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Abstract
The problem of defining products of distributions is a difficult and not completely understood
problem, studied from several points of views since Schwartz established the theory of distributions
around 1950. Many fields, such as wave propagation or quantum mechanics, require such
multiplications. The product of an infinitely differentiable function φ(x) and distribution 4kδ(x) in
Rn is well defined by

(φ(x)4kδ(x), ψ) = (δ(x), 4k(φψ)),

since 4k(φψ) ∈ D(Rn). Using an induction, we derive an interesting formula for 4k(φ(x)ψ(x))

and hence we are able to write out an explicit expression of the product φ(x)4kδ(x). In particular,
we imply the product Xs4kδ(x) with a few applications in further simplifying existing distributional
products. Furthermore, we obtain an asymptotic expression for δ(r−a) in terms of4kδ(x), which is
equivalent to the well-known Pizzetti’s formula. Several asymptotic products including φ(x) δ(r−1),
Xs δ(r−1) as well as the more generalized φ(x) δ(k)(r−1) are calculated and presented as infinitely
series.

Keywords: Distribution, product, asymptotic expansion, asymptotic product, neutrix limit and Pizzetti’s
formula
2010 Mathematics Subject Classification: 46F10

1 Introduction
Physicists have long been using the singular function δ(x), although it cannot be properly defined
within the structure of classical function theory. In elementary physics, one finds the need to evaluate
δ2 when calculating the transition rates of certain particle interactions (12). Schwartz established
theory of distributions by treating singular functions as linearly continuous functionals on the testing
function space whose elements have compact support. Although they are of great importance to
quantum field theory, it is difficult to define products, convolutions and compositions of distributions in
general. The sequential method [(7); (8); (9); (23)] and complex analysis approach [(4); (1)], including
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nonstandard analysis (15), have been the main tools in dealing with those non-linear operations
of distributions in the Schwartz space D′(R). On the other hand, Oberguggenberger (25) wrote a
review book on the theories of (new) generalized functions, initiated by J.F. Colombeau and others
in 1985, that deal with differential algebras larger than the space of distributions and are based
on the ”sequential approach”, i.e. the generalized functions are approximately by (not necessarily
discrete) ”sequences” of smooth functions. They can accommodate most of the particular or intrinsic
definitions of distributional multiplications. Franssens (11) recently investigated the convolution and
multiplication of one-dimensional associated homogeneous distributions by the multi-valued methods
used in quantum field theory. The derived products may involve at most one arbitrary constant.
However, little progress has been made so far towards obtaining the products on manifolds in Rn,
such as the product φ(x) δ(r − 1) on the unit sphere, since Gel’fand introduced special types of
generalized functions. As outlined in the abstract, we start to evaluate the product φ(x)4kδ(x)
based on the formula of 4k(φ(x)ψ(x)), and hence we are able to represent the more generalized
φ(x) δ(k)(r − 1) as an asymptotic expression by the Fourier transform.

2 The product Xs4kδ(x) in Rn

Lemma 2.1. Let φ(x) and ψ(x) be infinitely differentiable functions. Then for k = 0, 1, 2, · · ·

4k(φψ) =
∑

m+i+l=k

2i
(
m+ l

m

)(
k

m+ l

)
∇i4mφ · ∇i4lψ (2.1)

where

∇iφ · ∇iψ =


φψ if i = 0,
n∑
j=1

∂i

∂xij
φ
∂i

∂xij
ψ if i > 0.

Proof. We use an induction to prove the formula. Assume that k = 0, it is clearly true since both
sides are equal to φψ. Suppose it holds for some integer k > 0 and we need to consider k + 1 case.
Obviously,

4k+1(φψ) =
∑

m+i+l=k

2i
(
m+ l

m

)(
k

m+ l

)
4(∇i4mφ · ∇i4lψ)

and

4(∇i4mφ · ∇i4lψ)

= ∇i4m+1φ · ∇i4lψ +∇i4mφ · ∇i4l+1ψ + 2∇i+14mφ · ∇i+14lψ
4
= I1 + I2 + I3

by a simple calculation.

Replacing m+ 1 by m, we calculate

∑
m+i+l=k

2i
(
m+ l

m

)(
k

m+ l

)
I1

=
∑

m+i+l=k

2i
(
m+ l

m

)(
k

m+ l

)
∇i4m+1φ · ∇i4lψ

=
∑

m+i+l=k+1

2i
(
m− 1 + l

m− 1

)(
k

m− 1 + l

)
∇i4mφ · ∇i4lψ.
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Similarly,

∑
m+i+l=k

2i
(
m+ l

m

)(
k

m+ l

)
I2

=
∑

m+i+l=k

2i
(
m+ l

m

)(
k

m+ l

)
∇i4mφ · ∇i4l+1ψ

=
∑

m+i+l=k+1

2i
(
m+ l − 1

m

)(
k

m+ l − 1

)
∇i4mφ · ∇i4lψ.

As for I3,

∑
m+i+l=k

2i
(
m+ l

m

)(
k

m+ l

)
I3

=
∑

m+i+l=k

2i+1

(
m+ l

m

)(
k

m+ l

)
∇i+14mφ · ∇i+14lψ

=
∑

m+i+l=k+1

2i
(
m+ l

m

)(
k

m+ l

)
∇i4mφ · ∇i4lψ.

By direct calculation,(
m− 1 + l

m− 1

)(
k

m− 1 + l

)
+

(
m+ l − 1

m

)(
k

m+ l − 1

)
+

(
m+ l

m

)(
k

m+ l

)

=

(
m+ l

m

)(
k + 1

m+ l

)
.

This completes the proof of the Lemma.

Remark 1: Lemma 2.1 was first presented in (22) with ambiguity and confusion between ordinary
function multiplication and the · operation given in Lemma 2.1, which cause errors in computing
several distributional products in the paper later on.

Theorem 2.2. Let φ(x) ∈ C∞(Rn). Then the distributional product φ(x) and 4kδ(x) exists and

φ(x)4kδ(x) =
∑

m+i+l=k

2i(−1)i
(
m+ l

m

)(
k

m+ l

)
∇i4mφ(0) · ∇i4lδ(x), (2.2)

for k = 0, 1, 2, · · · .

Proof. Clearly, φ(x)ψ(x) ∈ D(Rn) if ψ(x) ∈ D(Rn) and φ(x) ∈ C∞(Rn). Hence

(φ(x)4kδ(x), ψ(x)) = (4kδ(x), φ(x)ψ(x))

=
∑

m+i+l=k

2i
(
m+ l

m

)(
k

m+ l

)
∇i4mφ(0) · ∇i4lψ(0),

by Lemma 2.1. The result follows from

∇i4lψ(0) = (−1)i(∇i4lδ(x), ψ(x)).

This completes the proof of the theorem.
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It follows from Theorem 2.2 that

Xδ(x) = 0,

X4δ(x) = −2∇δ(x),

X42δ(x) = −4∇4δ(x),

X4kδ(x) = −2k∇4k−1δ(x),

X24δ(x) = 2nδ(x),

X24kδ(x) = 2nk4k−1δ(x) + 22k(k − 1)∇24k−2δ(x),

X34δ(x) = 0,

X34kδ(x) = −12nk(k − 1)∇4k−2δ(x)− 23k(k − 1)(k − 2)∇34k−3δ(x),

where X =
∑n
i=1 xi and k = 0, 1, 2, · · · .

On the other hand, we can directly use an induction to show that

4k(Xφ) = 2k∇4k−1φ+X4kφ

which also claims that X4kδ(x) = −2k∇4k−1δ(x) in the above. It is obviously true for k = 0.
Assume it holds for the case of k > 0, that is

4k(Xφ) = 2k∇4k−1φ+X4kφ.

Therefore,

4k+1(Xφ) = 44k(Xφ) = 4(2k∇4k−1φ+X4kφ)

= 2k∇4kφ+4(X4kφ)

= 2(k + 1)∇4kφ+X4k+1φ.

Similarly, we can get

4k(X2φ(x))
∣∣∣
x=0

= 2nk4k−1φ(0) + 22k(k − 1)∇24k−2φ(0),

which claims
X24kδ(x) = 2nk4k−1δ(x) + 22k(k − 1)∇24k−2δ(x).

However, it seems infeasible to write out an explicit formula for the important product Xs4kδ(x), for
any positive integer s, by a direct computation without employing Theorem 2.2 (21). We shall provide
a few interesting applications of the product in simplifying other existing distributional multiplications
in Rn, as well as in obtaining some asymptotic products related to the delta functions on unit spheres
in the following section after completing Theorem 2.3 below.

Theorem 2.3. The distributional product Xs4kδ(x) exists and

Xs4kδ(x) =


2sk!s!

s/2∑
j=0

nj∇s−2j4k−s+jδ(x)

22jj!(k − s+ j)!(s− 2j)!
if s is even,

−2sk!s!

bs/2c∑
j=0

nj∇s−2j4k−s+jδ(x)

22jj!(k − s+ j)!(s− 2j)!
if s is odd,

where 4−p = 0 for any positive integer p and k, s = 0, 1, 2, · · · .

Proof. Assume φ(x) = Xs and s is even. By Theorem 2.2,

φ(x)4kδ(x) =
∑

m+i+l=k

2i(−1)i
(
m+ l

m

)(
k

m+ l

)
∇i4mφ(0) · ∇i4lδ(x).
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Note that all non-zero terms in the above sum require 2m+ i = s. So,

φ(x)4kδ(x)

= 2s(−1)s
(
k − s

0

)(
k

k − s

)
∇sφ(0) · ∇s4k−sδ(x) +

2s−2(−1)s−2

(
k − s+ 2

1

)(
k

k − s+ 2

)
∇s−24φ(0) · ∇s−24k−s+1δ(x) +

2s−4(−1)s−4

(
k − s+ 4

2

)(
k

k − s+ 4

)
∇s−442φ(0) · ∇s−44k−s+2δ(x) +

· · ·+

20(−1)0
(
k − 1

s/2

)(
k

k − 1

)
∇04s/2φ(0) · ∇04k−s/2δ(x).

Clearly, we have

∇sφ(0) · ∇s4k−sδ(x) = s!∇s4k−sδ(x),

∇s−24φ(0) · ∇s−24k−s+1δ(x) = ns!∇s−24k−s+1δ(x),

· · ·
∇04s/2φ(0) · ∇04k−s/2δ(x) = ns/2s!∇04k−s/2δ(x).

Therefore,

φ(x)4kδ(x)

= 2s
k!s!

0!(k − s)!s!∇
s4k−sδ(x) +

2s−2 nk!s!

1!(k − s+ 1)!(s− 2)!
∇s−24k−s+1δ(x) +

2s−4 n2k!s!

2!(k − s+ 2)!(s− 4)!
∇s−44k−s+2δ(x) +

· · ·+

20 ns/2k!s!

(s/2)!(k − s/2)!0!
∇04k−s/2δ(x)

= 2sk!s!

s/2∑
j=0

nj∇s−2j4k−s+jδ(x)

22jj!(k − s+ j)!(s− 2j)!
.

The case that s is odd follows similarly. This completes the proof of the theorem.

Theorem 2.4. Let f(x) ∈ C∞(R). Then the distributional product f(X)4kδ(x) exists and

f(X)4kδ(x) =
∑

m+i+l=k

2i(−1)i
(
m+ l

m

)(
k

m+ l

)
nmf (2m+i)(0)∇i4lδ(x),

for k = 0, 1, 2, · · ·

Proof. It easily follows from Theorem 2.2.
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Theorem 2.5. Let φ(x) ∈ C∞(Rn). Then the distributional product φ(x)∇kδ(x) exists and

φ(x)∇kδ(x) =

k∑
j=0

(−1)j
(
k

j

)
∇jφ(0)∇k−jδ(x),

for k = 0, 1, 2, · · · .

Proof. It follows from the identity below claimed by induction

∇k(φψ) =

k∑
j=0

(
k

j

)
∇jφ∇k−jψ.

In particular, we come to

f(X)∇kδ(x) =

k∑
j=0

(−1)j
(
k

j

)
njf (j)(0)∇k−jδ(x)

for f(x) ∈ C∞(R) and k = 0, 1, 2, · · · and

Xs∇kδ(x) =

 (−1)s

(
k

s

)
nss!∇k−sδ(x) if s ≤ k,

0 if s > k.

At the end of this section, we would like to supply a couple of appealing applications of the product
Xs4kδ(x) in simplifying several multiplications obtained in [(24); (1)].

Let r = (x21 + · · · + x2n)1/2 and let ρ(s) be a fixed infinitely differentiable function defined on
R+ = [0, ∞) having the properties:

(i) ρ(s) ≥ 0;

(ii) ρ(s) = 0 for s ≥ 1;

(iii)
∫
Rn

δm(x)dx = 1;

where δm(x) = cnm
nρ(m2r2) and cn is the constant satisfying (iii).

It follows that {δm(x)} is a regular δ - sequence of infinitely differentiable functions converging to
δ(x) in D′(Rn) (an n-dimensional space of distributions).

Definition 2.1. Let f and g be distributions in D′(Rn) and let

gm(x) = (g ∗ δm)(x) = (g(x− t), δm(t))

where t = (t1, t2, · · · , tn). The noncommutative neutrix product f.g of f and g exists and is equal to
h if

N − lim
m→∞

(fgm, φ) = (h, φ),

where φ ∈ D(Rn) and the N -limit is the neutrix limit defined in (26).

Note that Fisher [(7); (8); (9); (10)], for example) has actively used Jones’ δ-sequence δn(x) =
nρ(nx) for n = 1, 2, · · · , and the concept of neutrix limit to deduce numerous products, powers,
convolutions, and compositions of distributions on R since 1969.
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With the above definition, Li and Zou (24) showed that the noncommutative neutrix product
r−k.∇2lδ(x) exists for k = 1, 2, · · · and l = 0, 1, 2, · · · , and

r−2k.∇2lδ(x)

=

l∑
j=0

bljn
l−j(−1)l+jX2j4k+l+jδ(x)

(k + l + j)! 2k+l+j (n+ 2l + 2j) · · · (n+ 2k + 2l + 2j − 2)

where blj is a constant satisfying a certain recursion.

It is clear to see that the above result can be further calculated and simplified with Theorem 2.3,
since

X2j4k+l+jδ(x)

= 22j(k + l + j)!(2j)!

j∑
i=0

ni∇2j−2i4k+l−j+iδ(x)

22ii!(k + l − j + i)!(2j − 2i)!
.

On the other hand, Aguirre (1) used the Laurent series of rλ in a neighborhood of λ = −n − 2j for
j = 0, 1, 2, · · · and the following identity (where P is a regular manifold defined in (13)

∂

∂xj
δ(k)(P ) =

∂P

∂xj
δ(k+1)(P ),

to show that the product r−2k and ∇4jδ(x) exists and

r−2k∇4jδ(x) =
−(n+ 2j)(2j)!X4k+j+1δ(x)

(k + j + 1)!2k+j+1n(n+ 2) · · · (n+ 2k + 2j)
.

This, again, can be further simplified by applying the identity below

X4k+j+1δ(x) = −2(k + j + 1)∇4k+jδ(x).

3 The asymptotic products on unit spheres

The distribution δ(k)(r − 1) concentrated on unit sphere r − 1 = 0 is defined as

(δ(k)(r − 1), φ) = (−1)k
∫
r=1

∂k

∂rk
(φrn−1)dω

where dω is the Euclidean element on r = 1 and φ ∈ D(Rn). With the expansion formula∫
r=1

∂k

∂rk
φ(rω)dω = (−1)k

(
k∑
i=0

(
k

i

)
C(m, i)δ(k−i)(r − 1), φ(x)

)
,

Li evaluated the product of f(r) and δ(k)(r− 1) (17), for any infinitely differentiable f(x) at x = 1, and
obtained that

f(r)δ(k)(r − 1) =

k∑
j=0

j∑
i=0

k−j∑
s=0

(−1)jk!f (i)(1)

i!s!(j − i)!(k − j − s)!

·χ(m, i, j)C(m, s)δ(k−j−s)(r − 1)

where χ(m, i, j) and C(m, s) are constants depending on the indices and k ≤ n− 1.
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Later on, Aguirre and Li (2) simplified the product of f(r) and δ(k)(r− 1), and proved that for any
k = 0, 1, · · · ,

f(r)δ(k)(r − 1) =

k∑
j=0

(−1)j
(
k

j

)
f (j)(1)δ(k−j)(r − 1).

In particular, we have

f(r) δ(r − 1) = f(1)δ(r − 1);

f(r) δ′(r − 1) = f(1)δ′(r − 1)− f ′(1)δ(r − 1);

1

r
δ(k)(r − 1) =

k∑
j=0

(
k

j

)
j!δ(k−j)(r − 1).

Furthermore, we assume that H(x1, x2, · · · , xm) is any sufficiently smooth function such that on
H = 0 we have

gradH 6= 0

which means that there are no singular points on H = 0. Then the generalized function δ(H) can be
defined in the following way.

(δ(H), φ) =

∫
H=0

ψ(0, u2, · · · , um)du2 · · · dum

where φ1(u1, · · · , um) = φ(x1, · · ·xm) and ψ = φ1(u)D
(
x
u

)
.

Similarly, we shall define

(δ(k)(H), φ) = (−1)k
∫
H=0

ψ(k)
u1

(0, u2, · · · , um)du2 · · · dum.

As an example, we consider the generalized function δ(α1x1 + · · ·+αmxm), where
∑m
i=1 α

2
i = 1.

The equation
α1x1 + · · ·+ αmxm = 0

determines a hypersurface which passes through the origin and is orthogonal to the unit vector α.
Making the substitution

u1 = α1x1 + · · ·+ αmxm, u2 = x2, · · · , um = xm,

we thus arrive at
(δ(α1x1 + · · ·+ αmxm), φ) =

∫
∑
αixi=0

φdu2 · · · dum.

Let f(x) be a C∞(R) function and let H be defined as above. Then the product f(H) δ(k)(H) exists
(2) for k = 0, 1, 2, · · · , and

f(H) δ(k)(H) =

k∑
i=0

(
k

i

)
(−1)if (i)(0) δ(k−i)(H).

We define Sφ(r) as the mean value of φ(x) ∈ D(Rn) on the sphere of radius r by

Sφ(r) =
1

Ωn

∫
r=1

φ(rσ)dσ

where Ωn = 2π
n
2 /Γ(n

2
) is the surface area of unit sphere r = 1. We can write out an asymptotic

expression for Sφ(r) (see (6)), namely

Sφ(r) ∼ φ(0) +
1

2!
S′′φ(0)r2 + · · ·+ 1

(2k)!
S

(2k)
φ (0)r2k + · · ·

=

∞∑
k=0

4kφ(0)r2k

2k k!n(n+ 2) · · · (n+ 2k − 2)

298



British Journal of Mathematics and Computer Science 3(3), 291-303, 2013

which is the well-known Pizzetti’s formula and it plays an important role in the work of Li, Aguirre and
Fisher [(23); (16); (19); (5); (3); (18)].

Remark 2: Pizzetti’s formula is not a convergent series for φ ∈ D(Rn) from the following counterexample.

φ(x) =

{
exp{− 1

r2(1−r2)} if 0 < r < 1,
0 otherwise.

Clearly, φ(x) ∈ D(Rn) and Sφ(r) 6= 0 for 0 < r < 1, but the series in the formula is identically equal
to zero. Obviously, Sφ(r)→ 0 as r → 0. However, it converges in the space of analytic functions from
the reference (13).

Now, we turn our attentions to studying the product φ(x) δ(r− 1), where φ(x) ∈ C∞(Rn) and the
more generalized multiplication φ(x) δ(k)(r − 1). It seems impossible to get them by either following
the computational patterns of the products f(r) δ(k)(r−1) and f(H) δ(k)(H), or any existing methods
including invariant theorem (20). However, we shall be able to derive the asymptotic products below to
approximate these products. This idea will have many applications in dealing with complex products
in Rn.

Theorem 3.1. The asymptotic expression

δ(r − 1) ∼ 2π
n
2

∞∑
k=0

4kδ(x)

22k k! Γ(n
2

+ k)
(3.1)

holds in D′(Rn).

Proof. Since
(δ(r − a), φ) =

∫
r=a

φdσ = an−1

∫
r=1

φ(rσ)dσ,

for any φ ∈ D(Rn). We come to

Sφ(r) =
1

an−1 Ωn
(δ(r − a), φ)

∼
∞∑
k=0

S
(2k)
φ (0)

(2k)!
r2k =

∞∑
k=0

(δ(2k)(r), φ)

(2k)!
r2k

=
1

an−1 Ωn

(
2π

n
2 an−1

Γ(n
2

)

∞∑
k=0

δ(2k)(r)

(2k)!
r2k, φ

)

where S(2k)
φ (0) = (δ(2k)(r), φ). Hence

δ(r − a) ∼ 2π
n
2 an−1

Γ(n
2

)

∞∑
k=0

δ(2k)(r)

(2k)!
a2k.

It follows from reference (1) that

Ωn δ
(2k)(r)

(2k)!
= resλ=−n−2k r

λ =
Ωn4kδ(x) Γ(n

2
)

2k k! 2k Γ(n
2

+ k)
,

which implies

4kδ(x) =
22k k! Γ(n

2
+ k)

(2k)! Γ(n
2

)
δ(2k)(r). (3.2)

Therefore,

δ(r − a) ∼ 2π
n
2 an−1

∞∑
k=0

a2k4kδ(x)

22k k! Γ(n
2

+ k)
(3.3)

in D′(Rn). This completes the proof of the theorem by setting a = 1.
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Remark 3: Clearly, Pizzetti’s formula is equivalent to equation (3.3), which can be directly obtained
(22) by the Fourier transform and the following formula in (14)

Jν(x) =
1

2ν
√
π Γ(ν + 1

2
)

∫ π

0

eix cos θxν sin2ν θdθ. (3.4)

Furthermore, the equality of asymptotic expression (3.3) holds in the space of analytic functions (13).

It follows from Theorem 2.2 and equation (3.2) that

φ(x) δ(2k)(r)

=
(2k)! Γ(n

2
)

22k k! Γ(n
2

+ k)

∑
m+i+l=k

2i(−1)i
(
m+ l

m

)(
k

m+ l

)
∇i4mφ(0) · ∇i4lδ(x),

for any φ(x) ∈ C∞(Rn) and k = 0, 1, 2, · · · .

In particular, we have for k = 0 that

φ(x) δ(r) = φ(0)δ(x).

Theorem 3.2. The asymptotic product of φ(x) and δ(r − 1) exists and

φ(x) δ(r − 1)

∼ 2π
n
2

∞∑
k=0

∑
m+i+l=k

(−1)i

(
m+ l

m

)(
k

m+ l

)
∇i4mφ(0) · ∇i4lδ(x)

22k−i k! Γ(
n

2
+ k)

for any φ(x) ∈ C∞(Rn).

Proof. It immediately follows from Theorems 3.1 and 2.2.

Theorem 3.3. The asymptotic product of Xs and δ(r − 1) exists and

Xs δ(r − 1)

∼


2s+1π

n
2 s!

∞∑
k=0

s/2∑
j=0

nj ∇s−2j4k−s+jδ(x)

22j+2kj!(k − s+ j)!(s− 2j)! Γ(n
2

+ k)
if s is even,

−2s+1π
n
2 s!

∞∑
k=0

bs/2c∑
j=0

nj ∇s−2j4k−s+jδ(x)

22j+2kj!(k − s+ j)!(s− 2j)! Γ(n
2

+ k)
if s is odd.

Proof. It directly follows from Theorems 3.1 and 2.3.

Similarly, we can follow the ideas presented in (22) and the Fourier transform to obtain

δ(k)(r − a)

∼


(−1)k2π

n
2 an−1−k

∞∑
j=0

Γ(n+ 2j)a2j4jδ(x)

22j j! Γ(n
2

+ j) Γ(n+ 2j − k)
if k ≤ n− 1,

(−1)k2π
n
2 an−1−k

∞∑
j=d k−n+1

2
e

Γ(n+ 2j)a2j4jδ(x)

22j j! Γ(n
2

+ j) Γ(n+ 2j − k)
if k > n− 1.

In particular, we have for k = 0

δ(r − a) ∼ 2π
n
2 an−1

∞∑
j=0

a2j

22j j! Γ(n
2

+ j)
4jδ(x)
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which coincides with equation (3.3).

It follows from equation (3.2) that

δ(k)(r − a)

∼


(−1)k2π

n
2 an−1−k

Γ(n
2

)

∞∑
j=0

Γ(n+ 2j)a2j δ(2j)(r)

(2j)! Γ(n+ 2j − k)
if k ≤ n− 1,

(−1)k2π
n
2 an−1−k

Γ(n
2

)

∞∑
j=d k−n+1

2
e

Γ(n+ 2j)a2j δ(2j)(r)

(2j)! Γ(n+ 2j − k)
if k > n− 1.

Clearly, we get from k = 0

δ(r − a) ∼ 2π
n
2 an−1

Γ(n
2

)

∞∑
j=0

δ(2j)(r)

(2j)!
a2j

which is the same result obtained previously.

Setting a = 1, we have the following generalized products from Theorem 2.2.

φ(x) δ(k)(r − 1)

∼



2π
n
2 (−1)k

∞∑
j=0

φ(x)4jδ(x) Γ(n+ 2j)

22j j! Γ(n
2

+ j) Γ(n+ 2j − k)

= 2π
n
2 (−1)k

∞∑
j=0

Γ(n+ 2j)

22j j! Γ(n
2

+ j) Γ(n+ 2j − k)
·

∑
m+i+l=j

2i(−1)i
(
m+ l

m

)(
j

m+ l

)
∇i4mφ(0) · ∇i4lδ(x) if k ≤ n− 1,

2π
n
2 (−1)k

∞∑
j=d k−n+1

2
e

φ(x)4jδ(x) Γ(n+ 2j)

22j j! Γ(n
2

+ j) Γ(n+ 2j − k)

= 2π
n
2 (−1)k

∞∑
j=d k−n+1

2
e

Γ(n+ 2j)

22j j! Γ(n
2

+ j) Γ(n+ 2j − k)
·

∑
m+i+l=j

2i(−1)i
(
m+ l

m

)(
j

m+ l

)
∇i4mφ(0) · ∇i4lδ(x) if k > n− 1.

The product Xs δ(k)(r − 1) can be derived easily using Theorem 2.3 and we leave it to interested
readers.
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