bonds of the same maturity does provide a valid com-
parison of the riskiness of such bonds, one cannot conclude that a higher
term premium on bonds of different maturities implies a higher standard de-
viation.gj
To complete the comparison between R - r and G, the standard devia-

tion is a decreasihg function of the riskless rate of interest as was the

case for the term premium in (26). Namely, we have that

dG ad
dr or (30)
T 1 0

V. On the Modigliani-Miller Theorem with Bankruptcy

In the derivation of the fundamental equation for pricing of cor-
porate liabilities, (7), it was assumed that the Modigliani-Miller theorem
held so that the value of the firm could be treated as exogeneous to the ana-
lysis. If, for example, due to bankruptcy costs or corporate taxes, the M-M
theorem does not obtain and the value of the firm does depend on the debt-equity
ratio, then the formal analysis of the paper is still valid. However, the
linear property of (7) would be lost, and instead, a non-linear, simultaneous
solution, F= F[V(F), T], would be required.

Fortunately, in the absence of these imperfections, the formal hedg-
ing analysis used in Section II to deduce (7), simultaneously, stands as a
proof of the M-M theorem even in the presence of bankruptcy. To see this,

imagine that there are two firms identical with respect to their investment
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decisions, but one firm issues debt and the other does not. The investor

can "create" a security with a payoff structure identical to the risky bond
by féllowing a portfolio strategy of mixing the equity of the unlevered firm -
with holdings of riskless debt. The correct portfolio strategy is to hold
(FVV) dollars of the equity and (F - FVV) dollars of riskless bonds where V

is the value of the unlevered firm, and F and F_, are determined by the solution

v
of (7). Since the value of the "manufactured" risky debt is alﬁays F, the
debt issued by the other firm can never sell for more than F. In a similar
fashion, one could create levered equity by a portfolio strategy of holding
(fVV) dollars of the unlevered equity and (f - fVV) dollars of borrowing on
margin which woﬁld have a payoff structure identical to the equity issued
by the levering firm. Hence, the value of the levered firm's equity can never
sell for more than f. But, by construction, f + F = V, the value of the un-
levered firm., Therefore, the value of the levered firm can be no larger than
the unlevered firm, and it cannot be less.

Note, unlike in the analysis by Stiglitz [11], we did not réquire
a specialized theory of capital market equilibrium (e.g., the Arrow-Debreu
model or the capital asset pricing model) to prove the theorem when bank-
ruptcy is possible.

In the previous section, a cross-section of bonds across firms at
a point in time were analyzed to describe a risk structure of interest rates.
We now examine a debt issue for a single firm. In this context, we are in-
terested in measuring the risk of the debt relative to the risk of the firm.
As discussed in Section IV, the correct measure of this relative riskiness

is Gy/U = g[d,T] defined in (19). From (16) and (19), we have that

‘4d®(h2)
1+ TR (31)
1

UQI'-‘
(=2
~
=
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From (31), we have 0 < g < 1. I.e., the debt of the firm can never be more
risky than the firm as a whole, and as a corollary, the equity of a levered
firm must always be at least as risky as the firm. In particular, from (13)
and (31), £he limit as d + » of F[V,tT] = V and of g[d,T] = 1. Thus, as the
ratio of the present value of the promised payment to the current value of
~ the firm becomes large and therefore the probability of eventual default be-
comes large, the market value of the debt approaches that of the firm and the
risk characteristics of the debt approaches that of (unlevered) equity. As
d +A0, the probability of default approaches zero, and F[V,T] =+ B exp[-rT],
the value of a riskless bond, and g - 0. So, in this case, the risk character-
istics of the debt become the same as riskless debt. Between these two ex -
tremes, the debt will behave like a combination of riskless debt and equity,
and will change in a continuous fashion, To see this, note that in the port-
folio used to replicaté the risky debt by combining the equity of an unlevered
firm with riskless bonds, g is the fraction of that portfolio invested in
the equity and (1 - g) is the fraction invested in riskless bonds. Thus, as
g increases, the portfolio will contain a larger fraction of equity until
in the limit as g = 1, it is all equity.

From (19) and (31), we have that
1 ¢'(hl)
gd = 'dg [-(1 - g +ﬁ® Zhl)} > .0 (32)

i.e., the relative riskiness of the debt is an increasing function of d, and

g2 by g

e — 1"l log d. .
> . <
z 0 as d N 1.

Further, we have that

gll,T] = %, T >0 . (34)
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and . 1

T >0

0<d<ow (35)

Thus, independent of the business risk of the firm or the length of time
until maturity, the standard deviation of the return on the debt equals half
the standard deviation of the return on the whole firm. From (35), as the
business risk of the firm or the time to maturity get large, cy + g/2, for
all d.

| Contrary to what many might believe, the relative riskiness of the
debt can decline as either the business risk of the firm or tﬁe time until
maturity increases. Inspection of (33) shows that this is the case if d > 1
(i.e., the present value of the promised payment is less than the current
value of the firm). To see why this result is not unreasonable, consider
the following: for small T (i.e., 02 or T small), the chances that the debt
will become equity through default are large, and this will be reflected
in the risk characteristics of the debt through a large g. By increasing T
(through an increase in 62 or T), the chances are better that the firm value

will increase enough to meet the promised payment. It is also true that the

. chances that the firm value will be lower are increased. However, remember

that g 1s a measure of how much the risky debt behaves like equity versus
debt. Since for g large, the debt is already more aptly described by equity
than riskless debt. b(E.G., ford > 1, g > %-and the "replicating" portfolio
will contain more than half equity.) Thus, the increased probability of
meeting the promised payment dominates, and g declines. For d < 1, g will
be less than a half, and the argument goes just the opposite way. In the

"watershed" case when d = 1, g equals a half; the "replicating" portfolio

is exactly half equity and half riskless debt, and the two effects cancel
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leaving g unchanged.

In closing this section, we examine a classical problem in corporate
finance: given a fixed investment decision, how does the required return on
debt and equity change, as alternative debt-equity mixes are chosen? Because
the investment decision is assumed fixed and the Mo&igliani—Miller theorem
obtains, V,Oz, and a(the required expected return on the firm) are fixed. For
simplicity, suppose that the maturity of the debt, f, is fixed, and the
promised payment at maturity per bond if $1. Then, the debt-equity mix is
determined by choosing thevnumber of bonds to be issued. Since in our pre-
vious analysis, F is the value of the whole debt issue and B is the total
promised payment for the whole issue, B will be the number of bonds (promis-
ing $1 at maturity) in the current analysis, and F/B will be the price of
one bond.

Define the market debt-to-equity ratio to be X which is equal to
(F/f) = F/(V-F). From (20), the required ekpected rate of return on the debt,
ay, will equal r + (0 - r)g. Thus, for a fixed investment policy,

o,
%{l= @-ng/E, | (36)

provided that d&X/dB # 0. From the definition of X and (13), we have that

daX _ xX@+x)(1 -g)
dB B £ > 0 (37
Since dg/dB = gdd/B, we have from (32), (36), and (37) that
do d(o .~ r)gdv,
& " xaroa~o > ° | (38)
(o -1) [ L1 2 ]
XA+ X' 8T T 3,y

Further analysis of (38) shows that ay starts out as a convex function of X;

passes through an inflection point where it becomes concave and approaches
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0 asymptotically as X tends to infinity.

To determine the path of the required return on equity, o, as X
moves between zero and infinity, we use the well known identity that the equity
return is a weighted average of the return on debt and the return on the firm.

I.e.,

Q.
]

o+ X(a - ay) (39)

a+ (1-g) X(- 1),

o, has a slope of (0 - r) at X = 0 and is a concave function bounded from
above by the line o + (0 -‘r)X. Figure 9 displays both d& and Oy e While
Figure 9 was not produced from computer simulation, it should be emphasized
that because both (ay - r)/( - r) and (de - r)/(d - r) do not depend on q,
suéh curves can be computed up to the scale factor (o - r) without knowledge
of.a.

VI. On the Pricing of Risky Coupon Bonds

In the usual analysis of (default-free) bonds in term structure
studies, the derivation of a pricing relationship for pure discount bonds
for every maturity would be sufficient because the value of a default-free
coupon bond can be written as the sum of discount bonds' values weighted
by the size of the coupon payment at each maturity. Unfortunately, no such

simple formula exists for risky coupon bonds. The reason for this is that

if the firm defaults on a coupon payment, then all subsequent coupon payments

(and payments of principal) are also defaulted on. Thus, the default on one
of the "mini" bonds associated with a given maturicy is not independent

of the event of default on the "mini" bond associated with é later maturity.
However, the apparatus developed in the previous sections is sufficient to -

solve the coupon problem.
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Assume the same simple capital structﬁre and indenture condi-
tions as in Section III except modify the iﬁdenture condition to require
(cOn;inuous) payments at a coupon rate per unit time, C. From indenture
restriction (3), we have that in equation (7), € = Cy =C and hehce; the

coupon bond value will satisfy the partial differential equation

_12.2 ' it _ T =
0 = 50V F _+(GV-CF -rF-F +C =0 (40)

subject to the same boundary conditions (9). The corresponding equation

for equity, f, will be

[t

v = 'EGZVZ fVV + (xV - C) £, - tf —.fT (41)
subject to boundary conditions (9a), (9b), and (11). Again, equation (41)
has an isomorphic correspondence with an option pricing problem previously
studied. Equation (41) is identical to equation (44) in Merton [5, p.170]
which is the equation for the European option value on a stock which pays
dividends at a constant rate per unit time of C. While a closed—form
solution to (41) for finite T has not yet be found, one has been found for

the limiting case of a perpetuity (T = ), and is presented in Merton [5, p. 172,

equation (46)]. Using the identity F = V - f, we can write the solution for

the perpetual risky coupon bond as 2r
3 5y N
P, = S - S w (B 20 B 20w
v X a a g v
](2+"6_2')

where I' ( ) is the gamma function and M ( ) is the confluent hypergeometric
function. While perpetual, non-callable bonds are non-existent in the
United States, there are preferred stocks with no maturity date and
(42) would be the correct pricing function for them.

Moreover, even for those cases where closed-form solutions

camnot be found, powerful numerical integration techniques have been
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developed for solving equations like (7) or (41). Hence, computation and
empirical testing of these pricing theories is entirely feasible. .

Note that'in deducing (40), it
was assumed that coupon payments were made unitormly ana continuously. Ih
fact, cdupon payments are usually only made semi-annually or ahnually in

discrete lumps. However, it is a simple matter to take chis into account

by replacing 'C" in (40) by "Ziﬁi6(T—Ti)" where §( ) is the dirac delta

function and T is the length of time until maturity when the ith coupon
payment of E& dollars is made.

As a final illustration, we consider the case or callable bonds.
Again, assume the same capital structure but modify the
indenture to state that 'the firm can redeem the bonds at its option for a
stated price of K(tr) dollars" where K mav depend on the length of time until
maturity. Formally, équation (40) and boundary conditions (9.a) and (9.c)
are still valid. However, instead of the boundary condition (9.b) we have -
that for each T, there will be some value for the firm, call it V(t), such

that for all V(t) > V(T), it would be advantageous ror tne firm to redeem

the bonds. Hence, the new boundary condition will be
FIV(D), 11 = K(T) (43)

Equation (40), (9.a), (9.¢), and (43) provide a well-posed problem to solve
for F provided that the V(t) function were known. But, of course, it is not.

Fortunately, economic theory is rich enough €o provide us with an answer.

" First, imagine that we solved the problem as if we knew V(T) to get

F[V,T; V(T)] as a function of V(T). Second, recognize that it is at manage-
ment's option to redeem the bonds and that management operates in the best

interests of the equity holders. Hence, as bondholder, one must presume that
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management will select the V(T) function so as to maximize the value of equity,
f. But, from the identity F = V - £, this implies that the V(T) function chosen
will be the one which minimizes F[V,T; V(1)]. Therefore, the additional
condition is that

F[V,T] = min F[V,7; V(1)] (44)

{v(t)}

To put this in appropriate boundary condition form for solution, we again
rely on the isomorphic dorrespondence with options and refer the reader to
the discussion in Merton [5] where it is shown that condition (44) is

equivalent to the condition
FV(D),T] = 0

Hence, appending (45) to (40), (9.a), (9.c) and (43), we solve the prcblem

for the F[V,T] and V(t) functions simultaneously.

'V. Conclusion

We have developed a method for pricing corporate liabilities
which is grounded in solid economic analysis; required inputs which are on
the whole observable; can be used to price almost any type of financial in-
strument. The method was applied to risky discount bonds to deduce a risk
structure of interest rates. The Modigliani-Miller theorem was shown to
obtain in the presence of bankruptcy provided that there are no differential

tax benefits to corporations or transactions costs. The analysis was

extended to include callable, coupon bonds.



]

FOOTNOTES

Associate Professor of Finance, Massachusetts Institute of Technology
I thank J. Ingersoll for doing the computer simulations and for
general scientific assistance. Aid from the National Science Founda-
tion is gratefully acknowledged. '

Of course, this assumption does not rule out serial dependence in
the earnings of the firm. See Samuelson [10] for a discussion.

For a rigorous discussion of Itd's Lemma, see McKean [4]. For refer-
ences to its application in portfolio theory, see Merton [5].

See Merton [5; Theorems 4, 9, 10] where it is shown that f i1s a first-
degree homogeneous, convex function of V and B.

See Merton [5, Theorems 5, 14, 15].

Note, for example, that in the context of the Sharpe-Lintner-Mossin
Capital Asset Pricing Model, g is equal to the ratio of the 'beta"
of the bond to the "beta" of the firm.

See Merton [5, Appendix 2].

For example, in the context of the Capital Asset Pricing Model, the
correlations of the two firms with the market portfolio could be suf-
ficiently different so as to make the beta of the bond with the
larger standard deviation smaller than the beta on the bond with the
smaller standard deviation.

It is well known that @'(x) + x®(x) > 0 for -» < x < @/

While inspection of (25) shows that H{ < 0 for d > 1 which agrees
with the sign of Gt for d > 1, Ht can be either signed for d <1
which does not agree with the positive sign on G



e

10.

11.

Bibliography

Black, F. and Scholes, M., "The Pricing of Options and Corporate Lia-
bilities," Journal of Politlcal Economy (May-June 1973).

, "The Valuation of Optlon Contracts and a Test
of Market Efficiency", Journal of Finance (May 1972).

Fama, E.F., "Efficient Capital Markets: A Review of Theory and Empirical
Work", Journal of Finance (May 1970).

McKean, H.P., Jr., Stochastic Integrals, New York, Academic Press, 1969.

Merton, R.C., "A Rational Theory of Option Pricing', Bell Journal of
Economics and Management Science (Spring 1973).

, ''Dynamic General Equilibrium Model of the Assct Market and
and Its Application to the Pricing of the Capital Structure of the Firm",
SSM W,P. #497-70, M.I.T. (December 1970).

Miller, M. and Modigliani, F., "The Cost of Capital, Corporation Finance,
and the Theory of Investment", American Fconomic PReview (June 1958).

Rothschild, M. and Stiglitz, J. E., "Increasing Risk: I. A

(September 1970).

Samuelson, P. A., "Proof that Properly Anticipated Prices Fluctuate
Randomly," Industrial Management Review (Spring 1965).

, "Proof that Properly Discounted Present Values of

Assets Vibrate Randomly," Bell Journal of Economics and Management
Science, Vol. 4, No. 2 (Autumn 1973).

Stiglitz, J. E., "A Re-Examination of the Modigliani-Miller Theorem,"
American Economic Review, Vol. 59, No. 5 (December 1969).




