RNTI

MODULAD
Générer des explications contrefactuelles à l'aide d'un autoencodeur supervisé
In EGC 2022, vol. RNTI-E-38, pp.111-122
Résumé
Dans cet article nous proposons une manière d'améliorer l'interprétabilité des explications contrefactuelles. Une explication contrefactuelle se présente sous la forme d'une version modifiée de la donnée à expliquer qui répond à la question : que faudrait-il changer pour obtenir une prédiction différente ? La solution proposée consiste à introduire dans le processus de génération du contrefactuel un terme basé sur un auto-encodeur supervisé. Ce terme contraint les explications générées à être proches de la distribution des données et de leur classe cible. La qualité des contrefactuels produits est évaluée sur un jeu de données d'images par le biais de différentes métriques. Nous montrons que notre solution s'avère compétitive par rapport à une méthode de référence de l'état de l'art.