
This is the peer reviewed version of the following article: Dickie, J. A. and Parsons, A. J. 
(2012), Ecogeomorphological processes within grasslands, shrublands and badlands in the 
semi-arid Karoo, South Africa. Land Degrad. Dev., 23: 534–547. doi: 10.1002/ldr.2170, 
which has been published in final form at 
http://onlinelibrary.wiley.com/doi/10.1002/ldr.2170/full. This article may be used for non-
commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.  

 

http://onlinelibrary.wiley.com/doi/10.1002/ldr.2170/full


1 

 

Special Issue:  Guest editors Rowntree, Meiklejohn & Foster 

 

Ecogeomorphological processes within grasslands, shrublands and badlands in the 

semi-arid Karoo, South Africa 

 

Short title: Ecogeomorphological processes in the semi-arid Karoo, South Africa 

 

Dickie, J. A.
1*

 and Parsons, A. J.
2
 

 
1 

Department of Geography, University of Leicester 
2 

Department of Geography, University of Sheffield
 

 

Corresponding author 

*Department of Geography 

University of Leicester 

University Road 

Leicester, LE1 7RH  

UK 

Tel. +44 (0)116 252 5246 

Fax +44 (0)116 252 3854 

E-mail: jd92@le.ac.uk  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 

 

Abstract  

 

Vegetation type and cover play an important role in the operation of geomorphological 

processes by controlling runoff and sediment dynamics.  In drylands, land degradation 

is particularly sensitive to these eco-geomorphic interactions.  Whilst many 

geomorphological studies of land degradation focus on the change in hydrological 

response as a function of vegetation cover, few have investigated how the autogenic 

response of plants may influence the susceptibility of soil to erosion through a change 

of soil resources.  This study investigates the hypothesis that shrub communities possess 

greater soil parameter heterogeneity compared to grasslands, and assesses how these 

different scales of heterogeneity can influence the susceptibility of soil to erosion. 

 

Soil samples were taken from seven 60m x 60m plots within grasslands, shrublands and 

badlands situated in the Sneeuberg uplands of the central Karoo.  108 samples per plot 

were analysed for bulk density, organic matter, pH, conductivity and available sodium, 

calcium, magnesium, potassium and phosphorus.  Geostatistical analyses determined 

that the grassland landscape was largely homogenous in its distribution of soil 

parameters whereas shrublands demonstrated an increase in heterogeneity.  Periodicity 

in the semi-variograms indicated that regular patterns across the landscape were evident 

for all parameters and thus likely to represent the differences between shrub and 

intershrub regions, areas of high and low erodibility.  More pronounced patterns were 

identified in the badlands.  This indicates that, if the conditions are right, changes in 

plant-soil interactions caused by soil parameter redistribution in shrubland landscapes 

can exacerbate erosion, leading to further degradation in the form of badlands.   

 

Key words: soil heterogeneity; land degradation; geostatistics; Karoo; South Africa; 

badlands 

 

Introduction 

 

Vegetation is commonly identified as a significant controlling mechanism of land 

degradation in sensitive, semi-arid environments (Abrahams et al., 1995; Snelder and 

Bryan, 1995; Parsons et al., 1996; Doudill et al., 1998; Blomqvist et al., 2000; 

Wainwright et al., 2000; Maestre and Cortina, 2002; Thornes, 2005).  In reality, the 

system is one of mutual interdependence, where vegetation dynamics influence 

geomorphic processes and vice versa (Thornes, 1985).  Despite the more recent 

emergence of ‘ecogeomorphologists’, which acknowledge this ecological and 

geomorphological connectivity (Abrahams et al., 1995; Prosser et al., 1995; Parsons et 

al., 1996; Schlesinger and Pilmanis, 1998; Havstad et al., 1999; Kosmas et al., 2000; 

Neave and Abrahams, 2002; Peters and Havstad, 2006; Dunkerley, 2010; Wainwright, 

2009), land degradation debates continue to focus largely on the drivers of vegetation 

change (Peters and Havstad, 2006; Kong et al., 2010; Cowie et al., 2011) and its 
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subsequent impact on hillslope/erosional processes (Abrahams et al., 1995; Prosser et 

al., 1995; Parsons et al., 1996; Wainwright et al., 2000).  With increasing pressure on 

the scientific community to prevent, or at least mitigate further land degradation in the 

drylands of the world, a more holistic approach is needed to understand the relationship 

between vegetation and geomorphic processes and their feedback mechanisms.  Our 

current understanding of these feedback mechanisms declines with increasing spatial 

and temporal scale; further studies of fundamental plant-soil interactions, their dynamic 

patterns and processes and, crucially, the impact of scale are necessary to build our 

understanding of ecogeomorphological processes in the landscape. 

 

Whilst the spatial patterns of plant-limiting nutrients in drylands are well documented 

(Charley and West, 1975;  Hook et al., 1991;  Tongway and Ludwig, 1994; Schlesinger 

et al., 1996; Schlesinger and Pilmanis, 1998), as are the effect of vegetation change on 

the physical properties and hydrological responses of soil (Abrahams et al., 1995; 

Parsons et al., 1996; Wainwright et al., 2000; Maestre and Cortina 2002) few have 

attempted to link them, and thus relate changing spatial patterns of soil properties to the 

susceptibility of soil to erosion.  The aim of this study is to investigate the relationships 

that exist between vegetation type and erosion potential in the Karoo region of South 

Africa.  The objectives of this study were to:  

 

1) Identify the spatial patterns of physical and chemical properties of soil in 

grassland, shrubland and badland landscapes. 

2) Assess the impact of the spatial patterns on the susceptibility of soil to erosion. 

3) Determine the importance of scale of measurement on the spatial patterns 

attributed to a landscape.  

  

The nature, extent and causes of vegetation change in the semi-arid Karoo region of 

South Africa are widely debated (e.g. Acocks, 1953; Dean et al., 1995; Hoffman et al., 

1995; 1999; Milton and Dean, 2000; Meadows and Hoffman, 2002; Richardson et al., 

2005).  According to Acocks (1953), the predominantly perennial grasslands of the 

eastern Karoo experienced extensive shrub encroachment as a result of overstocking by 

European farmers.  Acocks’ (1953) ‘expanding Karoo’ hypothesis was widely accepted 

and influenced many land management policies (Meadows and Hoffman, 2002; 

Hoffman et al., 1995).  However, growing contention surrounds the veracity of Acocks’ 

(1953) model of land degradation.  Hoffman et al. (1995) discuss the supporting and 

conflicting evidence for grassland degradation in the Eastern Karoo and whilst they 

found a general consensus that the region supported greater grassiness in the past, 

debate surrounds the point at which shrub encroachment was initiated.  Hoffman et al. 

(1995) show that Acocks’ (1953) model of vegetation change can also be challenged by 

evidence from a variety of sources, which show that periods of greater grassiness 

occurred concurrently with periods of above-average rainfall.  This relationship has led 

to the development of an alternative model, proposed by Hoffman et al. (1990), Milton 
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and Hoffman (1994) and Milton et al. (1994), that describes a system of alternate stable 

states of either grassland or shrublands in response to rainfall.  The idea that grass and 

shrub cover fluctuates over time due to seasonal and short-term climatic variations is 

now widely recognised (Dean et al., 1995).  Elsewhere, the notion of grassland and 

shrubland as alternate stable states has recognised that the switch between them 

conforms to catastrophic cusp behaviour (Turnbull et al., 2008), a fundamental 

characteristic of which is that the ecosystem exhibits hysteresis whereby the trajectory 

of change in one direction is different from that in the other (Turnbull et al., 2008, p27).  

A reason for this hysteretical behaviour is interplay of vegetation dynamics and 

geomorphic processes.  If a change to the percentage of grass and shrub cover occurs as 

a result of a climatic variation, this change will result in a change to the geomorphic 

processes such that the land surface on which the former percentage of grass and shrubs 

no longer exists.  Consequently, a return to the former climatic conditions does not 

imply that there can be a simple return to the former grass and shrub percentage.  

Indeed, quite the opposite is the case.  

 

In order to understand the ecogeomorphic processes associated with different land cover 

types, we undertook an extensive sampling programme of soil physical and chemical 

properties at sites on Karoo grasslands, shrublands and badlands.  The study employs an 

ergodic approach to testing the hypothesis that shrub encroachment in dryland 

environments initiates a change in scale of soil heterogeneity that consequently 

influences the landscape’s biotic and abiotic interactions and potentially the 

susceptibility of soil to erosion. Under this approach, it is not necessary that the sites 

studied have undergone progressive change from grassland to shrubland (and badland), 

but the assumption is that such sites will exhibit over space the same differences as one 

site that was undergoing such progressive changes would exhibit through time. Using a 

hierarchical spatial framework, the distributions of soil properties in each of the three 

landscape types were investigated; comparisons of the spatial patterns were made to 

determine both the importance of scale, and whether badland development in shrublands 

show a continued and pronounced redistribution of soil parameters.    

 

Field sites, materials and methods  

 

The study site is located in the Sneeuberg uplands (31°40′–45′S and 24°32′–37′E), 

approximately 65km north of Graaff-Reinet (figure 1). The area feeds the upper 

catchment and headwaters of the Klein Seekoei River, a tributary of the Seekoei River, 

and drains in a northerly direction eventually supplying the Orange River.  Due to the 

high altitude of the region, which varies from c. 1650m in the valleys to over 2000m on 

the peaks, the locality receives an annual rainfall of approximately 498mm (Boardman, 

pers. comm.).  A summer rainfall regime characterises this area; approximately 70% of 

its annual rainfall is received between the months of October and March (Keay-Bright 

and Boardman, 2009).   
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Situated near the dynamic boundary of the Nama-Karoo and Grassland biomes, Acocks 

(1988) defines the vegetation of this area as False Upper Karoo in the valleys and 

Karroid Merxmuellera Mountain veld in the higher altitudes.  In more recent studies, 

these vegetation types are classified as Eastern Mixed Nama Karoo (Hoffman, 1996), 

Southeastern Mountain Grassveld (Lubke et al., 1997) and Eastern Upper Karoo 

(Mucina and Rutherford, 2006), respectively.  However, the descriptive accounts of 

veld types remain congruent with Acocks’ definitions.  The species composition of 

these vegetation communities is highly dependent on seasonal rainfall events.  Grasses 

such as Aristida spp., Eragrostis spp. and Themeda triandra (Hoffman, 1996) respond 

to summer rainfall events with an increase in biomass, and can dominate the shrubby 

landscape typically characterised by species such as Pentzia incana, Eriocephalus 

ericoides, E. spinescens and Hermannia spp. (Hoffman, 1996).  These episodic swathes 

of grass were largely absent from the study region during the research period.  A more 

in-depth description of the vegetation composition of the Eastern Upper Karoo can be 

found in Mucina and Rutherford (2006).  

 

Soils on the rocky hillslopes are shallow and discontinuous, overlaying horizontally 

bedded sandstones and shales of the Beaufort and Stormberg groups (Karoo 

supergroup).  Colluvial material of varying depths is found on the footslopes, and 

topsoil is generally without a modern A horizon.  Unconsolidated Quaternary sediments 

cover mudstones, shales and sandstones on the valley floors.  Dolerite ridges 

characterise the landscape in areas of higher relief.   

 

Fieldwork was undertaken in the Karoo in the early summer, during the months of 

November and December 2003, before the start of the summer rainfall regime.  Seven 

topographically similar plot locations were identified, avoiding anthropogenically 

modified land such as recent burn sites, ploughed land (past and present) and areas that 

varied greatly in past grazing densities.  The plots represented grassland, shrubland, 

mixed and badland landscapes; their locations, identification number and vegetation 

category are shown in figure 1.  An in-depth description and discussion on the origin of 

the badlands in this area can be found in Boardman et al. (2003).   

 

Due to the paucity of expanses of pure grassland in the vicinity of the study region, only 

one adequate grassland plot was identified.  A mixed plot of grass and shrubs (where 

grass was dominant) was therefore included in the study.  Because this vegetation state 

(with varying grass-shrub ratios) was commonly observed throughout the study region, 

it was decided that it would be beneficial to collect these data as an indication of the 

spatial patterns and processes of soil properties characteristic of a mixed grass and shrub 

community.   
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A nested sampling strategy, based on previous work by Müller (pers. comm., 2004), 

was devised to assist in the identification of patterns at different spatial scales in the 

landscape.  60m by 60m plots were constructed, with three hierarchical subdivisions 

(30m by 30m, 10m by 10m and 1.5m by 1.5m).  In each of two of the 30m x 30m cells 

nine randomly generated coordinates were sampled for soil properties within a 0.15m 

support.  Each of the two remaining 30m x 30m cells was subsequently divided into 

nine 10m x 10m cells.  Four of these cells contained nine randomly generated 

coordinates where soil samples were taken within a 0.15m support.  Within six of the 

10m x 10m cells, a randomly generated coordinate was used as the origin point of a 

1.5m x 1.5m quadrat; this was divided into nine 0.5m x 0.5m cells.  The centroid of 

each of these cells was considered the sample point, therefore a systematic sampling 

regime was undertaken at this scale.  Figure 2 shows a schematic diagram of a typical 

plot layout.  As badlands generally form across footslopes, the plot layout was modified 

to maximise rill inclusion.  These plots were 30m x 120m but the cell/sampling format 

was consistent with the other plots.  In total, 108 samples were obtained from each plot.  

Where a sample location fell on areas that were impossible to sample, an additional 

randomly generated location was used.   

 

Groundcover photographs, vegetation cover, average shrub and grass tussock diameter 

measurements, shear strength readings and bulk density samples were taken in situ, and 

a second soil sample was collected for further laboratory analyses.  These analyses 

comprised the determination of organic matter content, pH, conductivity and available 

sodium, calcium, magnesium, potassium and phosphorus.  Notably, available nitrogen 

was not included in this study, despite its role as a major plant-limiting nutrient.  Many 

studies have already established the self-sustaining relationship between plants and 

available nitrogen in soil and its associated redistribution concurrent with shrub 

encroachment (e.g. Hook et al., 1991; Tongway and Ludwig, 1994; Schlesinger et al., 

1996; Müller et al., 2008).  The focus here is on the role soil chemistry plays on the 

swelling and dispersive behaviour of clay particles and hence the erodibility of the soil, 

rather than how the spatial ‘availability’ of nutrients limit the growth of vegetation.   

 

Field and Laboratory Techniques 

 

Shear Strength was measured on unsaturated soil using a Pilcon hand-held shear vane 

with a 33mm diameter.  The vane was inserted to the depth of 50mm, the full length of 

the vane blades.  The shear vane was then rotated at a speed equivalent of 

approximately 1 revolution per minute until the soil sheared.  A direct measurement in 

kPa was taken from the vane.  To avoid biased results involving the positioning of the 

vane, a method was employed that involved alternating the sampling site between 

adjacent samples at a set distance of 150mm either at a 0 or 180 angle from the 

sample origin.  Where the ground was impenetrable, as occurred in some in badland 

locations, these points were assigned a maximum value. 
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Organic matter (OM) content of each soil sample was determined using the loss-on-

ignition (LOI) method as described by Rowell (1994).  The analysis was conducted on a 

thoroughly mixed sample derived from the top 8mm of soil at each sample location.   

Soil moisture was calculated for every sample point from a sealed soil sample brought 

back from the field.  The soil used to measure the moisture content was the same sample 

used to measure the soil bulk density.  This measurement was taken from the top 80mm 

of soil.  Soil moisture was calculated using the method described by Rowell (1994).  

Dry bulk density samples were acquired using a guide plate, driving tool and 0.0001m
3 

cylinder.  Care was taken to retain the natural structure of the soil by minimising the 

compaction and disturbance.  The measurement was taken from the top 80mm of soil.  

To avoid biased results involving the positioning of the cylinder, the sampling site was 

alternated between adjacent samples at a set distance of 150mm either at 90 or 270 

from the sample origin.  Where the ground was impenetrable with the cylinder, as 

evident in a few cases at badland sites, these points were classified as ‘no data’.  In the 

laboratory, the dry bulk density was calculated using the method described by Rowell 

(1994).  

 

Soil pH and electrical conductivity were measured in the laboratory using a Sartorius 

PP-25 bench-top pH/conductivity meter.  Due to the large sample size and related time 

constraints it was decided that the procedure most appropriate to determine the pH was 

that of a 1:1 water to soil suspension.  A minimum of a 30-second stabilisation time was 

adopted as suggested by Rowell (1994).  Electrical conductivity was measured using a 

1:2 water to soil ratio.  To reduce potential error three measurements per sample were 

taken and the average calculated.  A full description of these techniques can be found in 

Soil and Plant Analysis Council Inc 1999 (2000).  

 

Nutrient analyses:  100g bulk samples were taken from approximately the top 80mm of 

soil at each sample location.  In the laboratory each sample was air-dried, passed 

through a 2mm sieve, mixed well and a 10g sub-sample derived.  The major cations; 

magnesium, calcium, potassium and sodium as well as phosphorus were extracted using 

the Mehlich No. 3 extraction method as described in the Soil Analysis Handbook of 

Reference Methods (Soil and Plant Analysis Council, Inc. 1999, 2000).  The levels of 

nutrients were determined using an ICP-AES. 

 

Statistical analyses 

 

The means and coefficients of variation of all soil parameters were calculated for each 

plot to indicate the variability within the datasets.   
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Non-parametric statistical tests were used to compare datasets as normality could not be 

assumed.  Mann-Whitney analysis was used to identify whether the parameter 

distributions varied among grassland, shrubland and badlands and to understand the 

importance of the spatial patterns of soil parameters in relation to erosion. The 

interconnected nature of the soil properties were analysed using the Spearman’s Rank 

correlation coefficient test.  Although cause and effect cannot be determined from 

correlation analysis, inferences about these relationships can be made on the basis of 

known soil interactions.   

 

Geostatistical analyses 

 

Geostatistical techniques were employed to quantify the spatial distribution of the soil 

parameters.  Omni-directional semi-variograms were calculated using the multiple 

scales of data collected through the nested sampling strategy and were used to identify 

evidence of spatial autocorrelation.  Before calculating the semi-variograms, the data 

were standardised by subtracting the mean and dividing by the standard deviation.  If 

trends were identified, regression analysis was carried out and the residuals were used to 

calculate the semi-variograms (Webster and Oliver, 2001).         

 

Experimental variograms were calculated for each parameter using the VARIOWIN 

software (Pannatier, 1996).  These graphs plot half the average squared difference in 

value for every pair of data locations against the distance between the data pairs, also 

known as the lag interval.  Our analysis extends to a lag of 30m, 50% of the maximum 

lag distance; intervals were chosen by calculating multiple experimental variograms for 

0.5m, 1m, 2m, 3m, 4m, 4.5 m, 5m and 6m intervals and assessing which interval 

displayed the strongest spatial structure.  Models were fitted to the experimental 

variograms using the manual fitting function in the VARIOWIN software (Pannatier, 

1996).  The most appropriate fit was chosen from Gaussian, spherical, exponential and 

linear models.  Where the variance was random, nugget models were applied.  

 

There are three main components to the semi-variogram, the sill, the range and the 

nugget value.  If the data are randomly distributed, there will be little change in the 

semi-variance with increasing distance.  If a pattern in the data exists, the semi-

variogram will rise. The semi-variance value at which the curve levels off is known as 

the sill and the range is the lag value at which the semi-variogram reaches the sill value.  

The range is therefore the distance at which the samples become independent.  The 

nugget value is the variance at zero lag distance, and represents a combination of the 

variance that exists at a finer scale than the sampled area and measurement error.   

 

Results  
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Vegetation cover and average plant size 

 

Vegetation cover was estimated for each plot, the results are shown in table 1.  The 

badlands have the lowest percentage vegetation cover, varying from 14% to 26%, the 

shrublands vary considerably, with covers of 44% and 70%, and the grassland and 

mixed plot are consistent with 63% and 62% cover, respectively.  The species 

composition was not measured as this study only focuses on the dominant vegetation 

type; however, the high percentage cover of plot 3 can be attributed to grass that grows 

amongst the shrubs.       

 

The diameter of every shrub and grass tussock was measured in each of the six 1.5m x 

1.5m quadrats and the mean diameter of the plant and its standard deviation were 

calculated.  The mean shrub size is 0.45m (standard deviation: 0.28) and the mean grass 

tussock is 0.34m (standard deviation: 0.21).  Note, only the diameters of identifiable 

grass tussocks were measured, not all grass species, for comparison with the mean shrub 

size.       

 

Means and coefficients of variation  

 

The mean and coefficient of variation (CV) of each soil variable from each of the three 

vegetation states are presented in table 2.  Patterns of difference associated with the 

vegetation are evident; with the exception of shear strength and available calcium, 

variable means either increase or decrease consistently across the degradation gradient.  

Organic matter content, soil moisture, conductivity, available potassium and available 

phosphorus all decrease from grasslands to badlands, whereas bulk density, pH, 

available magnesium and available sodium all increase.  These directional ‘responses’ 

indicate that the soil parameters undergo a ‘step-wise’ progression of change.   

 

Bulk density, pH and organic matter content had the lowest CV values; these were 

consistently the lowest across the three vegetation states and nearly always <30%.  The 

parameters with the highest CVs were not consistent across all three states; available 

sodium had the highest CVs in the grasslands and badlands (≥80%), whereas available 

calcium had the highest in the shrublands (77%).  Shear strength and soil moisture had 

relatively high CVs in all three vegetation states, nearly always >55%.  Notably, a 

higher CV for available phosphorus was found for the badlands compared to the two 

other vegetation states.  

 

Mann-Whitney analyses   

 

Mann-Whitney analyses are presented in table 3.  At a 95% confidence level, organic 

matter, available calcium and available sodium showed no significant differences 

between the shrubland and badlands.  Shear strength showed no significant differences 
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between the grassland and badlands and available magnesium showed no significant 

differences between the grassland and shrubland.  Significant differences between the 

vegetation states were found for all other parameter distributions.   

 

Spearman’s rank correlation coefficient 

Table 4 presents the parameters that displayed strong correlations (greater than 0.5) for 

the grasslands and shrublands.  There were no strong correlations in the badlands.   

The results suggest that the physical properties of soil are largely controlled by organic 

matter, due to its iterative impact on the other properties.  The strong negative 

correlation between organic matter content and bulk density and that between bulk 

density and water content highlight the importance of organic matter for soil quality and 

in this case, its susceptibility to erosion.  No strong correlations with shear strength 

were evident and all correlations amongst the soil nutrients were positive.   

 

Geostatistics 

 

A summary of the geostatistical analyses is given in table 5.   The results show that 

modelling spatial patterns of soil parameters quantitatively at a scale representative of a 

vegetation community is difficult; we are unable to satisfactorily model approximately 

one third of variables measured (depicted as ‘na’ in table 5).  Consistently, periodicity 

was identified in these data, particularly in the badland plots.  Where strong cyclic 

patterns are evident, no models are applied.  Weaker periodicity is present in some 

datasets that have been fitted to a model, including the nugget model; we have identified 

all parameters that show evidence of periodicity by highlighting them in italics in table 

5.  Another interesting pattern that is not restricted to any one vegetation state is evident 

in the semi-variograms for organic matter, bulk density, conductivity, available 

potassium, magnesium and sodium.  These semi-variograms display a decrease in 

variance with an increase in lag distance (depicted with an asterisk in table 5).  

According to Brunsdon (pers. comm.) this may suggest checkerboard patterning in the 

landscape.    

 

Spatial autocorrelation is evident for a number of parameters, particularly among the 

physical properties in the grassland and shrubland plots, and to a lesser degree in the 

badlands.  Of the two grassland plots, plot 2 has consistently higher ranges of spatial 

autocorrelation than plot 1.  This can be explained by the slightly different nature of the 

two plots; plot 1, whilst being included in the grassland analyses, has a higher 

proportion of shrub cover within the plot (approx. 30%).  The longer ranges of 

autocorrelation in plot 2 reflect the more uniform grass cover.  With this in mind, in 

general organic matter, bulk density and soil moisture have shorter ranges of spatial 

autocorrelation in the shrublands. These results suggest that a redistribution of soil 
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resources accompanies shrub invasion.  Shear strength, in contrast, displays shorter 

ranges in the grasslands.  This may be attributed to grassland ‘patchiness’, a common 

feature in semi-arid landscapes (Cerdà, 1997; Blomqvist et al., 2000); ‘patches’ can 

vary in size, from small mosaics to areas several metres across.   

 

pH and available magnesium and phosphorus demonstrated shorter ranges in the 

shrubland plots compared to those found for the grassland plots, suggesting chemical 

parameter redistribution.  Nevertheless some spatial autocorrelation is evident for the 

chemical properties in the grassland plots; however, the ranges all exceed 10m and the 

remaining parameters are largely represented by the nugget model and, therefore, can 

generally be described as exhibiting uniform distributions.   

 

Complex spatial structures are evident for many of the badland soil parameters, as such 

22 out of 33 parameters were not fitted to any of the models.  Of the parameters where 

ranges of autocorrelation were calculated, only organic matter content and shear 

strength showed similar responses from at least two of the plots, the ranges of the other 

parameters vary significantly.  The geostatistical results of the nutrient content of the 

three badland plots show a variety of spatial patterns and ranges of spatial 

autocorrelation.  Only calcium and magnesium show some evidence of spatial 

autocorrelation and only magnesium demonstrates spatial autocorrelation in all three 

badland plots.  Of the ranges derived for each of the two nutrients, no consistent results 

were evident.  Although none of the other experimental variograms had models applied 

to them, periodicity is evident in the majority of the unmodelled variograms. Therefore 

this cyclic behaviour can be classed as a characteristic of badland landscapes.  A 

decrease in variance with an increasing lag distance is displayed by some of the plots 

for organic matter content, bulk density, conductivity, available potassium and sodium 

suggesting that the distribution of these nutrients follow a checkerboard pattern.  

 

Discussion 

 

Grassland-shrubland transitions: patterns, periodicity and scale 

 

It is evident from the semi-variograms that, at a scale representative of vegetation 

communities, the spatial structures of soil parameters are complex.  Nevertheless, where 

levels of spatial autocorrelation were derived, the shrubland ranges were generally less 

than those from the grasslands.  Organic matter, bulk density and available phosphorus, 

parameters that are directly linked to the presence/absence of vegetation, had either 

uniform distributions or longer ranges of autocorrelation in the grasslands and shorter 

ranges in the shrublands, which supports the idea that shrubland landscapes are more 

heterogeneous in nature than grasslands (Schlesinger et al., 1990; 1996; Tongway and 

Ludwig, 1994; Maestre and Cortina, 2002; Rietkerk et al., 2002).  Over half the 

chemical properties of soil from the grasslands displayed a uniform pattern and those 
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that were spatially autocorrelated had ranges greater than 10m.  In these cases, local 

landscape variation, such as subtle changes in slope or soil type, may be responsible 

rather than the autocorrelation being directly related to vegetation.  In the shrublands, 

only conductivity showed no evidence of any spatial patterns in either of the plots.  All 

other parameters are either spatially autocorrelated or show evidence of periodicity, 

indicating some form of spatial pattern.    

 

The results of the spatial analyses imply that scale of measurement is indeed a 

significant consideration when determining the spatial patterns of soil parameters.  The 

ranges of spatial autocorrelation derived for the grassland parameters vary from 5.98m 

to 21.09m (a minimum range of 9.24m if we only take the values from plot 2, the ‘pure’ 

grassland plot) and, out of 22 semi-variograms, 9 suggest that no spatial patterns exist.  

These measurements were taken from a 60 x 60m plot and calculated using a maximum 

lag distance of 30m and a minimum scale of measurement of 0.5m.  The results from 

this study suggest that, at a scale more representative of a grassland community, the 

spatial distribution of most soil parameters can be classed as being relatively 

homogenous.  However, these results differ significantly from those presented by 

Schlesinger et al. (1996) who derived their results from 8 x 12m plots and calculated the 

semi-variograms using a maximum lag distance of 7m.  A comparison of the ranges of 

autocorrelation of grassland and shrubland nutrients derived from this study and 

Schlesinger et al. (1996) is provided (see tables 6 and table 7, respectively).  It is 

evident from these results that scale of measurement strongly influences the derived 

ranges of spatial autocorrelation in grassland environments and to a lesser degree, 

shrublands. 

 

The impact of scale on the spatial patterns of soil parameters in shrubland landscapes 

presents itself through the presence of periodicity in the datasets.  The study by 

Schlesinger et al. (1996) attributed the ranges of autocorrelation in essential plant 

nutrients to the mean shrub size indicating that biotic factors are responsible for the 

redistribution.  In contrast, the ranges of autocorrelation in this study are more likely to 

be representative of the intershrub zones as even the minimum range (organic matter – 

4.5m), is larger than the average shrubs in the study regions (approximately 0.45m in 

diameter).  Upon inspection of the semi-variograms derived from shrublands in the 

study by Schlesinger et al. (1996), some evidence of the ‘hole effect’ is present in the 

datasets, where there is a decrease in variance followed by an increase towards the sill 

producing a ‘hole’ in the variogram (Webster and Oliver, 2001).  This effect possibly 

indicates that periodicity would be present if the scale of measurement was increased. 

 

Although there has been some debate over the interpretation of cyclic patterns in 

ecological datasets, a study by Radeloff et al. (2000) investigated the relationship 

between periodicity and landscape patches.  A number of significant observations were 

made: i) periodic spatial patterns produced periodicity in correlograms; ii) the lag 
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distances at which the correlograms peak correspond to the average distances between 

patch centres and iii) the strength of periodicity increases when the diameter of patches 

is equal to the distance between patch edges.  These observations would suggest that 

where periodicity in the shrubland data is evident, there is regular variation in the 

parameter values across the landscape.  Such periodicity is indicative of the differences 

between the soil parameters in shrub and intershrub zones.   

 

Grasslands to badlands – a step-wise progression? 

 

All parameters but shear strength and available calcium show a consistent change in 

mean content through the three vegetation types.  This change would initially suggest 

that badland development is part of the progressive process of land degradation induced 

by vegetation change.  Nevertheless, the characteristics of soil shear strength are very 

important in terms of the susceptibility of soil to erosion (Nearing et al., 1991; 1994; 

Parsons and Wainwright 2006).  Although the highest mean shear strength value is 

found in the badlands, statistically, the grasslands have a similar variance.  The 

reduction in mean shear strength from the grasslands to the shrublands implies that the 

structure of the soil in the shrublands is weaker than that of the grassland communities.  

According to research undertaken by Maestre and Cortina (2002), Gyssels and Poesen 

(2003), Gyssels et al. (2005) and de Baets et al. (2005), the reduction in near-surface 

root mass associated with shrub communities will increase the soil’s susceptibility to 

erosion. However, these authors argue that only sheet and rill erosion are affected as 

deeper roots associated with shrubs can, in fact, provide resistance to gully erosion.  

 

The higher shear strength values in badlands are a consequence of the lack of vegetation 

causing higher bulk densities, lower soil moisture and lower organic matter contents 

which combine to produce very compact soils.  In this study, the shear strength values 

were measured in dry conditions. If the measurements had been taken under saturated 

conditions it is possible that the shear strength values of the badlands would be very 

different.  This type of measurement would represent the conditions under which soil 

detachment occurs and therefore reflect more accurately the increased susceptibility of 

soil to erosion that can be expected to be seen in badland landscapes.  The shrublands 

display a mean shear strength value that is significantly less than the other two 

communities.  This suggests that a threshold value must exist that determines whether 

the presence or absence of vegetation is more significant in controlling the shear 

strength of soil.  Despite the higher shear strength value in the badlands, it should also 

be noted that the coefficient of variation is also highest in this landscape.  Such a result 

indicates that the variability of shear strength values is greater in the badlands, which is 

consistent with the work of Nearing et al., (1991) and Parsons and Wainwright (2006). 

 

Despite the evidence of increased heterogeneity in shrublands compared to grasslands, 

and the consistent responses of the mean values of soil parameters across the vegetation 



14 

 

states, no obvious relationships exist between the ranges for the shrublands and 

badlands.  A comparison of the results from the three individual plots indicates that, in 

most cases, the responses seem to be site specific.  However, over 80% of the badland 

semi-variograms display some evidence of periodicity.  Although no characteristic 

relationships can be identified between the ranges of spatial autocorrelation from the 

shrublands and badlands, the significant increase in parameters displaying evidence of 

cyclic patterns in the badlands shows that progressive heterogeneity occurs concurrently 

with the development of these landscapes.  A common wavelength of c. 8m is evident in 

approximately half of all soil parameters; we initially hypothesised that these patterns 

reflected the gullied nature of the landscape, representing the differences between gully 

floors and interfluve areas. However, subsequent measurements have since disproved 

this idea and further investigation of these findings is required.  

 

How do the changing spatial patterns of soil properties influence the erodibility of the 

soil?   

 

In comparison to the grasslands, the shrubland and badland landscapes both 

demonstrate an increase in spatial heterogeneity of organic matter, whether through 

measurable autocorrelation or evidence of periodicity in the data.  Whilst Geddes and 

Dunkerley (1999) show that leaf litter and organic matter are redistributed throughout 

the shrubland landscape by rainsplash, our results suggest that this process does not 

redistribute the organic matter significantly and areas of high and low organic matter 

develop.   

 

The relationships between organic matter and the other physical soil properties are 

significant for both the erodibility of soil and growing conditions for vegetation.  The 

correlation analyses showed that organic matter has a negative relationship with bulk 

density, and bulk density has a negative relationship with water content.  Higher organic 

matter and water content and lower bulk densities create more favourable growing 

conditions, not only for existing plants but also for the germination of seeds.  These 

conditions have been found to occur under plant canopies (e.g. Schlesinger et al., 1996, 

Bochet et al., 1999).  In contrast, areas low in organic matter will not only have weaker 

structures due to a decrease in particle binding agents but it will be affected by higher 

bulk densities resulting in poorer infiltration capabilities and thus making it more 

susceptible to runoff and erosion (e.g. Abrahams et al., 1995, Neave and Rayburg, 

2007).  These conditions are representative of the intershrub regions.   

The absence of any significant correlations with shear strength in this case is surprising.  

Shear strength has a significant role in controlling soil stability (Bryan, 2000) and has 

proven links between soil moisture and bulk density (Zhang et al., 2001), which 

themselves are controlled by organic matter and vegetation cover (Oades, 1984). 
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Nevertheless, the highly complex nature of these interactions makes disaggregating the 

individual effects of the parameters on the erodibility of soil extremely difficult.     

Positive correlations exist amongst the soil nutrients, thereby demonstrating the 

interconnected nature of both the plant-limiting nutrients (P, K, Mg) and the non-

limiting nutrients (Ca and Na).  However, the spatial patterns are the significant element 

when considering these relationships with respect to the erodibility of the soil.  

Although it is commonly thought that only the physical and biological properties of soil 

are significant in determining indices of erodibility, the soil chemistry also has a role 

(e.g. Mamedov et al., 2002; Faulkner et al., 2004).  The calcium and sodium content of 

soil are important determining factors of the dispersive behaviour of the soil particles.  

Sodium is known to increase the dispersibility of clay particles whereas calcium is 

known to have the opposite effect.  However, as the sodium and calcium contents did 

not display significant differences between the shrublands and badlands in the Karoo, 

nor did they display significant correlations with the clay content, neither can be 

identified as a possible cause of the increased erodibility that has led to the development 

of badlands.   

The nutrients demonstrate an increase in spatial heterogeneity or periodicity from 

grassland to shrublands, suggesting that vegetation controls the redistribution.  

However, as no data are available on where the high and low values are in relation to 

vegetation it cannot be concluded that greater quantities of plant-limiting nutrients are 

under the shrubs and greater quantities of sodium and calcium are in the intershrub 

areas.  Nevertheless, assumptions can made about the nature of the distributions as 

studies by Schlesinger et al. (1996), Bochet et al. (1999) and Titus et al. (2002) all 

suggest that vegetation regulates the cycling of biologically limiting nutrients whereas 

abiotic factors control the cycling of non-limiting nutrients.  We propose that areas of 

preferential erosion are created as a consequence of the complex interactions between 

biotic and abiotic processes.   

A conceptual model of landscape change 

The results of this study contribute to a growing body of knowledge about 

ecogeomorphic processes in drylands. In the context of the debate about land 

degradation consequent upon grassland to shrubland transitions it provides insights into 

the mechanisms of landscape change.  We have used these insights, in conjunction with 

the existing literature, to develop a conceptual model, figure 3, which summarises the 

processes, patterns and interactions that we consider significant in semi-arid land 

degradation.        

 

This conceptual model suggests that two scenarios can occur following bush 

encroachment: 1. the cycle of plant - soil property interactions can continue in a 

relatively stable fashion; the spatial heterogeneity becomes more defined in the 
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shrublands, but badlands do not develop.  2. the cycle of plant-soil interactions can 

continue until the extent of spatial heterogeneity is such that the conditions that inhibit 

plant growth are predominant in the landscape and badlands develop, as seen in the 

Karoo.  However, the soil type and local conditions determine the areas that are 

sensitive to further degradation rather than the presumption that all intershrub areas will 

continue to degrade to this extent.  The decrease in mean contents of organic matter and 

soil moisture and the increase in shear strength and bulk density seen in the Karoo 

badlands compared to the shrublands demonstrate how the soil properties are adversely 

affected by loss of vegetation. However, it is the soil type that determines whether a 

concrete-like crust develops.  The crust itself creates a dense soil structure that will not 

only reduce the infiltration capability and increase surface runoff but also makes it 

difficult for plants to become re-established.  These factors all contribute to the increase 

in erosion evident in badland landscapes.  

 

Conclusions 

 

This study shows that the spatial structures of both physical and chemical properties of 

soil are complex in semi-arid landscapes.  At a scale that is representative of grassland 

communities, our results show that some soil parameters, particularly physical 

parameters, are spatially autocorrelated.  These results reflect the ‘patchy’ nature of 

semi-arid grasslands.  In the study region pure grasslands are rare, shrubs are often 

interspersed and bare patches are a common characteristic.  The plot most representative 

of ‘pure’ grassland had ranges of spatial autocorrelation that were greater than the more 

mixed grassland plot suggesting that the spatial patterns of soil parameters are largely 

controlled by the structure of vegetation associated with it, even in grassland.  Overall, 

soil parameters in grassland landscapes can be classed as having a relatively uniform 

distribution, reflecting the more homogeneous nature of grassland cover.  Where spatial 

autocorrelation was detected, the ranges from the ‘pure’ plot nearly always exceeded 

10m, suggesting abiotic factors are more likely to be the controlling mechanisms of 

these soil patterns.   

 

The spatial patterns evident in the shrubland landscapes demonstrate that the self-

perpetuating nature of semi-arid shrubs causes a redistribution of soil properties.  In the 

cases where clear spatial autocorrelation was evident, both physical and chemical soil 

parameters demonstrated significantly smaller ranges of spatial autocorrelation than 

those derived from the grassland plots.  As the ranges are greater than the mean 

diameters of the shrubs themselves, they are most likely to represent the intershrub 

areas in the landscape.  Although a significant number of semi-variograms were best 

represented by pure nugget models, which under normal circumstances would indicate 

that no significant spatial patterns exist, periodicity was identified in the majority of the 

datasets.  This pattern represents the variation of the shrub and intershrub zones across 

the landscape and is therefore a function of scale.  The geostatistical results indicate that 
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at a scale more representative of vegetation communities, fine-scale patterns may be 

insignificant.  However, if the results of both this study and the work of Schlesinger et 

al. (1996), for example, are considered together, they demonstrate that the spatial 

patterns in semi-arid landscapes occur at multiple-scales.   

 

The changing spatial patterns of soil parameters may be used to link vegetation change 

with the degradation of semi-arid landscapes.  The soil with the most stable structure, 

demonstrated through the higher organic matter, lower bulk density and high shear 

strength, was found to be in the grasslands.  The uniform plant cover and rootmats 

increase the stability of this environment, reflected in the relatively homogenous 

patterns of the soil parameters.  The shrublands, in contrast, demonstrate a decrease in 

structural stability.  Increased heterogeneity in plant cover, rootmats and thus organic 

matter are thought to significantly influence the structure of the soil.  These factors act 

as a catalyst, inducing changes in other soil parameters.  The spatial patterns 

demonstrate that there are areas of stronger soil structure adjacent to areas of poorer soil 

structure; these areas represent the shrub and inter-shrub areas, respectively.  Low 

organic matter and high bulk densities characterise the inter-shrub areas, which result in 

poorer infiltration capabilities and an increase in susceptibility to the erosive power of 

overland flow. 

 

In badland landscapes abiotic processes take over as the mechanisms of spatial 

reorganisation of soil parameters.  The significance of the development of badlands in 

relation to vegetation change is therefore presented not through the spatial patterns 

themselves but through the differences in responses between the shrublands and 

badlands.  Both the mean values and spatial patterns suggest that badland landscapes 

represent an extension of the redistribution of soil parameters seen in shrublands.  This 

implies that if the correct conditions exist, shrubland landscapes can continue to degrade 

until the intershrub regions become the dominant landform; the landscape becomes 

inhospitable to plants and through various hydrological processes leads to conditions 

that propagate rills and gullies.  Once the landscape has reached this level of 

degradation, natural re-vegetation and recovery of badlands would potentially take 

many decades, whereas short-term recovery would require significant intervention 

efforts.  The results from this study suggest that further badland development in dryland 

environments could be reduced by improving land management practices and 

maintaining adequate vegetation cover in shrubland landscapes. 
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Figure Underlines 

 

Figure 1: Location of the research area within South Africa (A) and plot locations and 

type (B) 

 

Figure 2: An example of the nested sampling strategy 

 

Figure 3: Conceptual model of processes, patterns and interactions connecting 

vegetation change to the susceptibility of soil to erosion in semi-arid environments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 

 

 

Tables 
 

Table 1: Vegetation cover (%) and the mean diameter (in metres) and standard deviation of shrubs and 

grass tussocks for both the total and individual plots (
†
 n=147, 

††
n=94). 

Plot Plot type Vegetation 

cover (%) 

Mean diameter (metres)  

& St. Dev. 

   Shrub Grass 

tussocks 

1 Mixed 62 0.44±0.28 0.52±0.23 

2 Grassland 63 0.32±0.17 0.53±0.22 

3 Shrubland 70 0.49±0.29 0.32±0.15 

4 Badland 18 0.30±0.13 0.37±0.13 

5 Shrubland 44 0.60±0.27 0.20±0.14 

6 Badland 26 0.41±0.24 0.25±0.13 

7 Badland 14 0.48±0.43 0.26±0.16 

Mean diameter (m) 0.45±0.28
†
 0.34±0.21

††
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Table 2: Means and coefficients of variation [(SD ÷ mean) x 100] of all the soil parameters from the 

combined grassland, shrubland and badlands plots(
†
 n=216, 

††
n=215, 

†††
n=214, badlands n= 322) 

 

 
Grassland Shrubland Badlands 

Soil Parameter Mean CoV Mean CoV Mean CoV 

       

Organic matter (%)  3.42
†
 30.12 2.57

††
 28.02 2.44 18.44 

Bulk density (g/cm3)  1.18
†
 17.8 1.24

††
 17.7 1.3 10.77 

Soil moisture (%)  8.24
†
 55.1 3.01

††
 60.8 2.22 39.64 

Shear strength (KPa)  24.53
†
 58.62 14.36

††
 56.62 26.97 70.71 

pH  6.08
†
 8.06 6.27

††
 10.69 6.89 7.69 

Conductivity (dS/m)  0.20
†
 36.25 0.15

††
 40 0.14 65.81 

Avail. calcium (ppm of soil) 1818.7
†††

 49.06 2914
†
 76.97 2434.5 40.08 

Avail. potassium (ppm of soil)  302.34
†††

 32.96 282.15
†
 42.64 199.71 39.67 

Avail. magnesium (ppm of soil)  992.4
†††

 38.24 995.6
†
 41.21 2043.4 29.36 

Avail. sodium (ppm of soil)  75.8
†††

 79.97 96.46
†
 33.95 103.63 92.38 

Avail. phosphorus (ppm of soil)  38.52
†††

 36.68 31.65
†
 38.61 16.96 67.51 
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Table 3: Mann-Whitney results for differences between vegetation states (results, non-significant at the 

0.05 level, are presented in bold). 

Soil Parameter   

Grass  

& shrubs  

Grass  

& badlands  

Shrub  

& badlands  

      

Organic matter (%)  <0.005  <0.005  0.3477  

Bulk density (g/cm
3
)  0.0113  <0.005  0.002  

Soil moisture (%)  <0.005  <0.005  0.001  

Shear strength (KPa)  <0.005  0.97  <0.005  

pH  0.0003  <0.005  <0.005  

Conductivity (dS/m)  <0.005  <0.005  <0.005  

Avail. calcium (ppm of soil)  0.0049  <0.005  0.6686  

Avail. potassium (ppm of soil)  0.0102  <0.005  <0.005  

Avail. magnesium (ppm of soil)  0.5998  <0.005  <0.005  

Avail. sodium (ppm of soil)  <0.005  <0.005  0.7375  

Avail. phosphorus (ppm of soil)  <0.005  <0.005  <0.005  
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Table 4: Parameters showing strong correlations (>0.5) from Spearman’s Rank correlation coefficient 

analyses in the grasslands and shrublands 

Soil Parameter Correlations Grasslands Shrublands 

       

Organic matter  Bulk density -0.626 -0.571 

  pH -0.516 * 

  Conductivity * 0.505 

Bulk density Conductivity -0.546 * 

  Water content * -0.642 

Water content Conductivity 0.533 * 

  Magnesium * -0.522 

  Calcium * -0.685 

  pH * -0.632 

 pH Magnesium * 0.587 

  Calcium * 0.698 

Calcium Magnesium 0.76 0.766 

  Sodium 0.546 * 

  Potassium 0.551 * 

Sodium Potassium 0.502 * 

Potassium Magnesium 0.519 * 

  Phosphorus 0.658 0.531 

In all cases the p-value indicated that the correlation was different from zero. 
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Table 5: Ranges of spatial autocorrelation (in metres) derived from semi-variograms for all grassland, 

shrubland and badland plots in the Karoo. 

 Grasslands Shrublands Badlands 

Soil parameter Plot 1 Plot 2 Plot 3 Plot 5 Plot 4 Plot 6 Plot 7 

        

Organic matter (%) 5.98 21.09 4.5* na na* 7.2 7.48 

Bulk density (g/cm3) 8.6 11.55 na 6.82 na* na na* 

Soil moisture (%) 16.17 19.47 6.6 15.84 na na na 

Shear strength (KPa) 8.51 9.24 Nugget Expo 16.62 Nugget 14.03 

pH Nugget Nugget 15.54 5.89 na na na 

Conductivity (dS/m) Nugget 19.47 Nugget Nugget na na* 8.54 

Av Ca (ppm of soil) Nugget 10.5 na Nugget na 4.8 27.45 

Av K (ppm of soil) Nugget Nugget na* 31.44 na* na na 

Av Mg (ppm of soil) 16.12 Nugget* 21.43 8.68 28.2 7.2 32.64 

Av Na (ppm of soil) na* Nugget* Nugget na* na na* na* 

Av P (ppm of soil) Nugget 19.61 8.37 5.27 na na na 

Values in italics exhibit periodicity in their semi-variograms  

* Semi-variogram displays a decrease in variance with an increase in lag distance 

na: no fit to any model 
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Table 6: A comparison of the spatial autocorrelation values (in metres) of nutrients in semi-arid 

grasslands. 

 

 

 

 

 

 

 

 

 
†
 Measurements of PO4 

na: random variance i.e. no spatial patterns evident. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ranges of spatial autocorrelation for grassland plots 

Nutrient 

Karoo 
Plot 1:  

Karoo 
Plot 2:  

Sevilleta 

Jornada Basin 

 (two sites) 

  

(Schlesinger et 

al., 1996) (Schlesinger et al., 1996) 

Ca na 10.5 1.40 0.72, 1.26 

K na na 1.21 1.37, 1.25 

Mg 16.12 na 3.29 1.10, 1.89 

Na na na 6.05 1.16, 3.19 

P na 19.61 na 
†
 2.42, 0.48 

†
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Table 7: A comparison of the spatial autocorrelation values (in metres) of nutrients in semi-arid 

shrublands. 

 

 

 

 

 

 

 

 

 
†
 Measurements of PO4 

na: random variance i.e. no spatial patterns evident. 

nd: not determined 

 

 

 

Ranges of spatial autocorrelation for shrubland plots 

Nutrient 

Karoo 
Plot 3:  

Karoo 
Plot 5:  

Sevilleta 

Jornada Basin  

(two sites) 

  

(Schlesinger et 

al., 1996) (Schlesinger et al., 1996) 

Ca nd na >7.00 1.22, >7.00 

K na 31.44 na 2.13, 2.49 

Mg 21.43 8.68 1.49 1.14, 2.22 

Na na nd 0.46 na, >7.00 

P 8.37 5.27 1.25
†
 >7.00, 3.49

†
 


