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Abstract

The ability to form shared intentions and adjust one’s choices in collaboration

with others is a fundamental aspect of human nature. We discuss the forces

that act for and against the evolution of this ability. In contrast to altruism and

other non-fitness maximizing preferences, for large classes of games the ability to

form shared intentions proliferates when rare without requiring group selection

or assortativity in matching.
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“Yet how much and how correctly would we think if we did not think,

as it were, in community with others to whom we communicate our

thoughts, and who communicate theirs with us!”

– Immanuel Kant (1786)

1. Introduction

Humans are a collaborative species. We collaborate for good and for ill,

motivated by love, hate, spite, envy, self-aggrandisement and the basic urges

to feed and to reproduce. The understanding of collaboration and cooperation

has long been a goal of economics. The current paper models the ability to

collaborate as the ability to jointly optimize. That is, can we choose what is best

for us rather than merely making decisions as individuals? It is shown that the

ability to form shared intentions and take such joint decisions could have evolved

amongst ancient populations who lacked the foresight and reasoning abilities of

modern humans, and moreover, that this could happen even in circumstances

hostile to the evolution of other behavioral types such as cooperators or altruists

who might be expected to behave in ways which appear collaborative.

It has been argued in the philosophical literature that the intentions be-

hind collective acts can be distinct from an aggregation of individual intentions

(Bratman, 1992; Searle, 1990; Tuomela and Miller, 1988). This is “shared in-

tentionality”, the idea that “we intend to do X” is distinct from “I intend to

do X [because I think that she also intends to do X]”.2 Through conversation,

pointing and gesturing, or alternative forms of reasoning such as ‘team rea-

soning’ (Bacharach, 1999, 2006; Sugden, 2000) people form shared intentions.

When combined with notions of optimization, shared intentions naturally give

rise to collective agency. To see this, consider Alice and Bob who wish to take a

2There is disagreement amongst philosophers as to what extent shared intentions can be

reduced to individual intentions. See also Butterfill (2012); Gilbert (1990); Gold and Sugden

(2007); Velleman (1997). We take no position on this. Our results hold regardless of how

agents form shared intentions.
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drink together at one of two bars, Grandma’s and Stitch. Both Alice and Bob

prefer Grandma’s to Stitch. Now imagine Alice stating “I intend to go to Stitch

because I think that Bob intends to go to Stitch.” Such an intention is optimal

from Alice’s perspective, given her beliefs about Bob’s intentions, regardless

of the Pareto suboptimality of Stitch as a venue. Now, were Alice instead to

state “We intend to go to Stitch,” then there exists a perfectly valid criticism:

given that both Alice and Bob prefer Grandma’s to Stitch, and neither has any

incentive to deceive the other, it is irrational for them (as a plural entity) to

hold such an intention. Economists will recognize this reasoning as similar to

that underpinning concepts in game theory such as the Core (Gillies, 1959),

Strong Equilibrium (Aumann, 1959), Coalition Proofness (Bernheim, Peleg and

Whinston, 1987), Coalitional Rationalizability (Ambrus, 2009), Renegotiation

Proofness (Farrell and Maskin, 1989) and Coalitional Stochastic Stability (New-

ton, 2012).

This paper demonstrates how conditions faced by paleolithic hunter-gatherer

societies could have led to the evolution of the ability to collaboratively share

intentions. On the one hand, the existence of problems that could be solved by

collective action would have spurred the evolution of the ability to form shared

intentions. On the other hand, those who could not participate in collabora-

tive acts could sometimes free ride on the successes of others. This free riding

would work against the evolution of the ability to share intentions. Note that

the sharing of intentions and joint optimization is a mutualistic behavior: all

participants gain from engaging in it. This does not prevent free riding, as third

parties can obtain positive externalities from the collaboration of others, for ex-

ample if Alice and Bob collaborate in hunting a buffalo, but Colm eats some

of the leftovers. The mutualistic nature of jointly intentional behavior can be

contrasted with altruistic behavior, in which one party sacrifices fitness for the

benefit of another. It has been documented in the anthropology literature that

much of the cooperation observed in hunter-gatherer societies is mutualistic.

See Smith (2003) for a survey.

A consequence of the mutualistic nature of the sharing of intentions is that
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such behavior can proliferate when rare. This is in stark contrast to cooperator

types or altruists, who become extinct in similar circumstances. Furthermore,

even when conditions are adverse to the evolution of the sharing of intentions, for

example when there are many opportunities for free riding, some amount of shar-

ing of intentions will persist in the population, a minority behavior that can then

spread when conditions become favourable. Note that unlike models of the evo-

lution of altruism and other non-fitness maximizing behaviors, neither repeated

interaction (Trivers, 1971), nor kin-selection (Fisher, 1930; Hamilton, 1963), nor

assortativity of interaction (Alger and Weibull, 2013; Eshel and Cavalli-Sforza,

1982; Wilson and Dugatkin, 1997), nor group selection (Bowles, 2006; Choi and

Bowles, 2007; Haldane, 1932) is required for shared intentions to evolve.

It is hard to overstate the importance of shared intentions to human behav-

ior. Recent work in developmental psychology has shown that from early child-

hood, human subjects display the ability and desire to engage in collaborative

activities. This collaborative urge emerges prior to sophisticated logical infer-

ence and the ability to articulate hierarchical beliefs (Tomasello and Rakoczy,

2003, and citations therein). Moreover, the inclination towards collaborative

behaviors is considerably weaker in non-human great apes (Tomasello and Car-

penter, 2007; Tomasello and Herrmann, 2010).3 This accumulated evidence has

lent support to the hypothesis that human collaborative activity provided a

niche in which a uniquely human cognition, replete with sophisticated modes of

reasoning, could evolve. This is known as as the shared intentionality hypothe-

sis (Call, 2009) or the Vygotskian intelligence hypothesis (Moll and Tomasello,

2007; Tomasello, 2014; Vygotsky, 1980). The results of the current paper add

to the plausibility of this hypothesis, as they show how even in populations of

unsophisticated agents, collaborative behavior can evolve.

The author knows of only two other works that deal directly with the topic

3See also Wobber, Herrmann, Hare, Wrangham and Tomasello (2014); Tomasello, Car-

penter, Call, Behne and Moll (2005) and the accompanying critical responses.
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of the current paper4,5: Bacharach (2006, Chapter 3) and the study of Angus

and Newton (2015). Bacharach (2006) gives a predominantly non-quantitative

argument as to why a group selection mechanism would lead to collaborative

‘team reasoning’ in coordination problems and social dilemmas. However, in a

simulations-based study of coordination games on networks, Angus and Newton

(2015) show that group selection is far from sufficient for the evolution of collab-

oration, and that selective pressure against the sharing of intentions can arise

at a group level due to the possibility of collaborative behavior slowing techno-

cultural advance. The cited papers focus on multiple pairwise interactions for

which payoffs are given by an underlying two player game. The current paper

does not restrict itself to pairwise interaction and gives analytic results for a set-

ting in which members of a population are randomly matched to play m-player

games. In contrast to previous work, there is no group selection and selective

pressure against the sharing of intentions arises from either (i) free riding on

the positive externalities of collaboration by others, or (ii) negative externali-

ties of collaboration on other potential collaborators. Finally, it is instructive

to compare the evolution of shared intentions to the evolution of preferences

(e.g. Dekel, Ely and Yilankaya, 2007; Güth and Kliemt, 1998; Robson, 1996;

Samuelson, 2001). In contrast to the evolution of preferences, the ability to col-

laboratively share intentions does not change individuals’ ranking of outcomes.

Instead it makes new outcomes available to individuals when they update their

strategies as part of a group. Any individual’s ranking of menu items does not

change, but the variety of items on the menu becomes more appealing.

4We emphasize that we are considering the evolution of a trait - the ability to collaborate

and share intentions, not the evolution of the play of any specific ‘cooperative’ action. Alice

and Bob may intend to plan a surprise party for Colm, or to rob him of his possessions. Either

way, Alice and Bob are collaborating, but to quite different ends.
5An alternative approach to understanding collaboration is that of Gavrilets (2014), who

models collaborative ability as entering directly into production functions. Groups with high

levels of collaborative ability produce more of a public good, giving an advantage in a group

selection framework.
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The paper is organized as follows. Section 2 gives the model and consid-

ers the evolution of shared intentions for a large class of games which includes

threshold public goods games, m-player Prisoner’s Dilemmas, trust games, the

centipede game, Nash demand games, Bertrand oligopoly, minimum effort games

and, under an additional condition, finitely or infinitely repeated versions of all

of the above. Section 3 analyzes the evolution of shared intentions when col-

laboration can exert negative externalities on others, such as when two people

team up to steal from a third party. Section 4 considers a continuum of types

distinguished by different probabilities of an individual of a given type being in

a collaborative frame of mind. Section 5 compares and contrasts our results to

those for altruism and other behavioral explanations for ‘cooperation’ found in

the literature. Section 6 concludes. All proofs not in the main text are relegated

to the appendix.

2. Model and analysis

We shall consider a population of individuals represented by the unit interval.

Fitnesses will be determined when randomly formed groups of m individuals

encounter problems. These problems could be opportunities to hunt large prey

such as whales (Alvard, 2001; Alvard and Nolin, 2002), or the possibility that

coordinated action could bring about a large haul of small prey, such as is the

case with fishing (Sosis, Feldstein and Hill, 1998).

2.1. The game

Formally, we represent a problem faced by a group of m individuals by Γ,

an m-player game with player set M = {1, . . . ,m} and strategy sets Si, i ∈M .

Let si ∈ Si and s = (s1, s2, . . . , sm) be representative strategies and strategy

profiles respectively. Let S =×i∈M Si be the set of all strategy profiles. Let

πi(s) be the payoff of player i at strategy profile s. That is, πi(.) : S → R.

Payoffs represent reproductive fitness. Let × := (×, . . . ,×) be the status quo

strategy profile and a Nash equilibrium of the game, where, for every i ∈ M ,
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+1 +2 ×

+1 b− c −c −c

+2 −c b− c −c

× 0 0 0

(i) Two stags

+1 +2 ×

+1 −c b− c −c

+2 b− c −c −c

× 0 0 0

(ii) Chase and ambush

Figure 1: Examples for m = 2, b > c > 0. For each combination of contribution

(+1,+2) and non-contribution (×), entries give fitnesses for the row player.

we label the status quo strategy × ∈ Si. For now, we assume that actions other

than × exert (weakly) positive externalities (relative to ×) on other individuals.

This gives a public goods aspect to the game: a contribution of any form by i

is at least as good for j as is non-contribution by i.

(PG) For all i, j ∈M , i 6= j, s ∈ S, we have πj(si, s−i) ≥ πj(×, s−i).

For appropriately chosen status quo strategy profiles, condition (PG) is sat-

isfied by all of the well known games in Table 1. Figure 1 gives two further

examples that satisfy Condition (PG). In these examples, group size is two

(m = 2), there are two actions other than the status quo, and both group mem-

bers are required to switch from the status quo in order to to gain some net

benefit. Figure 1(i) is a stag hunt with two stags, and the hunters must both

pursue the same stag in order to be successful. Figure 1(ii) represents a situa-

tion where there are two roles required for a successful hunt, such as when one

hunter pursues the quarry and a second hunter lies in wait, ready to ambush

the quarry when it flees from the first hunter.

From the status quo, the assumption that × is a Nash equilibrium implies

that no individual acting alone can improve his payoff.6 However, there exist

6We assume myopia. That is, individuals do not think, or rather act, beyond the impli-

cations of a direct adjustment to their strategy or the strategies of those with whom they

share intentions. We are modeling early man, not bands of game theorists roving across the

savannah. Note that even myopic payoff improvers are considerably more sophisticated than
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Game Description Status quo ×

Threshold

public

goods

Players can contribute or not contribute. Con-

tributing has a cost of c. If at least n players con-

tribute, then every player receives a benefit b > c.

The NE at which no play-

ers contribute.

Prisoner’s

dilemma

Players can cooperate or defect. Cooperating has a

cost of c for the cooperating player and generates

a benefit of b for every player. b < c, mb > c.

The unique NE, at which

all players defect.

Trust

game

Two players. Player 1 chooses an amount of some

endowment to pass to Player 2. Any amount

passed is tripled in value, following which Player

2 chooses some amount to pass back to Player 1.

The unique NE, at which

Player 1 does not give any-

thing to Player 2, and

Player 2 never gives any-

thing back to Player 1.

Centipede

game

Two players. Firstly, Player 1 can choose down or

across. If he chooses down, payoffs for Players 1,2

respectively are (2, 2). If he chooses across, then

Player 2 can choose down or across. If he chooses

down, payoffs are (1, 4). If he chooses across, pay-

offs are (3, 3).

The unique NE, at which

Player 1 chooses down and

Player 2 chooses down

when given the opportu-

nity.

Nash

demand

game

Each player demands a share of some surplus. If

the sum of demands is less than or equal to the to-

tal surplus, then every player receives his demand.

Otherwise all players receive nothing.

The NE at which every

player demands the entire

surplus.

Bertrand

oligopoly

There is fixed demand D for a good. The marginal

cost of producing the good is c. Each player (firm)

i chooses a price pi ≥ c. If there are r players

charging the lowest price of all the prices, each of

these players receives payoff (pi − c)D/r. Other

players receive zero payoff.

The NE at which every

player chooses pi = c.

Minimum

effort

game

Each player chooses an effort ei ≥ 0. His payoff is

then given by bminj∈M ej − cei, where b > c > 0.

The NE at which every

player chooses ei = 0.

Table 1: Games and status quo strategy profiles that satisfy (PG). Games are

defined for an arbitrary number of players (m ≥ 2) unless explicitly stated

otherwise.
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opportunities for coalitions of players who can share their intentions to collabo-

rate and adjust their actions together in order to obtain higher payoffs. Let the

set of collaborative opportunities for a set T ⊆M be

C(T ) =

s ∈ S :
For all i ∈ T, si 6= × and πi(s) > πi(×).

For all i /∈ T, si = ×.

 .

That is, C(T ) gives the ways in which individuals in T can collaboratively ad-

just their strategies so that their own payoffs improve, leaving the strategies

of individuals outside of T fixed. We assume that the game affords at least

some prospect of collaboration. That is, C(T ) 6= ∅ for at least some T ⊆ M .

This is equivalent to × not being a Strong Equilibrium in the sense of Aumann

(1959). For the example in Figure 1(i), C(M) = {(+1,+1), (+2,+2)} and for the

example in Figure 1(ii), C(M) = {(+1,+2), (+2,+1)}. The size of the smallest

coalition that can benefit from collaboration is

n = min
T :C(T ) 6=∅

|T |

Note that our assumption that × is a Nash equilibrium implies than n ≥ 2 and

the existence of at least some collaborative opportunity implies that n ≤ m. For

the games in Figure 1, both players must adjust their strategy from the status

quo in order for them to gain, so n = 2.

We shall allow for the possibility that the behavior of individuals outside of

a set T will alter as a consequence of T exploiting a collaborative opportunity.

With this in mind, define the set of outcomes that could occur following a set

of individuals T exploiting a collaborative opportunity.

C∗(T ) =
{
s∗ ∈ S : For some s ∈ C(T ), s∗i = si for all i ∈ T.

}
.

That is, were a set of individuals T to adjust their strategies according to some

collaborative opportunity in C(T ), following which the remainder M \ T of the

individuals were to adjust their strategies in some way, then C∗(T ) is the set of

strategy profiles that could be reached.

types of players - cooperators, defectors and so on, who only play a specific action.
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2.2. Types and behavior

There are two types of individual, those who can share intentions and those

who cannot. Those who can share intentions can collaboratively optimize when

choosing their action. We refer to such individuals as SI types. Those who lack

the cognitive ability to engage in such joint optimization we refer to as N types.

From a status quo at which everybody is playing ×, some set of n individuals

within a group could gain by adjusting their actions. However, doing this might

not lead to a Nash equilibrium. In fact, it may even be that playing an action

other than × is never individually rational, such as in an m-person Prisoner’s

Dilemma. However, if nobody is playing anything other than ×, then for any

set of n individuals to remain playing × is not collectively rational. We defer

consideration of individuals who are sometimes in the mood for collaboration

and are sometimes not until later in the paper. For now we assume that SI types

are always willing to participate in collaborative decisions when opportunities

present themselves.7

Fix an m-player game Γ as described in Section 2.1. Consider a group M of

m individuals who encounter this problem. Let MSI ⊆ M denote the set of SI

type individuals within the group. Then we assume the outcome of the game

will be given by some strategy profile s∗ satisfying

(C) (i) If for all T ⊆MSI , C(T ) = ∅, then s∗ = ×.

(ii) If there exists T ⊆MSI such that C(T ) 6= ∅, then select some set of SI

type individuals T ⊆ MSI , C(T ) 6= ∅, according to some probability

measure FMSI ,Γ(.). Then let s∗ ∈ C∗(T ) be chosen according to some

probability measure GMSI ,T,Γ(.).

That is, when there is no subset of SI types within the group that can exploit a

collaborative opportunity, the outcome of the game is the status quo ×. When

there exists at least one subset of SI type individuals who can exploit at least

7That is to say, N types would play a Prisoner’s Dilemma, whereas SI types would play a

Prisoners’ Dilemma, the difference being in the positioning of the respective apostrophes.
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one collaborative opportunity, then some set of SI types will exploit some collab-

orative opportunity. Note that without specifying FMSI ,Γ(.) and GMSI ,T,Γ(.),

condition (C) is not a complete description of behavior. In particular, when

there are multiple collaborative opportunities any of them could be taken with

any probability, and the behavior of the players who are not involved in exploit-

ing the collaborative opportunity is similarly arbitrary.

Some results will require a weak additional assumption on the behavior of the

non-collaborating players. In words, this assumption says that any individual’s

response to collaboration can be construed as part of a better response (R)

by some group of players outside of T to either (i) the status quo, or (ii) the

strategy profile following the exploitation of a collaborative opportunity by T .

(R) If s∗ ∈ supp GMSI ,T,Γ(.), i /∈ T , s∗i 6= ×, then letting s be the unique s ∈

C(T ) corresponding to s∗ ∈ C∗(T ), there exists R ⊆M \T such that i ∈ R

and for all j ∈ R, either πj(s
∗
R,×−R) > πj(×) or πj(s

∗
R, s−R) > πj(s).

This condition is satisfied if responses to collaboration are individual best re-

sponses to collaboration, but is clearly much weaker than that. It allows, in

the spirit of the topic under consideration, that collaborative behavior may in

turn generate collaborative responses. It is intended to rule out responses to

collaboration whereby individuals adjust their strategies to reduce their own

payoffs.

2.3. Matching

We consider a population comprising unit mass of individuals, each of whom

may be of SI or N type. Let the share of SI types in the population be xSI and

the share of N types be xN . Let the population state be x = (xSI , xN).

Each member of the population is matched to play Γ in a group of m in-

dividuals. We assume that the allocation of individuals to player positions in

the game Γ is independent of type.8 Given a population state x, and an indi-

8Otherwise it would be possible to give either type an advantage by giving them preferred

access to player positions that correspond to higher payoffs.
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vidual, let Z be a random variable denoting the number of SI types amongst

the other m − 1 individuals with whom the given individual is matched. We

allow correlation between Z and the type of the individual concerned. Write

Prx[Z = k |SI] and Prx[Z = k |N ] as the probabilities that there are k SI type

individuals amongst the other members of the group, conditional on a given

individual being SI type and N type respectively. A matching protocol specifies

these values for all x and all values of k from 0 to m − 1. We assume that

Prx[Z = k |SI] and Prx[Z = k |N ] are continuous in xSI , and strictly positive

for xSI , xN > 0.

Given this notation, any SI type has a probability Prx[Z = k − 1 |SI] of

being in a group that includes exactly k SI types, including himself. Therefore,

the mass of SI types in such groups equals xSIPrx[Z = k − 1 |SI]. Any N type

has a probability Prx[Z = k |N ] of being in a group that includes exactly k SI

types. Therefore, the mass of N types in such groups equals xNPrx[Z = k |N ].

Now, any group with k SI types has m − k N types, so the ratio of SI type

individuals in such groups to N type individuals in such groups must equal

k/(m− k). Noting that xN = 1− xSI , we have the balance condition (B).9

(B) xSIPrx[Z=k−1 |SI]
(1−xSI)Prx[Z=k |N ] = k

m−k for k = 1, . . . ,m− 1.

An implication of (B) is that as xSI approaches zero, the ratio of Prx[Z =

k − 1 |SI] to Prx[Z = k |N ] approaches infinity. Consequently, SI types find

themselves in groups in which collaboration occurs infinitely more often than

N types find themselves in such groups. Furthermore, Prx[Z = k |N ] must

approach zero for k ≥ 1 and Prx[Z = 0 |N ] must approach unity.

9Given the preceding, one might ask why it is that this is stated as an condition, rather

than merely as a consequence of any matching protocol. The reason for this is that although

(B) is a logical consequence of matching, it is not a mathematical consequence. Consider

groups of size two, with SI types making up a share of a quarter of the population. It is

mathematically possible to match this quarter of the population one-to-one to the remaining

three quarters of the population via a bijection. This would clearly be against the spirit of

the model.
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2.4. The main theorem

Given a game Γ, some behavioral rule satisfying (C), and some matching

protocol, let fSI(x), fN(x) denote the fitnesses, that is the expected payoffs, of

SI and N types respectively at population state x. For |MSI | = k, denote the

expected payoff (taken before player positions within the game are allocated)

of SI types within the group by πkSI , and denote the expected payoff of N types

within the group by πkN . Assume that FMSI ,Γ(.) and GMSI ,T,Γ(.) are such that

these expectations exist. Then

fSI(x) =

m−1∑
k=0

Prx[Z = k |SI] πk+1
SI , fN(x) =

m−1∑
k=0

Prx[Z = k |N ] πkN .

Note that fSI(x) and fN(x) depend continuously on the probabilities Prx[Z =

k |SI] and Prx[Z = k |N ], which in turn are continuous in xSI . Therefore,

fSI(x) and fN(x) are continuous in xSI . For some subpopulation with shares of

SI and N types given by x̃, let fx̃(x) be the average fitness of members of this

subpopulation when the population state is x. That is,

fx̃(x) := x̃SIfSI(x) + x̃NfN(x).

We use the concept of an evolutionarily stable state (Taylor and Jonker,

1978). An evolutionarily stable state is a state such that following the invasion

of the population by a small population share ε of mutants, the non-mutant

share of the population outperforms the invading mutants.

Definition 2.1. A state x∗ is an evolutionarily stable state (ESS) if for any

other state x̃, defining xε = (1− ε)x∗ + εx̃, there exists ε̃ such that

For all ε < ε̃, fx∗(xε) > fx̃(xε).

An interior state x∗ is an ESS if and only if fSI(.)−fN(.) is strictly decreasing

at x∗ and equal to 0. The extremal state x∗SI = 0 (x∗SI = 1) is an ESS if and

only if fSI(.)−fN(.) is strictly negative (positive) in some open interval bounded

below (above) by x∗SI . This implies that, unless there exists some open interval
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of xSI on which fSI(.)− fN(.) = 0, at least one ESS must exist. Such examples

can be constructed, but will necessarily be special.10

We are now in a position to state our main theorem. For any problem

satisfying (PG) and any matching protocol satisfying (B), SI types will make

up a positive share of the population at any evolutionarily stable state. Even

when conditions are highly adverse to the evolution of shared intentions, SI

types will still persist as a small share of the population, ready to expand and

take a greater share as soon as conditions become more favorable.

Theorem 1. If (C),(R),(B),(PG) hold, then xSI > 0 in any ESS.

The reasoning behind the Theorem is as follows. (i) Firstly, collaboration

(C) is a mutualistic act, not an altruistic act, therefore when SI types collab-

orate they improve their payoffs relative to the status quo, holding fixed the

strategies of the non-collaborators. (ii) Secondly, the public goods condition

(PG) ensures that any response by other players to the collaboration can only

(weakly) increase the payoffs of the collaborators. (iii) Thirdly, (PG) ensures

that collaboration also (weakly) increases the payoffs of non-collaborators. (iv)

Fourthly, (R) together with (PG) ensures that the response to collaboration by

non-collaborators (weakly) increases the payoffs of non-collaborators. (v) Fi-

nally, the balance condition (B) implies that when SI types are a small share

of the population, any given SI type will find himself in a group in which col-

laboration occurs much more frequently than any given N type finds himself

in such a group. Thus an SI type will enjoy the benefits of collaboration, as

either a collaborator or a free rider, far more often than an N type will get the

opportunity to free ride on the collaboration of others.

Note that when n = m, any collaboration that takes place will always in-

volve every group member, so we no longer need to consider the response of

non-collaborators to collaboration (steps (ii) and (iv) above), or the effect of

10To make specific statements about genericity requires consideration not only of Γ, but

also of different behavioral rules satisfying (C), and different matching processes. This is

sufficiently involved that it is omitted here.
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collaboration on non-collaborators (step (iii) above). As these steps are the

only steps in the proof of Theorem 1 that use conditions (PG) and (R), these

conditions become unnecessary. Furthermore, as N types will never be mem-

bers of a group in which collaboration occurs, step (v) and hence condition

(B) becomes unnecessary. Therefore, SI types outperform N types and a result

stronger than Theorem 1 holds, regardless of whether (R),(B) or (PG) hold.

Corollary 1. If (C) holds and n = m, then a unique ESS x∗ exists and x∗SI = 1.

One important class of games that does not always satisfy (PG) but is cov-

ered by Corollary 1 is the class of coordination games for which all symmet-

ric pure strategy profiles are Nash equilibria and × is Pareto dominated by

one of the other equilibria. Another important class is the class of two player

games with a Pareto dominated Nash equilibrium. This latter class includes

the Cournot duopoly game, which does not satisfy (PG), and the two player

Prisoner’s Dilemma, which does satisfy (PG).

Now, consider a finitely or infinitely repeated game Γ̄ for which the stage

game satisfies (PG) and has a nonempty set of collaborative opportunities. Let

the status quo strategy profile × of Γ̄ be the status quo strategies of Γ repeated

each period, irrespective of history. Then, considering situations in which there

is no response to collaboration by non-collaborators, we can use steps (i),(iii)

and (v) of the proof of Theorem 1 outlined above to show the following result.

Corollary 2. If Γ̄ is a repeated game with a stage game Γ satisfying (PG), and

the status quo profile × for Γ̄ is the history independent repetition of the status

quo strategies of Γ, then if (C),(B) hold, and GMSI ,T,Γ(C(T )) = 1 whenever it

is defined, then x∗SI > 0 in any ESS.

Of course, if any game satisfies (PG) then Theorem 1 applies. Therefore,

the additional contribution of Corollary 2 is limited to cases in which a repeated

game Γ̄ does not satisfy (PG), but its stage game Γ does satisfy (PG).

Finally, as the state x is unidimensional, evolutionarily stable states corre-

spond to strongly uninvadable states in the sense of Bomze (1991) and are thus
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+1 ×

+1 b− c b− c

× b 0

+1

+1 ×

+1 b− c −c

× 0 0

×

Figure 2: Three player threshold public goods game. Any two players must

contribute for the good to be provided. m = 3, n = 2, b > c > 0. For each

combination of contribution (+1) and non-contribution (×), entries give fitnesses

for the row player.

locally asymptotically stable under the replicator dynamic (Bomze and Weibull,

1995).

2.5. Example: threshold public goods problems

Let Γ be a threshold public goods game with threshold n ≤ m. There are two

strategies, contribute (+1) and don’t contribute (×). If at least n individuals

contribute then the good is provided, otherwise it is not provided. When the

good is provided, every individual in the group obtains a benefit of b. When an

individual contributes, he incurs a cost of c. Assume b > c > 0. The case of

m = 3, n = 2 is shown in Figure 2. Let matching be non-assortative, such that

a given individual’s type does not affect the type distribution of the remaining

m− 1 individuals with whom he is matched. That is,

(NA) Prx[Z = k] := Prx[Z = k |SI] = Prx[Z = k |N ] for all k, x.

Note that when combined with (B), (NA) implies binomial matching (Bin).

(Bin) Prx[Z = k] =
(
m−1
k

)
xkSI(1− xSI)

m−1−k.

Assume that when |MSI | ≥ n, the realized strategy profile, s∗, always has

exactly n SI types contributing.

(EX) If |MSI | ≥ n, then FMSI ,Γ({T : |T | = n}) = 1 and GMSI ,T,Γ(C(T )) = 1.

16



Note that (EX) satisfies (R) and seems plausible, as there is no advantage to

anyone from any additional individual contributing.11 This implies that from

the perspective of an SI type, if the good is provided and there are k other SI

types in the group, he will contribute n/k + 1 of the time. The average fitness of

SI types in this setting is

fSI(x) =

m−1∑
k=n−1

Prx[Z = k]

(
b− c n

k + 1

)
. (1)

N types will benefit when the good is provided, but are never able to be part

of a collaborative effort to provide the good. Therefore, the good will only be

provided if at least n of the other m− 1 players are SI types. When n = m, the

fitness of an N type is always zero. When n < m, the fitness of an N type is

fN(x) = Prx[Z ≥ n] b. (2)

When xSI > 0, the fitness advantage (disadvantage when negative) of SI types

over N types is

fSI(x)− fN(x) =Prx[Z = n− 1]

(
b−

m−1∑
k=n−1

Prx[Z = k]

Prx[Z = n− 1]
c

n

k + 1

)
(3)

This expression equals Prx[Z = n − 1](b − c) > 0 when n = m. When n < m,

then by showing that the term in brackets is decreasing in xSI , positive for

small positive values of xSI and negative for values of xSI close to 1, we prove

the following proposition.

Example 1. For threshold public goods games, when (C),(EX),(NA),(B) hold,

11Note that our simple story of when the good is provided is borne out by more complex

dynamic processes. If the number of SI types in a group is at least n, then under a coalitional

better response dynamic with uniform mistakes (see, for example Newton and Angus, 2015),

provision of the good is uniquely stochastically stable in the sense of (Young, 1993). If the

number of SI types is strictly less than n − 1, then non-provision is uniquely stochastically

stable. Note that a stochastic stability analysis of such problems under individualistic best

response dynamics is given by Myatt and Wallace (2008), but results change when coalitional

behavior is allowed.

17



(i) There is a unique ESS, x∗. If n < m, then x∗SI ∈ (0, 1), and if n = m,

then x∗SI = 1.

(ii) From any mixed population such that xSI , xN > 0, the replicator dynamic

converges to x∗.

(iii) x∗SI decreases in m, increases in n, increases in b/c.

(iv) x∗SI → 0 as b/c→ 1 and x∗SI → 1 as b/c→∞. In particular, note that x∗SI

may be greater or less than n/m.

As threshold public goods games satisfy (PG), Theorem 1 applies and tells

us that even when conditions are bad for collaboration, a minority of SI types

will persist in the population. Example 1 shows that, for threshold public goods

problems, such conditions are when m is large relative to n so that there are

many free riders whenever the public good is provided, or when the benefit-cost

ratio b/c is low. This minority of SI types can then expand when changes in

the environment or technology lead to conditions which are more favourable for

collaborative behavior. Such a change could be an increase in n caused by an

increase in the availability of larger prey due to migration, or changes in the

climate when moving between glacial and interglacial periods. Another example

would be a reduction in c due to reduced risks from hunting due to improved

technology providing better weapons.

2.6. Example: three player prisoner’s dilemma

Consider the three player (m = 3) prisoner’s dilemma in Figure 3. If c ≥ 2b,

then all collaborative opportunities involve three players (n = 3), so by Corollary

1 there is a unique ESS at x∗SI = 1. At such an ESS, every individual in every

matched group will always play the cooperative action +1.

Now, consider a lower cost of cooperation. If c < 2b, then there exist collab-

orative opportunities for sets of two players (n = 2). Now, as xSI → 1, by (B)

we have that SI types will almost always be in groups containing three SI types.

In such groups either all three players will collaborate and each will receive a
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+1 ×

+1 3b− c 2b− c

× 2b b

+1

+1 ×

+1 2b− c b− c

× b 0

×

Figure 3: Three player prisoner’s dilemma. m = 3, 3b > c > b. For each

combination of cooperate (+1) and defect (×), entries give fitnesses for the row

player.

payoff of 3b−c, or any two of the three players will collaborate and the expected

payoff of each individual will be 2b − 2c/3 as each is only a collaborator (hence

paying the cost) with probability 2/3. As 3b − c > 2b − 2c/3 we have that as

xSI → 1, fSI(x) eventually drops below 3b− c+ ε for any ε > 0.

Now, under (NA),(B), as xSI → 1 we have that any N type will almost always

be matched with two SI types. These SI types will collaborate to cooperate and

the N type will obtain a payoff of 2b. That is, fN(x) → 2b as xSI → 1. As

2b > 3b− c, we then have that for xSI close to 1, N types obtain higher fitness

than SI types. That is, there does not exist an ESS with x∗SI = 1. At any ESS,

there will always be N type individuals who play × when they are matched to

play the game.

So we see that reducing the cost of cooperation can lead to less collaboration

and hence to less cooperation. There is a clear distinction between collabora-

tion and cooperation, a distinction that will become even more clear in the

next section where we shall drop condition (PG) and consider the possibility of

collaborative behavior that has a negative effect on non-collaborators.

3. Collaboration with negative externalities

A plausible sounding conjecture would be that if collaborating players gain

fitness from their collaboration following any response by the other players, then

SI will evolve. This conjecture is false. When externalities from collaboration
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+1 ×

+1 −4 1

× −3 0

+1

+1 ×

+1 1 −1

× 0 0

×

Figure 4: Three player Hawk-Dove game. Any two players must attack the

remaining player for an attack to be successful. m = 3, n = 2. For each

combination of hawk (+1) and dove (×), entries give fitnesses for the row player.

are negative and SI types are disproportionately likely to match with other SI

types, then negative externalities caused by collaborating SI types on other SI

types can outweigh the benefits of collaboration. To see this, first formalize the

condition, Profitable Collaboration (PC).

(PC) If T ⊆ MSI , C(T ) 6= ∅, s∗ ∈ suppGMSI ,T,Γ(.), then πi(s
∗) > πi(×) for all

i ∈ T .

This is a weaker condition that (PG). Any setup that satisfies (PG) will satisfy

(PC), but the converse is not true.

Consider the three player game in Figure 4. We call this a three player

Hawk-Dove game as any two players can exploit the third (steal his food) and

it is never worthwhile for the third player to resist this. Thus there are three

asymmetric Nash equilibria (in fact, Strong Equilibria) in which two players

exploit the remaining player. However, there is also another Nash equilibrium

at which all players play ×. The only available collaborative opportunity is for

two SI type players to exploit the third (eg. s = (+1,+1,×)). When a pair of

players T take such a collaborative opportunity s ∈ C(T ), the exploited player

would lose payoff by adjusting his strategy, so (R) implies that GMSI ,T,Γ(s) = 1.

Note that (PC) is satisfied. Now, the fitness of an N type is

fN(x) = Prx[Z = 2 |N ]︸ ︷︷ ︸
Prob. of N type
being exploited

by SI types

(−3)
xSI→0−−−−→ 0︸ ︷︷ ︸

by (B)

.

20



The fitness of an SI type is

fSI(x) = Prx[Z = 2 |SI]

(
2

3
(1) +

1

3
(−3)

)
︸ ︷︷ ︸
When all three are SI,

2/3 chance of being
an exploiter

+Prx[Z = 1 |SI] (1),

so if limxSI→0 Prx[Z = 2 |SI] > 3 limxSI→0 Prx[Z = 1 |SI], then limxSI→0 fSI(x)

is bounded above by a number strictly below zero. That is, positive assortative

matching can cause SI types to have lower fitness than N types, even when the

share of SI types in the population is small.

Now, consider the case where even for SI types, the probability of encoun-

tering other SI types decreases as the share of SI types in the population goes

to zero. This is the rare encounters in the limit (REL) condition.

(REL) For k ≥ 1, Prx[Z=k−1 |SI]
Prx[Z=k |SI] →∞ as xSI → 0.

Note that under (B), the no assortativity condition (NA) implies (REL),

but (REL) does not imply (NA). It turns out that when (REL) holds and

collaboration is always profitable, then SI types will always make up a strictly

positive share of the population at any ESS.

Theorem 2. If (C),(B),(REL),(PC) hold, then xSI > 0 in any ESS.

The intuition behind the Theorem is simple. Note that the balance con-

dition (B) implies that for k ≥ n, Prx[Z = n− 1 |SI]/Prx[Z = k |N ] approaches

infinity as xSI approaches zero. Similarly, (REL) implies that for k ≥ n,

Prx[Z = n− 1 |SI]/Prx[Z = k |SI] approaches infinity as xSI approaches zero. That

is, when collaboration occurs it will usually be when there are exactly n SI

types in the group. (PC) implies that these collaborators gain fitness from their

collaboration, and there are no other SI types in the group to be affected by any

negative externalities. Hence, SI types outperform N types for small, positive

values of xSI .

For the Hawk-Dove example of Figure 4, under (REL) we have that fN =

Prx[Z = 2 |N ](−3) ≤ 0, and fSI = Prx[Z = 2 |SI]
(

2
3 (1) + 1

3 (−3)
)

+ Prx[Z =
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1 |SI](1), which (REL) implies is positive for small values of xSI . Then fN < 0

and fSI > 0 for small values of xSI . Once again, SI types proliferate when rare.

Finally, note that an effect of (REL) is that, for small xSI , the usual absence

of non-collaborating SI types when collaboration occurs makes the effect of the

response of the non-collaborating players on themselves (step (iv) in the proof

steps of Theorem 1 above) irrelevant, so we can drop (R) from the conditions,

although (R) may, as in the above example, be a component in the satisfaction

of (PC). However, as games satisfying (PG) satisfy (PC) for any G.,.,Γ(.), if we

add (REL) then we can simply drop (R) from Theorem 1 to obtain the following.

Theorem 3. If (C),(B),(REL),(PG) hold, then xSI > 0 in any ESS.

4. A continuum of types ordered by likelihood of collaboration

Consider a model where instead of two types, we have a continuum of types,

specifically the unit interval. Each time he faces a problem, any given individual

of type σ ∈ [0, 1] will be in a collaborative mood with probability σ, and in an

individualistic mood with probability 1− σ. An individual in an individualistic

mood will behave as an N type and an individual in a collaborative mood will

behave as an SI type. Let the state, x, be a probability measure on the Borel

sets B([0, 1]). This approach, modeling the same individual as sometimes col-

laborative and sometimes not, is that suggested by Bacharach (2006) for dealing

with potential conflicts between individual and collective rationality. Any indi-

vidual, when facing a problem as part of a group, will sometimes be driven by

individual considerations and sometimes by collective considerations.12 Define

σ̄(x) :=
∫

[0,1]
σx(dσ) as the probability that a randomly drawn individual from

12Bacharach (2006) thinks of individuals as sometimes reasoning individualistically and

sometimes engaging in ‘team reasoning’. Our assumptions relate to behavior and not to

reasoning per se, but our model can, should the reader wish, be interpreted as a model of the

evolution of team reasoning, specifically what Bacharach refers to as restricted team reasoning,

where at any given point in time, not every individual can team reason but those that can,

recognize one another as such.
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a population at state x is in a collaborative mood. Let Z be the number of

individuals with whom a given individual is matched who are in a collaborative

mood. We can adapt binomial matching to this setting.

(Bin-σ) Prx[Z = k] =
(
m−1
k

)
(σ̄(x))k(1− σ̄(x))m−1−k.

An evolutionarily stable state will not typically exist. The reason for this

is that under binomial matching, at any interior ESS, any individual in the

population must have equal expected fitness when he collaborates and when

he does not collaborate. But then, from any state x such that x({0}) 6= 1,

x({1}) 6= 1, a small mutant subpopulation with type shares x̃ 6= x could emerge

such that σ̄(x̃) = σ̄(x). That is, some of the mutants have increased σ and some

have decreased σ, but the average remains the same as before. Such mutant

invasions do not alter the expected fitness of any individual in the population.

In particular, the mutants still obtain the same average fitness as non-mutants,

so x cannot be evolutionarily stable. Consequently, we use the weaker concept of

Neutral Stability (Maynard Smith, 1982). Write gσ(x) for the fitness of type σ

at state x. Note that the average fitness of a subpopulation of types distributed

according to x̃ when the state is x is now

gx̃(x) :=

∫
[0,1]

gσ(x)x̃(dσ).

A neutrally stable state is then a population state such that following the inva-

sion of the population by a small population share ε of mutants, the invaders

do not do better than the non-mutants.

Definition 4.1. A state x̂ is a neutrally stable state (NSS) if for any other

state x̃, defining xε = (1− ε)x̂+ εx̃, there exists ε̃ such that

For all ε < ε̃, gx̂(xε) ≥ gx̃(xε).

Now, by definition of the behavior of type σ, and comparing (Bin) and (Bin-

σ), we have

gσ(.) = σfSI(σ̄(.)) + (1− σ)fN(σ̄(.))
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where fSI , fN denote fitnesses in the two type model under (Bin), slightly abus-

ing notation to write xSI rather than x as the argument of fSI , fN . This gives

gx(.) = fN(σ̄(.)) + σ̄(x)(fSI(σ̄(.))− fN(σ̄(.))).

That is, gx(.), and specifically gx(xε), is monotonic in σ̄(x). This implies we

only need to check robustness of any conjectured NSS to invasions of extreme

types σ = 0 and σ = 1. These types correspond to N and SI types of the two

type model. Now, for the two type model under (Bin),(PC), as (Bin) implies

(B) and (REL), by Theorem 2 there exists an ESS with a positive share of SI

types. Therefore, letting x∗ be an ESS of the two type model, we have that

x̂ such that x̂(0) = x∗N , x̂(1) = x∗SI , is an NSS of the continuum type model.

Furthermore, as at an NSS under binomial matching, fitness from collaboration

and non-collaboration must be the same, the only factor that affects the fitness

of any given type is the distribution over how many of his fellow group members

are in a collaborative mood. But under (Bin-σ), this distribution is completely

determined by σ̄(.). Therefore, if x′ is vulnerable to an invasion by mutants,

and σ̄(x′) = σ̄(x′′), then x′′ must be vulnerable to the same mutant invasion.

That is, the only factor that determines whether a state x is an NSS is the value

of σ̄(x).

Theorem 4. If (C),(Bin-σ),(PC) hold, then at least one NSS of the continuum

model exists. Under these conditions, a state x of the continuum model is an

NSS if and only if σ̄(x) = x∗SI for some ESS x∗ of the two type model under

(C),(Bin),(PC). This implies that a monomorphic NSS x̂ exists, with x̂(σ̂) = 1

and σ̂ = x∗SI.

5. Discussion: Cooperation, magical thinking, altruism, commitment

and conditional cooperation.

Here we compare the collaborative sharing of intentions to some other modes

of behavior that have been considered in the literature. The crucial distinction is

that collaboration involves coordination in how actions are chosen rather than
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+1 ×

+1 b− c −c

× 0 0

(i) Fitnesses

+1 ×

+1 b− c b− c

× 0 0

(ii) Magical thinker

+1 ×

+1 b− c −c/2

× −c/2 0

(iii) Altruist

Figure 5: Two player threshold public goods game. m = n = 2, b > c > 0. For

each combination of contribution (+1) and non-contribution (×), entries give,

for the row player, his (i) fitnesses and his preferences when he is a (ii) magical

thinker and (iii) altruist.

in the chosen actions themselves. Naturally, collaboration will often lead to

efficient coordination, but the two things are not the same, as we saw in the

three player Hawk-Dove game, where an efficient symmetric Nash equilibrium

is destroyed by collaboration.13 This is the reason we avoid the use of the term

“cooperation” in describing jointly intentional strategic choice, as practitioners

have become accustomed to using the word “cooperation” to describe a state of

efficient coordination rather than its attainment.

5.1. Cooperators

There has been much consideration in the academic literature of situations

where one symmetric action profile Pareto dominates all other symmetric action

profiles. The action corresponding to such a profile is then described as the

“cooperative” action. Individuals who always play such an action are called

cooperators and those who play an action corresponding to some inefficient

Nash equilibrium are called defectors. In the absence of assortative matching,

when there are few cooperators in the population, they will rarely match with

one another and will be outperformed by defectors. That is, cooperators do not

proliferate when rare and there exists an ESS in which they are absent from the

13For more on this point, see Newton and Angus (2015), where it is shown how coordinated

action choice by small groups within a population can slow convergence to a globally efficient

action profile, even when all players have perfectly common interests.
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population. For the threshold public goods game of Section 2.5, this has been

formally shown by Pacheco, Santos, Souza and Skyrms (2009).

5.2. Magical thinkers

Magical Thinkers erroneously attribute causal powers to their own decisions

(Elster, 1979). Consider symmetric games and those magical thinkers who be-

have as if their fellow group members will always take the same action as they

take.14 This implies that they will always choose the action corresponding to

the most efficient of all symmetric action profiles. For the threshold public

goods game of Section 2.5, the fitness of any given individual in the m = n = 2

case for each combination of contribution (+1) and non-contribution (×) by the

individual and his fellow group member is given in Figure 5(i). However, the

magical thinker will act as if his fitness is given by Figure 5(ii). From this we

see that if b − c > 0, then magical thinkers will behave identically to cooper-

ators, and if b − c < 0, then magical thinkers will behave as defectors. Unlike

cooperators and defectors, magical thinkers are not automata, but the ordering

that determines their choice of action (their preferences) differs from the rank-

ing given by their fitnesses. This is not the case for SI types, whose preferences

(which are given at the level of the individual) are unaffected by their SI-ness

but who may, in collaboration with other SI types, choose action profiles from

a richer set of options. Their preferences are the same, but the menu is larger.

Furthermore, magical thinking does not resolve coordination problems with

even the simplest of asymmetries. Going back to the Chase and Ambush game

of Figure 1(ii), it is clear that any mode of reasoning that leads one player to

play +1 will also lead the other player to play +1 and the players will fail to

coordinate. The best that can be hoped for is a mixed strategy equilibrium,

which is fine, but inefficient when compared to what can be achieved by SI

types. Now, forgetting asymmetric coordination and considering asymmetric

14These types are behaviorally equivalent to the ‘Kantian’ types of Alger and Weibull

(2013).
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payoffs, consider amending the Two Stags game of Figure 1(i) so that the row

player attains a payoff of 2b − c from coordination on the first stag, and the

column player attains a payoff of 2b − c from coordination on the second stag.

It is clear that any individualistic reasoning process followed by both players,

even if it takes into account the payoffs of the other player, will fail to attain

efficient coordination. Magical thinking is thus insufficient to achieve the out-

comes achieved by SI types in such games. This is related to the discussion of

conditional cooperation in Section 5.5.

5.3. Commitment

In discussions about an earlier draft of this work, it has been proposed by

a reader that the key feature of SI types is the ability to commit to a non-

individually rational strategy. This cannot be the case in general, as for some

games, for example coordination games and threshold public goods games, SI

types can collaborate in such a way that the resulting strategy profile satisfies

individual rationality. For other games, such as prisoner’s dilemmas, there does

indeed exist a conflict between collective rationality and individual rationality.

Considering the two player prisoner’s dilemma, N types will always stick with

the status quo action and defect, whereas SI types, if playing against another SI

type, will collaborate to cooperate. So, from the status quo, one type (N) plays

a myopic individualistic best response, whereas the other type (SI) plays a coali-

tional Pareto improving response when this is possible. Thus both individual

and collective rationality are represented. There is no type, say an FalseSI type,

that pretends to be an SI type and agrees to mutualistic collaboration with SI

types, but in fact defects. Such a type would, of course, under non-assortative

matching, multiply in a population of SI types playing prisoner’s dilemmas.

However, this is a second order question to that posed in the current paper.

In the same way that the concept of the truth must exist before the concept

of a lie can make sense, the ability to make collaborative decisions must exist

prior to the ability to cheat one’s collaborative partners. In any case, in many,

probably most, cases of human collaboration, collectively rational decisions do
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+1 ×

+1 3 0

× 4 1

(i)

+1 ×

+1 3 2

× 2 1

(i-a)

+1 ×

+1 3 −4

× 4 1

(ii)

+1 ×

+1 3 0

× 0 1

(ii-a)

Figure 6: For each combination of cooperate (+1) and defect (×), entries give, for

the row player in two prisoner’s dilemmas, his fitnesses [(i),(ii)] or his preferences

when he is an altruist [(i-a),(ii-a) corresponding to (i),(ii) respectively].

not conflict with individual rationality.

5.4. Altruists

Similarly to those of magical thinkers, the preferences of altruists differ from

those of a fitness maximizing individual. Altruists will, when given the oppor-

tunity, sacrifice some amount of their own fitness in order to increase the fitness

of others. This can sometimes solve coordination problems. Consider utilitar-

ian altruists whose preferences correspond to maximizing the average fitness

of those playing a game. For the prisoner’s dilemma in Figure 6(i) this gives

preferences as in Figure 6(i-a). Given these preferences, an altruist will act as a

cooperator and so, as discussed in Section 5.1, altruism will not proliferate when

rare in the absence of assortative matching. However, altruism may not even

solve the coordination problem to begin with, even for prisoner’s dilemmas. For

the prisoner’s dilemma in Figure 6(ii), a utilitarian altruist will still face the

coordination problem of Figure 6(ii-a). A similar comment applies to threshold

public goods problems (Figure 5).

5.5. Conditional cooperators

Conditional cooperators identify the type of those with whom they interact

and condition their action choice on this information (Hamilton, 1964a,b). This

has been called a green-beard effect (Dawkins, 1976), as individuals with some

observable characteristic - a “green beard”, behave cooperatively towards other
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+1 ×

+1 3, 3 0, 2

× 2, 0 2, 2

(i)

+1 ×

+1 1, 1 0, 0

× 0, 0 2, 2

(ii)

+1 ×

+1 3, 1 0, 0

× 2, 0 2, 2

(iii)

Figure 7: Three games which are strategically equivalent from an individual

perspective. For each combination of +1 and ×, entries give fitnesses for the

row and column players respectively.

individuals with this characteristic. When there is a unique “cooperative action”

(Si = {×,+1} for all i ∈M , (PG) holds), conditional cooperators who play +1

if and only if there are least n conditional cooperators in the group are similar

to SI types and will proliferate when rare. This is the case for the threshold

public goods model of Section 2.5 and for prisoner’s dilemmas.

However, to expand the concept of conditional cooperation so as to be appli-

cable to a large variety of games is a non-trivial task. All of the games in Figure

7 are strategically equivalent from an individual perspective: given expectations

of the opponent’s strategy (including mixed strategies), optimal strategies are

the same in each of the cases. However, we do not want the conditional coopera-

tor who switches to +1 when he is matched to a conditional cooperator in game

(i) to do the same thing in games (ii) or (iii). Hence a reasonable definition of

what a conditional cooperator should do in different games has to depend on

his own payoffs and the payoffs of his opponent. Specifically, to mimic the out-

comes obtained by SI types, the collective rationality of strategy profiles must

be considered.

Furthermore, it is not clear how conditional cooperation should work when

there are multiple opportunities for mutualistic collaboration. In particular, if

collaborative opportunities are asymmetric, such as in the Chase and Ambush

game in Figure 1(ii), something more than merely conditioning on the other

players being conditional cooperator types is required. One possibility would be

for there to exist multiple types of conditional cooperator. For example, there
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could exist individuals with multiple shades of green beard, with the individual

who sports the lighter shade of beard playing +1 and the darker individual play-

ing +2. What this conditioning is of course doing, is to implement asymmetric

coordination of strategic adjustment.

We have seen in the above two paragraphs that to extend the idea of condi-

tional cooperation beyond specific games, we need to introduce both considera-

tions of collective rationality and of coordinated strategic adjustment. But these

are exactly the elements - collective rationality, coordinated strategic choice, op-

timization - that are incorporated into our SI types, who are endowed with a

comprehensive, multipurpose faculty that can be used for all such problems.

6. Conclusion: a modest proposal

It has been shown that for broad classes of games we can expect at least some

degree of agency to act at a collective level as if motivated by shared intentions.

More specifically, we can expect to observe behavior that accords with some

degree of agency being exercised at a collective level. The paper is silent as to

how this collective agency is created, which as noted in the introduction, could

be via explicit communication, tacit understanding, or team reasoning. Such

an approach is not unusual to economics, where concepts such as the ‘firm’ and

the ‘household’ are frequently used. It is clear that when decisions at a firm or

household level are discussed, some degree of collective agency must be present,

although the nature of this collective agency is not usually made explicit.

However, game theory in economics is in a weaker position. The most com-

monly used solution concept, Nash equilibrium, is habitually used without any

explicit justification. Moreover, many of the Nash equilibria that occur in the

literature are not Strong Equilibria; they are not robust to coalitional deviation,

or to use the language of the current paper, from a status quo of such a Nash

equilibrium, there exists an opportunity for collaboration. Therefore, an impli-

cation of the current work is that when using the concept of Nash equilibrium,

an economist should ask whether the equilibrium is a Strong Equilibrium, and
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if it is not, should carefully consider the extent to which joint agency might be

expected to manifest itself in the problem under consideration. For example,

does the problem satisfy (PG), or would a collaborative move away from the

Nash equilibrium in question be likely to satisfy (PC)? How large would the

gains be for collaborators? What would the externalities of collaboration be?

Moreover, this proposal is not just predicated on the work here, but also on rich

empirical evidence that the ability to share intentions and pursue mutually ben-

eficial goals together with others is a basic human trait that cannot be ignored

by any field that purports to scientifically consider human action.

Appendix A. Proofs

Denote the average status quo payoff, by

π :=
1

m

m∑
i=1

πi(×), i ∈M.

Define

πmax

N := max
k≥n

πk

N , πmin

SI := min
k≥n

πk

SI .

Proof of Theorem 1. The average fitness of an N type is bounded above by

fN(x) ≤ Prx[Z < n |N ]︸ ︷︷ ︸
Prob. too few
SI types for

collaboration

π + Prx[Z ≥ n |N ]︸ ︷︷ ︸
Prob. enough
SI types for

collaboration

πmax

N .

The average fitness of an SI type is bounded below by

fSI(x) ≥ Prx[Z < n− 1 |SI]︸ ︷︷ ︸
Prob. too few
SI types for

collaboration

π + Prx[Z ≥ n− 1 |SI]︸ ︷︷ ︸
Prob. enough
SI types for

collaboration

πmin

SI .

Subtracting,

fSI(x)− fN(x) = (fSI(x)− π)− (fN(x)− π) (A.1)

≥ Prx[Z ≥ n− 1 |SI](πmin

SI − π)− Prx[Z ≥ n |N ](πmax

N − π).

31



Now, (B) implies that for small enough xSI ,

Prx[Z ≥ n− 1 |SI] > Prx[Z ≥ n |N ]

(
πmax

N − π
πmin

SI − π

)
, (A.2)

By (C) and (PG), when an SI type in any position in the game is in the set

of collaborators, he gets a payoff strictly greater than the status quo payoff for

that position. By (R) and (PG), when an SI type in any position in the game

is not in the set of collaborators, he gets a payoff at least as high as the status

quo payoff for that position. So when k ≥ n, SI types always do at least as

well as the status quo payoff and sometimes strictly improve upon it. Therefore

πmin
SI > π.

So πmin
SI − π > 0. Together with (A.2), this implies that the RHS of (A.1) is

greater than zero for small enough xSI . That is, xSI = 0 cannot be an ESS, so

any ESS must have xSI > 0.

Proof of Corollary 1. When n = m, unless MSI = M , s∗ = ×. Therefore, for

any x, the fitness of an N type is

fN(x) = π.

Now, n = m implies C(M) 6= ∅ and C(M) = C∗(M), so (C) implies that πm
SI > π.

Therefore, for xSI > 0, the fitness of an SI type is bounded below by

fSI(x) ≥ Prx[Z < m− 1 |SI]π + Prx[Z = m− 1 |SI]πm

SI > π.

Proof of Corollary 2. The proof is identical to the proof of Theorem 1, except

when it comes to showing that πmin
SI > π. By (C) and GMSI ,T,Γ(C(T )) = 1,

when an SI type in any position in the game is in the set of collaborators, he

gets a payoff strictly greater than the status quo payoff for that position. By

(PG) and GMSI ,T,Γ(C(T )) = 1, when an SI type in any position in the game is

not in the set of collaborators, he gets a payoff at least as high as the status

quo payoff for that position. So when k ≥ n, SI types always do at least as

well as the status quo payoff and sometimes strictly improve upon it. Therefore

πmin
SI > π.

32



Proof of Example 1. The term in brackets in (3), simplified and divided by c

equals

b

c
−

m−1∑
k=n−1

n!(m− n)!

(k + 1)!(m− 1− k)!

(
xSI

1− xSI

)k−(n−1)

, (A.3)

which is clearly strictly decreasing in xSI when n < m, approaches b/c − 1 > 0

as xSI → 0, and diverges to −∞ as xSI → 1. Therefore (A.3) equals zero and

(3) crosses zero at some unique x∗, is strictly positive for all x such that xSI ∈

(0, x∗SI), and is strictly negative for all x such that xSI ∈ (x∗SI , 1). Therefore x∗

is the unique ESS and the replicator dynamic converges to x∗ from all x such

that xSI ∈ (0, 1). Now, (A.3) increases in b/c, n and decreases in m, so the value

of xSI at which (A.3) equals zero must increase or decrease respectively.

Fixing xSI < 1 and letting b/c → ∞, the expression in (A.3) diverges to

positive infinity, so x∗SI → 1 as c → 0. Conversely, if we fix xSI > 0 and let

c→ b, then using expression (1) in the main text, we have

fSI(x)→
m−1∑
k=n

Prx[Z = k] b

(
1− n

k + 1

)
≤ Prx[Z ≥ n] b

(
1− n

m

)
< Prx[Z ≥ n] b = fN(x),

so x∗SI → 0 as c→ b.

Proof of Theorem 2.

fN(x)− π =

m−1∑
k=n

Prx[Z = k |N ](πkN − π)

and

fSI(x)− π =

m−1∑
k=n−1

Prx[Z = k |SI](πk+1
SI − π),

giving

fSI(x)− fN(x) = Prx[Z = n− 1 |SI]

(
(πnSI − π)+ (A.4)

m−1∑
k=n

Prx[Z = k |SI]

Prx[Z = n− 1 |SI]
(πk+1

SI − π)− Prx[Z = k |N ]

Prx[Z = n− 1 |SI]
(πkN − π)

)
.
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Now, when |MSI | = n, all possible collaborative opportunities involve all individ-

uals in MSI , so (PC) implies that (πnSI−π) > 0. Furthermore, as discussed in the

main body of the paper, (B) implies that for k ≥ n, Prx[Z = k |N ]/Prx[Z = n− 1 |SI]→

0 as xSI → 0, and (REL) implies that for k ≥ n, Prx[Z = k |SI]/Prx[Z = n− 1 |SI]→

0 as xSI → 0. This implies that for small enough xSI > 0, the right hand side

of (A.4) is strictly positive, so any ESS must have xSI > 0.

Proof of Theorem 3. Immediate from the discussion prior to the statement of

the Theorem in the main body of the text.

Proof of Theorem 4. By definition, x̂ is an NSS if and only if for all x̃ there

exists ε̃ such that for all ε < ε̃, xε = (1− ε)x̂+ εx̃, we have

gx̂(xε)− gx̃(xε) = (fSI(σ̄(xε))− fN(σ̄(xε))) (σ̄(x̂)− σ̄(x̃)) ≥ 0. (A.5)

If σ̄(x̂) = σ̄(x̃), we have gx̂(xε)− gx̃(xε) = 0. So (A.5) holds if and only if

(a) when σ̄(x̂) > σ̄(x̃), there exists ε̃ such that for all ε < ε̃,

fSI(σ̄(xε))− fN(σ̄(xε)) ≥ 0,

and (b) when σ̄(x̂) < σ̄(x̃), there exists ε̃ such that for all ε < ε̃,

fSI(σ̄(xε))− fN(σ̄(xε)) ≤ 0.

That is, at an interior NSS, fSI(.)− fN(.) must be weakly decreasing and equal

to zero at σ̄(x̂). If σ̄(x̂) = 0 (σ̄(x̂) = 1) is an NSS, then fSI(.) − fN(.) must be

weakly negative (weakly positive) on some open interval bounded below (above)

by σ̄(x̂). As (Bin) implies that no part of fSI(.)−fN(.) is linear, these conditions

are equivalent to fSI(.) − fN(.) being strictly decreasing and equal to zero at

σ̄(x̂), or if σ̄(x̂) = 0 (σ̄(x̂) = 1), fSI(.) − fN(.) being strictly negative (strictly

positive) on some open interval bounded below (above) by σ̄(x̂). These are the

same conditions on σ̄(x̂) as those placed on x∗SI for an ESS of the two type

model.

34



References

Alger, I., Weibull, J.W., 2013. Homo moralis–preference evolution under incom-

plete information and assortative matching. Econometrica 81, 2269–2302.

Alvard, M., 2001. Mutualistic hunting, in: Stanford, C., Bunn, H. (Eds.), The

early human diet: The role of meat. Oxford University Press, Oxford, pp.

261–278.

Alvard, M.S., Nolin, D.A., 2002. Rousseau’s whale hunt? Current Anthropology

43, 533–559.

Ambrus, A., 2009. Theories of coalitional rationality. Journal of Economic

Theory 144, 676 – 695.

Angus, S.D., Newton, J., 2015. Emergence of shared intentionality is coupled

to the advance of cumulative culture. PLoS Comput Biol 11, e1004587.

Aumann, R., 1959. Acceptable points in general cooperative n-person games,

in: Tucker, A.W., Luce, R.D. (Eds.), Contributions to the Theory of Games

IV. Princeton University Press, pp. 287–324.

Bacharach, M., 1999. Interactive team reasoning: a contribution to the theory

of co-operation. Research in economics 53, 117–147.

Bacharach, M., 2006. Beyond individual choice: teams and frames in game

theory. Princeton University Press.

Bernheim, B.D., Peleg, B., Whinston, M.D., 1987. Coalition-proof nash equi-

libria i. concepts. Journal of Economic Theory 42, 1–12.

Bomze, I.M., 1991. Cross entropy minimization in uninvadable states of complex

populations. Journal of Mathematical Biology 30, 73–87.

Bomze, I.M., Weibull, J.W., 1995. Does neutral stability imply Lyapunov sta-

bility? Games and Economic Behavior 11, 173–192.

35



Bowles, S., 2006. Group competition, reproductive leveling, and the evolution

of human altruism. Science 314, 1569–1572.

Bratman, M.E., 1992. Shared cooperative activity. The Philosophical Review

101, 327–341.

Butterfill, S., 2012. Joint action and development. The Philosophical Quarterly

62, 23–47.

Call, J., 2009. Contrasting the social cognition of humans and nonhuman apes:

The shared intentionality hypothesis. Topics in Cognitive Science 1, 368–379.

Choi, J.K., Bowles, S., 2007. The coevolution of parochial altruism and war.

Science 318, 636–640.

Dawkins, R., 1976. The selfish gene. revised edn. 1989 Oxford .

Dekel, E., Ely, J.C., Yilankaya, O., 2007. Evolution of preferences. The Review

of Economic Studies 74, 685–704.

Elster, J., 1979. Ulysses and the Sirens: Studies in Rationaltiy and Irrationality.

Cambridge University Press.

Eshel, I., Cavalli-Sforza, L.L., 1982. Assortment of encounters and evolution of

cooperativeness. Proceedings of the National Academy of Sciences 79, 1331–

1335.

Farrell, J., Maskin, E., 1989. Renegotiation in repeated games. Games and

economic behavior 1, 327–360.

Fisher, R.A., 1930. The Genetical Theory of Natural Selection, ISBN

0198504403, variorum ed.(2000). Oxford University Press, USA.

Gavrilets, S., 2014. Collective action and the collaborative brain. Journal of

The Royal Society Interface 12.

Gilbert, M., 1990. Walking together: A paradigmatic social phenomenon. Mid-

west Studies in Philosophy 15, 1–14.

36



Gillies, D.B., 1959. Solutions to general non-zero-sum games. Contributions to

the Theory of Games 4, 47–85.

Gold, N., Sugden, R., 2007. Collective intentions and team agency. The Journal

of Philosophy 104, 109–137.
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