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Abstract— This paper presents a novel concept of semi- — |
autonomous navigation where a mobile robot evolves au- M‘S’if“:]‘:l'sng I AfenSOﬁ
tonomously under the monitoring of a human user. The user ( 9 E ! information

provides corrective commands to the robot whenever he disages

with the robot’'s navigational choices. These commands areat — \
related to navigational values like directions or goals, buto the RS g~ B
relevance of the robot’s actions to the overall task. L NN ._;‘lf N

A binary error signal is used to correct the robot’s decisiors N ‘ '
and to bring it to the desired goal location. This simple inteface Human Bayesian controller Robot

could easily be adapted to input systems designed for disadl \ ) : \ ]
people, offering them a convenient alternative to existingssistive Enhanced | Motor
systems. After a description of the whole concept, a specificus feedback ! commands

is given to the decisional process, which takes into accouim a , ) o
Bayesian way the environment perceived by the robot and the Fig- 1. Scheme of the proposed semi-autonomous navigatinoept.
user generated signals in order to propose a navigational ittegy

to the human user. The strength and advantages of the propode

i- i i Xperi . ] .
semi-autonomous concept are illustrated with two experimets We define our semi-autonomous framework based on

Inde>_<_ Terms—S_emi-autonomous _ na\_/igation_, error signal, monitoring signals as follows:
probabilistic reasoning, human-machine interaction. A semi-autonomous system is a robotic device,
endowed with autonomous capabilities, interacting
|. INTRODUCTION with a human user who emits corrective monitoring
Despite substantial advances in the field of robotics, alsmal ~ signals whenever necessary to achieve the goal.
category of end-users could benefit more from intelligent This definition implies to have a fully autonomous agent
assistive systems designed for them, namely elderly or déble to execute navigational movements, as depicted on the
abled persons. Today, most of these systems are focusedight part of figure 1. Depending on the local perceived
people able to manipulate joysticks, which cannot be pigpeenvironment, the system chooses what action to executs. Thi
controlled for paralysed or may present difficulties forezlg controller’'s decision will be communicated to the human
people. user by the mean of visual, audio or tactile cues. Based on
Shared-control, collaborative control and semi-autonasnothis information, the user will have the possibility to erait
control are available strategies in order for a human usesrrective signal in case of disapproval, which will preiven
to operate a robotic device (see section Il). Together withe execution of the proposed action and trigger a new choice
an appropriate protocol for action selection, these céntfoom the controller. The human-machine interaction is stow
architectures and the user input system could be optimisenl the left part of figure 1.
for elderly or disabled persons. A binary error-related signal will be first provided through
But the simpler the interface in terms of information flona keyboard interface. In future research, we plan to use
from the human to the machine, the more steps are requigad equivalent BCI signal. This paper describes our semi-
to select the desired command. In this paper, we proposawtonomous navigation system and the related controller ab
novel system for an efficient asynchronous human-machitwedrive the user to the desired location in a efficient wayedas
interaction designed for simple interfaces like singletdms, solely on error signals. In order to face incomplete knogtd
sip and puff systems and even the promising non-invasigad anticipate the uncertainty inherent with the futureirbra
brain-computer interfaces (BCIs). We want to rely mainly ooomputer interface, the whole system and especially the con
the machine and give instructions only at key-points durirtgoller are probabilistic and designed within a formal Bsiga
the execution of a task. Instead of providing navigation&rogramming framework.
commands, like in current semi-autonomous systems wherdn section Il, we will present related work. We will then
the robot is autonomous on a relative short path but theescribe our semi-autonomous concept and the Bayesian con-
requires a user input for the next movement to execute, weller in section Ill. After showing some preliminary rétsu
will provide monitoring signals about the robot's performea in section 1V, we will conclude by a summary and an outlook
at solving the wished navigational task. about the future work.



There are numerous applications gfared-control strate- - v
gies for telemanipulated robots [8], surgical operations [16] < . -
and powered wheelchairs (review in [17]), which are widely
used robotic platforms for researches in this field. sclected

Robots and robotic wheelchairs can be distinguished by two 4
major components: MK Behavioral Layer  mmtiokles

a) Motion decision: A widely used technique is to
take a deCISIO_n given the sensory information and the use,g;a_ 2. Scheme of the different layers and their relationthiwithe proposed
commands usin@ayes’ rules[5, 19]. Some systems [2, 23] semi-autonomous navigation concept.
use asemi-autonomou$ramework, yet different from our
definition: the user provides to the robot a direction for the

next movement at each relevant position in the environment. ,caps signals) and between the machine and the human

Il. RELATED WORK Aty Sensory Layer 2SO
A. Humans controlling robotic devices | — )
monitoring features
, signals

Decision Layer

Interaction Layer

The TAO wheelchair [10] has_saubsump_tive reaso_nirtglstem (providing a feedback of the system’s status).
that allows Fhe most ap_propna’Fe reactive behawor_to emerg , Sensory Layer This layer fuses in a probabilistic way
b) Motion generation:Besides the purelyeactive be- multisensory information in order to extract the relevant

haviors of the TAO wheelchair, the are two main methods.  features for the control of the system.
Thebehavior-basednotion generation matches sensory inputs , Behavioral Layer. This layer implements a collection

to motor commands [13, 20]. Thelanner-basedone takes of a-priori or learned behaviorsfor dealing with most
into account the vehicle’s kinematics and the sensory 81put  payigational issues such as "corridor following”, "door
to generate the best trajectory leading to a provided orriade traversal” or "approaching a specific place”.

goal [5]. Decision Layer. This layer is responsible of selecting

wheelchair, but the user's commands are overridden when & environment, the present used behavior and the signals

danger of collision is detected, thus forbidding the whieaic coming from the user.

to approach an obstacle even if wanted. In the Sensory Layer, information coming from the robot’s
'On the contrarycollaborative controlsystems [9] US€ @ gensors are fused together into a Bayesian occupancy grid

dialog-based coordination strategy, where the robot wlvproviding an estimation of the obstacle poses [4]. Out of

autonomously and asks the human for assistance when neeggd. |5cal map of the environment, some basic features are

extracted. As shown in figure 7b, they represent the direstio
B. Human-machine interaction and the associated distances of the closest obstacles loe of t
Common input systems for human-machine interactiomniddle_ of the free traversable space ir_1 three regions arthend
robot: in front, on the left and on the right. We assume that th

range from keyboards, joysticks and touch screens up to ?%E)ot cannot go backwards. Some details about the Interacti

vices more adapted to disabled persons, like voice Commaaner and the feedback modalities are given in section IV.

eye-tracking or sip and pulff systems [18, 23]. . For a description on how the features are associated to motor
In recent years, a novel technology has been studied, name

brain-computer interfaces (BCIs). The non-invasive, tetem- CI mandfs n allgayesmn way within the Behavioral Layer,
halography (EEG) based BCls rely on the decoding of tHeease refer (o | ]'. : .

cep A . X ) . After a presentation of the Bayesian programming frame-

brain activity in order to manipulate robotic devices, wat

kevboard | ¢ lication 15, 22 work, we will describe in more detail the Decision Layer,
eyboards or more general computer application [15, 22]. starting with the implementation of an autonomous corgroll

The wo_rk (_jone by Ferrez _?”d Millan {7] f”‘bOUt the €land then enhancing it with semi-autonomous capabilities.
ror potential is a recent addition to the available decoded
brain-commands for human robot interaction. This potdentig B

- . Bayesian programmin
indicates the human’s awareness of an erroneous response yes! p d ng _
made by the system when classifying the user intent. We "€ Bayesian programming framework (BP) [6, 12] has

will incorporate it into our system in the course of our fur P€€N developed for designing robust robotic systems facing
research. uncertain or incomplete knowledge. This framework proside

both formal and computational tools for designing appiara

in a systematic way, as robot [4, 12] and game program-
ming [11] or CAD modeling [14]. Sensor fusion with Bayesian
A. Concept overview occupancy grids, object tracking under partial occlusiod a
flanger estimation have also been done [4]. A Bayesian pro-
gram, as represented in figure 3, is made up of two parts: a
description and a question.

IIl. NOVEL SEMI-AUTONOMOUS CONCEPT

Our semi-autonomous system is divided into different inte
acting layers, as depicted in figure 2.

« Interaction Layer. This layer is in charge of the interac-
tion between the human and the machine (decoding théA behavior is a learned sensory-motor association [12].



B*fT/ B" Stop Right Forward Left

Relevant variables Stop 025 0.10 0.10  0.10
Spec(w) ¢ Decomposition Right 0.25 0.36 0.25 0.24
Pro Desc Forms Forward ~ 0.25  0.30 040  0.30
9 o\ Left 0.25 0.24 025  0.36
Identification based on Data)
Question:P(S|K)? TABLE |
P(B'+1|Bt).
Fig. 3. Structure of a Bayesian Program.

- - , . — :

Description. In the description part, we define all the known Front d'sticvce B %t%p E'g? F%”ggrd 3%";
information about the problem given a set of experimental Mid low 02 032 0.15 0.32
data § and preliminary knowledger. It represents a joint Medium 02 011 0.20 0.11
probability distribution specified by the following compents: Mid high 02 011 029  0l1

_ e High 02 011 030 011

- A set of relevant variables (sensory, motor or internal

state variables) on which the joint distribution is defined. TABLE I
- A decomposition of the joint distribution as a product of P(Distance in front|Bt*1).

simpler terms, respecting the Bayesian rules.

- The parametric forms assigned to each of the terms

appearing in the decomposition.

Question Given a distribution, it is possible to ask prob- _— .
abilistic questions by partitioning thepset of variable:oin probabilities .to the system about how a partu;ular feature
"Search” (S), "Known” (K) and "Free” (F) variables. sho_uld look like, md_ependently from the pthers_, if we c@os

a given next behavior. Powerful and easily maintainablis, th
selection method only adds one probability table for eaath ne
C. Autonomous Controller feature, which reduces the computational complexity [11].

Inspired from the work of Le Hy [11], we will describe
our autonomous controller by the following model in the Blf,:l
framework:

a) Relevant variables:

¢) Forms and identificationAll probability distributions
re given as tables, except(B') which is a uniform dis-
tribution over all the behaviors. This is because we have
no a priori information about this value when building the
F}: discretized distance features at timecomputed in model. The content of the tables is set a priori by the
thei € [1, Ny] regions around the robot; programmer for the simple example shown in section IV and
B'and B**! : the set of different behaviors\t, behaviors g identification phase took place. We want the robot to drive
like Forward, turning Left, turning Right and Stop-  towards the most free space until it cannot go further. More
ping) available at timef and? + 1. complex applications may require learning techniques éeor
The general task the robot has to accomplish for the presémtcapture probability distributions that reflects the debi
study is to go where there is the most free space until ritbot’s general behaviour [11].

cannqt 90 furth.er.. That is the reason v_vhy we care only abOUtTabIe | shows the transition probabilities between the tzeha
the d!stances inside of the thr_ee regions and not a‘?"“t 1Bfs (P(B'1|B")). One can see that the probability of staying
directions. Note that the discretized distances, allatatdive in the same behavior is the highest and that when turninge the

classes, are not measured metrically but are relative th €q¢, pigher probability to return tBorward than turning in the
other by taking into account the surrounding traversalé€sp o girection. Note that each column of the tables sums up

b) Decomposition of the joint distributionthe resulting to 1, as needed by the Bayes' rules.
joint distribution is decomposed into probability distrtons ’ ) o o
according to the Bayes rules and some conditional indepen-able Il is an example of a probabilistic table describing th

dence assumptions explained later: influence of a distance measur®(¢/|B*")). The column
R corresponding to thdorward behavior should be read as

P(F} B** %) = follows: given that the chosen behavior Fsrward, there is
P(B') P(B**!|B") [[,Z, P(F}|B"t") a high probability that the distance in front of the robot is

P(B') represents the prior knowledge about the behavidt§™Ween medium and high. Similarly, if the robot chose to go
at the present timeP(B'!|B) represents the probability Left _(or Righd, t_here is a high probability that an obstacle is
of keeping the same behavior or switching to another. THglatively close in front.

P(F!|B**!) terms link the features to the choice of the The question we ask to the Bayesian program is
next behavior. These distributions allow us to simplify thé>(B'™!|F! B'), i.e. what is the next behavior given the
dependencies between features. This so-called "inverse poresent behavior and features. The Bayesian program for
gramming” method works in the opposite way as Finite Statke autonomous controller is summarized in figure 4. This
Machine, where the selection of a behavior would depend oantroller is able to drive the robot towards the most fresecep
the combination of all features. Here, it consists in givingithout taking into account the user’s destination.



Relevant variables:
F! . discretized distance features
B, B**! . the set of current and
next behaviors

Description
Specification

S .
a Decomposition:
2 P(F! B'*' BY) =
2 P(B') P(B"'(B") T1.L, P(F/|B"")
Forms:
P(BY) : uniform distribution

others : probability tables
No identification (tables given)
Question:

P(Bt+1|Fit, Bt)

Fig. 4. Autonomous controller described in the BP formalism

Authorisation Forward B*TT  Stop Right Forward Left
0 0.5 0.5 0.0 0.5
1 0.5 0.5 1.0 0.5

TABLE Il

P(Authorisation Forward|Btt1).

D. Semi-Autonomous Controller

P(Bhose™)  Stop Right Forward  Left

Al g=1 0.02443 0.2043€ 0.76636 0.00485
Alg=0 0.10458 0.87468 0.00000 0.02074
Fig. 5. Comparison between two controller's output when irgsk

P(Beesemy = p(BULEL, BY, Al = {1}), k € {Stop, Right, Lef},
using a set of features coming from experimental data. =1, all
behaviors are authorised; the selected behaviéoigard. When At = =0,
the Forward behavior has been forbidden; the selected behavi&%vght

Relevant variables:
F!: discretized distance features
B!, B! : the set of current and
next behaviors
A%+ authorization for each behavior
Decomposition:
P(F! B Bt Al) =
P(B') P(B"|BY) [[Y, P(F{[B')
[T}, P(A[BYHY)
Forms:
P(B?") : uniform distribution
others : probability tables
No identification (tables given)
Question:
P(Bt+1|Fit, Bt7 Aﬁ)

Description
Specification

Program

We will now present the modifications made to the previolidd: 6 Semi-autonomous controller described in the BP &ism.

controller for converting it into a semi-autonomous coli¢m
where the human can interact with the robot.

The human user generates monitoring signals whene@inals is described in figure 6.
the autonomy of the robot needs to be restricted. As the
monitoring signal is related to an error signal, we can add
the notion of behavior's authorisation to the autonomous
controller. The recognition of an error signal would preven
the execution of the corresponding selected behavioetber ~ The semi-autonomous navigation (SAN) system was imple-
reducing the set of available behaviors. Given this additio mented and tested on an real robotic platform. The Smartease
information, the Bayesian controller will be asked for a nefgobot, depicted on figure 7a, is a differential-drive mobile
solution, corresponding to the next best behavior. platform designed for educational purposes [3]. A Hokuyo

In other terms, the user has to authorise the behavfdBS-03JN infrared range-finder was used as unique input
proposed by the controller. In our probabilistic formusatj Sensor (99 values covering a field of view of 1&hd ranging
this notion of behavior authorisation corresponds to aofaid  UP to 3 meters [1]). The robot is covered with several LEDs,
At boolean variables, one for each possible behavipr=1  three of them, placed in front and on the two sides, giving a
means that thg®" behavior is authorised at time AL =0 feedback of th_e controlle_r’s chome to the human user. Onee t
meaning the contrary. The influence of tHé terms on the human user disagrees with this choice, he presses a keydo_sen
choice of the behavior will be described in probabilistioless @n €rror signal. An example of the robot sensory information
of the form P(A%|B**1), as the example given in table |11.and the extracted features is presented in figure 7b.

One can see that the authorisation for feward behavior =~ We designed three experiments in order to show progres-
has no influence on the other behaviors (probability of 0Zvely the capabilities of our SAN system. We recorded 50
in both cases) but that it strictly allows (probability of aj trials for each experimental condition and then compared th

prohibits to go forward. duration of each trial and the number and nature of the user

Figure 5 shows a Comparison between two controller odﬂterventions. The translational and rotational Speedtiim
puts, the first one without any restriction regarding the awere the same for all conditions.
thorised behaviors and the second one after the procesking dl) Experiment A:A maze-like environment (figure 8a) is
a user-generated error signal. The authorisation is theet reused for experiment A in order to show the resulting general
to 1 after a fixed time or after the execution of the alloweblehavior of the SAN system when driving alone with no user
behavior. intervention (similar as in figure 4).

The resulting version of the Bayesian controller for our-pro  The result corresponds to our expectations: the robot goes
posed semi-autonomous navigation system using monitorialgvays where there is the most free space (figure 8b).

IV. PRELIMINARY RESULTS
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Fig. 7. (a) The Smartease Robot equipped with the Hokuyoosemsd Fig. 9. (a) Experimental environment for experiment C: tvasgible ways

feedback capabilities. (b) Example of Bayesian occupanicywith features for going to a same goal location. (b) Graphical represemtasf the paths.
superimposed (dark grey: occupied, light grey: unknownitevlempty). The squared indicates where the user provided an error signal.

" Time [s User interventions
A M A Condition mean s[to]l dev. mean std. dev.
. . Original SAN 6.4 14 6 0
SAN with error signals| 49.5 3.0 4.0 0.9
B N @
. . Time [s] Percentage
C 0 Condition mean  std. dev.
SAN driving alone, path | 46.0 2.9 56
. SAN driving alone, path I 37.4 3.4 44
D P SAN with error signals, path | - - 0
SAN with error signals, path Il| 36.9 2.0 100
(@) (b) (€) ®)
Fig. 8. (a) Maze-like environment for experiments A and Bag@rcal TABLE IV

representation of the paths for Exp. A (b) and B (c). A squarendicates
where the user provided an error signal to the system andr & sthere he
provided a direction.

NUMERICAL RESULTS FOR EXPERIMENT® (a) AND C (b); 50TRIALS
WERE RECORDED FOR EACH EXPERIMENTAL CONDITION

2) Experiment B:Within the same environment as for Expsame path, thus explaining the difference of time to coreplet
A, the second experiment (Exp. B) compares our SAN wiffie task and the number of user interventions. Using a short-
user interventions (figure 6) to an original SAN (i.e. a diilme term memory for saving the local environment together with
is given at each place of interest) when solving a simptle corresponding decision should overcome these problems
navigational task, represented here as a sequence of placéd Experiment C:In this experiment, the robot has to go
to visit: B-N-O-C-D-P. from a start position (S) to a goal position (G) through two

As represented in figure 8c, the task is solved by our SARPssible paths, the second one (ll) being shorter (figure 9a)
system in a similar amount of time (table IVa, Student's t{the robot evolves first autonomously using our SAN system
test for independent samplesy = —0.9364, p > 0.05) as and finds its way from S to G; then, in a second experimental
with an original SAN method, an important characteristic focondition, the user can provide monitoring signals (figung 9
validating a new concept. As can be seen in table IVb, there is a probability of about

A particular advantage of the proposed system lies in t99% that it takes the longer path | if the user does not
amount and nature of commands required from the uskitervene (actually, the robot went three times more thhoug
While the original SAN requires six interventions (six tisn@ Path I than Il over the fifty trials). This shows that there @ n
minimum of two bits), the new approach requires an avera§eedefined preferred direction when facing a left/righticeo
of four binary error signals. The equivalent of a three-fol#ith equivalent corresponding features. If the user presid
decrease of the information requirement may be of impogan@n €rror signal when the robot is willing to take the path I,
when dealing with simple interfaces (e.g. sip and puff sysje the path Il is selected as only alternative for completing th
or low throughput interfaces (e.g. BCIs). Note that at dartatask. It is to mention that for this particular environment a
intersections, the user may have to provide several egoats MOst one error signal per trial is needed. The human-machine
(e.g. location O). This is explained as follows: when theotob interaction allows to optimise the task because of the htanan
is in situation O, facing P, and receives an error signalrit¢ knowledge included in the decisional process, letting #reis
right. But as it turns, the feature corresponding to the leftonomous robot choose the optimal trajectory as shown in
side of the robot increases and becomes dominant, becaudahte 1Vb.
started to see a wall followed by the free space in direction
of P, thus making the robot suddenly turn left. In order to go V. CONCLUSIONS AND OUTLOOK
towards C, the user has to provide an additional error signalIn this paper, we presented a novel concept for semi-
Due to the imprecisions of the sensor and the Bayesian natatgonomous navigation and illustrated the strength of the
of the controller, the robot doesn't take twice the absoluproach using preliminary experimental results. Withie t
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