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Abstract

The modeling and simulation of distributed systems is the basis for investigations and optimiza-
tion of physical systems. For example, distributed systems, such as electromagnetic, thermic
or acoustic field distributions are modeled and simulated to improve the properties of electrical
and mechanical systems. Due to the high complexity of these distributed systems, investi-
gations are possible only for small sections and with high computational efforts. Behavioral
models are necessary to investigate the overall behavior of the distributed systems. These be-
havioral models have to be a very good approximation to the physical system and small enough
for fast and efficient investigations. In this work the focus is on systems where also distributed
sources have to be included in the behavioral models. For example, energy sources, thermal
sources, sources of noise or other disturbances are incorporated as distributed sources in the
behavioral models.

Most widely electrical networks are used for the behavioral modeling of distributed systems
and these can be investigated with electrical circuit simulators. Here, the behavioral models
of distributed systems are electrical networks with a large number of nodes and have linear
resistive, inductive and capacitive elements as well a large number of sources. Typical sizes
for such a network are up to millions of linear elements and up to thousands of sources. Due
to the high number of electrical elements in the behavioral models of distributed systems,
which continue to require high computational efforts in simulations, the practical applicability
is limited. Based on the fact that the network is not investigated in all modeled points in space
since the behavior at only a few of the nodes of the network is of interest, a motivation for a
model reduction is given. As in image processing and audio and video compression, a small
model, which has the relevant properties of the original model is sought after. The objective of
model reduction is to find a small network model that approximates the behavior at the points of
interest of the behavioral model. In simulations the reduced model replaces the large network
model, enabling fast simulations with a low computational effort.

The first part of this work deals with the methods for reducing electrical networks in the sense
of reducing the number of nodes and elements. The behavior at selected nodes is to be ap-
proximated in the reduced network model. Properties of networks which have to be preserved,
properties which can be approximated as well as properties which can be neglected in a re-
duced model are identified. Existing methods for model reduction are examined in a common
framework. The applicability for the reduction of electrical networks, such as those used in
behavioral modeling, is investigated.

In the second part of this work special attention is paid to distributed systems with a large
number of distributed sources. State-of-the-art model reduction methods are able to reduce
large linear RLC-networks, but suffer from low efficiency if a network model with an additional
large number of sources is to be reduced. Existing model reduction methods approximate the
behavior at the nodes of interest of the network within a specified range, for example for all
signals in a defined frequency band. For all signals within this range, the behavior at the
nodes of interest of the network is to be approximated. A large number of sources requires a
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large number of nodes where the behavior of the network is to be approximated. Specifically,
in addition to the nodes of interest, the behavior at each node where a source is connected
has to be approximated in a reduced model. Several existing approaches dealing with large
numbers of nodes where the behavior is to be approximated are presented in this work. Their
limitations in applicability and effectiveness for the reduction of networks with distributed
sources is emphasized.

Furthermore, in the second part of this work a new method is presented that overcomes some
of the drawbacks of the existing methods in the reduction of networks with a large number of
distributed sources. Existing model reduction methods do not consider the distributed sources’
behavior in the model reduction process. The idea of the presented method takes into account
the a priori defined signals at the networks nodes connected with a source. The reducible net-
work model is adapted for an efficient reduction, preserving or approximating the behavior
at the network nodes of interest. Thus, the method proposed in this work includes in a pre-
ceding step the a priori defined knowledge of the distributed sources’ behavior to increase the
efficiency of the subsequent model reduction process.

The presented method is divided into two steps. Firstly, the number of nodes where the behavior
has to be approximated is reduced. After that the network is more efficiently reduced with
model reduction methods. For the first step, based on the functions describing the network
models of the distributed sources, a function space is spanned. Due to the large number of
distributed sources in the network models, the dimension of the function space is typically very
large. With the help of approximation methods a lower dimension function space is found,
which describes the distributed sources’ behavior. The distributed sources in the network model
are replaced by models of the decreased dimension function space. The number of nodes at
which the behavior has to be approximated in a reduced model is thereby lowered. In the
second part of this work it is shown that a network model is thus generated, which can be more
efficiently reduced with model reduction methods.

Ilustrative as well as industrial examples with distributed sources are reduced in order to vali-
date the proposed method and to show the higher efficiency in model reduction.

Keywords: Modeling, Model Order Reduction, Linear Networks



Zusammenfassung

Die Modellierung und Simulation von verteilten Systemen ist die Basis fiir Untersuchungen
und die Optimierung von physikalischen Systemen. Beispielsweise werden zur Verbesserung
der Eigenschaften von elektrischen und mechanischen Systemen verteilte Systeme, wie elek-
tromagnetische, thermische und akustische Feldverteilungen, modelliert und simuliert. Auf
Grund der hohen Komplexitit dieser verteilten Systeme sind Untersuchungen nur fiir kleine
Ausschnitte und unter hohem Rechenaufwand méglich. Fiir Untersuchungen des Gesamtver-
haltens des verteilten Systems sind Verhaltensmodelle notwendig. Diese Verhaltensmodelle
miissen fiir eine effiziente Simulation sehr klein sein und das physikalische System sehr gut
anndhern. In dieser Arbeit wird der Schwerpunkt auf Verhaltensmodelle gelegt, in welchen
ebenfalls verteilte Quellen beriicksichtigt sind. Zum Beispiel miissen Energiequellen, thermis-
che Quellen, Rauschquellen oder andere Storungen in das Verhaltensmodell eingebaut werden.

Sehr oft werden elektrische Netzwerke als Verhaltensmodelle fiir verteilte Systeme genutzt und
diese konnen mit Schaltkreissimulatoren untersucht werden. Die in dieser Arbeit betrachteten
elektrischen Netzwerke bestehen aus einer hohen Anzahl an Knoten und resistiven, induk-
tiven und kapazitiven Elementen als auch einer hohen Anzahl an Quellen. Typische Grofien
fiir ein solches Netzwerkmodell sind bis zu Millionen lineare Elementen und bis zu Tausende
von verteilten Quellen. Durch hohe Anzahl an elektrischen Elementen im Verhaltensmodell
der verteilten Systeme, welche weiterhin einen hohen Rechenaufwand in Simulationen benoti-
gen, ist die praktische Einsetzbarkeit eingeschrinkt. Eine Motivation fiir eine Modellreduk-
tion ist gegeben, da das Netzwerk nicht in allen modellierten Raumpunkten untersucht werden
soll, sondern nur das Verhalten an einigen ausgewihlten Knoten im Netzwerk untersucht wird.
Wie in der Bildverarbeitung und der Audio- und Videokompression wird ein kleines Mod-
ell, welches die relevanten Eigenschaften des Originalmodells besitzt, gesucht. Das Ziel einer
Modellreduktion ist das Finden eines kleinen Netzwerkes mit einer geringen Anzahl an El-
ementen und Knoten, welches das Verhaltensmodell an ausgewéhlten Knoten nachbildet. In
Simulationen wird das grofle Verhaltensmodell mit dem reduzierten Modell ersetzt und eine
schnelle und effiziente Simulation ermoglicht.

Der erste Teil dieser Arbeit beschiftigt sich mit den Methoden der Reduktion der Anzahl der
Elemente und Knoten von elektrischen Netzwerken. Das Verhalten in ausgewéhlten Knoten des
Netzwerkes soll dabei erhalten bleiben. Eigenschaften welche im reduzierten Modell erhalten
bleiben sollen und Eigenschaften die angenédhert oder vernachléssigt werden konnen, werden
identifiziert. Existierende Methoden fiir die Modellreduktion werden in einem gemeinsamen
Rahmen untersucht. Die Anwendbarkeit fiir die Reduktion von Netzwerken, wie sie in der
Verhaltensmodellierung genutzt werden, wird untersucht.

In dieser Arbeit wird im zweiten Teil besondere Aufmerksamkeit auf verteilte Systeme mit
einer hohen Anzahl an verteilten Quellen gelegt. Existierende Modellreduktionen sind geeignet
fiir die Reduktion von groBen RLC-Netzwerken, allerdings ist die Effektivitiit in der Reduktion
von Netzwerken mit einer hohen Anzahl an Quellen gering. Die Modelreduktionsverfahren
basieren auf der Approximation des Verhaltens in bestimmten Knoten des Netzwerkes. Fiir
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alle Signale in einem bestimmten Bereich, wie beispielsweise in einem Frequenzband, wird
das Verhalten angenéhert. Eine hohe Anzahl an verteilten Quellen im Netzwerk benétigt eine
hohe Anzahl an Knoten, an denen das Verhalten in einem reduzierten Modell approximiert wer-
den muss. Zusitzlich zu den gewihlten Knoten muss an jedem Knoten im Netzwerk, an den
eine Quelle angeschlossen ist, ebenfalls das Verhalten angenihert werden. Einige existierende
Ansitze fiir die Reduktion von Netzwerken, mit vielen Knoten an denen das Verhalten approx-
imiert wird, werden in dieser Arbeit vorgestellt. Thre Anwendbarkeit und Effektivitit fiir die
Reduktion von Netzwerken mit verteilten Quellen wird herausgestellt.

Weiterhin wird im zweiten Teil dieser Arbeit eine neue Methode vorgestellt, welche einige
der Nachteile existierender Methoden in der Reduktion von Netzwerken mit vielen verteilten
Quellen beseitigt. Existierende Modellreduktionsverfahren beriicksichtigen nicht das Verhalten
der verteilten Quellen in der Modellreduktion. Die in dieser Arbeit vorgestellte Methode nutzt
das Wissen iiber das definierte Verhalten der verteilten Quellen, um eine hohere Modellreduk-
tion zu erreichen. Das zu reduzierende Netzwerkmodell wird verdndert, wobei das Verhalten
an den ausgewihlten Knoten erhalten oder angenédhert wird. Damit wird, basierend auf dem
definierten Verhalten der verteilten Quellen, in einem vorangehenden Schritt ein Netzwerk-
modell erzeugt, welches sich nachfolgend mit Modellreduktionsverfahren effektiver reduzieren
lasst.

Die prasentierte Methode kann in zwei Schritte unterteilt werden. Zuerst wird die Anzahl
der Knoten in denen das Verhalten in einem reduzierten Modell angenidhert werden muss ver-
ringert. Danach wird das Netzwerk mit Modellreduktionsverfahren effektiver reduziert. Fiir
den ersten Schritt wird, basierend auf den Funktionen die das Verhalten der verteilten Quellen
beschreiben, ein Signalraum aufgespannt. Auf Grund der hohen Anzahl an verteilen Quellen
in den Netzwerkmodellen ist die Dimension des Signalraumes typischerweise sehr grofl. Mit
Hilfe von Approximationsverfahren wird ein Signalraum mit einer geringeren Dimension ge-
funden, welcher das Verhalten der verteilten Quellen beschreibt. Die verteilten Quellen im
Netzwerkmodell werden ersetzt mit Modellen die den in der Dimension verringerten Signal-
raum beschreiben. Die Anzahl der Knoten, an denen das Verhalten in einem reduzierten Modell
approximiert wird, verringert sich dadurch. Im zweiten Teil dieser Arbeit wird gezeigt, dass
dadurch wird ein Netzwerkmodell erzeugt wird, welches sich effektiver mit Methoden der
Modellreduktion reduzieren ldsst.

[llustrierende und industrielle Beispielnetzwerke mit verteilen Quellen werden reduziert, um
die vorgestellte Methode zu validieren und die hohere Effektivitit der Modellreduktion zu
zeigen.

Schlagworte: Modellierung, Modellordnungsreduktion, Lineare Netzwerke
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1 Introduction

1.1 Motivation

The modeling and simulation of distributed systems is the basis for investigation and opti-
mization of physical systems. Distributed systems are for example electromagnetic, thermic or
acoustic field distributions. Due to the high complexity of the physical systems, investigations
of the field distributions are only possible for small sections and require a high computational
effort. For investigations of the overall behavior of the distributed system behavioral models
are necessary. These behavioral models have to be a very good approximation to the physical
system and have to be small for fast and efficient investigations. For the investigation of dis-
tributed systems electrical networks are thus used as a behavioral model, and can be simulated
in circuit simulation environments. One method to obtain a behavioral model of a distributed
system is based on the partial differential equations describing a field distribution. The differ-
ential equations describing the distributed system are divided into discrete sections in space,
and each section is represented as an electrical network (Fig. [T). Typical elements of the elec-
trical networks are linear resistors, inductors and capacitors. If the discrete section is smaller,
the number of electric elements in the model is higher, and the model is more exact. For an
infinitely fine grid the electric network model would be indistinguishable to the real distributed
system. For a sufficiently good approximation of a distributed system a fine grid is necessary.
Therefore a highly complex electrical network model, in the sense of a large number of net-
work elements and nodes, is necessary for the behavioral model. Another method for modeling
a distributed system is based on macromodeling with basis blocks. The distributed system is
again divided in sections, and each section is modeled with an electrical basis block (Fig. ).
A basis block contains linear electric elements whose values are based on physical properties or
on measurements. The basis blocks are interconnected, which results in the overall behavioral
model. Independently on the method of building the behavioral model the result is an electrical
network with linear resistive, inductive and capacitive elements.

Figure 1.1: Discretization of the space of a distributed system and behavioral modeling with an
electric network

Several distributed systems contain distributed sources. For example, energy sources, thermal
sources, noise sources and other disturbances have to be included in their behavioral model.
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These distributed sources are modeled as current or voltage sources. Several examples of
distributed systems with distributed sources are illustrated in the following paragraphs.

In the simulation of distributed systems typically large passive networks, composed of only
RLC-elements, are used in the region where the distributed system is to be investigated. The
space is discretized in this region using for example finite element methods (FEM) [M-3] or
partial element equivalent circuits (PEEC) [H]. Every section is modeled with an electrical net-
work. For Dirichlet-problems, the boundary conditions of the volume under investigation are
given. Realizing the boundary conditions in the network model leads to additional independent
sources in the network model of the field distribution (Fig. I2). If for example a Dirichlet-
problem is given, where the boundary conditions are constant over time, at the boundary nodes
of the network model DC-sources are connected. In the more complex case, with time variant
boundary conditions, independent sources with a time varying waveform are used. In both
cases the electrical model used for the simulation of the field distribution contains independent
sources, next to the passive RLC-elements.

o) o)
o, (t) o, (t)
(1) o, (t) E>
(1) (1)

D) D)

Disrectized FEM Model

Figure 1.2: Modeling of a finite element model with Dirichlet boundary conditions as network
with distributed sources

The modeling of physical devices, where several of the input signals are known a priori, is
similar to the modeling of systems with predefined boundary conditions. For example, in the
modeling of coupled transmission lines [B-H], where up to hundreds of lines are modeled,
not all inputs are undetermined in the modeling process. The determined input signals at the
transmission lines are realized as independent sources and connected as input sources with the
modeled structure (Fig. [3).

Another area, where electrical networks are used as behavioral models in simulations, is the
macromodeling of systems with internal distributed sources. Behavioral models are used in the
electrical engineering for the investigation of parasitic effects in the design phase of ICs and
sensors [, B]. Also in other fields, as for example in mechanics, macromodels are used [O]
for simulations. Several of the underlying physical models contain internal distributed sources.
These distributed sources are modeled in the electrical network model with the help of in-
dependent sources (Fig. [4). For example, in the simulation of thermal processes the heat
distribution is modeled with RLC-networks and the heating sources inside the structure are
modeled with independent sources [B, B]. In the field of construction engineering the structures
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Figure 1.3: Modeling of a transmission line with defined input signals as network with dis-
tributed sources

are modeled with networks and the vibrations due to humans inside a building or cars crossing
a bridge can be modeled with the help of independent sources. In the IC design the elec-
tromagnetic field distribution is modeled with RLC-networks, and the current floating inside
the IC, due to the switching of the transistors, is modeled by independent sources [[@, [T, IT)].
Typically, this modeling of distributed systems with distributed sources is done in a two step
algorithm. The parameters of the RLC-elements modeling the underlying structure are de-
termined independently of the distributed sources’ behavior. Either by measurements or by
performing simulations in a well-defined environment the behavior of the distributed sources
is determined. These functions, describing the behavior of the sources, are used as waveforms
of the independent sources modeling the distributed sources. A combination of the model of
the structure with the model of the distributed sources gives the overall model (Fig. [4). The
resulting networks contains linear RLC-elements as well as independent sources.

Notably, the former method is only valid if the behavior of the sources changes only slightly
if the environment is changed. The effect of the environment on the distributed sources is
neglected when using the former modeling steps. If the models of the distributed sources cannot
be modeled by independent sources, because the effect of the environment on the sources’
behavior cannot be neglected, a source including nonlinear dependencies on other variables
can be used. The network element representing this behavior is a nonlinear controlled source.
For this modeling method the resulting network contains nonlinear elements in addition to the

System with
distributed sources

Figure 1.4: Modeling of a distributed system with distributed sources as electrical network with
sources
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linear passive RLC-elements (Fig. [3).

System with
distributed
nonlinearities

Figure 1.5: Modeling of a distributed system with distributed nonlinear controlled sources as
electrical network with nonlinear controlled sources

The presented modeling procedures result in a network containing linear elements and sources.
In practical behavioral models the number of linear elements is typically in the range of up to
millions, while the number of distributed sources is in the range of thousands. The number of
electric elements used for the behavioral modeling of distributed systems is quite large, and the
behavioral models require a still high effort in simulations. The high simulation effort limits the
practical usage of the created behavioral models. Based on the fact that the network model is
not investigated in all modeled points in space, since the behavior at only some of nodes of the
network is of interest, a motivation for a model reduction is given. As in image processing and
in audio and video compression, a small model is desired, which engulfs the main properties
of the original model. The objective of model reduction is to find such a small network model,
with a low number of elements and nodes, which approximates the behavior at the points of
interest of the behavioral model. The reduced network model replaces the large network model
in simulations. Thus the reduced network can be simulated with a lower computational effort
and thereby the distributed systems behavior can be more efficiently investigated.

1.2 Objectives of this Work

In this work the methods of reducing an electrical network, in the sense of reducing the number
of nodes and elements, are considered. A model, which approximates the behavior at specified
nodes in the network is searched for and can be obtained with model reduction, as illustrated
in Fig. 4.

Large linear network Reduced linear network

o

1 L Modelreduction

I
S 3 I i }mw
Lo

Figure 1.6: Illustration of the generation of a reduced model by using model reduction methods
and approximating the behavior of specified nodes

In the first part of this work well-known reduction methods are investigated. Properties of the
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network that have to be preserved in a reduced model, properties that can be approximated as
well as properties that can be lost in a reduced model are identified in Sec. D.

Several methods of reducing linear electrical networks exist. Several methods based on circuit
theory directly reduce the network. Other methods reduce a mathematical description of the
network. Important existing methods for reducing models are investigated in a common frame-
work in Sec. B. Their applicability for the reduction of electrical networks is examined. After
reduction of a mathematical model, methods for synthesizing a reduced mathematical model as
an electrical network become necessary to allow for simulations with circuit simulators. State-
of-the-art synthesis methods are compared in this work. In addition, a synthesis method which
overcomes a major drawback of existing methods and is based on preserved matrix properties
of the reduced system, is presented in Sec. 3.

In this work special attention is paid to distributed systems with distributed sources. State-of-
the-art model reduction methods suffer from low efficiency if a network model with a large
number of sources is to be reduced. For reduction of the network the distributed sources are
extracted from the linear network part. The sources and the linear network part are connected
by ports. The linear network part can subsequently be reduced with model reduction tech-
niques, approximating or preserving the behavior at the ports of the linear network part. Due to
the large number of ports for a large number of sources, the efficiency of the model reduction
is low, as illustrated in the upper part of Fig. [CA. The reason for the lower efficiency is in
the larger number of nodes, namely each node connected with a port, where the behavior is
to be approximated in a reduced model. The background and details about this will be given
in Sec. Bl Several model reduction approaches exist that deal with a large number of ports,
generated by the extraction of a large number of sources. These methods require several condi-
tions, which are only fulfilled for special examples. Most methods do not take into account the
knowledge of the distributed sources’ behavior in the model reduction process. In the model
reduction process a wide range of signals is allowed at the ports, which limits the efficiency, as
an a priori defined signal is present at the ports for the sources. The existing methods for the
reduction of networks with a large number of ports, with their advantages and limitations, are
presented in Sec. B

A new method, dealing with the reduction of networks with a large number of distributed
sources, is presented in this work in Sec. B3. The proposed method includes the knowledge of
the distributed sources’ behavior in the model reduction process. The method is based on the a
priori defined behavior of the distributed sources. The basic steps of the proposed method are
shown in the lower part of Fig. 4. The reducible network model is adapted for an efficient
reduction, preserving or approximating the behavior at the nodes of interest. Based on the
functions that describe the models of the distributed sources, a function space is spanned. The
dimension of the function space is typically very large, as the number of distributed sources
is large. Based on approximation methods a lower dimension function space is found, and
methods for this will be presented in Sec. B3. All distributed sources’ functions can be obtained
by linear combination of the basis functions of this lower dimension function space. Replacing
the models of the distributed sources by models of the lower dimension function space in the
network leads to a network model with a lower number of ports (Sec. B3). This preceding step
allows for a higher efficiency of a model reduction.
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Figure 1.7: Flow for the reduction of the number of ports by reducing the dimension of the
function space of the distributed sources as preceding step of a model reduction

Examples illustrating the model reduction method for networks with a large number of dis-
tributed sources, as well as industrial examples with distributed sources, are presented in Sec. B.
The higher efficiency of the model reduction, by using the proposed preceding step, is shown,
and the presented method is validated. A conclusion and an outlook on further developments
of the presented methods are given in at the end of this work in Sec. B.



2 Description of Networks

In this chapter electrical networks used for the behavioral modeling of distributed systems
are described. Their mathematical description in system form with the corresponding transfer
function is given in the first and second sections. In the third section important properties of
systems and transfer functions describing electrical networks are identified. The importance
of the preservation of these properties in a reduced model is highlighted. In the last section
of this chapter a small network example and its mathematical description is introduced. In the
following chapters the presented methods will be illustrated with this example network.

2.1 System Description

In this section a description of electrical networks as systems of differential equations is pre-
sented.

An electrical network is a system composed of a finite number of interconnected elements [[2].
Typical elements are resistors, capacitors, inductors and sources. These elements are idealiza-
tions of the electrical behavior of physical elements and follow the rules of the electromagnetic
theory [[J]. With the help of these elements the relation between physical time-dependent
scalars like current, voltage and energy is described. The interconnection of these elements
follows the rules of the Kirchhoff laws.

Electrical networks can be divided up into subnetworks [I2]. As the current floating into an
isolated electrical system is zero, a subnetwork has to contain at least two terminals. The cur-
rent is flowing into one terminal and leaving the subnetwork through another. The description
of a subnetwork with two terminals contains one current through the subnetwork and one volt-
age across the terminals. For subnetworks with more than two terminals this situation is more
complex. If a subnetwork contains & terminals, it is described by k — 1 independent currents
and Sk (k — 1) definable voltages. This complex situation can be simplified if the terminals are
concentrated into pairs. One pair of terminals is called a port if it is uniquely described by one
current and one voltage. A subnetwork which only contains a number of n ports and no further
terminals as connections to other subnetworks is called n-port [[A]. Voltages across terminals,
which do not belong to the same port, are not considered in n-port subnetworks.

If the allowed signals at a port or terminal and in the network span a linear space, the network
is linear. Networks where the signals do not span a linear space are nonlinear.

Networks with elements whose physical parameters are independent of time are called time-
invariant networks [[2]. However, subnetworks whose elements are time-variant, but the be-
havior at the ports is time-invariant, are called time-invariant.

In the following we will concentrate on networks composed of only linear time-invariant ele-
ments, sources and ports.

Network elements used in the modeling of distributed systems with distributed sources con-
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sidered in this work are resistors, capacitors, inductors and independent as well as controlled
sources. Linear time-invariant resistors with a resistance R or conductance G respectively, are
described with the branch constitutive relation (BCR), defining the dependence on the current
¢ through and the voltage u at the element

u=R-1i or i=G-u. 2.1

Linear time-invariant capacitors with a capacitance C' are described by the initial voltage ug

ult = 0) = ug (22)
and with the BCR in time-domain
i:C-% or u:é-/idt (2.3)
and in frequency-domain
1=sC-u or u:iz 2.4)
sC

with the Laplace variable s. Linear time-invariant inductors with an inductance L are described
by the initial current 7

i(t=0) =1 (2.5
and with the BCR in time-domain
d: 1
u:L~d—z or i:L~/udt (2.6)
and in frequency-domain
. _ 1
u=sL-1 or 1= —-u. 2.7)
sL
Voltage sources are described with
U = Uq, i = arbitrary (2.8)

where the voltage u, is u; = f(t) in time-domain and u, = f(s) in frequency domain for
independent voltage sources. In the case of nonlinear controlled voltage sources the condition
ug = f(u1,u,...,1, %2, ...) holds, as the voltage is controlled by several voltages and currents
in the network (u1, uo, ..., 1, %2, ...) with a nonlinear function f. Current sources are described
with

1= 1q, u = arbitrary (2.9)

where the current i, = f(t) is in time-domain and i, = f(s) in frequency domain for in-
dependent current sources. In the case of nonlinear controlled current sources the condition
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iqg = f(u1,ug,...,11,42,...) holds. In addition ports for the connection with other networks
are included. For the description of a port the current into the port can be used as input and
the voltage at the port is used as output. In this case the port is called impedance port in the
following. The notation admittance port is used if the definition is dual.

For the mathematical description of electrical networks, methods such as modified nodal anal-
ysis (MNA), mesh analysis and sparse matrix tableau exist [[3-I2]. The MNA is used in most
circuit simulators as it is relatively easy to implement in computer programs [[3, Id]. In the
following, the MNA for linear RLC-networks with sources and ports is presented.

Basis of the network description are the incidence matrices K and Kirchhoff’s Current Law
(KCL) in the form [Id]

Ki=0. (2.10)

For the considered elements, the incidence matrix as well as the branch currents can be split up
according to the type of elements resulting in

(Kr Ke K. Kys Kes )| i | =0. (2.11)

ics

where ip,ic, i, are the currents through the RLC-elements, respectively. The currents iy g
denote all currents through the voltage sources and the currents at the admittance ports. The
currents icg denote all currents of the current sources and the currents at the impedance ports.
The incidence matrices Kr, Ko, K1, Ky g, Kog denote the incidence matrices of the resis-
tors, capacitors, inductors, voltage sources as well as admittance ports and current sources as
well as impedance ports, respectively. The definition of voltages is given by the following
equations

ur Kg

uc . Kg ¢

ur = KF‘E u (2.12)
uys K{g

where u? denotes all nodes potentials, ug, uc, uy, are the voltages across the RLC-elements
and uy g are the voltages of the voltage sources and at the admittance ports. The BCR of the
elements in frequency domain are given by

iR = GuR
ic = sCuC
uy, = sLiy, (2.13)

with the diagonal matrices G, C, L containing as diagonal entries the element values of the
resistors, capacitors and inductors, respectively.

10
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By inserting Eqn. T2 and Eqn. T3 in Eqn. 2T the KCL can be written as

KRGK£U¢ + Kcschud) + Krir + Kysivs + Keogics =0
sLiy, — K%u‘z’ =
~KLqu? = uyg. (2.14)

In matrix-form the MNA-description of the network is given with

KrGK} + KesCKE K Kys u? ~Kcs 0 .
K7 sL 0 i, | = 0 0 < uCS >
KT 0 0 ivs 0 I e

(2.15)

The resulting system of equations can be split up into a frequency dependent and an frequency
independent part. This results in a first order differential algebraic system in the form

r Caey Gyeyr T
c 00 g p e u? bl ;

slo 1l o|+| -p” 0o ir |= o -(u05> (2.16)
0 0 0 e 0 0 ivg b2 Vs

where C.y contains the frequency dependent part and G,y contains the frequency indepen-
dent part. The sub-blocks of the system matrices are defined with

g = KpGKE
c = KcCKZ
p=K,
e=Kyg
1=L
b; = —K¢gs
by =L (2.17)

For networks composed of only passive RLC-elements the system matrices Cgyer, Ggep of
Eqn. T8 are positive semi-definite

Caefs Gaer > 0. (2.18)

For the system matrix Cg4er = CZ_ 7 holds, but G is not symmetric Ggey 7 GL s- Indeed
both system matrices are J-symmetric

JCueyd = Cly;
JGyefd = Clg (2.19)

11
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for
I 0 O
J= 0O -I o (2.20)
0 0 -I

with block sizes corresponding to the sub-blocks of the system in Eqn. IZTH. A multiplication
of the right and left hand side of the system with J leads to the system form

B Csym Csym 7
c 0 0 g p e u? bl ;
sl o -1 0|+ pf 00 i ] = 0 -<u05 ) (2.21)
0 0 0 el 00 ivg —b2 Vs
The system matrices Cyr, Ggym of Eqn. X1 are now symmetric
Csym:CZﬂym
Goym = Gl (2.22)

Indeed the advantage of symmetry of Cgyy,, Gsym is accompanied by the disadvantage that
Csym is not semi-definite anymore Cgy, z 0. It is noticeable that the internal systems vari-
ables, the solution of the system in symmetric form, are equal to the solution of the system in
semi-definite form.

A system vector, containing all node voltages, inductor currents as well as voltage source
currents can be defined with x by

X = ir . (2.23)
iyg
The input vector u contains the prescribed electrical values of the current and voltage sources
and the input variables at the ports
ics
= . 2.24
() .24)

The dual electrical values of the inputs u, namely the voltages ucg across the current sources
and at the impedance ports as well as the currents iy g through the voltage sources and the
admittance ports, are defined as output vector y of the system. The description is

é
ucs —Kgs 0 0 u
pry . pry ]L
lys 0 0 I .

1y s
u’
=(1 o1 )| i
ivs
=LTx. (2.25)

12
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In the general case the inputs, the system variables and the outputs depend on the Laplace
variable, u(x, s),x(s),y(s). For readability these dependencies are not written explicitly in
what follows, and only the variables u,x,y are used. In addition, if nonlinear controlled
current or voltage sources are used, the dependence of u on the system variables in x is not
written explicitly to improve readability.

The system description is now given in short form with
(sC+G) -x=Bu
y=L"T.x (2.26)
where the system matrices of a system of order N with p ports are C,G € RV*N B,L €
RN*P_ As typically all dual electrical variables of the inputs are defined as outputs the con-

dition L = B for the system with positive (semi-)definite and (J-)symmetric system matrices
holds. For the system with symmetric system matrices this condition does not hold.

With the modified nodal analysis a first order differential algebraic system, as schematically
shown in Fig. ETis generated. This system describes the behavior of the linear electrical RLC-

u—» X -y

Figure 2.1: Schematic of a system with inputs u, internal system variables x and outputs y

network. The internal system variables x are composed of node voltages as well as inductor
and voltage source currents. The inputs u of the system are given with sources values as well
as port currents or voltages. The outputs y of the system are the dual electrical values of the
inputs.

A description of the network as a second order differential algebraic system is possible too. In
this work only the description as first order system is taken into account, as most of the model
reduction methods presented in the following chapters deal with first order systems. Never-
theless, an outlook of adapted methods for second order systems is given in the corresponding
points in this work.

2.2 Transfer Function

The system of differential equations of the former section describes the electrical network.
In this section, the ideas for generating the transfer function H(s) of a system describing a
network are given. The transfer function describes the transfer behavior of the system from its
inputs u to its outputs y withy = H(s) -u

In systems describing electrical networks the matrix pencil (C, G) in Eqn. is regular [[R]
for at least one frequency s; € C. This means that for at least one s; € C the condition
det(s;C + G) # 0 holds. This condition allows for writing

x = (5;C + G) " 'Bu
y = LTx, (2.27)

13
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resulting in a transfer behavior, valid for all s where the matrix pencil (C, G) is regular. Thus,
the transfer behavior is given with

y = L7(sC+ G) 'Bu
— H(s)u (2.28)

For sake of simplicity it is assumed that the system matrix G is nonsingular below. For gener-
ating the transfer function H(s) the system

(sC+ G)x =Bu
y =LTx (2.29)
can be described by left-multiplying with G~! with
(SG_IC + I) x = G 'Bu
y =LTx (2.30)

With factorization G~1C = SAS~! the matrices A and S are obtained. The matrix A contains
the eigenvalues of G~1C as diagonal entries and S contains the corresponding eigenvectors as
its columns. After left-multiplying with S~! for nonsingular S the system is in the form

(sA+1I)%x = Bu
y = L7Sx (2.31)
with
B=s!'G™'B
x=S"1x (2.32)

For a system with p inputs, the mth row of the system of Eqn. 31 can be written
P
(8Amm + 1 Z it (2.33)

with the mth eigenvalue A,;, ,,,, the mth system variable z,,, and the ith input u;. Inserting z,,
into the equation for the jth output in Eqn. 231

N N p
L S Bmu
_rTgs T _ v
y; = L; Sx = E L; Synim _mg E Ao A1 (2.34)

m=1

The transfer function of the ith input to the jth output, described by the ijth coefficient H; ;(s)
in H(s), is now given with

N
Ti.5.m
H;j(s) = Z”, =) _’J’p (2.35)
T m:1 m

14
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with the mth residue of the 7 to j transfer behavior ; ; ., and the mth pole p,,

T » -1
ri7j7m = L] SmBmJAm,m

pm=—AL, (2.36)

can be written.

If the matrix G~! does not exist, the generalized eigenvalue problem should be solved. A
method which allows for the calculation of the poles of large systems with several hundred
eigenvalues is described in [[4, PQ]. Typically for the analysis of even larger networks, only a
set of poles is of interest. This results in methods that are capable of finding only the subset of
important or dominant poles [ZI-78].

2.3 System and Network Properties

The networks considered in this work are composed of only real valued elements. The resistive,
capacitive and inductive elements are assumed to be passive in the modeling process. In this
section important properties of systems describing such linear RLC-networks are identified.
Properties of the corresponding transfer functions are described as well. The necessity of the
preservation of several of the properties in a reduced model is highlighted.

2.3.1 Properties of the System Matrices

The most important properties of the matrices of the system equations (Eqn. IZZ8)

(sC+G) -x=Bu
y=L7 .x 2.37)

are specified in this section.

As all element values are real, the system matrices only contain real coefficients. As each
RLC-element is passive, all element values are positive. For the system description this leads
to positive (semi-)definite system matrices C, G. Another property of the system matrices
C, G is the J-symmetry for J given in Eqn. ZZ0. By multiplying the system with J the sys-
tem matrices are symmetric, as shown in Eqn. Il Nevertheless, by using the system with
symmetric system matrices, the system matrices are not (semi-)definite anymore.

The system matrices have a special block structure, where for every type of element a sub-
block can be located in the system matrices (Eqn. ZT8). For example, a block containing
the resistive elements, a block for the capacitive elements and so on, is defined in the system
matrices. This block structure should be preserved in a reduced model, leading to a correlation
of matrix blocks to a specific element type.

Another property of the system matrices is, especially for weak coupled networks as often used
in modeling, the sparsity of the matrices. The lower the number of elements in comparison to
the number of nodes is, the higher is the number of zero coefficients in the system matrices. As
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the property of sparse matrices enables more efficient calculations, compared to dense matrices,
the sparsity of the system matrices should be preserved in a reduced model.

Typically the system matrix C is singular, which gives the system as differential algebraic
equations (DAE) and the system can thereby not written as ordinary differential equations
(ODE). Only for a few special cases C is nonsingular and the system can be written in ODE
form.

Another property of the system matrices is that the matrix pencil (C, G) is regular for at least
one frequency s € C [I]. This means that for at least one frequency the condition det(sC +
G) # 0 holds.

Concluding this section, relevant system matrices properties are: real coefficients, block struc-
ture, sparsity and regularity. If all, or at least most of the properties of the system matrices
are preserved in a reduced model, a reinterpretation of the system in the sense of a network
model will be eased. Therefore, as many properties of the system matrices as possible should
be preserved during model reduction.

2.3.2 Properties of the Transfer Function

For the transfer function, describing the input output behavior of the system of the network
(Eqn. E28) with

H(s) = LT(sC+G)™'B (2.38)

and its coefficients in poles-residues form (Eqn. EZ33)

N
Ti5.m
Hij(s) =) == _’J’p (2.39)
m=1 m

several properties are defined in this section.

If the transfer function describes a passive system, the function is positive real [Z2, ZR]. The
reduced systems transfer function should also be positive real, allowing for an interpretation as
a passive network.

Assuming a transfer function given in the poles-residues form, properties of the poles and
residues can be defined. For the networks under consideration, all poles have a non-positive
real part and thus are located in the open left half-plane of the complex plane. If the real part
of the pole equals zero, the pole is in addition simple. All complex poles appear in complex
conjugate pairs. The appearance in conjugate complex pairs also holds for the corresponding
residues.

Several properties of the transfer behavior can be derived from the transfer functions proper-
ties, as shown below. For low frequencies, the poles with a small imaginary part dictate the
behavior of the transfer function and vice versa. In a reduced system the most important poles,
defined by the frequency range of interest, should be taken into account. In addition, poles with
corresponding large residues can be more important than poles with small residues and have to
be preserved primarily in a reduced transfer function.
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For the transfer function, a series expansion in the form
H(s) ~ Mg + M;s 4+ Mjs?... (2.40)

approximating the transfer function in a region around s = 0, can be defined. The coefficients
of this series expansion are called moments in the scalar and block-moments in the matrix trans-
fer function case. The zeroth moment M is the so-called DC-moment, describing the circuit
transfer behavior if all inductors are replaced by short circuits and all capacitors are replaced
by open circuits. The first moment M corresponds to the Elmore-delay [EH], describing the
response or transfer time from one input to an output. For a reduced model it is preferable
to preserve or at least approximate a large number of moments and thereby approximate the
transfer behavior.

Properties like positive realness, location of poles and moments of the transfer function should
be preserved in the transfer function of reduced models.

2.3.3 Properties of the Network

In this section the physical properties of networks are highlighted and the advantages of the
preservation of these properties in a reduced model are shown.

Causality describes the dependence between cause and effect. A system is causal if for all equal
input signals (cause) the output signals (effect) are the same. A non-causal system generates
for the same input signals different output signals. Reasons for non-causality can be that the
system is influenced by future input signals. Furthermore, a system can be non-causal if the
output signal is not uniquely defined by the past signals. The property of causality is necessary
for models describing physical systems and thus the networks under consideration in this work
are causal. A reduced network should be also causal to avoid non-physical behavior of the
reduced model.

Structural properties of networks are controllability and observability. A network is control-
lable if all internal states can be changed to every value in a finite time by applying input signals
at the ports. Observability is defined in a dual way. A network is observable if all internal states
can be determined by observing the output signals at the ports in a finite time. Observability
and controllability can be mathematically described with the help of the Gramians, resulting
from the solution of the Lyapunov Equations [BO]. If the Gramians have full rank, the system
is controllable and observable. A definition for controllability and observability in the field
of network theory is given in [Bll, BA]. The condition is valid for unhinged networks with-
out loops of only voltage sources and capacitors and without cut-sets of only current sources
and inductors and is based on the differential equations describing the network. With simple
matrix-properties, namely that the matrices connecting inputs and outputs with the state have to
be nonzero, the observability and controllability are proven [B1, BZ]. An extension to networks
including mutual inductors is given in [B3]. The property of controllability and observability
should be preserved in a reduced network, as states not controllable or not observable should
be avoided in a reduced model to enable a higher efficiency in simulations.

Another property of networks is stability, which can be defined in several ways. A definition for
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stability, oriented on [B4], is bounded-input-bounded-output (BIBO) stability. This definition
of stability does not need knowledge about the inner part of the circuit and only the behavior at
the ports is of interest. A system of a network is BIBO stable if the output signal is bounded for
every bounded input signal. A system of a network is short circuit stable if the output current
is bounded for all bounded input voltages. A system of a network is open circuit stable if the
output voltage is bounded for all bounded input currents. A system of a network that produces
unbounded outputs for bounded inputs is unstable. Another definition for stability can be made
by including knowledge about the inner part of the system of a network. A system is stable if
its transfer function, in the form of Eqn. £33, has only stable poles [B3]. For stable poles p the
following conditions has to hold: for multiple poles the real part is negative Re(p) < 0 and for
single poles the real part is not positive Re(p) < 0. This property is fulfilled for the transfer
function of the networks under consideration as described in the former section. The property
of stability should be preserved in a reduced network to enable stable simulations.

The passivity of a network is defined in the sense that a network cannot deliver energy at any
time. A network is strict passive if it dissipates energy. A system is lossless passive if it cannot
deliver energy nor dissipates energy. A network which is not passive is active. For the proof of
passivity the complex energy w is defined with the currents ¢ and voltages u

w* =uli (2.41)

where " denotes the conjugate complex transpose a = (a*)”. The effective energy is the real
part of the complex energy

2Re(w) = i" - u+u" . (2.42)

In the system of the network (Eqn. ZZ8) the input vector u contains currents or voltages at the
ports and sources, and the corresponding output vector y the dual electrical values. Therewith
u-y* is composed of uy, - i} or iy - uj, for the kth input and output of the system. Note that the
real part of both descriptions is identical [[Z], and thereby Eqn. 242 can be written as

2Re(w) =u" -y +y" u. (2.43)

With the transfer function y = H(s) - u it can be written

2Re(w) " H(s)-u4u"-H(s)" u

u(H(s) + H(s)")u (2.44)

For positive real part of the frequency Re(s) > 0, the effective energy dissipated by the system
Re(w) must not be below zero

Re(w) > 0. (2.45)

The system must not produce energy if the system is passive. Therefore, H(s) + H(s)" has to
be positive semi-definite for all Re(s) > 0. A matrix which fulfills this condition is called pos-
itive real matrix. Concluding, the necessary and sufficient condition for passivity of a system
is a positive real transfer function H(s) [B4]:
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1. H(s*) = H*(s) where * is the conjugate complex operator

2. H(s) is positive, that means a” (H(s) + H(s)") a > 0, with " as Hermitian operator, is
satisfied for all complex s with Re(s) > 0 and for all finite complex vectors a

3. H(s) is analytical

For passive systems the transfer function in impedance or admittance form is a positive real
matrix. For passive systems

u"(H(s) + H(s)" ) u >0 (2.46)
for strict passive systems

u"(H(s) + H(s)")u >0 (2.47)
and for lossless systems

u(H(s) 4+ H(s)")u=0 (2.48)

holds for all input signals u and all frequencies with Re(s) > 0. Active systems are divided
into autonomous-active and non-autonomous-active systems. When an active system is dis-
connected from the rest of the circuit and a voltage appears at its open terminals, the system is
called autonomous-active [Bd]. If no voltage appears at the open terminals, but the circuit can
generate energy by connection with the rest of the circuit, the circuit is called non-autonomous-
active [BA]. As the reducible part of the network models of the distributed systems is passive,
in a reduced network the passivity should be preserved. Passivity is a much stronger condition
than stability, as it is guaranteed that the connection of passive system will always lead to a
stable system. By preservation of passivity, the simulation of the reduced model connected
with other passive models is guaranteed to be stable. Thus, not only stability, but also passivity
should be preserved in a reduced model.

Another relevant property is reciprocity. A network is reciprocal if for all port-port-combinations
it holds: for all input signals uy, at a port k the output signal y; at a port [ is the same if the input
signal w; at a port [ generates the same output signal yy, at a port k. For all input signals

U = Uy (2.49)
it holds

Yklu = Ytlug (2.50)

for all ports k and [. A system where a port-port-combination exists for which this condition is
not fulfilled for at least one input signal is non-reciprocal. The transfer function of a reciprocal
network is symmetric for the admittance or impedance description and J-symmetric in the
hybrid case [[A]. Reciprocity is a necessary condition for a matrix transfer function to be
realizable as pure RLC-network. The reducible network models are RLC-networks and thus
reciprocal, and the property of reciprocity should be preserved in a reduced model. If a reduced
model is not reciprocal it cannot be described by RLC-elements. In this case additional non-
reciprocal elements, such as controlled sources or gyrators, are necessary for a realization of
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the non-reciprocal system as an electrical network. Thus the property of reciprocity should be
preserved in a reduced network.

Properties like causality, controllability, observability, stability and passivity of the network
modeling a physical distributed system should be preserved in a reduced network to enable
efficient and stable simulations.

2.4 lllustrative Numerical Example

In this section a network is introduced. Due to its simplicity, this network will be used for
illustration purpose in the following chapters of this work. The presented methods will be
illustrated with this network. The network contains resistors and capacitors and is shown in
Fig. . The left node of the network is used for the connection with other networks and thus
a port with ground as second terminal is defined. The current at the port is defined as the input
of the system describing the network, and the voltage between the port-node and ground is
defined as the output. Thus the resulting system describes the impedance of the network.

Figure 2.2: Illustrative example network

The network is to be described as a linear system of equations with the help of MNA. The
incidence matrices for the resistors, capacitors and the impedance port are given with

1 1 0 0 O 1 00 1
Kr=|0 -1 1 1 0], Ke={( 01 0 |, Kes=1| 0],
0 0 0 -1 1 0 01 0
(2.51)
respectively. With the unit valued elements
G=Iys  C=Isas (2.52)

20



CHAPTER 2. DESCRIPTION OF NETWORKS

the MNA of the network yields the system

C G X B
. e’ —
100 2 -1 0 Pn1 1\
sfo1 o]+ -1 3 -1 onz | =10 | (ip)
00 1 0 -1 2 Pn3 0
¢n1
(up )=(1 0 0)| on2 (2.53)
¢n3
Yy LT N ,

X

of order N = 3. The system variable ¢; is the corresponding node potential of the node n;.
For this system the system matrices G, C are positive (semi-)definite, symmetric and B = L
holds.

The factorization of G~1C = SAS~! leads to

11

thbfA = diag(1, -, —
mathbfA = diag(1, 3, -

) (2.54)
which results in the three simple real poles at —1, —2, —4. With the calculations given in
Sec. I, the impedance transfer function in pole-residues form is given with

13 1/2 0 1/6

Z(s) = . 255
)= 1T sa2 T 544 (2.53)

With the help of the network introduced in this section (Fig. ), the corresponding system
equations (Eqn. 33) and the transfer function (Eqn. E33) the following methods of this work
will be illustrated.
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3 Model Reduction of Linear Networks

In this chapter, methods for the reduction of large linear networks, as used in the modeling
of distributed systems, are presented. The presented approaches can be divided, as shown in
Fig. B, into methods based on reducing the network directly, methods reducing the transfer
function of the network and methods reducing the system equations describing the network.

Large linear network

oy e~ L Direct reduction of the network
I / \ Reduced
h Reduced linear network

L Transfer function transfer function Realization as an
pld — ; —
e H (S ) —> H (S ) electrical network

T T \ ) Reduced Realizati /
System equations __y. 5ystem equations ealization as an

(sC+G)x=Bu (SE'+6))~C=Z§u electrical network
y=Lx y=L%x

\

P

H
H
H

Figure 3.1: Classification of model reduction methods

In the first section of this chapter methods directly reducing the network, based on circuit theory
algorithms, are described. Methods ranging from engineering methods to control theory algo-
rithms, based on the reduction of the mathematical description of the network, are presented
as well in the first section. A unified framework is used for the model reduction algorithms,
which allows for comparing the methods with respect to their applicability of reducing network
models. Properties of the network that are preserved using the reduction methods are given.
For methods reducing a mathematical description of the network a subsequent realization as
electrical network is necessary. The methods for realization of reduced mathematical models as
electrical networks are presented in the second section of this chapter. At the end of this chapter
the model reduction methods are illustrated by reducing the example network introduced in the
former chapter.

3.1 Order Reduction

With the help of order reduction a reduced model is searched for. The order reduction methods
can be divided into three different methods, according to the model description where the
reduction is applied.

The first method is dealing with the network directly. The order can be defined as the number
of nodes or the number of elements of the network. The behavior at several specified nodes,
for example the nodes for the connection with other networks, is to be approximated. Order
reduction is applied to the network in the sense that the number of nodes or elements is reduced.
The reduction should only result in slight changes of the behavior at specified nodes.
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For the second and third order reduction method the starting point is a description of the net-
work as linear time-invariant system with p inputs and outputs, and the corresponding p X p
transfer function. The system is described by /N equations in the form of Eqn. and the
transfer function of the system is in the form of Eqn. 39 as described in the former chapter.

The second class of order reduction methods is based on the reduction of the transfer function.
The order N of the transfer function is defined by the number of poles. With the help of model
order reduction a transfer function ﬁ(s) with lower order shall be found, which approximates
the original transfer function in magnitude and phase in a confined frequency range s,y < 5 <
Shigh- Thereby the condition

H(s) ~ H(s) (3.1)
has to hold in a range of s defined between s;4,, and sp;qn. Each coefficient of the reduced
transfer function describing the ¢th input to the jth output behavior can be written in polynomial
form as

n ~
~ 7
Hij(s) =) —2- 3.2)
m=1 5~ Pm
with a lower number of poles n < N compared to the original transfer function.

The third order reduction class is based on reducing the number of equations of the system,
which describes the network. For the system the order is defined as the number of system
variables, which is equal to the number of equations of a well-defined system. A reduced
system with a reduced order n < N has to be found with order reduction methods

(s(~3 + é) X = Bu
y=L1L"%, (3.3)

which has the form of the unreduced system. The matrices (~3, G € R""and B € R"*? , LT €
RRP*™ describe the reduced system. The transfer behavior between input and output of the re-
duced system has to be similar to the unreduced system. This means that, for the same input u,
the output of the reduced system y is approximating the magnitude and phase of the output of
the unreduced system y

y(s) = y(s) 3.4)

in a frequency range Sjo,y < 8 < Spign. For the reduced system there does not need to be a
direct correlation between the system variables X, x in the reduced and the unreduced system,
respectively.

Additionally to the approximation of the input-/output or transfer function behavior, the re-
duced system shall preserve all, or at least most properties, of the unreduced model presented
in the former chapter.

For the generation of a reduced network different approaches exist. The most widely used
algorithms are presented below, and are divided into classes having the same or a similar basic
idea for the motivation of a reduction. The applicability of the model reduction methods to
networks used in behavioral modeling of distributed systems is discussed.
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3.1.1 Circuit Theory Methods

The model reduction methods presented in this section are mainly developed in the field of
Layout-to-Circuit extraction in the design phase of integrated circuits [[d, BA-B39]. The pre-
sented methods are directly manipulating the network. The methods are based on removing
internal nodes or elements and approximating the behavior of the whole circuit at several spec-
ified points.

For networks composed of only one type of electrical element, a simple reduction method is
given by dissolving series and parallel connections until all internal nodes are eliminated. For
networks with more than one type of element this dissolving can be done for series and parallel
connections of the same type of element. As in typical modeling procedures the amount of one
type of element series or parallel connections is quite low, the reduction is very low with this
method.

Another simple reduction technique replaces resistors having a high resistance by an open
circuit and resistors with a small resistance by a short circuit. In the system description system
variables are either eliminated or coefficients in the matrices are replaced by zero by using this
simple replacing method. The strong disadvantage of this method is the heuristical approach.
The definition of *small’ or ’large’ element values remains open. In addition, an element with a
locally negligible influence can have a significant global influence. The error of approximation
cannot be controlled with this simplistic method and specific properties cannot be preserved.

Another method of eliminating internal nodes and elements is used for regular structured net-
works that model physical devices. In the regular structured networks the network size is re-
duced by using a coarser grid size. This method can only be applied for regular network grids
such as networks used to model the power distribution in ICs [, B9, ] and is not applicable
to irregularly structured networks.

With the former method neither estimation nor control of error is possible. Thereby methods
preserving specified properties such as timing-issues or DC-behavior become necessary. The
first algorithms as well as their extensions are presented below. One of the earliest methods
is presented in [B4, BR], where the special structure of electrical interconnect models is used
in the reduction process. In the interconnect models only RC-elements connected in the form
of an RC-ladder are used. The goal of the method in [BM] is to preserve only the nodes for
the connection with loads or driver and to eliminate all internal nodes in the network. For
this reduction the values of a first order RC-section are calculated, approximating the electrical
behavior at the nodes for driver and load. The method preserves the so-called Elmore time
constants [24], which allows for a first order approximation of the network behavior.

The advantage of the methods presented in this section is their simplicity, as they are dealing
directly with the network. These reduction methods construct a reduced network with the same
type of elements as in the original network. The network elements in the reduced network
are either purely resistive or resistive and capacitive with only positive real element values,
like in the unreduced network. Thus the resulting networks are stable, passive and reciprocal.
The disadvantage of these reduction methods is the low efficiency and the limited domain of
application. Another disadvantage is that with this method neither error estimation nor control
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is possible. Only very limited properties such as DC-behavior or timing delay can be preserved,
but higher order effects are not taken into account.

Further methods applied directly to the network are, for example, the star-delta transformation
used in [E], with which an internal node can be eliminated. As this transformation is in fact a
Gaussian elimination step in the system matrices, it will be presented in the next section.

3.1.2 Gaussian Elimination Methods

A systematic method for the order reduction is based on the elimination of the internal nodes of
the network or internal variables of the system, respectively. The method is inspired by Gaus-
sian elimination employing the Schur complement, which is used for solving linear systems of
equations. The basic principle of solving a linear system with the Schur complement is that
the system of equations is firstly solved for a set of unknowns. With the solutions of the first
set the rest of the unknowns is determined. For the order reduction, firstly a set of variables is
defined, corresponding to the variables of interest. The reduced system is generated by using a
system described only by these variables, as will be shown in this section.

The Schur complement is used to solve a system of equations in the form

(en)(m)-(n) a9

where aj, as are the unknowns. The matrices A, B, C, D are the coefficients of the equations
and by, by are the right hand side of the system of equations. The system of equations has,
after a block Gaussian elimination step, a triangular form

A—-BD'C o0 ay _ b — BDile
()R ) e

The block A — BD~!C is the so-called Schur complement. The system of equations is now
solved for the first set of variables a;. By inserting the solution of a; in the second row, the
solution for as is obtained.

For order reduction this method can be applied to the system description in the form of Eqn.
as well as to the transfer function in the form of Eqn. Z33.

For the system description in the form of Eqn. the system vector x is split up into a part
Xeqt that is connected with the external ports that will be preserved, and an internal part X;,;
that will be eliminated. According to this splitting, the system can be written for example for
purely resistive networks with

Gl 1 G2 1 ) < Xext > < Be:ctu )
’ k = . 3.7
< Go1 Gop Xint 0 3-7)
The preserved system variables in x.,;, which are the solution of

(G11 — G12G33Ga,1 ) Xeat = Bemru (3.8)
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after applying a block Gaussian elimination step, are used in a reduced system. This system of
equations now describes a reduced order model [E2, E3]. The order of the system is equal to the
number of system variables connected by ports with other systems. For capacitive or inductive
networks the reduced system can be defined in the same way, but in addition, the system vector
is multiplied with s or 1/s respectively.

For the transfer function in the form of Eqn. 33 only the impedance or admittance of networks
composed of only one type of element is considered. With this the transfer function only
contains scalar values and no polynomials. Thus this approach is limited to transfer functions
describing resistive, inductive or capacitive networks only. For this reduction method a transfer
function is built, describing the transfer behavior from each node to all other nodes. Firstly this
transfer function is inverted

H'ly =u (3.9)

The inputs are split up into nonzero inputs u,,, and inputs equal zero u, = 0. By splitting the
inverse transfer function accordingly with

-1 _ L1 21
o= ( H;, H5, > G109

Hill Hél)(}’nz) <unz)
L, 2, = . 3.11
< H;, Hj, Yz 0 ©-11)

By applying the block Gaussian elimination the reduced function is [E]

the resulting function is

(Hh - H’l,zH’z,QH’z,l) Ynz = Unz. (3.12)

In the reduced transfer function only nodes connected with a nonzero inputs are taken into
account. As only the outputs for the nonzero input nodes are of interest, the reduced transfer
function H is obtained by inversion with

i i pprilep )
Ynz = (H1,1 - H1,2H 2,2H2,1) Upz
= Hu,, (3.13)

The main difference of this method applied to the transfer function, in comparison with the
method applied to the system equations reduction, is the use of the inverse of the Schur com-
plement. The dimension of the reduced transfer function depends on the number of nodes with
nonzero inputs.

Both presented methods for the elimination of internal variables are exact, as no approximation
is done. Thus properties like stability, passivity and reciprocity are preserved. Nevertheless,
due to the necessary inversions, numerical errors are introduced, which are unavoidable using
this reduction method. In addition, due to numerically crucial operations, this method is limited
to networks with a sufficiently small number of internal nodes.
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The presented methods based on the Schur complement are restricted to networks with one
type of elements, which limits their applicability. An extension is possible for the reduction of
networks with inductors, resistors and capacitors if only a fixed frequency is considered. By
using the impedance or admittance values of the elements in the specified frequency, the above
algorithms can be used by employing complex arithmetic, as every value is complex and not
real anymore. Nevertheless, the resulting system is only valid at the chosen frequency. For
other frequencies the reduced system is not valid. Thereby these methods are not useful for
approximating a network behavior in a narrow frequency range.

For systems describing networks with more than one type of elements the Schur complement
is given with

sCi11+Gi11— (sCi2+ Gig) - (sCo2+ G2,2)_1 - (sCa1 + G2,1) | Xeat = Begtu
(3.14)

valid for all frequencies. The matrix C; ; denotes the blocks of the matrix C partitioned as
in Eqn. B7A. For transfer functions describing networks with more than one type of elements
the internal nodes can be eliminated by using matrices of rational functions of s. The main
hurdle using this reduction method is the complexity of the rational functions, as their order is
typically very high. Thus a numerical implementation of this method is quite complicated.

For an applicable method of the reduction of networks with more than one type of element, the
basic idea of Gaussian elimination can be used in another way. The method based on Gaussian
elimination cannot only be applied to the complete set of internal variables, but also to single
variables. This equals the elimination of single nodes in each step, contrary to the elimination
of all internal nodes at once. The elimination procedure is then repeated node by node. The
method equals a star-delta transformation applied directly to the network. The internal network
node of a star-network is eliminated by creating the delta-network, which has the same behavior
at the outer nodes as the star-network. This Gaussian elimination or star-delta transformation
can be easily applied to network nodes with only one type of elements as shown before. If the
reduction is applied to a network node connected with more than one type of element, the delta
network element values are polynomials in s. In the general case these polynomials cannot be
interpreted as resistive, inductive or capacitive elements directly. Thus this approach cannot be
applied directly to networks with more than one type of element. To overcome this problem
several solutions exist. The first method deals with the reduction of a class of RC-networks
in [E4]. The RC-networks contain only resistors connected between different nodes and ca-
pacitors connected between a node and ground. If the branch-impedances of the star-network
contain more than only one type of elements, the resulting impedances of the delta-network
typically are complex. In [Ed] the branch of the delta network is interpreted as purely resistive
or purely capacitive, depending on the larger absolute value of the real or imaginary part of
the impedance. Secondly in [E3, BEf] a method is proposed for RC-networks. In the presented
method an internal node that is to be eliminated is selected and the capacitance connected from
this node to ground is distributed into capacitances connected between the neighboring nodes
and ground. After this step only resistors are connected with the node, and therefore the node
can be eliminated by Gaussian elimination. With this method the Elmore time constants as
well as the overall sum of all capacitance values is preserved. The network structure which
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can be handled is similar to the network structure used in the former paragraph, describing the
methods of [B2, BR]. All nodes in the network model have to be connected with the neighbor-
ing nodes by a resistor and with ground by a capacitor. In addition to the methods of [B7, BX],
the methods of [E3, EA] can also handle resistive loops and coupling capacitances. A third
approach, presented in [E4, EX], is based on overcoming the problems of the calculation with
polynomials by first order approximations. The polynomials in the impedances of the delta-
network are approximated by first order polynomials. A new arithmetic is defined, where the
higher order polynomials, resulting from the operations of the Gaussian elimination, are ne-
glected. By preserving the first order coefficient of the polynomials, the Elmore time constants
are preserved. The disadvantage of truncating the higher order polynomials might cause a loss
of stability and passivity. The method in [E9, BO] extends these ideas and includes higher or-
der moments for handling RLC-networks. With these methods the reduction of networks with
more than one type of element is possible.

A disadvantage of the Schur complement method and the Gaussian elimination of all inter-
nal nodes is that the sparsity in the unreduced system is not preserved. The reduced system
is smaller in order, but contains typically full matrices, as the Schur complement is typically
dense. Thus the number of nonzero elements can be higher, leading to models that need a higher
computational effort in simulations. For the reduced network the disadvantage is the typically
full-connected network, where the number of nodes is reduced, but the number of elements can
be even higher. A method to overcome the disadvantage of dense matrices is a Cholesky or
a LU decomposition, which can be used instead of the block Gaussian step [E3, BTl for one-
element type networks. By using these decompositions the sparsity of the system matrices can
be preserved. Other methods for generating sparse reduced models are based on preserving
some internal system variables or nodes for generating sparse matrices or networks respec-
tively. In most methods the reduction of single nodes is performed until a specified criterion.
The method presented in [B2] is based on eliminating single nodes and stopping the algorithm
if the number of branches is increasing. Another method, which produces sparse models and
does not eliminate all internal nodes, but preserves a few 'important’ internal nodes, is pre-
sented in [R3]. The method is relying on graph and matrix reordering algorithms. The method
in [E4] is based on iterative reduction of nodes and is suitable for networks with more than one
type of elements. The reduction is performed until a given maximum error, calculated as the
sum of the errors made by neglecting the imaginary or real part of each branch, is exceeded.
As in the former methods, in this reduction method not all internal nodes are eliminated and
the algorithm stops at a given maximum error. The idea of eliminating not all internal nodes
but preserving important nodes is also used in [B4], where for every node an error is calculated
if the node is removed. Afterwards only nodes introducing small errors are eliminated. In [B3]
only adjacent nodes connected by small resistances are eliminated, which defines another cri-
terion. Another method for finding nodes that can be eliminated by Gaussian elimination is
described in [BH]. For every node a time constant is defined, given by the resistors and capac-
itors connected to it. Eliminating nodes with large or small time constants with the Gaussian
algorithm leads to a reduced network. Thereby a reduction of networks is enabled, where not
all internal nodes are eliminated, which can lead to small and sparse networks.

Overall the reduction methods based on Gaussian elimination are successfully used in the field
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of layout extraction [E4, B4-B8]. Reciprocity of the reduced system or network is guaranteed,
as only RLC elements, or coefficients representing these elements in the system description,
are used. Stability and passivity are preserved in these reduction methods if only positive
real valued elements in the network, or coefficients representing these elements in the system
description, are used. Nevertheless, the methods based on Gaussian elimination have several
disadvantages. Networks with only one type of element are quite successfully reduced, but the
methods used therein are not applicable to arbitrary RLC-networks. For networks with more
than one type of element an approximation error is introduced, which cannot be estimated nor
controlled. Most of the methods for networks with more than one type of element are limited to
special structures of the network and to RC-networks used in the layout modeling, and cannot
be generalized to the whole class of RLC networks.

3.1.3 Modal Approximation Methods

The order reduction method based on modal approximation is presented in this section. Basi-
cally this reduction is developed in the field of control theory. The idea of reduction is based
on the approximation of the relevant poles of the transfer function, or the relevant eigenvalues
of the system matrices, respectively.

In control theory physical systems are modeled with linear ordinary differential equations

sx = Ax + Bu
y =Cx (3.15)

with A € RV*N and B, C” € RN *P, which is equal to a system of equations in the form of
Eqn. where C = I holds. This system of equations typically has a large order NV in the
sense of a large number of equations and states x. A system with a lower order in the same
form

X = AX + Bu
y = Cx (3.16)

with A € R™ " and ]§, CT € R™*P s generated by reducing the original system. The reduced
system has a lower order n whereas the reduced matrix A has the same so-called ’"dominant’
eigenvalues and eigenvectors as the unreduced systems matrix A [4].

The same method can be applied to the transfer function in the pole-residue form of Eqn. I35
with a large number of poles. For approximating the transfer behavior only a small fraction of
the poles is necessary.

The main questions for this reduction are how to determine the number of dominant poles or
eigenvalues necessary for a good approximation and how to distinguish between dominant and
non-dominant poles or eigenvalues. For the first question the reduction is performed iteratively
by starting with a low number of poles or eigenvalues and checking the accuracy of the reduced
model. By adding more poles or eigenvalues the accuracy is improved. The process is stopped
if the desired accuracy is achieved. For the second question, the definition of dominance of
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poles or eigenvalues several approaches exist. For example, the distance of a pole of the trans-
fer function, or a eigenvalue of the system matrix, from the origin or the imaginary axis [Z]
in the complex plane is used as criterion for the dominance. The assumption is that the shorter
the distance from the origin the higher the impact on the system behavior. For the poles of
the transfer function of the system in [Z3] for example, the corresponding absolute value of
the residue |r,| of the transfer function is used as measure for the dominance. Another ap-
proach combining the values of pole and residue is used in several methods in [E2-24], with
the weighted absolute value of the residue divided by the (real) part of the pole for defining
the dominance of a pole with |7y, |/|pm| or |7 |/|Re(pm)|. A graphical approach is based on
the examination of the transfer function and definition of the poles near the modes as dominant
ones. All approaches suffer from the disadvantage that with these criterions also poles that can
have a substantial effect on the transfer behavior are not marked as dominant and therefore are
neglected. Most of these methods are not able to detect structural non-minimality as shown
in [PA]. An improved method is presented in [ZA] where the Hankel Singular Values are used
to distinguish between dominant and non-dominant eigenvalues.

The reduction method can now be formulated as follows. Compute the dominant eigenvalues
and corresponding eigenvectors (or dominant poles and corresponding residues) for a given
system (or transfer function) and form a reduced system (or transfer function) from this domi-
nant part. Methods for finding this dominant part are called dominant pole algorithms (DPA).
The most well-known DPA algorithm [3] calculates iteratively the dominant poles. The basic
principle is presented in the following and is oriented on [P3, B4]. Starting with a scalar transfer
function H (s) and its transpose

H(is)=c"(sT—A)'b=H"(s)=bT (sI-A) "¢ (3.17)

the system description can be written as

(sI—A) —b x(s) ] [ (sI-A)T —c x(s) | | O (3.18)

c’ 0 u(s) | b’ 0 u(s) | | y(s) '
with the system vectors x,X of the original and the transposed system, respectively. For s
approaching a pole p;, s — pj;, the input tends to zero u(s) — 0 for any finite value of the
output y(s), while the system vectors x, X converge to the right and left eigenvectors X,., X.

With that, an iterative method for finding the poles is built. The output of the system is fixed at
1. An initial value s, is defined, and the iteration process is started by solving the systems

[ (ssI— A) —b ] [ x(sk) } _ { 0 ] (3.19)

cr 0 u(sk) 1
and
sel — A)T —c X(s 0
(A S e
By computing the new value s with

_ u(sk)
Sk"‘rl - Sk} + QT(

—_— 3.21
s0)x(s%) 62D
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the systems (Eqn. BT9 and Eqn. B20) are again solved for s;4;. For every iteration step
the input u(sg) converges to zero and the iteration stops if the change of the approximated
pole p; = sy is smaller than a given convergence tolerance. In addition, the right and left
eigenvectors are given with X,., X;, having the eigenvectors x,X as columns. Extensions to
this algorithm are presented in [B8] by using multiple sj, as starting vector. For acceleration of
the pole calculation subspace algorithms can be used as shown in [R2].

If the dominant eigenvalues and eigenvectors are found, the reduced transfer function is built
with

- r
-5

J_

where the residue r; is calculated using the eigenvectors with ; = (c¢X,)(X;b). Similarly a

reduced system can be defined with

sx = Ax + (X;b)u
y = (cX,)x (3.23)

where the diagonal matrix A = diag(p1, ..., pn) contains the dominant poles [24, B9].

The order of the reduced transfer function, as well as the order of the reduced system, depends
on the number of poles marked as dominant. Stability of the reduced system is preserved as
long as only stable poles are used. Passivity is not preserved in the general case. For reduc-
ing system equations the method is limited to state space systems and cannot directly be used
for the generalized state space system used in the network modeling. An extension to gen-
eralized state space systems is shown for example in [24)], for several algorithms. Using the
methods based on the modal approximation, system matrix properties such as (J-)symmetry,
(semi-)definiteness, only real coefficients and the equality of the input and output system ma-
trices are not preserved. The previously presented methods are suitable for scalar transfer
functions only. In the case of systems with more than one input and output the transfer func-
tion is in matrix form. Extensions for a reduction of matrix transfer functions are presented
in [BO, BT]. Concluding, the methods based on modal approximation, and thereby preserving
the dominant poles or eigenvalues of a system, have the advantage of good approximations
over a broad frequency range. This, for example, is useful, due to the possible physical inter-
pretation of the reduced model. Nevertheless, for systems or transfer functions of electrical
networks most of the typical properties cannot be preserved.

3.1.4 Moment Matching Methods

In this section moment matching methods for model reduction are presented. Order reduction
methods based on moment matching rely on the Maclaurin series expansion of a scalar transfer
function at a frequency s,

H(s) = Z M;(s — sp)? (3.24)
=0
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with the moments M. The series expansion of the transfer function approximates the original
transfer functions magnitude and phase in a region around the expansion point s,,

H(s) ~ H(s) Slow < 8 < Shigh- (3.25)

A transfer function H (s), with a reduced order in the sense of a reduced number of poles,
is searched for in the model reduction process, fulfilling the requirement: The first moments
of the reduced transfer function H (s) should be equal or similar to the first moments of the
original transfer function H (s) in a region around s,. If the first moments of the unreduced
and the reduced transfer function are equal, the term 'the moments are matched’ is used in the
following. The methods can be divided into explicit and implicit moment matching methods
and the methods for deriving a reduced model with matched moments are presented below.

The first explicit moment matching method is Asymptotic Waveform Evaluation (AWE) [B2].
The AWE algorithm was motivated by the investigation of the timing properties in RC-networks
modeling the interconnections in integrated circuits and printed circuit boards. AWE is based
on explicit moment matching of a Padé-series expansion of a scalar transfer function. The
reduction is done by considering only the first elements of the moment series expansion of
Eqn. BZ4. The first n» moments M of the reduced transfer function are matched with moments
of the original transfer function

H(s) ~ H(s)
Mj=M;, 0<j<n-—1. (3.26)

A Padé-Approximation of this finite series consists of the quotient of two polynomials N (s)
and P(s)

k .o
Doy
- k+1 ;
1+ Zj:l p;s’
npsk + ...+ nis+ng

— 3.27
Pry1sF T+ prsk + .+ ks + 1 (3.27)

where N (s) contains the zeros n; and P(s) the poles p; of the transfer function H(s). The
moments of the original transfer function are calculated explicitly up to a specified order
n = 2k + 1. By setting the Maclaurin series of the first moments equally to the Padé-
Approximation the poles of the Padé-Approximation can be calculated directly by solving the
system of equations

Mo M1 o Mk Pr+1 HE+1
M1 M2 o HE1 Pk Hk+2

L =1 (3.28)
MEe  HE41 - M2k p1 H2k+1
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and the zeros are obtained directly with

1o Mo 0 0 1

ni w1 po o - 0 D1
e | 629)

ng He  MHe—1 - MO Pk

This leads to a reduced order transfer function, where the first n moments at a specified fre-
quency are matched. Higher order moments are not matched and thus an approximation error
is induced. In the first algorithms the moments are expanded at zero frequency s, = 0. Meth-
ods using expansion points different from zero are for example described in [B3, B4]. Stability
is preserved in a reduced model by using only stable poles. Passivity cannot be preserved by
explicit moment matching. The main problem in using explicit moment matching is in the
numerical implementation. Typically, for a higher dimension of the matrices, the calculation
of the coefficients of the polynomials gets ill conditioned. This results in inaccurate reduced
models. Another disadvantage of the presented explicit moment matching is the limited ap-
plicability to SISO systems. Necessary extensions to MIMO systems are only possible with a
high effort, as shown in [B3-&1)].

Despite the explicit moment matching methods, with open issues in numerical robustness,
the implicit moment matching methods arise. The order reduction based on implicit moment
matching avoids the direct calculation of the moments. A solution to overcome the numerical
ill-conditioned calculations is Padé Via Lanczos (PVL) [B3, BY]. PVL is based on AWE but is
numerically more stable. The Padé-Approximation is calculated with the help of the Lanczos-
Algorithm. A disadvantage of PVL is that the stability of the system is only preserved for
symmetric systems. Passivity of the system is not preserved in the general case.

For the further developed class of implicit moment matching the transfer function is written
with the system matrices as

H(s)=LT (sC+G)™'B

=LT((s—s,) A+I) 'R (3.30)

where
A=—(5,C+G)'C (3.31)
R = (5,C+G) 'B. (3.32)

The moments of the matrix transfer function in a frequency point s, are now defined by
e .
H(s) = Y M;(s — sp)’

- Z LTATR(s — s,). (3.33)
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The method is based on the Arnoldi algorithm for reducing A into a small upper Hessen-
berg matrix H,. By generating the orthonormal basis T of a Krylov subspace colsp(T) =
Kn(R, A) with

Kn(R,A) = K,((s,C +G)'B,(5,C+G)"'C)
= (R,AR,..,A"R)
= ((5,C+G)'B, ..., (—(5,C+ G)~'C)" (s5,C + G)"'B). (3.34)

the upper Hessenberg matrix H, € R™*" is

H, = TTAT. (3.35)

The system matrices of a reduced system of order n can now be defined with [BY, 0]

C=H,

G=1- spHy

B=T'B

L=T'L (3.36)

The upper Hessenberg matrix H, is used as the reduced matrix C. For an expansion point
equally zero s, = 0 the reduced matrix G is equal the identity matrix and for expansion points
different from zero the reduced system matrix G is calculated by the identity matrix shifted by
the product of the s, and H,. The reduced matrices B and L are generated by projection with
T. Again the first n moments of the reduced transfer function are matched with the original
transfer function [[[0], but the algorithm avoids the direct computation of the moments.

Another variant for generation the reduced system matrices is proposed in [, []. In this
method the Arnoldi-algorithm is used to generate the projection matrix T. In contrast to the
generation of the reduced system matrices like in Eqn. B38 the matrices of the reduced order
system of order n are all generated by projection with T by

C=T'CT

G=T7GT

B=T"B

L=T"L. (3.37)

The (semi-)definiteness of C, G is preserved by using this projection. Thus, passivity can be
also preserved in the reduced system. At the expansion point the first n moments of the re-
duced transfer function are matched with the moments of the original transfer function. In the
presented methods the expansion point for the moment expansion can be any real or complex
frequency. However, for the preservation of passivity only real points are allowed. An investi-
gation of the influence of the choice of the expansion points on the approximation error is given
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in [[3]. A further extension of the reduction is achieved by using different expansion points.
By adjoining the Krylov subspaces

K=I[KL K2, ... Kk (3.38)

a new basis for the reduction can be generated [[Z4]. The basis I generated in this way does
not span a Krylov subspace anymore, but with an appropriate choice of the expansion points
a higher precision of the reduced model can be achieved in a wider frequency range. The
moments are not matched but approximated at the chosen frequency points [IZ4].

In [[3, 8] an algorithm is proposed, which preserves the block structure of the unreduced
system matrices in the reduced system. This is done by splitting the projection matrix T block
diagonally into

~ (T, ©
T_< 0 T2> (3.39)

with block sizes corresponding to the system matrices blocks in Eqn. IZT8. The projection
matrix T does not span a Krylov subspace anymore, but contains the subspace [[[3]

Ky =spanTy C span’TN. (3.40)

The reduced system is generated by projecting all system matrices with T as in Eqn. B3
Due to the splitting the order of the reduced system is twice the order of the reduced system
without splitting the projection matrix. Nevertheless, as shown in [[[3], the number of matched
moments is doubled, which compensates the disadvantage of higher order.

Furthermore, not only the block structure of the system matrices can be preserved, but also
the typical structure of B, L, containing only ones, minus ones and zeros, as shown in [[Z2].
The system of equations is reordered in a way that all variables connected with a port are
written in the upper part of the system equations. By reordering the columns accordingly, the
(J-)symmetry of C, G is preserved. In the next step the projection matrix is split into three
diagonal blocks

/1 0 o0
T=(0 T; 0 (3.41)
0 0 T,

with the identity matrix having columns as much as the system has ports. With this projection
the structure of the incidence matrices B, L is preserved at the cost of an higher order of the
reduced system.

Methods dealing with the reduction of second order systems by using the basic algorithms
of implicit moment matching, Krylov subspaces and the Arnoldi algorithm are presented for
example in [[Z3-&0].

With implicit moment matching several disadvantages of explicit moment matching vanish.
Firstly, the methods are numerically more robust, as, for example, the calculation of the transfer
function and the moments is not necessary because the implicit moment matching methods can
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work directly on the system matrices. Secondly, the extension to MIMO systems is quite
simple.

Most properties of the system matrices can be preserved by using implicit moment matching.
For real coefficients in the reduced system matrices, the parameter of the reduction have to
be chosen properly by using real expansion points. The typical block structure of the system
matrices can be preserved by splitting the projection matrix. This splitting is extended for
the preservation of the incidence structure of the input and output system matrices B, L. The
(J-)Symmetry of the system matrices C, G can be preserved by using the projection of each
system matrix. With this method, the (semi-)definiteness of the system matrices C, G can
also be preserved. Preserving J-symmetry and (semi-)definiteness together is more crucial and
is only possible by using the split projection matrices and projection of each system matrix.
Sparsity of the system matrices is not preserved, as typically the projection matrix T is dense.
Concluding, most of the important properties of the system matrices can be preserved by using
adapted methods.

An overview of preservable system properties by using implicit moment matching is given in
this paragraph. If the reduction methods are applied to systems or transfer functions of circuits,
the stability can be preserved with most of the methods. Passivity is more crucial. Only the al-
gorithms based on the projection of each system matrix can guarantee a passive reduced system
for suitably described original systems and reduction parameters. For positive (semi-)definite
system matrices of the original system the passivity can be preserved by preserving the positive
(semi-)definiteness in the reduced system matrices. In addition a method is presented in [KT],
where by the use of projection methods, even active or unstable systems can be reduced to sta-
ble and passive reduced order systems. The reciprocity of systems with at least two ports cannot
be preserved in the general case. One solution is motivated by preserving the (J-)symmetry of
the system matrices C, G by splitting the projection matrices, which gives a reciprocal system
with B = L. By using the projection with the split matrices, (J-)symmetry of the system ma-
trices and thereby the reciprocity can be preserved. Overall most of the system properties can
be preserved in the reduced model by using appropriate implicit moment matching methods.

3.1.5 Gramian-based Methods

Based on the controllability and observability of the states of a system, a group of algorithms
for order reduction was developed in the area of control theory [BA]. The states of a system in
state space form

sx = Ax + Bu
y = Cx + Du. (3.42)
are divided into high and low controllable and observable states. The high controllable and
observable states are the so-called strong system part. States that are either low controllable or

observable are called weak system part. The reduction method is based on the truncation of
weak system parts. The reduced system contains only the strong system part.

To enable such a truncation the system has to be balanced. For balancing, the generalized state
space system (Eqn. ZZ28) has to be transformed into the state space form. The most widely
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used method for balancing the system is based on the Lyapunov equations. The controllability
Gramian

[e.e]
P= / exp BB* exp® t dt (3.43)
0
as well as the observability Gramian
o0 *
Q= / exp™ CC* exp™ ™ dt (3.44)
0

are used for balancing the system. The Gramians are the unique, symmetric and positive
(semi-)definite solutions of the Lyapunov equations

AP +PA* = —-BB*
A*"Q+ QA =-C"C. (3.45)

A system is called balanced if controllability and observability Gramian are equal P = Q. For
balancing the observability Gramian is decomposed with Cholesky-decomposition into

P = RR7, (3.46)

R € RV*N and with singular value decomposition

RQR" =U") *U (3.47)
the transformation matrix

T=RTUTY '/ (3.48)
and its inverse

T '=> '“UR"! (3.49)

are obtained. With the transformation matrix T, the Gramians of the balanced system

Pbalanced = TilPT* = Z
Qbatanced = T*QT = Z (3.50)

can be calculated. The system associated to the balanced Gramians is built with the projection
of the system matrices with T

Apgiancea = TTAT

Biatancea = T7'B

Cratancea = CT

Diatancea = D. (3.51)
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Note that this system in balanced form is not reduced in order and the input-output behavior
is equal to the original unbalanced system. For reduction the weak system part has to be
identified. This is done according to the Hankel singular values (HSV) o on the diagonal of
> . A large absolute value of a HSV signalizes a strong part of the system. Therefore, the HSV
can be divided into two groups, strong and weak HSV, depending on their absolute values

— Zstrong 0 > 3.52
Z < 0 Zweak . ( )

With the same partitioning the system matrices can be divided into

A o Astrong Acoupling—ws
balanced — A

coupling—sw Aweak
Bstron
Bbalanced = < B g
weak
Chralanced = ( Cstrong Cueak ) (3.53)

where only the strong part of the system, associated to the large singular values, composes the
reduced system

sX = AstrongsE + Bstrongu
¥ = CutrongX + Du. (3.54)

The most outstanding advantage of this reduction method is that a global approximation error
bound is calculable by the use of the HSV prior to the reduction itself. The maximum ap-
proximation error of the transfer function in frequency domain is defined in the H, norm and
obtained by the neglected HSV with [E3, 4]

N
IH-Hlg, <2 > o (3.55)
j=N-n+1

By application of the reduction method to several examples it was observed that the approxi-
mation error is very low in the high frequency range, but quite high at low frequencies and at
DC [B4]. The major drawback of the reduction by balancing and truncation is the high compu-
tational effort for solving the Lyapunov equations. In addition, the conversion of the general-
ized state space equations of networks into state space form can be numerically crucial or even
impossible. Thus extensions for the basic order reduction method exist. For example, a solu-
tion, which allows for the reduction of generalized state space systems, is presented in [BS, Kd].
A method, which generates iteratively an approximately balanced system, is presented in [KZ],
lowering the computational effort. To overcome the bad approximation at low frequencies, a
weighted frequencies method is presented in [B4l] at the high cost of loss of the calculable error
bound. Another method for reducing the approximation error at low frequencies is based on
singular perturbation methods on the balanced system [BR, B4].

For the preservation of system properties of models describing electrical networks several con-
clusions are drawn in the following. The system matrices contain only real coefficients by
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using the Gramian-based reduction method. Therefore, the property of only real coefficients
in the system matrices is preserved. The properties of (J-)symmetry, (semi-)definiteness, spar-
sity and diagonal dominance of the system matrices are not preserved. In addition, the block
structure of the system matrices is lost in the reduced model. Advantageous of this method
is that the reduced model is balanced and minimal. Stability of the model is preserved with
this reduction method, but passivity is not preserved in the general case. Although, by using
adapted methods, the passivity, and also reciprocity, can be preserved [B].

Worth mentioning is the Poor Man’s TBR (PMTBR) method [El], which is a model reduction
algorithm motivated by a connection between projection methods in implicit moment matching
and Gramian-based methods. The PMTBR algorithm is based on the fact that the controllability
Gramian

P= / (jwC+ G) 'BBT (jwC + G) Hdw (3.56)

under the assumption B = L can be approximated by P with
P= Z wkzkz{j
k
= ZW?Z" (3.57)
by applying numerical quadrature. Z is a matrix defined with
zi, = (jurC + G)™'B (3.58)

and W is a diagonal matrix with the square root of the weights of the quadrature scheme as
diagonal entries. The projection matrix T'7, can be obtained by factorization of the Gramian

P=T, ZT{. (3.59)

If the quadrature rule is accurate P will converge to the Gramian P. Considering the singular
value decomposition of ZW

ZW =T;S;U, (3.60)
with real diagonal matrix Sz and unitary matrices Tz, Uz, which leads to
P =T,;S2TL. (3.61)

The singular vectors T 7z converge to the eigenvectors Tz, and can be used as projection matrix
in the model reduction algorithm. Approximations to the Hankel singular values can now
be directly obtained from S;. The approximation error can be obtained from the singular
values of Z, in fact the singular value decomposition of Z leads to the same information as
revealed by the Gramian-based methods. In [B] it is shown that even for a small number of
expansion points jwy, the matrix P will converge to the Gramian P. With that, a small number
of expansion points will lead to singular vectors Tz, which can be used as projection matrix
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for an order reduction. The singular values Sz can be interpreted as gains between the filtered
inputs and weighted outputs of the system [B1]. The truncated singular values thus provide an
approximate error bound of the reduced model. This can be used as a guide for choosing the
reduced systems order. Choosing an appropriate estimated error, the matrix Tz is subdivided

T, =[Txn T 2] (3.62)

according to the magnitude of the singular values. In the next step the projection matrix T 7,
is used for projecting the system matrices for order reduction. The main advantage of this
method is the low computational effort for the reduction. If the expansion points are chosen at
purely real frequencies, the projection matrix is real and (J-)symmetry and (semi-)definiteness
of the system matrices can be preserved during reduction by using the methods of the implicit
moment matching reduction. Thus the stability, passivity and reciprocity of the model can
be preserved in this Gramian-based reduction by utilizing the extensions used in the implicit
moment matching reduction.

3.1.6 Interpolation Methods

A class of methods used for order reduction is based on the modeling process from measured
or calculated input/output data. The system behavior is modeled with interpolation methods.
In this modeling process the internal variables and underlying physical properties are either un-
known or not taken into account, which also leads to the nomenclature of black box modeling.
From the observed input/output behavior a model is created, which can be used in simulations
for investigations and predictions of the model behavior [B2, E3].

Already in the fifties of the last century black box modeling methods are used for simplification
of electrical networks. In the field of power flow studies of overhead lines, the highly complex
lines, which are impossible to model directly, are modeled by black box methods [E4]. By
taking measurements at specified nodes, a simplified circuit model is obtained. The measure-
ments are taken at DC and the measured values are satisfying the rough necessary accuracy of
the power network model. Nevertheless, this approach was quite ad hoc and more sophisticated
methods, modeling a network not only at DC but in a certain frequency range, were developed
over the years.

Even if the underlying original model is known in part or completely, the black box methods
can be used to describe a high order model by its input/output behavior. This behavior is
afterwards described with a low order model. The low order model interpolates the behavior
of the high order model in several selected points of the transfer function. Thus these methods
can be used as an order reduction algorithm.

One of the most well-known methods of approximating points of data with a continuous func-
tion is curve fitting, presented in [B2]. The transfer function approximates the given data with
a rational transfer function

H(s) = (3.63)
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in a frequency range specified by the measured or simulated data set. The numerator N (s) and
the denominator D(s) can be chosen for example as rational fraction [E3]

— f: a;st (3.64)
=0

= Zn: b; st (3.65)
1=0

or as partial fraction function [B3]

Z (3.66)
=1 + pnl

3.67

1+ 2} - +pd (3.67)

or any other preferably orthogonal or orthonormal basis function [B8-88]. The order n of the
transfer function is chosen to be much smaller than the order of the original system to enable
an order reduction. The goal of the reduction process is to find the coefficients of the transfer
function for which the data set is well approximated. The basic principle for this approxima-
tion is based on the non-linear optimization methods [B9, [00O] or linearization of the problem
and optimizing the linear problem [E3]. An extension of the curve fitting approach to matrix
transfer functions, and hence systems with many inputs and outputs or systems with additional
parameters is proposed in [[ITHIOA]. The main hurdle is the optimization algorithm for esti-
mation of the coefficients of the transfer function. Much research is still going on in the field
of fast, stable and reliable algorithms for optimizing the accuracy of the approximating transfer
function, see [[{3] and references therein. Another drawback is that the created models are not
passive in the general case. Post-processing steps with passivation of the system are necessary.
Passivation methods are for example presented in [[OA-T09]. Another approach for the gener-
ation of a passive system is presented in [[I0] by creating passive models during optimization.
The reciprocity of the generated reduced order model can, for example, be guaranteed during
optimization by forcing the transfer function to be (J-)symmetric.

A method overcoming the drawback of the optimization algorithms necessary for curve fitting
is the interpolation with the Loewner matrix [, [T, IT2]. Instead of specific input signals,
the left and right input directions d;, d,. in a frequency point s; or s, defined with

d/H(s;,) = y[
H(STi)dTi =Y
1<1<n (3.68)

are used. The n values yf, yr, are simulated or measured by using the original model. The

system matrices are given directly from these values. The reduced system matrix Cis given by
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the Loewner matrix [[13]

T T T T
ylldTl —dllym ylldT‘n_dll)’rn
~ S1y —Sry e S1y—Sry
C=- : - : : (3.69)
T T T T
Yi, dri—dj yry Y, drn—dj yrn
Sip —Sry e Sl —Srn

the reduced system matrix G by the shifted Loewner matrix [[14]

T T T T
Sl yll d’r'l —Sry dll Yrq Siy yll d’r'n —Srp dll Yrn
51; —8ry U 511 =5Srp
T T T T
81 Y, dry —sry dj ¥y 810 Y, drn —8rndp Yrn
Slp —Srq T Sl —Srn

and the reduced system matrices ]§, L by the measurement or simulation results
vi,
N N
B=| "~ L=(yn Yo -+ Yr. )- (3.71)
Vi,
The advantage of this method is that no calculations are necessary, and hence neither iterations
nor convergence problems can occur. A minimal generalized state space system is derived
directly from the measured or simulated data. The order of the generated system depends on
the rank of

rank(sC + G) = rank(CG) = rank < g ) =n (3.72)

and equals the number of measured or simulated data values n if the above conditions have
full rank. Otherwise a truncated realization by using for example an SVD can be applied.
If the knowledge of the original unreduced system is taken into account, with dominant pole
algorithms [Z3] the most dominant poles of the transfer function can be found and used for the
measured frequencies s;, s,-. Thus a higher reduction with improved accuracy can be achieved.
A disadvantage of the approach based on the Loewner matrix is that the typical block structure
of the system matrices is not existent. In addition the resulting system matrices can contain
complex values, which can be avoided by using only real frequency points for the interpolation.
Another disadvantage is that the system is neither stable nor passive. By stabilization and
passivation of the system using a mirror array as proposed in [[3, IT2] this issue can be
solved.

3.1.7 Comparison

Several methods for the order reduction of networks, systems of networks and transfer func-
tions describing networks were presented in the former sections. The applicability of the meth-
ods for networks and the preservation of important properties was investigated. In this section,
concluding remarks for the reduction of networks using the presented methods are given.
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The methods reducing the network directly are mainly limited to networks where the structure
is simple, several series or parallel connections can be merged or networks where very large
as well as very small element values are used. Most often the models that are to be reduced
are more complex and require more sophisticated methods. The Gaussian elimination in its
original form is limited to networks with only one type of element. Extensions to networks
with different types of elements are presented, but are still limited to a class of networks with
a special structure. Gaussian elimination methods are only used for one type of element net-
works, built in IC substrate modeling or for networks with special structures built in the IC
layout extraction. Nevertheless, the application to more complex networks is still under inves-
tigation. Modal approximation, based on algorithms for finding dominant poles of systems, is
used if the preservation of some of the poles is necessary. The disadvantage of this method is
in losing almost all system properties of the original networks system. More efficient are the
methods based on moment matching, because not the location of the poles is approximated,
but the complete transfer behavior is taken into account. The moment matching methods are
the most widely used methods for the reduction of networks, due to their simplicity, efficiency
and adaptability. Their main disadvantage is that neither error estimation nor control is avail-
able and the reduction parameters are often chosen manually. Therefore, the Gramian-based
methods are of increased interest. Based on control theory methods, their main advantage is
the estimation and control of the error of the reduced system. The main disadvantages are a
higher necessary effort for the reduction as well as a lower adaptability to systems of electrical
networks. These disadvantages are actually under investigation and vanish more and more.
The class of interpolation methods, mainly built for systems where the underlying model is
unknown, is able to provide an alternative to the reduction methods, based on the knowledge of
the internal structure of the model. Nevertheless, these methods suffer from the disadvantage
of neglecting knowledge that can be helpful for finding an efficient reduced model.

The preservation of properties of systems and transfer functions of networks in a reduced model
is depicted in this paragraph. Concluding for the properties, most order reduction algorithms
are able to preserve stability. Passivity is more crucial, but algorithms, based on direct network
manipulation and Gaussian elimination, are able to preserve passivity. For the methods based
on modal approximation, moment matching and the Gramians, several extensions exist with
which passivity can be preserved. Nevertheless, due to numerical issues, the reduced systems
can be active, which in this case leads to the necessity of an additional passivation step. For
most of the interpolation methods an additional passivation step is necessary after the order
reduction, resulting in passive reduced systems. For reduction methods that are capable of re-
ducing systems of networks with more than one port, the reciprocity preservation is of interest.
The methods, directly manipulating the network as well as the Gaussian elimination, preserve
reciprocity by construction. By using adapted methods, the preservation of reciprocity is also
possible in the moment matching as well as the Gramian-based methods. For the modal ap-
proximation as well as the interpolation methods boundary conditions for the generation of the
reduced model are necessary for generating a reciprocal reduced model.

The preservation of typical properties of system matrices describing a network, as well as their
transfer functions, are investigated in this paragraph. Firstly, the reduction of differential al-
gebraic equations of generalized state space systems instead of ordinary differential equations
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of state space system is possible with almost all methods. The moment matching methods
are explicitly suitable for DAE systems, while for the modal approximation and the Gramian-
based methods several extensions exist to incorporate DAE’s. For the interpolation methods the
structure of the original system is not of interest, as they are based on simulated or measured
input-output relations. Secondly, the use of only real coefficients is preserved in the system ma-
trices by using direct network manipulations, Gaussian elimination and Gramian-based meth-
ods. By a proper choice of reduction parameters in the moment matching and interpolation
methods the real coefficients can be as well preserved. For the modal approximation, complex
coefficients in the reduced models system equations can occur, due to complex poles used as
coefficients. Definiteness of the system matrices is preserved by construction in direct network
manipulation and Gaussian elimination methods. By using suitable projection methods, the
(semi-)definiteness can also be preserved with moment matching methods. More complicated,
or even impossible, is the preservation of (semi-)definiteness if reduction methods based on
modal approximation, the Gramians and interpolation are used. The J-symmetry, as well as the
block structure of the system matrices, can only be preserved by using adapted moment match-
ing methods. Sparsity can be preserved by using Gaussian elimination and a stop criterion for
the reduction, if the density of the matrices increases above a given level. The reduced models
with modal approximation are sparse, as the system matrix is diagonal, having the poles on the
main diagonal. Sparsity is not preserved by using moment matching, Gramian-based methods
and interpolation methods.

If methods are used, which generate stable, passive and reciprocal reduced models, the prop-
erties of the transfer function are most often preserved in the reduced transfer function. Thus
the statements of the former paragraph, regarding the reduction properties of the several algo-
rithms, also apply to the properties of the transfer function.

3.1.8 lllustrative Numerical Example

In this section the network of Sec. 4 is reduced for illustration purpose. Reduction methods
based on the system equations describing the network are used to obtain a reduced order model.
Because of the possible preservation of several properties of systems describing networks, the
implicit moment matching, with projection of the system equations, will be illustrated.

The system equations (Eqn. Z33) of order N = 3 of the example network (Fig. )

C G X B
—f—
1 00 2 -1 0 ®n1 1 by
s{ 010 |+ -1 3 -1 On2 = 0 (ip)
00 1 0 -1 2 bn3 0
¢n1
(up )=(1 0 0)| ¢n2 (3.73)
N—— N——’ ¢3
y LT . o/

X
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are to be reduced with order reduction. From 10~5Hz to 105Hz the transfer behavior at the port
is to be approximated by a reduced model. Due to the simplicity of the transfer function only a
first order Krylov subspace K in one real expansion point s, = 0.1 is built, which leads to

0.5818
K=(s,C+G) 'B~| 02217 (3.74)
0.1056
for the network. With QR-decomposition an orthogonal projection matrix T is obtained
—0.9213
T~ | —0.3511 |]. (3.75)
—0.1672

By projection the reduced system matrices of order n = 1 are given
C=T/CT=1
G = TTGT ~ 1.3589
B=T'B =~ —0.9213
L=T'L~ —0.9213. (3.76)

and the resulting reduced order system is
c G X B
N — |~ /—A—\;\
s (1) +(1.3589) <¢ﬁ) = (~0.9213) )

(up) = (—0.9213) (}1> (3.77)
e

The reduced order system matrices are still real, as the expansion point in the reduction is
chosen as a real frequency point. Also the system matrices (NJ, G are still positive definite and
B = L holds as in the unreduced system. The reduced order transfer function is computed
with

~ 0.8488

Zayp=01(8) ¥ gy
The reduced order system has only one real pole at p; ~ —1.3589, while the unreduced system
is described with three poles.

(3.78)

For comparison, the expansion point is chosen at a higher frequency of s, = 10, and the
reduced system is obtained with

¢ el X
N — ~
s (1) +(1.8511) (%

2
) = (~0.9970) (i,)

(up) = (—0.9970) (%;71) (3.79)
i
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and the transfer function is given with one pole at p; ~ —1.8511

~ 0.9940
Zoy=10(8) ¥ S geT

(3.80)
The transfer functions of the unreduced and the reduced systems as well as the approximation
errors due to model reduction are shown in Fig. B2 and Fig. B3. The results validate the
good approximation. The reduced system, with an expansion point at s, = 0.1, shows a good
accuracy in the low frequency range. The reduced system, with the expansion point at a higher
frequency s, = 10, is accurate in the high frequency range, but shows a worse accuracy in the
low frequency range. This shows that the accuracy in specific frequency ranges can be adjusted
with the choice of the expansion points.

Y s A e

2
— 10 unreduced N=3 ——
N 10+4| reduced (sp=0,1) n=1——
- reduced (8 =10) n=1—s—

109 -

phase(Z,,)

10° 10* 10°10210" 10° 10" 10% 10° 10* 10°

frequency (Hz)

Figure 3.2: Illustrative example transfer function Z1 ; of the original and the moment matching
reduced models

With this example an order reduction is illustrated. A system description of a network of order
N = 3 is reduced to an order of n = 1, while the behavior at the port of the network is
approximated.
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Figure 3.3: Relative approximation error of the transfer function Z; ; of the moment matching
reduced models

3.2 Network Synthesis

For the simulation of reduced order models in standard simulation environments electrical
networks are preferred. For the reduction algorithms reducing the network directly (Sec. BT
and several algorithms of Sec. BT), the resulting reduced model is still an electrical network.
For order reduction algorithms dealing with the mathematical description of the network, either
in transfer function or in system equations form, a translation of the order reduced model into
an electrical network is necessary. This translation from the reduced mathematical description
into a network realization is called synthesis in the following. The transfer function is assumed
to be reduced in the sense that the number of poles is lowered. If the reduction method is
applied on the system description, the number of equations is assumed to be reduced. For
both types of order reduced models, network synthesis algorithms are required in the model
reduction process and are described in the following sections.

3.2.1 Transfer Function Synthesis

For the generation of an electrical network from a reduced order transfer function several meth-
ods are developed in the field of filter synthesis. In filter synthesis an electrical filter is to be
built from a transfer function generated from given specifications. This task is inverse to the
analysis of electrical networks. Pioneering work in this field is done by Cauer [Z2] and Fos-
ter [I3], for two types of elements networks, and by Brune for RLC networks [28]. In the
beginning, the filter synthesis methods mainly dealt with nondissipative networks. The main
goal of the synthesis methods in the field of filter synthesis is physical realizability. Thus the
synthesized network has to be built only from positive real valued elements, has to have a low
sensitivity to parameter variations and has to contain only a low number of elements.
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For a reduced order transfer function the boundary conditions for the synthesis of an electri-
cal network model are somewhat different. The goal is a fast and efficient simulation of the
synthesized network. As long as the complete model is passive, ensuring stable simulations,
negative element values are allowed in several simulation environments. In addition, elements
like controlled sources can be used. As the simulations are performed for nominal values, the
numerical stability during the simulation process is more important than low sensitivity to pa-
rameter fluctuations. A low number of elements, as preferred in the filter synthesis, is as well a
main goal for the minimal realization, but this condition is supplemented by a low number of
nodes of the synthesized reduced model.

Firstly two methods, based on Cauer- and Foster-synthesis for transfer functions with only real
poles and residues, are presented. The Cauer-Synthesis is based on a continued fraction expan-
sion of the transfer function. For a one-port reduced model the continued fraction expansion
can be calculated to

. . 1
H(s) = Hy +
() 0 a1/3+ 11

bl+a2/s+ﬁ
L | e |
]al/s ’bl \ag/s |b2

This continued fraction expansion can be realized as an electrical network, in the case of an
impedance as an RL-ladder network as shown in Fig. B-4. In the dual case of an admittance, a
GC-ladder network is synthesized as shown in Fig. BY. For the impedance case the element

RO R1 RZ
o -
Z(s) L, L, e
O

Figure 3.4: Synthesized network using the Cauer-synthesis for impedances

C, C,
V(S) G, G, , °°°

Figure 3.5: Synthesized network using the Cauer-synthesis for admittances

_ o

(3.81)

values are obtained directly from the reduced transfer function with

Ro = Hy
Ry, = by, (1<m<n)
Lm=1/am (1<m<n) (3.82)
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and for the admittance case with

Go = Hy
G = b, (1<m<n)
Cm=1/am, (1<m<n) (3.83)

The Foster-Synthesis is based on a partial fraction expansion of the reduced order transfer
function. The transfer function of a reduced model of a one-port can be written with

H(s)=Ho+ ) (3.84)

s+ by,

This partial fraction expansion can be realized as an electrical network in the case of an
impedance as series connection of RL-parallel connections, as shown in Fig. B8. In the dual
case of an admittance, the synthesized network is a parallel connection of GC-series connec-
tions as shown in Fig. B7. For the impedance the element values are obtained from the transfer

R L, L,
Z(s) R, R,

[o,

Figure 3.6: Synthesized network using the Foster-synthesis for impedances

- G, ||g

wip o e
C, ==C,

o 1T

Figure 3.7: Synthesized network using the Foster-synthesis for admittances

1

function coefficients with

Ry = Hy
R, = ap, (1<m<n)
Ly, = am/bm (1<m<n) (3.85)
and for the admittance with
Go = Hy
Gm = am (1<m<n)
Cm = m/bm (1<m<n). (3.86)
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In both cases the zeroth resistance or conductance can be set to zero if the Hj term does not
exist in the reduced transfer function. For both Cauer- and Foster-synthesis methods the size
of the network of the reduced model depends on the number of poles n. The reduced network
has around 2n elements and contains n nodes.

In the former paragraph only real poles and residues in the reduced order transfer function are
considered. After order reduction the poles are typically complex, which leads to enhanced
synthesis methods. As an example the enhanced Foster-Synthesis is presented. This method is
based on the pole-residues form of the reduced order transfer function for a model of a one-port

Ny Ne *
~ ~ ~ T I8 T
H(s)=s Ho+ Ho+ Yy —=—+ ( em__ 4 _om > . (3.87)
1 S — Prp, 1 S — Pem § = Pe,,

The transfer function contains n, real poles p, and their corresponding real residues r, and n.
conjugate complex poles p. and residues r.. This transfer function can be realized as an elec-
trical network in the case of an admittance as shown in Fig. B8, or in the case of an impedance
as shown in Fig. B9. In case of a reduced order admittance the element values of the zero and

Cc_m
c., ]
R, L G, ,,
1
XX ) XX
Zs) G, T R

Figure 3.9: Synthesized network using the enhanced Foster-synthesis for impedances

infinity part of the transfer function are given with

Co = Hy (3.88)
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and for the real poles and residues the synthesized network elements are

Ly py=1/7p,,
Rr_m = —Dr. /Trm . (389)
For the conjugate complex poles and residues the reduced order admittance can be written with
T r
Hc_m(s) — (& + C

$—pc S—D;
_s '22Re{rc} - 2Re{rc~p§} (3.90)
§°— s 2R6{pc} + |pc|
where * denotes conjugate complex and Re{a} the real part of a complex number a. The
admittance of the network shown in Fig. B8 for the complex poles is given with

1 1
Y;_m(s) = R ”

715 Com+ Gem)

1 Gem
s Lcim + Lcim ‘ Ccim

= . (3.91)
s (fom o+ o) + Mo
Comparing the coefficients in and B9 leads to the following element values
R _ Re{rc Pz} -2 RG{T'C} ) Re{pc}
o 2. Re?{r.}
a. . - —2-Re*{r.} - Re{r.-p:}
" Re2{re-pt} —2- Re{rc} - Re{re-pr} - Re{p:} + Re2{r.} - |pc|?
C. - 2-Re?{r.}
M Re2{r.-pty — 2- Re{r.} - Re{r.-p:}- Re{p:} + Re2{r.} - |p.|?
1
Lem =5 porrt 3.92
- 2- Re{r.} ( )

In the case of an impedance, the network is dual as shown in Fig. B9. The element values for
this network can be determined in the same way as for the admittance and are given with

Ry = Hy
LOO - NOO
Crm=1/r,

Re{rc-ps} —2- Re{rc} - Re{pc}
- 2- Re*{r.}
—2-Re*{r.} - Re{r.-p’}

Rc m —
- Re?{r.-pt} —2- Re{r.}- Re{r. -p:}- Re{pt} + Re?{r.} - |pc|?
I B 2-Re3{r.}
M Re2{r.-pt} — 2+ Re{r.} - Re{rc-pt} - Re{pt} + Re2{rc} - [pe|?
1
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With this the size of the synthesized network depends on the number of poles n. The number
of elements in the synthesized network is around 2n and the number of nodes is around n.

In the former paragraphs it was shown how circuits can be generated out of the scalar transfer
function of a one port. If a network is to be generated from a reduced order model with more
than one port the matrix transfer function

Hia(s) - Hyy(s)
H(s) = : : (3.94)

Hpi1(s) -+ Hpp(s)

has to be taken into account. A demand on the reduced order model, as it is to be synthesized
as pure RLC-network with the filter synthesis methods, is the preservation of reciprocity. Nec-
essary extensions to the filter synthesis algorithms for reduced order systems with more than
one port will be described below.

Starting with a two-port network, the network synthesized from a reduced model is shown for
example as a II-realization in Fig. B-I0. For this two port the elements are

Y,(s)
[ II ll O

Y,(s) Y. (s)

(o, O

Figure 3.10: m-structure of a synthesized network with two ports

Yi(s) = Hi1(s) + Hia(s)
Ya(s) = —Hi(s)
Y3(s) = Hao(s) + Hio(s) (3.95)

for the admittance case. In case of an impedance description the T'-realization shown in
Fig. BTl is more suitable with the element parameters

Z1(s) = Hy1(s) — Hy o(s)

Z(s) = Hoo(s) — Hy o(s)

Z3(s) = Hya(s). (3.96)

Nevertheless, 1I- and T-realizations are both possible for the two-port synthesis of an admit-
tance and an impedance and calculations of the element functions are similar. The resulting
one-port impedances or admittances composing the two-port network can now by synthesized
with the one-port synthesis algorithms presented in the former paragraphs.

For systems with more than two ports the synthesis problem is well studied for admittance
description. For impedances the synthesis problem is not straightforward as in the admittance
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Z(s) Z,(s)
o LT LT o
Z(s)
o} O

Figure 3.11: T-structure of a synthesized network with two ports

case [[TA-TTR] and still faces several open problems. In the following we will concentrate on
admittance descriptions for reduced models with p ports. A network can be built, where all
ports are connected with each other by a one-port network and every port is connected with
the ground by a one-port network. The resulting network is a complete graph where every
branch contains a one-port. This leads to an enhanced Il-realization for the p-port. As an
example an admittance with four ports is shown in Fig. BT2. The admittances connecting the

Figure 3.12: m-structure of a synthesized network with four ports

ports with each other and with ground are synthesized with the one-port algorithms presented
in the former paragraphs. Overall the size of the network depends on the number of ports
p and the number of poles n. The synthesized II-network contains 2n - (p? + p)/2 elements
and n - (p? + p)/2 nodes, which shows a strong dependence of the size of the network on the
number of ports.

3.2.2 System Equations Synthesis

For reduction algorithms based on the system equations the resulting order reduced model
is a system of equations with a lowered number of equations. In this section methods for the
synthesis of an electrical network from the reduced order system equations are presented. In the
following for the estimation of the size of the reduced network it is assumed that the matrices
of the reduced order system are full populated, having almost no zero coefficients.

In the unreduced system every variable in x corresponds to a node voltage, an inductor cur-
rent or a voltage source current (Sec. Il). After order reduction the mapping of the system
variables in X to currents and voltages is abrogated. For the reduced system variables it can
be freely chosen if they are treated as node voltages or as branch currents. If methods capable
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of preserving the block structure of the system matrices as presented in Sec. BT are used,
the mapping of the system variables to currents or voltages is possible in the reduced system
variables. Nevertheless, for the synthesis as an electrical network, the system variables of the
reduced system can also be chosen to be interpreted as currents or as voltages.

The most straightforward way to synthesize a network out of the reduced system matrices is
done by so-called direct stamping methods. For the direct stamping methods the following
controlled sources are necessary: current controlled current source (CCCS), voltage controlled
current source (VCCS), current controlled voltage source (CCVS) and voltage controlled volt-
age source (VCVS). For the direct stamping method information about the simulation environ-
ment is necessary. In the following the term dynamic element is used for controlled elements
defined by a multiplication of the Laplace variable s with the controlling value

CCCS :icg = s-icc, ucs = arbitrary
VCCS :icg = s-uyo, ucgs = arbitrary
CCVS : uygs = s-icc, tys = arbitrary

VCVS :uygs = s-uyc, 1y s = arbitrary.

The term polynomial controlled source is used for controlled sources defined by a sum of first
order polynomials

m
CCCS :icg = Z W ij, ucg = arbitrary
j=1

m
VCCS : igg = Z W - uj, ucg = arbitrary
j=1

m
CCVS :uyg = ij “1j, iy s = arbitrary
j=1

m
VCVS :uyg = Z W - uj, iy s = arbitrary.
j=1

By direct stamping a matrix stamp is realized by finding a network that produces the same
stamp in the internal simulator matrices as in the reduced system matrices. With this method
the coefficients in the matrices are realized by controlled sources, including resistors, capacitors
and inductors as special cases. The direct stamping method can be divided into two essential
steps. In the first step the matrices (Nj, G are realized as an electrical network. In the second
step the connection of this network with the ports, described by ]§, L, is realized. In the fol-
lowing the resulting networks, realized by the interpretation of the reduced system variables
in X interpreted as voltages or currents, are presented. The differences in the synthesized net-
works depending on the capability of the simulation environment, regarding the availability of
dynamic elements and polynomial sources, are shown.

If the reduced system variables in X are interpreted as voltages, every system variable is associ-
ated to a node voltage in the synthesized network. Every row in the reduced system description
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is thereby treated as Kirchhoff current law, whereas the currents depend on the node voltages.
The synthesized network contains as many nodes as there are equations in the reduced sys-
tem description. At every node controlled current sources are connected. With that synthesis
method for every system given in matrix form as in Eqn. B3, a network can be generated con-
taining controlled sources and dynamic elements as shown in Fig. BT3. If for the direct stamp-
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Figure 3.13: Network with controlled sources and dynamic elements created by direct stamp-
ing. All system variables are interpreted as voltages.

ing method no polynomial sources are available, the number of synthesized elements equals
2n2, which equals the number of coefficients in the matrices C, G. If polynomial sources are
available in the simulation environment the number of elements can be reduced. For example,
parallel controlled current sources can be combined into one source. With polynomial sources
only n elements for the matrix C and n elements for the matrix G are necessary, as every row is
described by one polynomial source. In the next step the connection of the generated network
with the ports is realized. For the connection of the input values at the ports with the system
variables the matrix B is synthesized. Depending on whether the input is a current or a voltage,
CCCSs and VCCSs are realized in the network. Without polynomial sources, n - p elements are
necessary for the matrix B, as every coefficient is to be realized by one controlled source. Only
n elements are necessary if there are polynomial sources available, as every column is realized
by a controlled source. The outputs at the ports, which are typically the dual electrical values
of the inputs at the port, are described by L. The matrix L is realized with VCCS and VCVS
for currents and voltages as outputs respectively. Without polynomial controlled sources n - p
elements are necessary for realizing the matrix L. Only p elements are necessary if there are
polynomial sources available. The number of nodes of the network realizing L differs depend-
ing on the type of outputs. For an electrical current as output, the controlled sources realizing
the current can be connected in parallel, and thereby only one node for each output is neces-
sary. For the dual case of voltage outputs the controlled voltage sources have to be connected
in series, and thereby n nodes between the voltage sources are necessary for each output. This
results in n - p nodes for all p outputs. This problem vanishes if polynomial controlled sources
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are available, as each output value is generated by one source controlled by all system variables
together, and thus only one node per output is necessary. The overall number of elements of
the complete synthesized network is equal to the number of coefficients 2n? 4 2n - p in the
matrices, if there are no polynomial sources available. If polynomial sources can be used, the
overall number of elements reduces to 3n + p.

The advantage of this method is the low number of nodes that is used in the synthesized net-
work. Only as many nodes as the order n of the system are necessary for the network realizing
the matrices C, G independently on the availability of polynomial sources. If no polynomial
sources are available n - p nodes are necessary for the port connection. With polynomial sources
the number of necessary additional nodes is reduced to p. The disadvantage of the synthesis
method is that dynamic elements are necessary, which are not always available. Furthermore,
the number of elements can be very high, especially in the case if there are no polynomial
sources available. An advantage of this method is that no requirements on the structure of the
reduced system matrices are necessary, except that the coefficients are real for real controlled
sources gains.

In several simulation environments dynamic elements as described in Eqn. B34 are not sup-
ported. In this case a network containing only static sources is necessary. The direct stamping
method can be extended to build a network with only static controlled sources. Therefore,
every coefficient in the matrix Cis synthesized with an additional capacitor connected with a
VCVS controlled by the voltage corresponding to the column of the coefficient with the gain
one. In the synthesized network a CCCS with a gain one, controlled by the current through the
additional capacitor, is used instead of dynamic elements. The structure of the resulting small
additional networks is shown in Fig. BT4 at the right side. The behavior of the network at its
ports is identical to the behavior of the network with dynamic elements. The advantage of this
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Figure 3.14: Network with controlled sources and without dynamic elements created by direct
stamping. All system variables are interpreted as voltages.

method is that only static controlled sources and capacitors are necessary. The number of ele-
ments for the matrices G, B, L is equal to the direct stamping methods with available dynamic

56



CHAPTER 3. MODEL REDUCTION OF LINEAR NETWORKS

elements, as for these matrices only static sources are necessary. For the matrix C in addition
2n? elements and n? nodes are necessary. Therefore the disadvantage of this approach is the
larger number of elements compared to the direct stamping method with dynamic elements.
The overall number of elements is 4n? + 2n - p if there are no polynomial sources available
in the simulation environment. If polynomial sources can be used, the number of elements
reduces to 2n? + 3n + p. A second disadvantage of this method is the high number of nodes
that is necessary. As many nodes as the order of the reduced system n plus n? are necessary for
the network, independently on the availability of polynomial sources. If no polynomial sources
are available, n - p nodes are necessary for the port connection. Only p nodes are necessary,
if polynomial sources are available. Again, the advantage of this synthesis method is that no
requirements on the structure of the reduced system matrices are necessary, except that the
coefficients are real for real gains of the controlled sources and real element values.

In the former paragraphs the variables X in the reduced system are interpreted as voltages for the
network synthesis. This leads to an interpretation of the reduced system equations as Kirchhoff
current law. If the variables in X are interpreted as currents, every current is associated to a
loop current. This case leads to an interpretation of the reduced system equations as Kirchhoff
voltage law. The synthesized network contains as many loops as there are equations in the
reduced system description. In every loop controlled voltage sources are used. The networks
with controlled voltage sources can be built in a similar way as in the former paragraph by
realizing matrix stamps. The resulting network is shown in Fig. B13.
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Figure 3.15: Network with controlled sources and dynamic elements created with direct stamp-
ing. All system variables are interpreted as currents.

For simulation environments without dynamic elements, in the synthesized network for every
coefficient in the matrix C, an inductor connected with a CCCS is added. In the synthesized
network a VCVS with a gain one, controlled by the voltage across the inductor, is used instead
of dynamic elements. This realizes the behavior of a dynamic element. The resulting network is
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shown in Fig. BTH. Again, an advantage of this direct stamping method is that no requirements
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Figure 3.16: Network with controlled sources and without dynamic elements created with di-
rect stamping. All system variables are interpreted as currents.

on the structure of the reduced system matrices are necessary, except that the coefficients in the
matrices are real for real controlled sources gains. The overall number of elements is equal to
the number of elements in the direct stamping method, with the system variables interpreted
as voltages. Again, the availability of dynamic elements and polynomial sources decreases
the size of the network. Nevertheless, the main disadvantage of this method is a large number
of nodes, which is necessary in comparison to the synthesis method interpreting the system
variables as voltages. Thereby this method, relying on loop currents instead of node voltages,
should only be used if the reduced system variables need to be interpreted as currents.

As shown in the previous paragraphs, the direct stamping methods have several disadvantages.
Mainly the necessity for dynamic elements in the form of Eqn. BY2 to synthesize networks
with a low number of elements and nodes from the reduced system limits their applicability.
If only static controlled sources are available, the direct stamping methods generate networks
with an increasingly large number of elements and nodes. In this section a synthesis approach
based on the reduced system matrices is introduced, which does not need dynamic elements.
The so-called GC-network synthesis approach is presented in this work and published in [[T9].
The synthesized network has a comparable low number of elements and nodes as the direct
stamping methods with dynamic elements. For synthesis the variables in X are considered as
node voltages. Therefore a network with as many nodes as variables in X is generated. As an
additional requirement to the direct stamping methods, not only the coefficients in the matri-
ces need to be real, but also the matrices C and G need to be (J-)symmetric. The method of
generating the network is shown in the following. By utilizing the (J-)symmetry of the reduced
system matrices, a network with capacitors and resistors realizing the matrices C and G as
shown in Fig. BT can be synthesized. Every one of the n nodes is connected with every other
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node and ground by a resistor and a capacitor, which leads to (n? 4 n)/2 elements for the syn-
thesis of the reduced system matrices é, G. The values of the elements connecting different
nodes are given by the coefficients in the reduced system matrices. The element values for
elements connecting a node with ground are calculated by the sums of the coefficients in the
columns of the reduced system matrices. The matrices B and L are realized as static controlled
sources (Fig. BT7) in the same way as in the direct stamping methods. The overall network
realizing the reduced system contains resistors, capacitors and static controlled sources and is
shown in Fig. BTA. The advantage of this approach is that the number of nodes is as low as in
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Figure 3.17: Synthesized network using GC-synthesis

the direct stamping method with dynamic elements. Only n + p nodes are necessary if poly-
nomial sources are available and n-p + n nodes are necessary without polynomial sources.
Whereas in this method no dynamic elements in the form of Eqn. BJ17 are necessary in com-
parison to the direct stamping method. In addition, the number of elements is comparable to
that of the direct stamping methods with dynamic elements. A disadvantage of this method is
that, gdditionally to the condition that all coefficients in the matrices are real, the matrices C
and G have to be (J-)symmetric for this method. The preservation of (J-)symmetry has to be
ensured by using appropriate reduction algorithms preserving the block structure of the system
matrices (Sec. B1T°4).

Another step towards a network synthesis of the reduced system of equations, avoiding con-
trolled sources at all, is presented in [IZ2]. The method is based on second order systems,
but can be also applied to first order systems. The matrices 6, G are realized as for the GC-
Synthesis method with capacitors and resistors, assuming the variables in the reduced system
to be voltages. Furthermore, the method requires a preserved incidence structure in the B, L
matrices. More precisely, the coefficients in B, L are only ones, minus ones and zeros, as in
the unreduced systems incidence matrices. This can be achieved by order reduction algorithms
preserving the block structure of the system matrices, as shown in Sec. BT4. With this as-
sumption the ports are not connected by controlled sources with the system, but are directly
connected with the corresponding nodes. The drawback of this method is that, for preservation
of the incidence structure in B, L, the order of the reduced system is higher. In the reduced
network this results in a larger network for the C, G matrices but no additional elements nor
nodes for the matrices B, L.

Both the direct stamping and the GC-synthesis methods can be applied to impedance, admit-
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tance or hybrid descriptions by using the appropriate type of controlled sources for the f}, L
matrices. The network realizing the C, G matrices remains the same, independently on the
sort of port definition.

Further enhancements of the direct stamping and GC-synthesis methods are based on sparsi-
fication techniques to reduce the number of elements [[[2, I20] and regularization techniques
to avoid numerical errors due to very small and very large eigenvalues of the reduced systems
matrices [[2].

3.2.3 Further Methods

Another class of networks synthesized from the reduced system equations is based on nu-
merical integration techniques. The synthesized networks contain time-variant element val-
ues [B4, IXTI74]. Based on internal state variables and port voltages and currents, at each
time-point in the simulation the corresponding element values are calculated. The main advan-
tage is the fast simulation of the generated networks. The disadvantage is that the implemen-
tation of these networks usually requires specialized simulation environments or additions to
existing simulators. As these methods are more situated in the field of numerical integration of
the reduced models than in synthesizing in the sense of creating a network from a given func-
tion, only a short overview is given in the following. A synthesis method using time-variant
elements is proposed in [[22], based on backward-Euler integration, which can be extended
to other numerical integration methods [I2ZT]. A method for avoiding the matrix inversions
in [X] is presented in [[3]. The simulation environment presented in [B4] is also based on
simulating reduced order time-variant models. A state variable formulation on which integra-
tion methods are applied is presented in [[Z4].

3.2.4 Comparison of Synthesis Methods

In the following, the necessary number of elements and nodes of the presented network syn-
thesis algorithms is compared. Not considered here is the number of loops, as practically all
simulators are based on nodal analysis, where the number of nodes, instead of the number of
loops, is crucial for the resources in a simulation.

Let p be the number of ports, n be the reduced number of equations in the system description or
the reduced number of pole-residues pairs in the rational transfer function form. The number of
elements and nodes of the network synthesis algorithms presented in this section is summarized
in Tab. B

As typically complex poles and residues occur in the reduced models, the enhanced Foster-
synthesis method is used as representative method for the transfer function synthesis methods.
For this filter synthesis method every entry in the matrix transfer function is realized with a
one-port network with 2n elements and n nodes. For a network with p ports (p* + p)/2 of
these one-port networks are necessary. The size of the resulting network is n - (p? + p) for the
elements and n - (p? + p)/2 for the nodes. This shows the dominating dependency of the size
of the network on the number of ports. The advantage of the filter synthesis methods is the
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Table 3.1: Comparison of network synthesis methods for reduced order models

Method dynamic poly Elements Nodes
elements | sources
Direct Stamping - - n?>+2n-p [ n®P+n+pupton+n+n-p
- X 2% +3n+p n?4+n+p
X - 2n? +2n-p n+pupton+n-p
X X 3n+p n+p
GC-synthesis - - n>4+n+2n-p n+pupton+n-p
- X n?+2n+p n+p
Filter-Synthesis - - n-(p?+p) n-(p?+p)/2

realization as pure RLC-network by construction, enabling a robust simulation.

For the networks created from the reduced system equations, the interpretation of the reduced
system variables as voltages always leads to a smaller number of nodes, because the resulting
equations are based on nodal equations instead of mesh equations. Thus only the methods real-
izing the variables as voltages are taken into account in the following. With the direct stamping
method the number of elements mainly depends on n2 + n - p, except for the case where poly-
nomial controlled sources and dynamic elements are available and the number of elements can
be reduced down to n + p. The number of nodes is mainly limited by the availability of dy-
namic elements in the simulation environment. If there are no dynamic elements allowed, the
number of nodes mainly depends on n? + p, which is reduced down to n + p if polynomial
controlled sources are available. Overall, the number of elements and nodes is mainly limited
by the reduced order and the capabilities of the simulation environment. The disadvantage of
the direct stamping methods is the high number of controlled sources possibly affecting the
robustness of the simulation.

For the GC-synthesis, which uses static controlled sources, resistors and capacitors and does
not need dynamic elements in the form of Eqn. B3, the network size mainly depends on n? for
the number of elements and on n+ p for the number of nodes. The number of nodes is as low as
possible and equals the number of nodes of the direct stamping method with dynamic elements.
The number of elements is higher than in the direct stamping method with dynamic elements,
but nevertheless below the number of elements in the direct stamping method with only static
controlled sources. For the GC-synthesis the size of the synthesized network mainly depends
on the reduced order and less on the simulation environment capabilities. An advantage is the
reduced number of necessary controlled sources compared to the direct stamping methods.

A comparison of the sizes of the networks created from the order reduced models leads to the
following conclusion. For networks with a comparably high order and a quite high number
of ports, a smaller network is synthesized with the system synthesis approaches than by using
the transfer function synthesis methods. Transfer function synthesis methods create smaller
networks for systems with a quite low number of ports and a comparably low order.

For the transfer function synthesis methods reciprocity is necessary, as the realized networks
has to be reciprocal by using only RLC-elements. An advantage of the system synthesis ap-
proaches is that reciprocity has not to be preserved. Even non-reciprocal systems can be syn-
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thesized with system synthesis approaches due to the use of controlled sources. Nevertheless,
reciprocity should be preserved in a reduced model, allowing for accurate investigations.

Regarding network properties such as stability and passivity, the system synthesis and filter
synthesis methods both preserve these properties, as the generated network is an exact repre-
sentation of the reduced model. Despite the fact that the complete network is passive concern-
ing the behavior at the ports, a few internal elements may be active. For example, negative
resistors are used in the system synthesis methods for positive off-diagonal coefficients in the
reduced system matrices. Also if the reduced system matrices are not positive (semi-)definite,
negative element values are necessary. In filter synthesis methods the use of negative valued
elements is avoided by construction. Both networks, synthesized with system synthesis and
transfer function synthesis, are passive at the ports. Nevertheless, only the transfer function
synthesis methods create networks by using only passive elements.

Another fact that should be taken into consideration is that the filter synthesis methods can
only be applied to admittance descriptions if the system contains more than two ports. The
synthesis methods, based on the reduced state space system, the direct stamping, as well as the
GC-synthesis methods, can be applied to admittance, impedance and hybrid descriptions.

For simulation environments, where a direct access to the internal numerical integration algo-
rithms is possible, the implementation of the time-variant networks is a possible choice.

To sum up, there is no optimal synthesis method for all reduced models. Depending on the
type of the reduced model, the relation of the reduced order and the number of ports and the
possibilities of the simulation environment an appropriate synthesis algorithm has to be chosen.

3.2.5 lllustrative Numerical Example

In this section the example of Sec. 4, whose order was reduced in Sec. BT, is synthesized
for illustration purpose. Both transfer function synthesis and system equation synthesis are
applied to the reduced models.

Firstly a filter synthesis method, the enhanced Foster-synthesis is used, which is based on the
pole-residue form of the transfer function. The reduced impedance transfer function is given in

Sec. BT with
_ 0.8488
Z(s) m —o200 .
(8) ~ 37358 (3:97)

and by using the enhanced Foster-synthesis procedure a network is generated. The generated
network contains two elements: a parallel connection of a capacitor and a conductor. The
network is shown in Fig. BT8.

For the reduced system equations of Sec. BT &

[s (1) + (1.3589)] 7, = (—0.9213) u,
Up = (—0.9213) 7 (3.98)

the GC-synthesis method is applied. The matrices C= 1, G = 1.3589 are synthesized with a
capacitor and a conductor. For the connection between the input current and the system vector
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1.1781F
port

1.6010S
Figure 3.18: Synthesized network of the reduced illustrative example using the enhanced
Foster-synthesis for impedances

a CCCS is generated, having the gain of B = —0.9213. Finally, the output voltage is generated
by a VCVS at the port, multiplying the internal voltage 1 by the value of L = —0.9213. The
resulting network contains four elements: a capacitor, a conductor and two controlled sources.
The network is shown in Fig. BT9.
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Figure 3.19: Synthesized network of the reduced illustrative example using GC-synthesis

Both synthesized networks are quite small for this illustrative example. Nevertheless, both
synthesis methods can be applied to arbitrary large reduced order models.

It is noticeable that, as both the reduced transfer function and the reduced system have the same
transfer behavior, both synthesized networks are indistinguishable at the port. Nevertheless, the
behavior at the port approximates the behavior of the original network (Fig. I2), because the
transfer impedance is reduced by order reduction techniques and the behavior is approximated
in a narrow frequency band.

The approximation of the frequency domain behavior is already shown in Sec. BT. Thereby
in the following, time-domain simulations are performed in an electrical simulation environ-
ment, to show the approximated behavior of the reduced networks compared to the original
network. As simulation environment the SPICE simulator LTSPICE is used and the reduced
network created with enhanced Foster-synthesis is simulated. At the port a current source with
a ramp function is used and the voltage at the port is observed. The reduced network is simu-
lated around 30% faster than the original network and simulation results are shown in Fig. B20.
As can be seen, the approximation error of the reduced network, due to the model reduction, is
quite low. This shows the applicability of the model reduction process.
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Figure 3.20: Illustrative example voltage behavior at the pin of the original and the reduced
network
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4 Model Reduction of Networks with
Sources

In the former chapter, methods for reducing the RLC-part of a network were presented. In this
chapter, the reduction of networks with additionally a large number of distributed sources is
presented. In the introduction (Sec. [Tl) a motivation was given, in which applications, besides
a large number of linear RLC-elements, also a large number of sources is used. By extracting
the models of the distributed sources from the reducible network part, a large number of ports
is created for their connection. The problem arising in the reduction of the models with a large
number of ports by using the methods of the former chapter, is highlighted in the first section
of this chapter (Sec. BEl). State-of-the-art extensions to model reduction techniques, capable to
reduce models with a large number of ports more efficiently, are presented in the second section
of this chapter (Sec. E2). As will be shown, the existing methods suffer from low efficiency or
a limited applicability for the reduction of networks with distributed sources.

Thus, in the third section of this chapter (Sec. E3), a new method for the reduction of networks
with a large number of sources is presented. The method is applicable to general RLC-networks
with distributed sources, where the distributed sources are modeled as independent sources or
nonlinear controlled sources. In the modeling process the behavior of the distributed sources
is specified, which is taken into account by the proposed reduction method. In state-of-the-art
model reduction algorithms the behavior at the ports of a reducible model is not taken into
account. The new proposed method includes the knowledge of the behavior of the sources
connected with the ports. A preceding step reduces the number of necessary ports, while main-
taining the overall influence of the distributed sources. The method is based on approximating
the functions of the sources with a lower dimensional function space. The distributed sources’
models in the network are replaced by models for the lowered dimensional function space. The
number of elements that have to be extracted from the reducible part is lowered. Thereby the
number of necessary ports for the distributed sources is reduced. The port reduced model can
afterwards be more efficiently reduced with model reduction techniques. The idea of the port
reduction is developed in this work and allows for several advantages compared to the existing
methods, which will be shown in the fourth section of this chapter (Sec. B4).

4.1 Problem Statement

In the modeling of distributed systems with distributed sources network models are built, hav-
ing a large number of distributed sources in addition to the linear RLC-elements. From a
simulation and reduction point of view these models have in common that, after the modeling
step, the resulting networks typically have a large number of elements and nodes. The net-
works are composed of linear passive RLC-elements, ranging from thousands to millions. In
addition a large number of independent sources or nonlinear elements, typically ranging from
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tens to thousands are used in the network model. The reduction of these models is limited by
the large number of models for the distributed sources, as will be shown in this section. The
generation of a large number of ports by extracting the distributed sources’ models from the
reducible network, is shown in Sec. ET1. The reduced efficiency in model reduction of these
networks is presented in Sec. BT,

4.1.1 Extraction of Sources

The model reduction methods, presented in Sec. B, are based on linear transfer functions or
linear time-invariant systems. For the reduction, the network model has to be divided into
a reducible part and an irreducible part. In the networks under consideration, the class of
elements, which can be included in the model reduction, consists of linear resistors, capacitors
and inductors as well as linear time-invariant controlled sources. Elements that cannot be
included in the reducible part are time-variant elements, such as independent current or voltage
sources and time-varying controlled sources, as well es every kind of nonlinear element, as for
example diodes, transistors or nonlinear controlled sources.

All network elements that cannot be included in the reduction process are extracted from the
reducible part. The connection of these elements is done with the help of ports. For example,
the extraction of sources in the network model and the connection with the help of ports is
shown for independent current sources in Fig. ETl. The resulting passive RLC-network part is
to be reduced with model order reduction techniques.

Pin, *JRLC-network with distributed sources pin, o7
| 5 s
pin_ ] ’CD“’(D"(D“’(D“ pin_ ]

PO () I=f(t) I=f () I=f (t) e
Reducible network with extracted sources

Figure 4.1: Extraction of distributed sources from the reducible network part and connection
with the network by ports

The class of extracted elements can be roughly divided into three groups. The first group are
independent sources described by a function f(t), where f(t) describes the current of volt-
age waveform of the distributed sources. For this class, the port definition is done by defining
the voltage or current waveform as input at the port and the dual electrical value as output.
The input functions are completely determined by the waveform functions of the independent
sources. The second group are a special class of nonlinear elements, the nonlinear controlled
sources. A nonlinear controlled source is described by a time-variant or time-invariant cur-
rent or voltage function f(x,t). The current or voltage, generated by the nonlinear controlled
source, depends on the electrical values in x of the network with a nonlinear function. To these
class of elements belong, as a special case, also two-terminal elements, which are controlled
by an electrical value over or through itself. Example are diodes and nonlinear resistors ex-

66



CHAPTER 4. MODEL REDUCTION OF NETWORKS WITH SOURCES

plicitly described by a current or voltage function. In the port definition the voltage or current
generated by the nonlinear controlled source is defined as electrical input value at the port.
The dual electrical value is defined as the output. The input waveform is not known a priori,
but its dependence on internal electrical values and time is given by f(x,¢). The third group
of extracted elements are nonlinear elements, described by implicit functions, or having more
than two terminals. For example, transistors having three or more terminals, as well as diodes
and nonlinear resistors described by implicit functions, belong to this class. For this class the
definitions of the port or terminals are done in a similar way, but no assumptions about the
input functions can be made.

The distributed sources in the networks under consideration are modeled by explicit current or
voltage functions. Thus in the following only models belonging to the first and second group
are taken into consideration for the presented methods.

Overall the reducible network model part contains ports or terminals which number depends
on the number of nonlinear or time-variant elements in the model. For a large number of
irreducible elements the reducible network part has a large number of ports or terminals. In the
following it is not distinguished between a port and a terminal and generally the name port is
used. Nevertheless, the presented methods are also valid for the terminal case. The challenges
in the reduction of network models with a large number of nonlinear or time-variant elements,
which model the distributed sources’ behavior, is shown in the following section.

4.1.2 Reduction of Systems with Many Ports

As shown in the former section the reducible part of networks with distributed sources has a
large number of ports. The network is divided into a linear time-invariant reducible RLC-part
and an irreducible part containing the models of the distributed sources. Both parts of the
network are connected by ports, which results in a large number of ports for a large number
of distributed sources. To find a smaller network for the reducible part, the model reduction
techniques presented in Sec. B are used. The different efficiency limitations of the reduction
caused by the large number of ports are highlighted in this section.

For the methods reducing directly the network (Sec. BT) there is no direct dependency of
model reduction efficiency on the number of ports. Nevertheless, there is an indirect depen-
dence, as the nodes connected to a port cannot be included in the reduction and have to be
preserved. Furthermore, the behavior at all these nodes is to be approximated, limiting the
elimination of other nodes.

A direct dependence of the size of the reduced model on the number of ports exists for the
Gaussian elimination using the Schur complement presented in Sec. BT, The number of
nodes that has to be preserved is equal to the order to which the system of the network is to be
reduced. As all nodes connected to a port have to be preserved, the number of ports equals the
reduced order. For methods preserving some internal nodes in the reduced model, the Gaussian
elimination behaves similarly as the methods directly reducing the network. The lower limit
of the number of preserved nodes is given by the number of ports, but reduction is typically
limited earlier due to the large amount of nodes, where the behavior has to be approximated.
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Modal approximation (Sec. BT3) is limited by the ports, in the way that the higher the number
of input-output relations is, the higher is the number of dominant poles. The algorithm is
thereby not directly limited by the number of ports. But as the number of dominant poles is
higher, the reduced system will be larger, which shows the indirect dependency.

In the moment matching methods (Sec. BET4) the dependency of the reduction efficiency and
the number of ports is more direct. The generated Krylov subspace (Eqn. B34), used for the
generation of the projection matrix in the implicit moment matching, depends directly on the
number of ports. With a larger number of ports, the size of the generated Krylov subspace
increases linearly. As the reduced model is generated by projection on this subspace, the size
of the reduced model also linearly increases with the number of ports.

In the Gramian-based reduction methods (Sec. B-T9) there is no direct dependency of the re-
duction efficiency on the number of ports. Nevertheless, a high number of ports, and thereby a
high number of nodes where the network can be excited and observed, yields a better control-
lability and observability of the system states. Thus the controllable and observable subspace
of the system states is higher. As only the weak controllable and observable states are to be
eliminated, the reduced system is bigger for a larger number of ports. In the Gramian-based
reduction the dependence of the reducibility on the number of ports can be directly observed
during the reduction process. The Hankel Singular Values give an estimation of the approxima-
tion error of the reduced model depending on its reduced size. Typically the Hankel singular
values decay much slower for a larger number of ports, as will be shown in the next sections.
The slower decay shows a higher approximation error for a given reduced order. Or in the other
way around, the slower decay shows a higher necessary reduced order for a given approxima-
tion error.

The interpolation methods (Sec. BT8) are as well limited by a large number of ports. The
larger the number of ports, the higher the simulated or measured input-output relations. As
every input-output relation is to be interpolated by the model construction process, a large
number of ports results in a large size of the generated reduced model.

Overall, every of the presented model reduction methods is, directly or indirectly, limited by
a large number of ports of the reducible system. In the following sections this will be illus-
trated by example networks. By reducing networks with a large number of ports, the efficiency
limitation of model reduction is investigated.

4.1.2.1 lllustrative Numerical Example

In this section the arising difficulty in the model reduction of networks with a large number
of sources is shown. With the illustrative example of Sec. 4 the lowered efficiency of model
reduction of networks with distributed sources is shown.

To generate a network with a large number of sources, two independent sources are added
to the illustrating example network (Fig. E2). In addition to the passive RC-elements two
independent current sources are connected at the middle node and the right node, as shown
in Fig. BA. The independent current sources cannot be included in the model reduction and
are extracted from the reducible network part. The two independent current sources and the
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Figure 4.2: Illustrative example network with sources

port o

reducible network part are connected by two ports. The network is described with the help of
MNA and the resulting system is given with

C G b B u
——
100 2 -1 0 On1 100 Ip
slo1o0 ]|+ -1 3 -1 b2 | =0 1 0 I1
00 1 0 -1 2 On3 00 1 2
Up 1 00 gbnl
ur1 = 010 ¢n2 . 4.0
ur2 0 0 1 and
———
y LT S

The system of the network with additional current sources now contains three ports, one port for
the pin and two ports for the independent current sources. The current at the pin, as well as the
currents of the independent sources, are defined as inputs of the system in u. The voltage at the
pin, as well as the voltages across the independent current sources, are defined as outputs of the
system in y. Note that the system matrices C, G are equal to the network without independent
current sources (Sec. ). Thus for this network the system matrices are still symmetric and
positive (semi-)definite. The symmetric 3-port transfer function of the reciprocal RC-network
is given with

/3 -1/3 —1/3\ /2 0 172\
Z(s)=| -1/3 1/3 1/3 + 0o o o +
“1/3 13 1/3 ) ° 12 0 1/2 ) 51?2
16 1/3 —1/6\
1323 13 | ——. 4.2)

~1/6 —1/3 1/6

having the same poles as the transfer function of the network without sources.

For illustration purposes the system of the network is to be reduced with several model reduc-
tion algorithms. The frequency range of interest where the transfer behavior is to be approx-
imated is set to from 107°Hz to 10°Hz, as in the reduction of the network without sources
(Sec. ETR).

As described in the former section, all reduction algorithms have several disadvantages if the
number of ports is large. For example, the methods dealing directly with the network, as well
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as the methods based on Gaussian elimination are unable to reduce the network. All nodes need
to be preserved, which rules out the use of these methods. The next method is the reduction
with moment matching by projection of the system matrices. As the number of ports is three,
the smallest possible Krylov-subspace of first order already has three columns. This leads to a
projection matrix with three columns as well. A projection, with a projection matrix generated
in this way, would result in a reduced order model of order three. Thus no reduction is possible
with moment matching. Due to the large number of ports, and in this example the number
of ports is equal to the order of the unreduced system, no reduction is possible with moment
matching methods. In systems where the number of ports is smaller than the order of the
unreduced system a reduction is possible. Even though the reduction efficiency is strongly
limited.

Next a reduction method based on the Gramians of the system is used. Due to the possible
preservation of properties of a system describing a network, the PMTBR algorithm presented
in [H] is used. Gramian-based methods do not directly depend on the number of ports, as
stated in Sec. BT3. But, as will be shown with this example, there is an indirect dependency.
For estimation of the approximation error, the Hankel Singular Values are used (Sec. B13).
In the PMTBR algorithm only an approximation of the HSV is used. The exact as well as
the approximated HSV are calculated for the example network. As can be seen in Fig. B3,
the exact as well as the approximated HSV of the system decay very slowly. All HSV, both
the exact as well as the approximated, have a similar order of magnitude. This shows that
this illustrative example is hardly reducible. Despite the bad estimation of the reducibility,

10" f
10° | |

m i
S 10} W. |
5 | |
- HSV m |
» 10} . |
: appr. HSV with PMTBR @ |
100 ‘ ‘
1 - 3

Index

Figure 4.3: HSV and the approximated HSV for the illustrative network with sources

the system is reduced with PMTBR from order N = 3 to orders of n = 2 and n = 1. The
resulting reduced systems are given in the following, whereas for readability reasons all values
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are rounded. The reduced system of order n = 2 is given by

~ u

Loy, (Lo —\ [ —05774 —0.5774 —0.5774 4
0 1 0 2 o— |~ \ 0707 0 —0.7071 s
up —0.5774  0.7071 ~
up | = | —0.5774 0 < Pn (4.3)
wry _0.5774 —0.7071 P
S—— H:_/
y T X

with the transfer function with two poles

N 1/3 1/3 1/3 ) 1/2 0 —1/2
Zn—o(s)~| 1/3 1/3 1/3 + 0o 0 0 . 4.4)
13 1/3 1/3 ) 511 “12 0 1/2 ) 51?2
The reduced system of order n = 1 is
¢ el X B ’_’u‘\
— Ip
S+ )| (d) = ( ~0.5774 —0.5774 ~0.5774 ) | 11
12
Up —0.5774 ~
un | = | —0.5774 (%) (4.5)
uro —0.5774 —
~—————— X
y LT
with the transfer function with one pole
N 1/3 1/3 1/3
Z,—1(s)~| 1/3 1/3 1/3 T (4.6)
1/3 1/3 1/3 ) °7

The coefficients of ]§, L and in the transfer function are not equal and differ in the 10th decimal,
which is not shown here due to readability purpose. Also note the fact that the poles of the
reduced transfer functions being quite similar to several of the original transfer function poles
is a coincidence. The poles differ after several decimals, which is not shown in this work due
to readability. For other parameters of the reduction and larger networks the poles will differ
more from that of the original transfer function.

The transfer function is calculated in several points in the frequency range of interest. Transfer
function plots of the reduced systems can be seen in Figs. B4-BE71. For the transfer function
Z1.1, describing the impedance behavior at the pin, the results for the system with a reduced
order of n = 2 are quite good (Fig. E4)). The approximation error of the magnitude and the
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phase is below 20% in the whole frequency range of interest (Fig. BE3). But as can be seen for
the transfer function Z3 1, describing the transfer impedance between the right current source
and the pin, large errors occur in frequencies above 0.1 Hz (Fig. BE6,E71). The system with a
reduced order of n = 1 is not feasible, as all transfer functions have unacceptable errors in
almost the whole frequency range of interest (Figs. E4-E0).

102— ]
:f 10— unreduced N=3 —=— —
- | Gramian reduced n=2——

10 Gramian reduced n=1—e—

108 | | | | | | | | |

phase(Z,,)
A
(6]

10° 10+ 10°10210" 10° 10" 10?2 10° 10* 10°

frequency (Hz)

Figure 4.4: Illustrative example transfer function Z; ; of the original and the reduced models
with extracted sources

The network without distributed sources was efficiently reduced in Sec. BT 8. With the re-
duction in this section the lowered efficiency with state-of-the-art model reduction methods is
shown, if the network contains additional distributed sources. Due to the large number of ports,
resulting from the extraction of the sources, with model reduction methods no feasible reduced
model can be generated. None of the reduced systems approximate the original system with a
tolerable approximation error in the frequency range of interest. With other reduction methods
similar characteristics can be expected, due to the dependency of the reduction efficiency on the
number of ports as described in Sec. BETA. With this illustrative example it is show that some
networks with a large number of sources cannot be reduced efficiently with standard model
reduction methods.
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Figure 4.5: Relative approximation error of the illustrative example transfer function Z; 1 of
the reduced models with extracted sources
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Figure 4.6: Illustrative example transfer function Z3 ;1 of the original and the reduced models
with extracted sources
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Figure 4.7: Relative approximation error of the illustrative example transfer function Z3; of
the reduced models with extracted sources

4.1.2.2 lllustrative RC-Grid

As a further example for the illustration of the arising problems of the reduction of networks
with a large number of ports, an RCI-grid model is used in this section. The RCI-grid contains
a d x d array of nodes, where each node is connected with its direct neighbors and ground by
a resistor. In addition, each node is connected by a capacitor to ground. This results in overall
d? capacitors and around 2d? resistors. The values of the elements are randomly chosen within
the range of 1 & 0.5§2 and 0.1 £ 0.05F for the resistors and capacitors, respectively. Two pins
are located at opposite corners of the array, marking specified nodes, whose behavior is to be
approximated in a reduced model. The frequency range of interest, where the transfer behavior
is to be approximated, is set from 10~°Hz to 10°Hz. In addition to the resistive and capacitive
elements ¢ independent current sources are connected between arbitrary chosen nodes of the
network and ground, modeling distributed sources’ behavior. Exemplary, the resulting structure
of the network for d = 3 and ¢ = 4 is shown in Fig. ER. This network structure is for example
used in the field of modeling of power grids in integrated circuit design [[M, [, B, I35, [728].

Different networks with varying sizes d and a varying number of sources g will be used to
show the trends in the reducibility of networks, depending on the model size and the number
of sources. For investigations, the size of the grid is chosen between d = 10 and d = 100. The
number of independent sources ¢ is varied from five to 250. This leads to a range of network
sizes between 100 nodes connected by 300 elements and 10000 nodes connected by 30000
elements. For the reduction all independent sources are extracted and connected through ports
with the system. The networks are described with the help of MNA as linear systems which
leads to systems ranging from order 100 to 10000. The number of ports ranges from 7 to 252,
including the two nodes where the behavior of the network is to be approximated in a reduced
model.
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Figure 4.8: Section of the RCI-grid with independent current sources

As reduction method the Gramian-based PMTBR is used [E1] (Sec. BT3). Due to the approx-
imation of the HSV during the reduction, a good insight into the reducibility of the models
is possible. As with PMTBR only an approximation to the real HSV is calculated, the accu-
racy of the approximation is compared for several small networks. As first step, the number
1 < k < e of expansion points used in the PMTBR reduction algorithm in Eqn. is varied.
With a larger number of expansion points, distributed in the frequency range of interest, the
approximated HSV converge to the original HSV [E1]. In Fig. B9 the HSV, as well as the
HSV approximated with PMTBR for a different number e of expansion points, for an RCI-
grid (d = 20, ¢ = 20) are shown. It can be seen that for 15 expansion points the approximated
HSV calculated during PMTBR are in good correlation to the HSV. This shows that a sufficient
number of expansion points enables a fast approximation of the HSV with PMTBR. Another
comparison for the accuracy of the approximated HSV is shown in Fig. ET0. The HSV of the
system of a network with d = 10,¢q = 250 and d = 10,q = 50 are compared with the ap-
proximated HSV during PMTBR. The decay of the HSV, which is of interest in the reduction
process, is well approximated. It is noticeable that the calculation of the HSV for this example
is in the range of days on actual computers and thereby only the approximation of the HSV
with PMTBR is used in the following. For larger networks the exact HSV cannot be calculated
due to the high computational effort. The approximation of the HSV with PMTBR is quite
good for showing the trends of reducibility as presented with the following examples.

As the preliminary investigations in this section have shown that the PMTBR algorithm can be
used to compute fast approximations to the HSV, this algorithm is used to show the dependency
of the reducibility of a network on the number of extracted distributed sources. For a network
with d = 30 the largest singular values for a varying number of sources ¢ are shown in Fig. ETT.
The resulting system has an order of 900 and the number of ports varies between seven, five
for the extracted sources and two for the pins, up to 202, 200 for the extracted sources and two
for the pins. It can be seen in Fig. ET1l that for a larger number ports the approximated HSV
decay slower. For comparison, the size of the network is increased and leading with d = 100
to a system of an order of 10000. The number of extracted sources is varied from 20 to 250.
The resulting approximated HSV are shown in Fig. ET2 and follow the same trend of slower
decay rate for a larger number of ports.

For both networks a similar trend of the decay of the approximated HSV depending on the
number of ports is observed. With a larger number of ports the HSV decay slower. The esti-
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Figure 4.9: HSV and approximated HSV for the d = 20 RClI-grid with ¢ = 20 extracted
sources and a varying number e of expansion points
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Figure 4.10: HSV and approximated HSV for the d = 10 RCI-grid with a varying number ¢ of
extracted sources
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Figure 4.11: HSV of the d = 30 RCI-grid networks with a varying number ¢ of extracted
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Figure 4.12: HSV of the d = 100 RCI-grid networks with a varying number ¢ of extracted
sources
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mated approximation error of a reduced model is given by the sum of the HSV corresponding
to the truncated states. For a system with slower decaying HSV, for a given estimated error
of the reduced model the necessary size of the reduced model is larger. This means that for a
given approximation error of a reduced model, the networks with a larger number of extracted
sources can be less effective reduced. Vice versa for a given reduced order, the reduced sys-
tems are less accurate, if the number of ports is larger. This leads to the conclusion that the
reduction efficiency is lower for networks with a larger number of ports. Thus a high number
of extracted distributed sources in a network, leading to a large number of ports, limits the
reduction efficiency of the network.

Similar results to the observations in this section are presented in [B1l, I23, I274], where power
grids and RC-meshes with a varying number of ports are investigated, which proves the obser-
vations in this section.

4.2 State-of-the-Art Reduction of Ports

For dealing with the large number of ports of a reducible network in model reduction, several
methods are developed. The methods can be roughly divided into four basic mechanisms. The
first group of methods use reduction algorithms, which have a less decreased efficiency for
systems with a large numbers of ports. Nevertheless, all reduction algorithms suffer from the
direct or indirect dependency of the efficiency on the number of ports. The second group of
methods use the partitioning of the networks into several subnetworks or the partitioning of
the transfer function. The usage of the correlation of the behavior of several ports is the basis
for the third method. The fourth method is based on the limitation of allowed signals and the
incorporation of determined input signals in a reduced order simulation process. The main
ideas of the last three methods, as well as their advantages and drawbacks are presented in this
section.

4.2.1 Partitioning

The basic idea behind the partitioning of systems of networks with a large number of ports
is that many systems with a low number of ports can be more efficiently reduced than one
system with a large number of ports. Due to the linearity of the reducible networks, the overall
behavior can be obtained by superposition of the single subsystem.

The general partitioning flow is shown in Fig. BT3 for systems with & inputs and / outputs.
Note that for systems of electrical networks £ = [ holds, as one electrical value at the port is
the input and the dual electrical value is the output. The network is described as a system with
a large number of inputs and outputs. The system is divided into subsystems by partitioning.
A subsystem has to have a lower number of ports compared to the complete system. Each
subsystem is reduced with model reduction techniques. The resulting overall reduced system
is given by assembling the reduced subsystems. The system assembled by the reduced subsys-
tems should be smaller compared to the reduced system with a large number of ports. Several
partitioning methods are presented in the following.
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Figure 4.13: Model reduction of systems with a large number of ports by partitioning into sub-
systems with a smaller number of ports and reduction of the subsystems

4.2.1.1 Partitioning into MIMO-Systems

The first method is the partitioning of a system with a large number of ports into small subsys-
tems with a lower number of ports (Fig. ET4) as for example used in [[Z2R]. The partitioning is

u [ ] >V
u, > H T" A4
Uy — — )3

Figure 4.14: Partitioning into MIMO-subsystems with a smaller number of ports

based on block-wise partitioning of the transfer function. Every subsystems contains multiple
inputs and multiple outputs (MIMO). This method can be also used for loosely coupled net-
works, where a partitioning in subnetworks with only a few ports can be found. The method
of finding such a partitioning can be based on the knowledge of the internal structure of the
model, on heuristic search algorithms [[Z] or on graph theoretic methods [[Z9, [30].

4.2.1.2 Partitioning into SIMO-Systems

Another method for partitioning is given in [[3], where all subsystems contain exactly one
input and produce a portion of all outputs (Fig. E13). The resulting subsystems are single input
multiple output (SIMO) systems. By superposition, the system outputs y;(s) are calculated
from the jth subsystem outputs y; ;(s) with

k

k
yi(s) =Y yij(s) = D Hyj(s)u;(s). @)
Jj=1 j=1

The partitioning is a column-wise partitioning of the transfer function. The number of subsys-
tems equals the number of inputs. After order reduction the reduced subsystems are given with
H; (). The resulting reduced transfer function of the overall system is

H(s) ~ H(s) = [Hi(s), Ha(s), ..., Hy(s)]. (4.8)
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Figure 4.15: Partitioning into SIMO-subsystems with a smaller number of ports
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The advantage of this method is that every subsystem has only one input.

4.2.1.3 Partitioning into SISO-Systems

The partitioning into subsystems with one input and one output [[3] is another partitioning
method (Fig. ET8). The resulting subsystems are single input single output (SISO) systems.

u, 7‘@“ i 1

"271@ ‘L ),

Figure 4.16: Partitioning into SISO-subsystems with a smaller number of ports

The transfer functions of the overall system are given by the subsystems transfer functions
Hi,j(s) with

H(s) = S : (4.9)

Hk71(8) cee HkJ(S)
The partitioning is an element-wise partitioning of the transfer function. The number of subsys-
tems equals the number of input ports multiplied with the number of output ports, and therefore

the number of coefficients in the matrix transfer function of the complete system. With order
reduction of every element of the matrix transfer function the reduced transfer function is

ﬁILl(S) SN ﬁ17l(8)
He)~He=| 0 o | (4.10)
Hia(s) ... Hp(s)

Advantageous in this method is that every subsystem is a SISO-system and model reduction
algorithms, only capable of reducing SISO systems, can now be applied to the subsystems [B3,
=32].

4.2.1.4 Partitioning into MISO-Systems

Based on methods of process control a partitioning of a system into subsystems with multiple
inputs and a single output (MISO) (Fig. BET71) is presented in [[33]. The method is based on
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Figure 4.17: Partitioning into MISO-subsystems with a smaller number of ports

row-wise partitioning of the transfer function. This results in as many subsystems as there are
outputs of the complete system. Every subsystem is reduced and the approximated outputs are
given by the corresponding reduced subsystem transfer function

Vi(s) = Hi(s)u. @.11)

For this partitioning method several approximative variants are built, where several inputs can
be neglected for some outputs. This reduces the number of inputs of the subsystems. The
method is based on the fact that not all inputs are relevant for an output. With the help of a
relative gain array, defined with

A= SRR (4.12)

the interaction of an input and an output can be quantified [[34)]. Every element of the relative
gain array describes the coupling between the input and an output

R (Ayi/AujNu:constant
" (AyZ/Auj) |y=consmnt

A subsystem for every output is built and by defining a lower bound of interaction between the
inputs and the output, the number of inputs of every subsystem is lowered. With this method
the number of ports of the subsystems is also lowered. The subsystems can be even more
efficiently reduced with model reduction algorithms. An extension of the method is given
in [[ZA], where multiple outputs are allowed in a subsystem and the resulting inputs are the
union of the dominant inputs for all outputs. Only the dominant inputs for the given outputs
are used in the reducible subsystem. In the approaches of [[28, [33] an arbitrary choice of the
bound to neglect the interaction is used. The error induced by this step is possibly small, but
cannot be controlled. Also generally there is no basis for the assumption that an interaction, as
small as it may be, is insignificant in networks.

A (4.13)

4.2.1.5 Conclusion

A drawback of all methods based on partitioning is that the arising problems for systems with
a large number of ports are shifted to the problem of dealing with a large number of systems
describing one model. Instead of one reduced system a large number of reduced systems is
generated, which have to be composed into the complete reduced system. This requires a cal-
culation overhead in the simulation of the reduced subsystems, and also an increased number
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of elements if the reduced subsystems are synthesized as electrical network. In addition, prop-
erties of the complete system, such as passivity and reciprocity, are typically not preserved in
the subsystems, and can therefore not be preserved during the model reduction. Also error
estimation and control is more complicated. If the reduced subsystems have small tolerable
approximation errors the overall reduced system may still have an unacceptable high error.

4.2.2 Port Correlation

The idea that in regularly structured networks the electrical characteristics at the ports show a
correlation gives rise to the next port reduction method illustrated in Fig. BT8. The ports of the
reducible part of the network are reduced. For the connection with other networks a coupling
network maps the reduced number of ports with the original outer ports.
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Using Correlation
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Figure 4.18: Model reduction of systems with a large number of ports by taking into account
port correlations

A method based on the port correlation is presented in [[33]. If the network is regularly struc-
tured, the transfer function of the network can be described with a low rank approximation.
The idea is similar to the approximation of matrices by performing a singular value decompo-
sition (SVD) and keeping only the important singular values and singular vectors. A SVD of
the transfer function at DC gives

H(s=0)=L"G'B=U) V' (4.14)

where ) is a diagonal matrix containing the singular values of H(s = 0). Singular values
which are large in magnitude are called dominant. An approximation is obtained by keeping
only the » dominant singular values

H(s=0=U» V'=U,>» , V] (4.15)
By approximation of L, B with

L ~L,UT
B~ B, V7 (4.16)
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using the Moore-Penrose-Pseudoinverse

L. = LU, (Ul'U,)!
B, =BV, (VIv,)™! 4.17)

the transfer function can now be written as

H(s) ~ U, LY (G +sC)"'B, V. (4.18)

H,(s)

Now the transfer function H,.(s) has a lowered number r of ports and is reduced with model
reduction algorithms

H,(s) ~ H,(s). (4.19)
The overall reduced transfer function is then given by
H(s) = UH,(s)VL. (4.20)

Extensions are presented by using SVD of the transfer function at frequencies different from
DC, of the (higher) moments at DC or any other frequency [[38] or even multiple frequen-
cies [[37]. In addition, methods based on distinguishing between input and output moments [[3H]
and by partitioning of the transfer function and SVD of every partition [[[3d] are presented.

Another approach based on the correlation of the ports is TermMerg [[39]. By a clustering
algorithm the inputs and outputs are grouped with respect to their timing behavior. For each
group of input ports a representative input port is created. A representative output port repre-
sents a group of outputs. With this method inputs and outputs are merged into a small number
of representative ports.

The main advantage of the methods based on correlation is that the number of ports is re-
duced while the allowed signals at the ports remain arbitrary. Another advantage is that only
one reduced system is generated. Only the knowledge of the inner structure of the network,
which is determined before the reduction, is used for the reduction of the number of ports.
This advantage entails a major drawback: the correlation of the ports requires the network
to have a regular structure. Most examples reduced with these methods contain only RC-
elements [[33, [34, [3Y, [39], due to the simple structure and therefore possibly higher corre-
lation. For RLC-networks the necessary correlation is a quite strong limitation. The transfer
behavior is much more complicated than in RC-networks due to effects like undershoot, over-
shoot or ringing, and the correlation of the ports is quite low. In addition for RLC-networks,
the correlation of transfer functions at DC or a specific frequency point cannot be easily gen-
eralized for predictions in the whole frequency band. Therefore, the frequency points used for
the determination of the correlation of the ports have to be chosen carefully.

A major drawback of the methods based on port correlation is that no error estimation or error
control exists. The methods are based on arbitrarily chosen limits for separating the singular
values into important and negligible. Also as shown in [[[38], the limits for the SVD have to be
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adjusted by manual inspection of the singular values to achieve better results, showing that the
whole process is not completely automated at this time.

Passivity preservation is an important factor in model reduction of electrical networks. The
SVD-based port reduction algorithm cannot preserve passivity in the general case. The loss
of passivity is because the SVD-based port reduction method includes the singular vectors in
the model reduction process. The port reduced system is not passive in the general case. For
the special case of reciprocal electrical networks, described by an impedance or admittance
transfer function, where all ports are defined bidirectional and B = L is fulfilled, the transfer
function is symmetric leading to V,, = U,.. For this case the passivity can be preserved using
appropriate order reduction algorithms. But with the drawback of low efficiency of the SVD-
based methods for systems with bidirectional ports [[38], the passivity preservation lowers the
efficiency. In the TermMerg method the passive network part is not changed and the ports
for the connection with other networks are connected with a coupling network. The coupling
network for the connection of the representative ports with the ports for the connection with
other networks can be non-passive. Only the passivity of the inner part, excluding the coupling
network, can be preserved using appropriate model reduction algorithms [[3R].

4.2.3 Connected Models and Input Signals

The approaches of port reduction presented in this section rely on the fact that information of
the elements connected with a port is known a priori. This information is included in the model
reduction to enable a higher reduction efficiency.

4.2.3.1 Correlated Input Signals

An approach based on stochastically distributed input signals is presented in [2, I2X4A]. The
approach is inspired by the simulation of parasitic coupling networks for packages or substrates
in the modeling of integrated circuits. In these parasitic coupling networks the signals have
quite similar characteristics. For the reduction this property is used and it is assumed that on
the ports always a correlation of the excitation is present. For example, the input signals can
have a typical waveform where a little derivation in phase and magnitude is allowed, which
results in a high correlation of the input signals. The method is based on the Gramian-based
model reduction algorithms (Sec. BT3), whereas the Controllability Gramian X needs to be
computed with the Lyapunov Equation

GXc? + cxGc!” =BBT. 4.21)

Assuming a correlation of the input signals u, a correlation matrix K for k samples of the
inputs can be calculated

Ki;=

| =

k
> (4.22)
=1
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and can be included in the Lyapunov equations with
GXxCT + CXxGT = BKB” (4.23)

resulting in a controllability Gramian X, whose eigenvalues decay faster if the correlation
described in K is high [[X7]. As the decay of the eigenvalues gives an insight of the possible
error of the reduced model, a faster decay of the eigenvalues allows for a more efficient model
reduction. An advantage of using this method is that the input signals have not to be known a
priori; only the correlation of them has to be estimated. The major drawback of this method is
that, if the estimation of the waveforms is quite bad, the resulting model is not accurate enough.
If only a few of the input waveforms can be estimated before the reduction, the other input sig-
nals can remain undetermined, leading to an identity submatrix in K for the uncorrelated ports.
A drawback of this method is the restriction to Gramian-based model reduction algorithms.
The preservation of system properties, such as stability, passivity and reciprocity, can be pre-
served by using appropriate Gramian-based reduction methods. Preservation of system matrix
properties like (J-)symmetry, (semi-)definiteness and block structure is more complicated or
even impossible for Gramian-based methods as described in Sec. BT3. Thus, the major draw-
back of the methods based on correlated input signals is the limitation to the Gramian-based
model reduction method.

4.2.3.2 Determined Input Signals

A second approach relying on input information is presented in [[Z0-I42]. The approach is
inspired by the simulation of power grids. A power grid is typically built as an RC-mesh, mod-
eling the parasitic behavior in an integrated circuit. Independent current sources are distributed
over the network, modeling the influence of the switching currents. The voltage distribution at
the grid nodes is investigated by simulation. In these models all inputs at all ports are deter-
mined before the reduction. This a priori given information is used in the reduction process. In
standard reduction the inputs u are undetermined and the matrix B, connecting the inputs with
the system, is used in the reduction. Due to the large number of columns for a large number
of ports this limits the efficiency of model reduction methods. In the methods, based on the
determined inputs, instead of B the product Bu is used in model reduction. This product has
only one column, leading to a more efficient reduction. For piece-wise linear waveforms of
the inputs u(s) the method in [0, [&T] uses the modeling as weighted delayed ramps in the
frequency domain with the moments expansion at s = 0

u(s) =upg+us+ uys.... (4.24)

The model reduction process is done accordingly to projection on Krylov subspaces. For the
subspace generation

Kn(R,A) = (R,AR, ..., A"R)
A=—(s5C+G)'C
R=(5C+G)'B (4.25)
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in Eqn. B34 is used in the projection, where the number of columns of the subspace is the order
of the subspace multiplied with the number of ports. Instead, the subspace generation of the
method in [[Z0, TZT] uses

Kn(R,A) = (Ri, ARq, ..., A"R,,)
A=—(55C+G)'C
R; = (50C + G) "' Bu;s), (4.26)

where the number of columns of the subspace is equal to the order of the subspace. The rest
of the reduction process is done by implicit moment matching by projection of the system ma-
trices as described in Sec. BT4. This method is strongly correlated with the Krylov-subspace
reduction by projection and cannot be used with other order reduction algorithms. Also this
method is limited to piece-wise linear waveforms of the inputs. Another algorithm relying on
input information, but using the Gramian-based model reduction method, is proposed in [[Z2].
The input signals are represented by fast Fourier transformation. For the reduction the PMTBR
algorithm [B], as described in Sec. BT 3 is used. The slight change is that instead of using

zi(s0) = (s0C+G)"'B (4.27)
(Egn. B38), the input information is included by using
Zk(So) = (SUC + G)*lBuk(so) (4.28)

in the model reduction. The advantage of this alteration is that the columns of z(sg) are now
equal to one, whereas in the standard approach the size equals the number of input ports. For
the rest of the reduction the Gramian-based reduction flow of Sec. BT is used.

The main advantage of the methods of [[A0-I47] is the high efficiency. Independently on the
number of sources, the reduction is done as if the system has only one port. The drawback is
that no undetermined inputs are allowed. The complete network with all excitations has to be
given. No other network models can be connected to the reduced model after model reduction.
This leads to the conclusion that this reduction method is more into a reduced order simulation
than a model reduction.

4.2.3.3 Specified Loads

Another approach for the reduction of networks with a large number of ports is based on infor-
mation about the connected elements, and is presented in [[Z3]. The method is based on the
fact that only predefined elements are connected with a port. This approach is inspired by the
simulation of coupled transmission lines. In the simulation of transmission lines the ports are
divided into transmitter ports, whereas several drivers are connected, and into receiver ports,
where the loads are connected. Following this, the ports are divided into ports with unknown
connected driver elements and ports where the kind of load is specified. The loads that can
be included are linear resistive, linear capacitive or combined linear capacitive and resistive
elements. Also the range of the values of the loads is known before the reduction process.
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The loads are incorporated into the system and the element values of the loads are included as
parameters in the reducible system matrices

[sC(cq, ca,...) + G(g1, 92, ...)] x = Bu. (4.29)

The order reduction is done with respect to these parameters in addition to the frequency

H(s,cl,c2,...,91,92,...) ~ H(s,cl,¢2,...,g91,92,...). (4.30)

Thus the problem of the reduction of systems with a large number of ports is shifted to the
parameterized reduction of systems [[44T49], where the system is reduced with respect to
more than one parameter. The advantage of this method is the higher efficiency if the range of
the allowed parameters of the connected loads is relatively small. But if the range of the allowed
element values is broadened, the efficiency is lowered dramatically, which is well-known for
the parameterized model reduction algorithms [[44].

4.3 Port Reduction Method

As shown in the former sections, the algorithms for the reduction of networks with a large
number of ports suffer from several disadvantages. Partitioning methods produce a large num-
ber of reducible subsystems describing the complete system. Furthermore, properties of the
complete system are not preserved in the subsystems. Methods relying on correlation of ports
are limited to networks with regular structures. The methods, incorporating information about
the connected networks, require model reduction methods producing parametric reduced mod-
els and are thereby limited in efficiency and synthesizability as an electrical network. Other
methods, incorporating input signals information, either require knowledge about all system
inputs, leading to a simulation method instead of a model reduction method. Or the methods
are limited in the model reduction algorithms to Gramian-based reduction which is not capable
of preservation of several relevant system and network properties.

In this section a new method dealing with the problem of the model reduction of networks
with a large number of distributed sources is presented. The proposed method overcomes most
of the disadvantages of the former methods. Nevertheless, the proposed method is limited to
networks with distributed sources as used in this work, resulting in a more limited range of
application compared to the former methods.

Every element modeling the distributed sources has to be extracted from the linear time-
invariant network part and connected by a port. The number of ports is quite large for a large
number of distributed sources (Sec. E11l). This large number of ports limits the reduction of
the network with model reduction techniques (Sec. BT). The method presented in this sec-
tion is based on reducing the number of ports for the network elements modeling the distributed
sources. In the port reduction the knowledge of the distributed sources’ behavior is taken into
account. For the independent sources the waveforms and for the nonlinear elements the de-
scribing functions are considered. Based on this knowledge the number of necessary ports for
the distributed sources elements is reduced, which will be described in the following sections.
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Figure 4.19: Schematic flow of port reduction as preceding step of the model reduction

The overall port reduction flow is shown in Fig. BET9. The original reducible network (upper
left part in Fig. ET9) has a large number of ports u for the connection with other network
models and f(x, t) for the network elements modeling the distributed sources. Due to the large
number of ports only a slight reduction is possible (upper right part in Fig. ET9). With a port
reduction method the number of ports for the distributed sources is lowered. The functions of
the network elements modeling the distributed sources span a function space. The dimension
of this function space equals the number of functions, and thereby the number of distributed
sources elements. As the number of the distributed sources elements is typically very high in
the models under consideration, the dimension of the function space spanned in this way is also
very high. The dimension of the function space of the distributed sources is lowered, resulting
in a lower number of basis functions g(x,¢). Several applicable methods for the reduction
of the dimension of the function space of the distributed sources are presented in Sec. E31.
The function space with a reduced dimension is realized in the network, whereas the network
elements modeling the distributed sources are replaced. System and network properties of the
reducible network part are preserved during this step. This replacement and the preservation of
relevant properties is shown in Sec. E37. Only the functions of the reduced dimension function
space have to be extracted from the reducible part (lower left part in Fig. BT9). The number
of extracted elements is lower, and therefore the number of ports of the reducible network part
is also lower. The overall number of ports is lowered, as the number of ports is now given
by the number of pins for the connection with other networks and the number of elements
realizing the basis functions, which is lower than the original number of sources. An efficient
implementation of this method in existing model reduction flows is shown in Sec. E33. The
resulting network, having a lower number of ports, can now be more efficiently reduced with
model reduction techniques (lower right part in Fig. ET9). The higher efficiency of the model
reduction techniques will be presented in Sec. E34.

4.3.1 Reduction of the Dimension of the Function Space

For the port reduction method of this work the function space spanned by the distributed
sources’ models has to be described by a reduced dimension function space. In this section
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an overview of methods, which are capable for the reduction of the dimension of the function
space, is given.

For the reduction of the dimension of the function space methods of approximation theory,
device modeling, function analysis and data processing can be used. In these methods mostly
for one function an approximation is searched for. Contrary to this, for reducing the dimension
of the function space for several functions, a shared subset of basis functions is searched for.

For every set of functions describing the distributed sources, a reduction of the dimension of
the function space is to be found. The functions describing the distributed sources’ models are
taken into account, independently on the type of distributed sources’ model, either nonlinear
controlled sources’ functions or waveforms of independent sources. For ¢ independent sources
the variable is the time, which is starting typically at zero and is continuously increasing. The
functional values are currents or voltages and thus the functions describe current- or voltage-
waveforms

Uj = fi(t)  or
I = f;(t)
1<j<gq (4.31)

For ¢ nonlinear controlled sources the variables are currents and voltages and the functional
values are also currents or voltages, therefore the functions are U-I curves

Uj = fj(l‘l,x'g, ,xm) = fj([l,fg, veey Ul, Ug, ) or
Ij = fj(i[}l,i‘g, ,xm) = fj([l,lg, ceey Ul, UQ, )
1<j<q (4.32)

where all functional values depend on m variables. In this section it is not necessary to divide
between nonlinear controlled sources and independent sources. The difference between these
two kinds of elements lies only in the interpretation of the functions and only the term f;(z) is
used in the following for readability reasons.

The original g-dimensional function space is spanned by the functions f(z). For all functions
a decomposition in the form of the weighted linear combination

fil@) = > wiigi(@)
=1

1<j<q
r<q. (4.33)

with the basis functions g;(x) and the weights matrix

w1l vt Wiy
W — S (4.34)

Wq,1 -~ W
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is searched for. A function space is spanned by the r basis functions g(z), having a lower
dimension if r < ¢ holds. The reduction of the dimension of the function space is hereby
formulated by finding an exact or approximative decomposition in the form of Eqn. E33. The
functions of the distributed sources f(z) can be approximated with the reduced dimension
function space, spanned by g(z), as described in Eqn. B33 by linear combination with the
weights W.

The reduction of the dimension of the function space can be divided with respect to several
properties. Depending on the type of basis function the decomposition can be locally or glob-
ally valid. In the range of validity the decomposition can be exact or approximative. The
parameters of the decomposition can be calculated directly or can be estimated by an iterative
method. Despite this, the overall result, a reduction of the dimension of the function space in
the form of Eqn. B33, is the same for all presented methods.

Several methods, which can be used to reduce the dimension of the function space of widely
used models for distributed sources, are presented in the following section. Firstly the sim-
plest method for reducing the dimension of the function space is presented in Sec. B3 11 by
grouping functions. For more sophisticated methods, the class of functions used for the mod-
eling of the distributed sources, is taken into account. The first class are piece-wise linear
functions, used for independent sources as well as nonlinear controlled sources, which can
be decomposed into basis functions as presented in Sec. B3 T. In the second class models
for distributed sources are taken into account, which are valid in a specified range and can
therefore be described by a small set of polynomial basis functions using a series expansion
in Sec. B3 T3. The third and most general class are general nonlinear functions, where ba-
sis functions can be found by using the neural network modeling approach of approximation
theory, which is presented in Sec. B3 T4.

4.3.1.1 Grouping into Equal and Proportional Functions

In this section the method of grouping functions, to reduce the dimension of the function space
of distributed sources’ models in the form of Eqn. B33, is presented.

In several behavioral models the distributed sources are modeled in a simple way. In these
models only a few functions are used for the behavior of the distributed sources. This behavior
is multiplied with a specified gain and the resulting sources’ functions are distributed in the
model. For example, in the modeling of distributed sources in distributed systems a typical
function of the sources is measured or determined by simulation. According to the strength of
activity of the source in the distributed system this typical function is amplified or attenuated.

The simplest way of obtaining basis functions of a reduced dimension function space is by
grouping the functions again. Every group of functions is represented by a basis function,
where all distributed sources’ functions are equal to this basis function or can be calculated by
a weighting factor multiplied with this basis function. The method is illustrated in Fig.
for an amount of ¢ distributed sources’ functions f(x). All of these functions are grouped into
equal or proportional functions, represented by 7 basis functions g(x).

With every representing basis function a function space can be spanned. The dimension of
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Figure 4.20: Grouping distributed sources’ functions into functions equal or proportional to a
basis function

this function space is lower if in at least one group at least two functions are joined. The
larger the number of functions that can be represented by one basis function is, the lower is
the necessary number of basis functions. The lower the number of necessary basis functions,
the lower the dimension of the function space that is necessary for modeling the distributed
sources’ behavior. With grouping, a simple, but yet often applicable, method for the reduction
of the dimension of the function space is presented.

4.3.1.2 Piece-Wise Linear Basis Functions

In several modeling aspects the functions describing the distributed sources of the model are
given as piece-wise linear (PWL) functions. In several models the PWL-functions are an ap-
proximation to much more complicated nonlinear functions. In other models the functions
are determined through measurement of a finite number of functional values and the behavior
between these functional values is linearly approximated.

For the reduction of the dimension of the function space of the PWL-functions used in these
models several conditions are used below. It is assumed that the functions of the ¢ distributed
sources are given as tabulated data in k points. Thus the functions are described for k sections.
For every jth function (1 < j < ¢) of the k points, the corresponding /th (1 <[ < k) functional
value f;(x;) of the point z; is given. It is assumed that for every of the ¢ functions the functional
values are given in the same points z;. If the points for which the functional values are given
are different for several functions, the union of all variables have to be used and the missing
functional values have to be calculated by interpolation for the presented methods.

For a given set of tabulated data, several PWL approximations can be used. In this sec-
tion the step-function approximation, an approximation of continuous lines and section-wise
PWL-functions with discontinuities are considered. As there is an infinite number of possi-
ble representations several straightforward decompositions and the canonical representation of
Chua [[[30] are presented for the reduction of the dimension of the function space. The condi-
tions for the applicability of the methods for the proposed port reduction of this work are given
in the following sections.

4.3.1.2.1 Continuous PWL-functions Firstly the reduction of the dimension of the func-
tion space spanned by continuous PWL-functions is presented. The class of piece-wise con-
stant as well as piece-wise linear functions is used. For illustration the tabulated data given in
Tab. Bl is used in the following.
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Table 4.1: Example data for the PWL representation

U | filw) | folz) | fa(@) | falz) | - | fo(@)
110 0 0 0 0 0
211 1 -1 0 2 2
312 3 2 -1 2 1
413 0 0 0 0 0

In the class of piece-wise constant functions the functional value of every given variable is kept
constant in a section between several variables as shown in the left part of Fig. B2 for the
example data of Tab. BTl. There are several possibilities for decomposing piece-wise constant
functions into basis functions. Two different methods, based on signum functions

-1, z <0
sgn(z) =< 0, =0 (4.35)
1, x>0

are represented.

One set of basis functions is built from shifted signum functions as shown as the first set of
basis functions in Fig. B For piece-wise constant functions with k sections at least r = k
basis functions

1 1
gi(z) = 3 sgn(z — x; + 5) +1 (4.36)
are necessary. The number of basis functions is less or equal k, and thereby the function space
with a reduced dimension has a dimension equal to or lower than the number of sections used in
the modeling of the distributed sources. The weights w of the linear combination of Eqn. B33
are obtained by the difference between the functional values of adjacent sections with

wii = fi(wi) — fi(xio1). 4.37)

For the illustrative example data, three basis functions span the reduced dimension function
space. The matrix W containing the weights w for the linear combination of Eqn. B33 is
calculated to

1 2 -3
-1 3 -2
0 -1 1
W=, b Ll (4.38)
2 -1 -1 |

Another set of basis functions can be obtained by using bars built from two shifted signum
functions

1 1
sgn(z — x; + 5) —sgn(z — x; — 5) (4.39)

N |

gi(z) =
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Figure 4.21: Piece-wise constant representation functions of the example data and two sets of
basis functions

93



CHAPTER 4. MODEL REDUCTION OF NETWORKS WITH SOURCES

as shown in Fig. BT with the second set of basis functions. For functional values that are zero
for +oo the number of basis functions is less or equal the number of sections k. The weights
w of the linear combination of Eqn. B33 are given directly by the functional values with

wi = fj(z:). (4.40)

For the illustrative example data two basis functions span the reduced dimension function
space. The matrix W containing the weights w for the linear combination of Eqn. E33 is
calculated to

1 3
1 2
0 -1
w=1| ., | (4.41)
- 2 1 -

Another method for decomposition of piecewise constant functions into basis functions is based
on wavelet-decomposition using the Haar-wavelet as basis function. This method will be ex-
plained as a special case in Sec. E3T4.

Another class of PWL-functions is constructed by approximating the sections between given
values with a continuous linear function with a slope a. For illustration the tabulated data of
Tab. Bl is used and the corresponding PWL-functions are graphically shown in Fig. 2. For
this type of PWL-function the corresponding slopes a;; of each segment of each function can
be calculated with
. filwivr) = fi(@i) 4.42)
Tit1 — X5

The decompositions presented are based on ramp functions, which can be defined in several
ways with

x, x>0
mp(z) =\ z <0

= —(sgn(z)+ 1)z

[ — Do =

= 2 (el +2). (4.43)

One set of basis functions is given with shifted ramp functions and graphically shown as the
first set in Fig. B2 for the illustrative example data. This set of basis functions is defined with

gi(x) = rmp(x — ;). (4.44)

The number of basis functions, which span the reduced dimension function space, depends
on the number of sections k used in the modeling of the distributed sources’ behavior. This
decomposition can be used if the functional values are bounded and if the functional values
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diverge for oo, because the basis functions are also diverging. The weights w of the linear
combination of Eqn. B33 are obtained by the difference of the slope between adjacent sections

Wi = Qjq — Qji—1- (4.45)

For the illustrative example data, four basis functions span the reduced dimension function
space. The matrix W containing the weights w for the linear combination of Eqn. E33 is
calculated to

1 1 -5 3
-1 4 -5 2

W = (4.46)

for the example data.

As another set of basis functions the shifted ramp functions shown as second set in Fig. B2
for the illustrative example data. The shifted ramp basis functions are defined by

gi(x) = mp(z — x;) — rmp(x — z; — 1). (4.47)

For this set of basis functions the weights w of the linear combination of Eqn. B33 can be
calculated by the slope of each segment

Wi = aj. (4.48)

The number of necessary basis functions depends on the number of sections %k used in the
modeling of the distributed sources’ behavior. This decomposition is only feasible for bounded
functions, as the basis functions are also bounded. For functions diverging for +co an infinite
number of basis functions would be necessary by using this decomposition. For the illustrative
example data, three basis functions span the reduced dimension function space. The matrix W
containing the weights w for the linear combination of Eqn. B33 is calculated to

1 2 -3
-1 3 -2
0 -1 1
w=1|, 5 (4.49)
2 -1 -1 ]

for the example data.

By using triangular functions another decomposition can be obtained. The resulting basis
functions are shown as the third set in Fig. B2 for the illustrative example data. Shifted
triangular functions

(2) = 1—|x— a4, |lx — 2] < 1
9i 0, otherwise
=rmp(z — z;) — 2rmp(x — x; — 1) + rmp(x — x; — 2)] (4.50)
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are used as basis functions The number of necessary basis functions using the triangular func-
tions is less or equal the number of sections & used in the modeling of the distributed sources’
behavior. The weights w of the linear combination of Eqn. B33 are calculated with the func-
tional values by

Wi = fj(zi). (4.51)

For the illustrative example data only two basis functions span the reduced dimension function
space. The matrix W containing the weights w for the linear combination of Eqn. B33 are
calculated to

1 3
-1 2
0 -1
w=| . (4.52)
- 2 1 -

for the example data.

For the methods of this section it is assumed that for all functions f(0) = 0 holds. In distributed
sources of models where this condition does not hold an offset basis functions f(x) = const.
has to be used, increasing the dimension of the reduced function space by one.

A reduced dimension function space is necessary for the port reduction presented in this work.
In this section, for several continuous PWL-functions of one variable, methods are presented
which are able to lower the dimension of the function space of models of distributed sources.
With illustrative example data it is shown that basis functions spanning the reduced dimension
function space can be found. The dimension mostly depends on the number of sections used
in the modeling of the distributed sources. By using the presented methods, for a large number
of continuous PWL-functions, described by a lower number of PWL sections, the dimension
of the function space can be reduced.
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4.3.1.2.2 PWL-functions with Finite Jump Discontinuities Another class of PWL-
functions is section-wise linear with finite jump discontinuities. Example functions are shown
in the left part of Fig. BZ2Z3, for illustration purpose. The functions are defined the tabulated
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Figure 4.23: Piece-wise linear representation functions with jump discontinuities of the exam-
ple data and a canonical set of basis functions

data in Tab. E2. It is assumed that the slope of the first and last segment continues to +oo. For
this class of functions a canonical representation

k k
filz) = wh +whng + Z wibs |z — ;| + Z Wi sgn(z — ;) (4.53)
i=1 i=1

is proposed by Chua in [[30]. The advantage of this representation is the closed analytical
form, which allows for analytical studies and the fast computation of the coefficients. The
representation can be easily used to determine a decomposition of PWL-functions including
discontinuities in the form of Eqn. E33. The basis functions that span the reduced dimension
function space are defined with

=1
g (@) =2
Gr@) =l —ml 1<i<h
g7 (z) = sgn(z — xy); 1<i<k (4.54)

and are graphically shown in the right part of Fig. E23. The original functions can be ob-
tained by linear combination of the reduced dimension basis functions where the weights w of
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Table 4.2: Example data for the PWL representation with finite jump discontinuities

Ul | file)  ap(m) | falm)  apa(zr) | fs(m)  aps(@) | o | folz)  agpe(x)
0| -2 0 1 0 1 -1 1 2 0
1| -1|1/0* 1 1 —2 |o/2t -1 | . |21t 0
2 0 1 2 -1 3 1 1 1 0
301 [3 /1 -1 2 0 2 1 1 —9

Eqn. B33 are, according to [[320] with the slight correction of [[31], defined with

; 1
W?n — 5(&%0 —+ CL]‘7]€)
1
Wi = Jlai —aji-1);  1<i<k
wion — 0, if f(x;) is continuous
- %[f(wj) = f(z;)] otherwise
W = £0) = 3 [wslelaal + wi¥"sen(—a) 455)
i=1

The number of necessary basis functions and therefore the dimension of the function space
is given by the number of sections used for the modeling of the distributed sources. Overall
the number of necessary basis functions is less or equal 2k + 2 for the representation of the
PWL-functions using Chua’s representation.

For the illustrative example data eight basis functions span the reduced dimension function
space. The matrix W containing the weights w for the linear combination of Eqn. B33 are
calculated to

W = [Wlmw(]wtlzbsngswgbswignwggnW;gn

0 2 0 172 -32 -12 0 -1
172 372 -32 52 -32 0 0 O

= 1 1 -1 1 0 1 0 0 (4.56)
-1 32 0 0 -1 -12 0 0

for the example data.

The reduced dimension function space, for the port reduction presented in this work, of dis-
tributed sources modeled with PWL-functions with finite jump discontinuities can be found by
using the presented canonical representation.

4.3.1.2.3 Periodic PWL-functions Periodic functions are used especially in the model-
ing of PWL-functions describing waveforms of independent sources. For periodic functions the
modeled function repeats within a specified period of variables, as for example in a period of
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time. The periodicity is graphically shown in Fig. for the example data of Tab. BTl repeat-
ing with a period of four variables. For this case a decomposition into basis functions with the
former mentioned methods would lead to an unnecessary large number of basis functions, as
the basis functions are non-periodic. A method to decompose the periodic PWL-functions into
a smaller subset of basis functions is based on periodic basis functions. The PWL-functions are
decomposed for one period. The resulting basis functions are repeated with the same period
as the original functions. This is exemplary graphically shown in the basis functions of the
right side of Fig. for the set of basis functions in Eqn. repeated with a period of four
variables

1— |z — a4, r—xi| <z-TH+1, z €7
gi(w)z{ | . | | (4.57)

0, otherwise.

The number of necessary basis functions is now equal to the number of basis functions for one
period, which is less or equal to the number of sections & in one period, as shown in the former
paragraphs.
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Figure 4.24: Periodic functions of the example data and a set of periodic basis functions

4.3.1.2.4 PWL-functions of Several Variables In the former sections all PWL-functions
fj(x) are considered to depend on the same variable x. This is typical for elements like
independent sources where the variable is time and for nonlinear controlled sources where
one specified current or voltage controls all sources. In the more general case, functions
[ij(x) = fj(x1,22,23,...,xy) of m variables have to be considered. The class of elements
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modeling distributed sources, which can be handled by the port reduction of this work, is ex-
tended to nonlinear controlled sources that are controlled by several currents or voltages. The
methods presented in this section are based on methods of modeling nonlinear elements with
PWL-functions. The main constraint in this area is the storage of the elements functions with
a low number of parameters. The adaption of these methods for reducing the dimension of the
function space of distributed sources is shown in the following.

The first class of functions considered here are defined according to [[30] as continuous PWL
over each cross section. This can be proven by freezing all except one variable. For clarity it
is assumed that for every variable of every of the ¢ functions the number of given functional
values is k. These functions can now be described with

fla1, 22,23, 00y T ZZ Z (T, 02y ooy tm) - [ &1, (24) (4.58)
j=1

hi=1l=1 In=1

with the parameters w and the functions

¢1(xj) =1

da2(zj) = xj

¢3(xj) = |zj — )il

Ok(zj) = |2 — Tj)—2|. (4.59)
The resulting function involves products of the terms 1, 1, ..., zj, |1 — x14], ..., |2] — Tjr—2|.

This representation needs only a small amount of coefficients in comparison to the tabulated
data representation. Nevertheless, for the representation of the function in the form of Eqn. B33
the number of basis functions grows exponentially with the number of sections k, and with the
number of variables m, with O(k™). Every possible product of the terms ¢(zj) has to be
treated as a basis function. This limits the efficiency of the decomposition of PWL-functions
of several variables into a small set of basis functions. Thus only if the number of functions of
distributed sources is large ¢ > k™, the decomposition leads to a significant reduction of the
dimension of the function space.

The second class of considered PWL-functions are functions of m variables affine over a finite
number of regions and bounded by k linear partitions. The representation for discontinuous
functions is [[2T)]

) = Ww; +Zwl’”xZ+ZWabslaﬂx— ]Z|+Zwsgnsgna X —B8;,;) (4.60)

where 3, ;, aj; € R™. With this description the number of coefficients is dramatically lowered
with ¢ + ¢-m + k(¢ + m + 1) compared to tabulated data descriptions and the description
of [[X0]. In the following it is assumed that the ¢ functions of the distributed sources are
defined on the same regions with equal partitioning boundaries. If the regions differ, the union
of all partitioning boundaries has to be used for all functions. With the same partitioning
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boundaries for all functions

Qi = Q
,Bj,i =B; (4.61)
holds. The basis functions of for the form of Eqn. B33 are defined with
P =1
glm(x) = 23 1<i<m
gi"(@) =laix =By 1<i<k
g;""(x) =sgn(a/x - B;);  1<i<k (4.62)

This representation leads for functions of m variables with partitions with k£ boundaries to
1 + m + k basis functions for continuous and to 1 + m + 2k for discontinuous functions.
Extensions for the representation are given in [[32, I33].

The first example in [[34] with m = 2 variables, ¢ = 2 functions defined on regions partitioned
by & = 2 boundaries is used for illustration purpose. The regions are defined in R? and are
shown in Fig. BE73. The continuous functions defined on the four regions are given with

Figure 4.25: Regions for the PWL-functions of the example data
( 3%5225 > - ( 0 ) ( 2 > * < 1 ) forxe RV (4.63)
( %13 > - ( —32 _13 ) ( 2 > + ( _31 ) forx € R® (4.64)
( ﬁgig ) - ( g _33 > ( i; > + ( _33 > forx € R® (4.65)
( }2812; > B ( _21 1 ) < 2 > +( j ) forx € RY. (4.66)
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The resulting canonical PWL-function is

(4

whereas the weights w of the linear combination in the form of Eqn. B33 are given by

> =w + wling, + wines + Wiz + 2o — 1| + Wi|zy — 20 + 1] (4.67)

. . T
W = [Wowllmwémw‘fbswgbs} (4.68)

with

1 ; 1 ; -1 0 2
0 __ lin __ lin __ abs __ abs __

for the five basis functions. Note that the decomposition leads to an increase in the dimension
of the function space, as the number of basis functions is higher than the number of original
functions. Nevertheless, this method can be used for an arbitrarily large number of distributed
sources’ functions g. For a larger number g of sources, a decrease in the dimension of the
function space can be obtained, as the number of basis functions is fixed for fixed boundaries.
For the given example boundaries this decomposition can be used for ¢ > 5 functions for a
reduction of the dimension of the function space.

For an arbitrary number of boundaries the condition ¢ > 1 + m + k for continuous and g >
1 4+ m + 2k for discontinuous functions has to hold for a reduction of the dimension of the
function space. If the number of functions equals the number of variables, as for example
used in modeling of semiconductor elements like transistors or diodes [[X3], the number of
basis functions is higher than the number of original functions. Therefore no reduction of the
dimension of the function space is possible for these models. The method is thereby only
feasible, if the number of functions is higher than the number of variables ¢ > m, which is
for example the case for a large number of nonlinear controlled sources modeling distributed
sources.

Methods of the description of PWL-functions of several variables, used in the modeling of
distributed sources, are presented. A reduction of the dimension of the function space of the
sources can be obtained by applying these methods. The reduced dimension of the function
space of the distributed sources can be subsequently used in the port reduction presented in this
work.

4.3.1.2.5 Further PWL-representations Beside the explicit representations there is a
large investigation in the field of implicit PWL representations. For example, Chua’s repre-
sentation [[30] presented above is also capable of describing unicursal multivalued functions.
Nevertheless, for the method presented in this work an explicit function description of the dis-
tributed sources’ models is necessary, which excludes the usage of the decomposition for the
implicit description of unicursal functions.

Another type of PWL approximations is the lattice PWL function, where a finite set of local
linear functions is used as basis functions. The general form contains min- and max-functions.
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Construction methods are for example presented in [[38, T34]. While these PWL approxima-
tions can be used to efficiently model one f(x) function, it is untypical that several functions
share the same basis functions. Thus this PWL representation can only be used in a few hy-
pothetical cases to obtain a decomposition as in Eqn. B33 with a lowered dimension of the
function space of distributed sources.

4.3.1.3 Polynomial Basis Functions

The series expansion is another method for the reduction of the dimension of the function
space of the distributed sources. All sources’ functions are expanded into polynomials up to
a predefined order. For example, Newton polynomials, trigonometric polynomials, Bernstein
polynomials or Lagrange polynomials can be used in the series expansion. The polynomials
are the basis functions in a reduced dimension function space. By using this method, an ap-
proximation of the original function space is created, if the order of the polynomials is finite.
Two typical series expansions, the Taylor series expansion as well as the Fourier series expan-
sion are presented below. Their conditions are given for the use in the port reduction method
of this work, to enable a higher efficiency of a model reduction.

4.3.1.3.1 Taylor Series Expansion That every continuous real function in a range x;,,, <
T < Tpign can be approximated by algebraic polynomials as power series

Po(z) =) wya® (4.70)
k=0

is stated in the Weierstrass approximation theorem [[3R].

This approximation is only valid in a defined range. An example for elements, where the
domain space, which corresponds to the definition space of the describing function, is defined
in the modeling process, are for example nonlinear controlled sources, modeling the behavior
of distributed sources in a predefined range. For these elements the behavior is given with ¢
nonlinear functions, valid in the defined domain space.

With the Taylor series expansion in a given point g the basis functions for Eqn. B33 are
defined with

gi(x) = (x —z0)', 0<i<r 471

and the weights w; ; can be calculated with the 7th derivatives of the elements functions
_ L :
Wi = 5fj (z0), 0<i<nr. 4.72)

These basis functions can be used for an rth order approximation. The order of approximation
is set according to a specified accuracy. The decomposed functions of the nonlinear elements
only differ in the coefficients. This decomposition method is feasible for the port reduction of
this work, if the number of elements ¢ is larger than the order of the power series approximation
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r. Thereby ¢ > r has to hold for a significant reduction of the dimension of the function space
of the distributed sources. If the sources’ functions are defined in & different definition regions,
the sources have to be grouped according to nearby definition regions. The approximation has
to be done in way that all sources’ functions are well approximated in the definition domain.
In this case the overall number of basis functions has to be lower than the number of sources
Zle r; < ¢ to enable a significant decrease in the dimension of the function space of the
sources.

With the power series expansion a reduction of the dimension of the function space of dis-
tributed sources is enabled. This reduction can be subsequently used for the port reduction
method of this work.

4.3.1.3.2 Fourier Series Expansion A method for the decomposition of periodic non-
linear functions of distributed sources is the decomposition into trigonometric polynomials.
Typical models of distributed sources with periodic functions are independent sources, model-
ing a behavior that is periodic in time. Also for nonlinear elements with a predefined definition
range an efficient modeling is enabled with trigonometric polynomials [[3Y].

With the help of trigonometric polynomials the functions of all elements are decomposed into

r
fj (l‘) ~ Wj 090 + Z Wi, zgc i ) + Z Wj,s,igs,i($)§ 1 < .7 < q. (473)

For example, with the well-known method for the decomposition into trigonometric polynomi-
als with Fourier series expansion the basis functions of Eqn. B33 are given with

o) x)

where the functions have a period of X . The coefficients of the linear combination of Eqn. E=73
can be calculated with
1 X
wio=x | B

2 (X 2w

Wici = X/o fj(x)COS <ZX ;p) dr
2 (¥ (2

Wjsi = X/o fi(x)sin <ZX x) dr

1< <r
1<j<gq 4.75)

= COoSs

ST
gsz = (
r

NH NH

I/\
I/\

(4.74)
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and used for the weights in Eqn. E33.

For a reduction of the dimension of the function space of the distributed sources, the condition
that the number of elements ¢ is larger than 2r + 1 has to hold, where r is the order of approx-
imation. The overall number of trigonometric polynomials has to be lower than the number of
distributed sources, Zle 2r; < q, for a significant reduction of the dimension of the function
space of the sources. With the Fourier series expansion a reduction of the dimension of the
function space of distributed sources is enabled. This allows for the port reduction method of
this work, especially if the distributed sources are modeled with periodic functions.

4.3.1.4 Basis Functions in Neural Network Modeling

In this section the so-called neural network modeling approach is presented as a method for the
reduction of the dimension of the function space of distributed sources.

The neural network modeling is inspired by biological systems [[&0, [&T]. Despite its name
this modeling approach is not yet capable of building intelligent systems comparable to the
nature. Nevertheless, it has become a widely used method as universal approximator [[&1]. In
the field of black box modeling of dynamical systems the neural network modeling approach
has become an important method [[&2T6A]. Neural networks are mainly used in the field of
modeling, if the physical properties of the underlying model are unknown and only measured
data of the input-output-behavior is accessible. This leads to the use of basis functions, which
can emulate nearly all nonlinear functions, so-called universal approximators.

A neural network is built by an input layer, several hidden layers and an output layer. Each
layer consist of a number of so-called neurons which generate a linear or nonlinear function
of its inputs. In the class of feed-forward networks each neuron uses several or all outputs of
the former layer as input. The output of each layer is used as input for the next layer. Neurons
in the same layer are not connected with each other. Typically the input layer neurons realize
linear functions, the hidden layer neurons realizing nonlinear functions and the output layer
is linear. The structure of a feed-forward neural network with one hidden layer is shown in
Fig. B78. As structure of the neural network only feed forward networks with one hidden layer
are considered below. The input layer connects all variables with the hidden layer. The hidden
layer corresponds to the basis functions g(z). The output layer is assumed to be linear.

The overall function of one output f;(x) of a neural network with inputs x and r hidden layer
neurons is described by

fi(z) = Z w;igi(x, k) (4.76)
i=1

where g;(x, k;) describes the nonlinear function of the ith hidden layer neuron with the param-
eters k; and w; ; is the weighting of the neuron of the output layer. For a system with m inputs
and q outputs the starting point for the black-box modeling is a set of observed inputs u € R™
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Figure 4.26: Schematic of a feed forward neural network with inputs x and outputs f(x) with
linear input and output layers and one nonlinear hidden layer

and outputs y € R? of a system

T = [ul, ug, ..., um}

T=|

u

y Y1,¥2 - ¥ 4.77)

where a relation g(u,y), which can estimate further outputs, is searched for. This relation is
parameterized in g(x, ) with a finite dimensional parameter vector # and a so-called regression
vector x, containing the former observations. Several possibilities for the regression vector are
given in [[B3, 067, T6V]. Independently on the choice of the regression vector the relation
g(z, 0) is typically described by a parameterized family of functions, which can be written as
function expansion

g(x,0) = wigi(x) (4.78)

where g;(x) are the basis functions [[BA]. Note that this structure for feed forward neural
networks with one hidden layer is similar to the linear combination of the reduced dimension
function space in Eqn. E33.

In neural network models as basis functions g;(x), which describe the nonlinear functions of the
hidden neurons in the neural network sense, several classes of functions are used. Most model
structures are composed of a so-called mother basis function k(z,k) and the basis functions
gi(x) are obtained by varying the parameters k. Typical properties used as parameters of the
mother basis function are scaling k1 - « and translation  — k2 of the function.

If the nonlinear functions which are to be modeled depend on more than one variable, the input
vector x is used as variable instead of x. The three most often used methods for compos-
ing the multi-variable basis functions are, according to [[B8]: Firstly the product g;(x) =
gi1(z1) - - - gim(xm) where the basis functions are generated by multiplication of single-
variable basis functions. Secondly the radial construction g;(x) = ¢;(||x — o;||) where the
basis function is a function of a chosen norm of the variables and a so-called center o; are
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used. And third the ridge function g;(x) = gi(ﬁiT x), 8 € R™ where all variables are weighted
according to a chosen vector ;.

Several groups of the most widely used basis functions are presented as follows.

A group of basis functions are the wavelets. The name wavelet comes from the fact, that the
function integrates to zero and waves above and below the x-axis. Wavelets are mainly used
in the signals and data processing area. In the signal processing area the wavelet transform is
used instead of the Fourier transform, though the fact that wavelets are not only localized in the
frequency, but also in the time, which for example gives an advantage in analyzing signals. In
the data processing area the wavelet transform can handle discontinuities and sharp spikes more
compact than for example sine-cosine-functions, and thus allow for higher reduction rates of
data. This is used for example in compressing data of images or sounds. In addition the wavelet
transform is computationally much cheaper than the Fourier transform. A wavelet is described
by a function in the following form

gra(x) = 282g(2k2 —1). (4.79)

Famous mother wavelet functions are the Haar-wavelet, Daubechies wavelets and the so-called
Mexican hat, where the basis functions necessary for the decomposition in this work are gener-
ated by translating and scaling the mother wavelets. After transformation of the function with
the wavelet transform, the inverse wavelet transformation is in the form of Eqn. B33, where
each wavelet forms a basis of the reduced dimension function space. As wavelet functions
are functions of only one variable, the multi-variable basis functions can be generated in the
ways presented in a former paragraph. Mostly the (tensor) product is used for generation of
the multi-variable wavelet basis functions. The basis functions are generated in a constructive
way, which makes them advantageous for the approximation used in this work.

Another widely used class are the radial basis functions (RBF). An RBF network consists of
basis functions g(z) in the form

) (4.80)

where the location of the centers z; are distributed over an specified range and o; defines the
width of the ith neuron functions. In [[&4] and [[&7] it is independently proven that a neural
network with one hidden layer of Gaussian type radial basis functions is capable of univer-
sal approximation. This enables a wide usage in nonlinear modeling of systems [[&X]. The
parameters of the radial basis functions, namely the centers and the width of the hidden neu-
rons and the weights of the output neurons have to be determined. This is done by estimation
methods, whereas typical challenges are local maxima of the accuracy of the model and the
so-called overtraining, where with an increasing number of iteration steps the accuracy of the
model deteriorates [[&A]. As stated in [[&3] a sufficient number of RBF neurons with fixed
centers is sufficient to approximate every function by adjusting only the values of the output
layer neurons. This corresponds to the decomposition of Eqn. B33, whereas for all nonlinear
element functions the same subset of basis functions has to be found and by only changing the
weights w all nonlinear element functions can be reconstructed.
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Further basis functions are the sigmoid functions, which are almost always capable of universal
approximation [[63], the nearest neighbors, kernel estimators, hinging hyperplanes, partial
least squares and fuzzy functions [[BH].

The dimension of the function space of distributed sources can be reduced with neural network
modeling methods into the form of Eqn. E33. The input of the neural network model is defined
by the time, in the case of independent sources used as model for the distributed sources, or by
the controlling variables of the nonlinear controlled sources. The output of the neural network
is the behavior of the distributed sources. Several preliminary steps are necessary using the
neural network modeling approach for the reduction of the dimension of the function space
of the sources in this work. Firstly the data for the modeling process in Eqn. EZ71 has to be
generated from the original functions. For this, calculating a number of functional values for
given variables is necessary. This corresponds to a sampling of the behavior of the distributed
sources. Based on the sampled date a neural network can be built. The neural network structure
as well as the type of nonlinear basis functions has to be chosen in the second step. This can
be a quite complicated process, as shown in the field of black box modeling. For the approach
in this work the definition of the structure of the network is supported by the knowledge of the
function of the sources. For example, the validity range of the functions of the sources and the
smoothness are know a priori. In black-box modeling the inputs and outputs are also related
to a time, where their values are observed. As we are dealing with static nonlinear functions
of distributed sources only, the dynamic behavior and thereby the time when the signals are
observed plays no role. After sampling the behavior of the distributed sources and the definition
of the structure of the neural network, the modeling process can be started. By using iterative
or direct methods of the neural network modeling, a model of the distributed sources’ functions
is obtained. As this model is in the form shown in Fig. B8, the reduced dimension function
space is obtained directly by using the functions of the hidden layer neurons as basis functions
in Eqn. B33. The weights for Eqn. B33 are obtained directly by the weights of the output layer
neurons.

For a reduction of the dimension of the function space of the distributed sources the number
of neurons in the hidden layer has to be smaller than the number of output neurons. This is
different from the use of the neural network approach in modeling. In modeling, the number
of hidden neurons is typically not limited nor correlated with the number of output neurons.
In addition, for the method of this work the number of outputs is typically very large, while in
system identification the number of outputs is relatively small, in many cases only one output
is considered.

With the methods of neural network modeling nonlinear models can be built. If in the net-
work model the number of hidden neurons is lower than the number of distributed sources, a
reduction of the dimension of the function space is achieved. If this condition is fulfilled, the
methods of neural networking can be used for the reduction of the dimension of the function
space of the sources, used in the network models under consideration in this work. The advan-
tage of the neural network methods is in their universal ability of modeling nonlinear functions.
A large variety of nonlinear functions of distributed sources can be modeled with the neural
network approach. Due to the large amount of modeling methods in neural networking, a low-
ered dimension function space of a large class of distributed sources’ functions can be found.
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Subsequently this function space is used for the port reduction method presented in this work.

4.3.2 Embedding of Reduced Function Space into the Network

In the former section methods for reducing the dimension of the function space of distributed
sources in a network model are presented. As these methods result in mathematical formulae,
more exact in a set of basis functions, the realization of the lowered dimension function space
in the network model is shown in this section. At the end of this section a network will be
given, where with the help of the lowered dimension of the function space a reducible network
with a lowered number of ports is created.

For illustration purpose only the case of ¢ independent current sources, with the waveforms
described by the functions f(¢) in the model, is considered. A reduction of the ¢-dimensional
function space of the current sources into an r-dimensional function space with the basis func-
tions g(t) is assumed by using one of the methods of the former section. At the end of this
section necessary changes are given for networks with distributed sources modeled by voltage
sources or nonlinear controlled sources.

The realization of the reduced dimension function space in the network model is shown in
Fig. B71. The method for generating the network with a lowered number of ports (lower right
part in Fig. B7), compared to the extraction of the distributed sources (upper right part in
Fig. B7), is divided into the following steps. In the first step, independently of the method

pin, g: RLC-network with distributed sources pin, Z
: — — — — ‘ Extraction > :

o— o
pin, ] =) 1= 1= () I=f (t) P o

Reducible network with extracted sources
Add basis function sources

Reducible network with replaced sources

(3
o) =g o =g (0 =g (0 8 D D
—> —> Q ~ ~ 3 TCDTTCDT
(ORI : NRFN
3 o pin1: I-e-l I‘@'l
pin, : E pin, : g U=5W, leces U=Z Wi Teces
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Figure 4.27: Illustration of the realization of the reduced dimension function space into the
network model by replacing of the distributed sources

for the reduction of the dimension of the function space, for every basis function g(t) an in-

dependent current source, generating a current corresponding to the basis function, is added.
This results in r additional independent current sources, as many as basis functions are used in
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the reduced dimension function space. In the second step, all ¢ original independent current
sources are replaced by linear current controlled current sources (CCCS). These controlled
sources are controlled by the additional independent sources. The gains of these controlled
sources are given by the columns of the weights matrix W, which maps the reduced dimension
function space to the distributes sources function space (Eqn. E33). In the second step voltage
controlled voltage sources (VCVS) are connected with the additional independent sources. The
gains are chosen according to the lines of the weights matrix W of Eqn. E33. With these gains
the preservation of passivity and reciprocity of the reducible network is preserved, as will be
shown in the next sections. In the next step the extraction of only the additional r independent
sources leads to a reducible linear network. Only the 7 additional independent current sources
are extracted and connected through ports with the reducible part of the network, requiring
only r ports. As the resulting network contains a lower number of independent sources as the
original network, in this way a reducible network with a reduced number of ports is generated.
With these steps the behavior at the pins of the network is exactly the same if the reduction
of the dimension of the function space of the distributed sources is exact. If the reduction is
approximative, the behavior at the pins is approximated as well, because the behavior of the
distributed sources is approximated. The linear RLC-part of the network remains the same
as only changes in the distributed sources’ models are made. The resulting reducible linear
network also contains linear controlled sources in addition to the RLC-elements, which can be
included in a model reduction process due to their linearity and time-invariance. The resulting
network is called network with replaced sources in the following.

The generation of the network with replaced sources is similar for the case of independent volt-
age sources modeling the distributed sources’ behavior. For voltage sources the dual electrical
elements have to be used. The r additional elements are voltage sources that have the basis
functions g(t) as waveforms. The original voltage sources in the model are replaced by VCVS,
instead of CCCS in the current sources case. In the same way, connected to the additional
voltage sources, CCCS have to be used instead of VCVS. The gains of the controlled sources
are given by the weights W of the mapping of the reduced dimension function space to the
distributed sources function space (Eqn. BE33). The resulting network now contains a lower
number of independent voltage sources. By extracting these voltage sources the reducible part
of the network contains a lower number of ports compared to the extraction of the voltage
sources in the original model.

For network models containing nonlinear controlled sources, belonging to the class of ele-
ments described by one explicit nonlinear current or voltage function f(x,t) the generation
of the network with replaced sources is quite similar. For every basis function g(x,t) of the
reduced dimension function space a nonlinear element is created. The original nonlinear el-
ements modeling the distributed sources are replaced by linear controlled sources, controlled
by the additional elements currents or voltages. Linear controlled sources are connected with
the additional nonlinear elements. The gains of all linear controlled sources are again chosen
corresponding to the weights W of the mapping of the reduced dimension function space to
the distributes sources function space (Eqn. BE33). As only the lowered number of r nonlinear
sources has to be extracted from the reducible network part, the number of ports lowered.

By using the proposed method for every model with ¢ models of distributed sources the re-
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sulting network contains only a lower number r of elements, which cannot be included in the
model reduction. By extracting these r elements and connecting them with the reducible part
of the network by ports, a lower number of ports is necessary. The resulting network contains
only r ports for the distributed sources instead of g. The number of ports thereby depends not
on the number of distributed sources, but on the dimension of the reduced dimension func-
tion space of the sources. As the dimension of the function space is lowered, compared to the
number of distributed sources, this enhances the following model reduction as shown in the
next sections. Notably, the number of ports for the pins is not reduced by using the proposed
method. The preservation of all relevant properties of systems describing networks in the port
reduced model is shown in the following sections.

4.3.2.1 Preservation of System Properties

In this section, it is shown that the port reduced system of the network with replaced sources
can be described in the form

(sC+G) -x=B-u

with the relevant properties of systems describing RLC-networks. It will be shown that proper-
ties of the system matrices, such as (J-)symmetry, (semi-)definiteness and block structure, are
preserved in the port-reduced system. For sake of simplicity we will concentrate on networks
with only resistors, capacitors and inductors, pins described as impedance ports, as well as cur-
rent sources modeling the distributed sources’ behavior. However, an expansion to networks
with other distributed sources’ models and admittance ports is possible, and the necessary
changes are presented at the end of this section.

An RLC-network model with p pins and ¢ current sources is assumed. The currents at the pins
are denoted by 1ip;, and the voltages by u,;,. The waveforms i of the current sources are
assumed to be described with a lowered dimension function space with the 7 basis functions i,.
The g current sources are replaced by linear controlled sources, controlled by the r additional
current sources which generate the basis functions i;. The weights of the linear combination
(Eqn. E33) of the basis waveforms are given with W € R?*". The coefficients of the weights
matrix W are used as the parameters of the gains of the CCCS, while the gains of the VCVS
are given with W7 as described in Sec. B3 For the generation of the system matrices of
this network with replaced sources the incidence matrices Ko, Kgr, K, K, for capacitors,
resistors, inductors and pins are used. As every original current source is replaced by a CCCS,
the incidence matrices of the original distributed sources’ models and the CCCS are equal
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Kcs = Keoeces- The branch constitutive relations are given as

ic = sCug
ir = Gup
uy, = sLij,

if,CCCS = Wig

uycvs = Whueees. (4.82)

In the standard modified nodal analysis the stamps of the linear controlled sources appear in
the system matrix G. In addition, several additional currents or voltages may be added in x for
the inclusion of controlling variables. As for this method the properties of the matrices C and
G are not preserved in the general case, a slightly modified way describing the network with
replaced sources is presented in the following. With Kirchhoff’s Current Law Ki = 0 we get

ic
ir

17
Ke Kr K, -K K, 0 0 .
( OC OR OL gCCS Opm I 1 ) 1y cccs =0 (4.83)

1pin

ivovs
lg

with I as the identity matrix. Notably, the modification of MNA is based on the fact that the
network is divided into two parts, which are not interchanging charges. These two parts can
be seen in the network with replaced sources in Fig. BEZA. The first part contains the RLC-
elements, the pins and the CCCSs replacing the original current sources. The second part
contains the VCVS and the additional sources having the basis functions as waveforms. The
voltages are accordingly defined with

uc Kg 0
ur KE 0
T
i A ( ¢u¢ ) (4.84)
ucccs Koces 0 Uycovs
Upin Kpin 0
uyovs 0 I

Again, the fact that both network parts have no nodes in common is used for dividing the
node potentials into two groups. Two groups of potentials are defined, where u® contains the
potentials of the first part of the network and u?/cv g contains the potentials of the second part
of the network. With Eqn. E&2 and Eqn. in Eqn. E¥3 a system of circuit equations is
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defined with
(sC+G) x B u
R . —— ——
SKCch —I-KRGKE K, ( u? > . < KceccesW  Kpin > < iy >
-K] sL ir ) 0 0 ipin
Upin - sz;m 0 iL )
————
y LT X
(4.85)

The currents iy and ip;, are the inputs u of the system. The voltages u? and the inductor
currents iz, form the system vector x. The voltages uy oy g across the additional basis func-
tion sources and at the pins u,;, are the outputs y. Therewith the system has the form of
Eqn. EXT with C, G having the system matrix properties of pure RLC-networks without con-
trolled sources (Eqn. EZT8). The controlled sources of the network with replaced sources only
appear in the matrices B and L. As described in Sec. B3, the gains of the VCVS are the
transposed gains of the CCCS. Thus the condition B = L still holds, as in the original system.

For distributed sources modeled with voltage sources, the description is similar. Based on the
division of the network into two separate network parts, having no nodes in common and are
not interchanging charges, the system can be described with MNA.

With this description it is shown that the controlled sources which normally influence the matrix
G, can be described in a way where only B, L are changed. The difference is that the matrices
B, L are not incidence matrices anymore and thereby their structural properties are lost. In
addition B, L are typically less sparse, but have a lower number of columns because of the
reduction of the number of ports. Properties of C, Gz, such as (semi-)definiteness, (J-)symmetry
and block structure of pure RLC-networks, are preserved, enhancing the model reduction and
the following synthesis (Sec. Bl and B). In addition the order N of the system, namely the
number of equations, is not changed.

4.3.2.2 Preservation of Network Properties

As shown in the former sections, the system of the network with replaced sources now has only
r ports for the models of the distributed sources. This is less than the number of ports ¢, if all
distributed sources are extracted. In the following, it is shown that this reducible network is
passive, and thereby stable, and reciprocal. For the proofs only currents as inputs of the system
and voltages as outputs are used, which results in an impedance description. Nevertheless,
the extension to admittance or hybrid descriptions is possible and explained at the end of this
section.

As every passive system is also stable, a proof of stability is not necessary, as the following
proofs show the passivity of the network with replaced sources. Nevertheless, as the system
matrices C, G are not changed, the poles of the system remains the same. If in the transfer
function of the network with extracted sources all poles are stable, the poles of the transfer
function of the network with replaced sources are as well stable.
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In the following paragraph, a mathematically based proof of the passivity of the network with
replaced sources is shown. For the proof of passivity, the conditions for passivity have to be
considered. The necessary and sufficient condition for the passivity of the impedance transfer
function Z(s) of the model is positive-realness [B4]:

1. Z(s*) = Z*(s) where * is the conjugate complex operator

2. Z(s) is positive, that means a" (Z(s) + Z"(s)) a > 0, with " as Hermitian operator is
satisfied for all complex s with Re(s) > 0 and for all finite complex vectors a

3. Z(s) is analytical

Since the system matrices stay real while replacing the independent current sources, the first
condition is still fulfilled. The second condition of positive-realness can be written as

al (Z(s) n Zh(s)> a=a'LT[(sC+G)™ + (sC + G) "|Ba. (4.86)

With B = L (Sec. BE371) a finite complex vector b = Ba = La is defined and the transfer
function of the network with replaced sources is positive for

b"[(sC+ G)™' + (sC+ G) "b>0. (4.87)

Since the controlled sources are described in a way that does not influence the system matrices
C, G, they are still positive (semi-)definite and real (Sec. E321). This means that the pas-
sivity of the network is conserved, as long as B = L holds, which is guaranteed as shown
in Sec. E371. The third condition, the analyticity of the transfer function, is fulfilled if the
second condition is fulfilled [B4] and is not additionally discussed. With this proof it is shown
that the network with replaced sources is passive if the RLC-part is passive.

In this paragraph another proof of passivity, based on considerations of energy generation and
dissipation is given. A physical interpretation of the passivity of the network with replaced
sources is not obvious. Controlled sources, such as independent sources, are able to generate
energy. Thereby networks with controlled sources are not passive in the general case. For
the circuitry used in the network with replaced sources, the physical interpretation of energy
generation and energy dissipation is as follows. The energy generated (dissipated) by the CCCS
is defined with

q

Ecces = Z lkcoos * Ukcoos (4.88)
k=1

and the energy dissipated (generated) by the VCVS is

-
Evevs = Zilvcvs “Uyevs: (4.89)
=1

By using the branch constitutive relations of the controlled sources with the gains defined in
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W of the linear combination (Eqn. E33) the relations are given by

.
Ykccos = E :Wk,lllvcvs
=1
q
Wyeovs = Wk Ukcceos- (4.90)
k=1

Inserting these relations into the energy generated or dissipated by the controlled sources leads
to

q T
Ecces = Z Z Wk lllyoys “ Ukcces

k=1 1=1
q T

EVCVS = Z Z ilvcvs Wi iUkcccs (491)
k=11=1

It can be seen that Ecccs = Evcevs holds. This shows that the energy generated (dissipated)
by the CCCS is equal to the energy dissipated (generated) by the VCVS. Thereby the overall
generated (dissipated) energy of all controlled sources sums to zero. The network of controlled
sources is lossless. As the network containing the RLC-elements is assumed to be passive,
the overall network including the controlled sources is still passive. The amount of dissipated
energy is not changed by replacing the sources and the network with replaced sources is always
passive for a passive RLC-part.

In the following the proof of the reciprocity of the network with replaced sources is shown. For
the proof of reciprocity, the condition for reciprocity has to be considered. The condition for a
model to be reciprocal is that the impedance transfer function is symmetric [, B4]:

Z(s) = Z7(s). (4.92)

By inserting the transfer function, using the system matrices form, this condition can be written
as

LT (sC+G) 'B=B"(sC+G) TL. (4.93)

The system matrices C and G are still J-symmetric after replacing the independent current
sources (Sec. B3 2T). By left-multiplying the system of the network with replaced sources

with a diagonal matrix
I 0
J= < 0 _I ) (4.94)

JC,JG are symmetric. The condition for reciprocity can be written with

LT (sJC+JG)'IB=B"J" (sJC+JG) 'L. (4.95)
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With JB = B, as the lower block of B is zero and with B = L (Sec. E37X1) the condition of
reciprocity holds for every network with replaced sources. With this proof it is shown that the
network with replaced sources is reciprocal if the RLC-part is reciprocal.

For distributed sources modeled as voltage sources the proofs are similar. The mathematical
proof of passivity is the same, as positive realness of the transfer function as a condition for
passivity is also necessary in the admittance case. As C, G stay real and positive (semi-)definite
and B = L holds the conditions of passivity are also fulfilled. The proof of passivity based
on energy balance is equal, only the terms CCCS and VCVS have to be interchanged. For
the proof of reciprocity the slight extension of the J matrix in three sub-blocks is necessary
(Egn. 2Z20), as the inclusion of voltages sources extends the system matrices by one block.
The condition B = L has to be replaced by JB = L and the proof is still valid for voltage
sources modeling the distributed sources’ behavior.

With the proofs in this section it is shown that important network properties are preserved in
the reducible part of the network with replaced sources. The reducible part contains a lowered
number of ports and is still stable, passive and reciprocal.

4.3.2.3 lllustrative Numerical Example

In this section the network with replaced sources of the numerical example (Sec. BET-21), which
is used throughout this work for illustration purpose, is built. It is assumed that the waveforms
of the two independent sources of the example network, spanning a two-dimensional function
space, can be described by one basis function g(¢). Thus it is assumed that the two waveforms
can be grouped into one group, and thus are proportional. The linear combination for the
distributed sources’ behavior calculated by the basis functions (Eqn. BE33) is given with

I (¢t t ‘
( I;Et; ) B ( ;;Et; ) - < X; > 9(t) = ( X; > i (t) (4.96)
The weights of the superposition are assumed to be

W:(\%):(;) (4.97)

By using the method of generating the network with replaced sources in Sec. a network
as shown in Fig. is created. The network now contains one additional independent current

port@@|=n1 : 1 e A
1 1 ig1$1 2igf$1 u,*2u ;@ﬁg

Figure 4.28: Realization of the reduced dimension function space into the illustrative example
network by replacing of the two independent sources

source, having i, = ¢(t) as waveform. Both original independent current sources are replaced
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by CCCS, controlled by the additional independent current source. The gains correspond to
the weights W of Eqn. 2. A VCVS is connected with the additional current source. The
VCVS is controlled by the voltages across the CCCS replacing the original independent current
sources. The gain of the VCVS is chosen with W7, resulting in

T
uycvs = W ucces

=) (1)

= Up2 + 2Up3

The network with replaced sources of the illustrative example is now described as a system of
equations with the help of the MNA, using the slight extension of Sec. E3 1. The coefficients
for the branch constitutive relations are given as shown in Sec. 4. In addition, the gains of the
controlled sources are given with W (Eqn. E9). The resulting system is now

C G X B
e N P — u
1 00 2 -1 0 Pn1 L0\ 770
sl 010 |+ -1 3 -1 n2 | =10 1 (2’”)
0 0 1 0 -1 2 Pn3 0 2 g

d)nl
Upin N _ (1 0 0
(5)-( 1 9)(%) e

y LT SN———

X

As can be seen, the matrices C, G are the same as for the network with extracted distributed
sources in Sec. IZ4. The property of (J-)symmetry and (semi-)definiteness of C, G is preserved,
as no change to these system matrices is made. It can be seen as well that the incidence structure
of B, L is lost. The behavior at the pin, namely the voltages and currents %y, , Uy, are equal to
the original network. Nevertheless, the system of the network with replaced sources now has
only two ports, one for the pin and one for the additional current source representing the basis
function of the reduced dimension function space of the two distributed sources. Thereby the
matrices B, L have one column or line less than the system of the original network (Eqn. EI).

The resulting two-port impedance transfer function of the network with replaced sources is
now given with

1/3 1 1 1/2 -1 1 1/6 0 1
Z(s) = —_— —_— —_ 4.100
() (1 3)3+1+(—1 2>3+2+<0 0)sva GO
The poles of the transfer function are not affected by replacing of the distributed sources. The

poles are equal to the original networks transfer function in Sec. 74, and thus the system is
still stable. Positive realness of the transfer function is still given, which shows the preserved
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passivity. In addition, the transfer function is still symmetric, showing the preserved reciprocity
of the network.

It is noticeable that, for the special case in the illustrative example of independent sources
having proportional waveforms and thus being able to be grouped into one group, the port
reduced transfer function can be obtained directly from the original transfer function. For the
illustrative example, with port one for the connection with other networks and two independent
current sources modeling the distributed sources’ behavior with proportional waveforms, the
following transformation

[ Zv1 Zip Zis
Zorig(s) = | Zog Zop Zag (4.101)
| Z31 Z32 Z33
| Z11 23—2 Wi_121,
Zori— s) = ’ Y ’ 4.102
port reduced( ) Z?:Q Wiflzi,l 2?22 Z?‘:Q Wifleflzi,j ( )

leads to a transfer function with a lower number of ports. For the weights of the illustrative
example (Eqn. EJ1), the reduced port transfer function is

7 (s) = Z11 Zi2+2713
port—reduced Zoy +2731 Zoo+ 2723+ 27Z30+47Z33 |
In the more general case, where the functions of the distributed sources are not proportional,

and the dimension of the function space is lowered by the methods presented in Sec. B3I, this
transformation is not possible.

(4.103)

With this illustrative network the generation of the system with a lowered number of ports is
shown by using the network with replaced sources. Properties of the system matrices as well
as of the transfer function are preserved, as shown with this illustrative example. The behavior
at the nodes of interest, here at the pin, is preserved. The system with a reduced number of
ports can be reduced more efficiently in the following model reduction step.

4.3.3 Implementation of Port Reduction

Methods for an efficient implementation of the presented port reduction method into an existing
model reduction flow are given in this section. Three implementation hints are presented.
Firstly the construction of the system of the network with replaced sources, without explicitly
building the network, is shown. In the second part special attention is paid to the nonlinear
sources used for the modeling of distributed sources. In the third part an extension to the
network synthesis step after order reduction of a port reduced model is presented, which results
in a more robust reduced model.

4.3.3.1 Implementation into Model Reduction Flows

In this section the implementation of the port reduction method in an existing model reduction
flow is presented. The explicit construction of the network with replaced sources is avoided by
dealing directly with the reducible system description.
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In a few cases the explicit construction of the network with replaced sources is necessary. If for
example the reduction of the dimension of the function space of the sources is approximative,
the network with replaced sources is built for comparing the accuracy with the original network
by simulations. Explicitly constructing the network with replaced sources is not necessary, if
for example an exact decomposition is used. If the accuracy of the approximation is determined
without simulation, the construction of the network with replaced sources can be avoided, too.

If the explicit construction of the network with replaced sources is not necessary, the system
equations can be determined in a simple way, as described in the following. Assuming the
original sources’ functions f(x,t) are described by the basis function g(x,t) with a method
described in Sec. B3 all weights W for the linear combination of all distributed sources’
models

f(x,t) ® W-g(x,t) (4.104)

are given. Inserting this in the system equations where the ports for the pins as well as the ports
for the sources are divided

(SC + G) X = [Bpins Bsources] : [upins f(X, t)]T

y = { Lpins ] X (4.105)
Lsources
gives for the right-hand-side
= [Bpins Bsources] : [upins f(X> t)]T
~ [Bpins Bsources] : [upins W g(X, t)]T- (4 106)

By expanding with a block-diagonal matrix of proper size, using the pseudo-inverse W1, the
right-hand-side is now given with

0 W 0o w!
= [Bpins Bources - W] : [upms g(X; t)]T 4.107)

By Buwed | 0w || o wo | Weaxolf

where g(x, t) is used as input. Note that the pseudo-inverse W ! does not have to be calculated
for this operation and is only used as temporary variable. In the systems of networks often
B = L holds, as the dual electrical values of the inputs are used as outputs. As in the case
for the system of the network with replaced sources L is set equal to B avoiding the explicit
generation of the network with replaced sources. If the condition B = L does not hold in the
original network, for example further electrical values are to be observed, a similar method for
generating L can be used, resulting in

LT
y%[wT,Ifj%s :| X

sources
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for the right-hand-side of the output definitions in the system equations. The system of the
network with replaced sources

(SC + G) X = {Bpms ﬁsources] : [up’ms g(x, t)]T

[ Lo ] 4.108
y = iT X ( . )
sources

can thereby directly created by multiplying the matrices B, L with the weights matrix W. This
leads to the changed system matrices

]§ = Bsources W
L7 —w7. 1,7

sources* (4 109)
With this method the construction of the network with replaced sources is avoided. The port
reduced system of the network with replaced sources is generated directly from the system
of the network with extracted sources by applying a multiplication with the weights matrix.
The resulting system can be reduced with model order reduction techniques. Alternatively the
transfer function can be calculated from the system description for the reduction with order
reduction techniques based on the transfer function. In each case, the system with a reduced
number of ports can be obtained directly by simple calculations, and the explicit construction
of the network with replaced sources can be avoided.

4.3.3.2 Nonlinear Controlled Sources

In this section special attention is paid to the handling of distributed sources modeled with
nonlinear controlled sources.

For the reduction of network models with nonlinear controlled sources, the proposed port re-
duction is used for the reduction of the number of nonlinear elements. After the reduction of
the dimension of the function space of the sources, as described in Sec. B3], the nonlinear
elements for the basis functions realize the functions g(x, t).

Typically, the nonlinear elements functions, the original as well as the basis functions, only
depend on a few system variables, for example special controlling variables inside the net-
work. Order reduction methods based on elimination of internal nodes can only be used, if
the preservation of the controlling electrical values is guaranteed. In this case no changes of
the nonlinear elements in the reduced network are necessary. For the order reduction methods
based on the transfer function no reassignment is possible, due to the lack of internal variables
by only considering the transfer behavior. Reduction methods based on the system description
use a projection with a matrix T. The projection space is based on the Gramians, a Krylov
subspace or other suitable subspaces as shown in Sec. BT4 and Sec. BT3. In the order re-
duction the system variables in x are changed to X. The nonlinear elements functions have to
be adapted to the new system variables. For these methods the reassignment of the original
electrical values controlling the nonlinear elements to the reduced order system variables in x
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is possible by the transformation x = TX, using the projection matrix T of the order reduction
process. For the nonlinear elements this results in approximated functions given by

g(x,t) ~ g(TX, t). (4.110)

These nonlinear elements functions approximate the behavior of the nonlinear elements before
the model reduction. As the internal controlling variables do not exist anymore in the order
reduced model, the approximation given by projection is used for the nonlinear elements in the
reduced system. Note that this approximation is also necessary, if the port reduction method
proposed in this work is not used. The nonlinear elements are given by

f(x,t) ~ f(TX, t) 4.111)

in the reduced model in this case. For both methods, extracting the nonlinear elements or using
the network with replaced sources, after order reduction the functions typically depend on all
system variables of the reduced linear model, as the projection matrix T is typically dense.
This leads to a higher complexity of the nonlinear elements functions, requiring a higher effort
in simulations. Nevertheless, in most cases the reduction of the linear part overcompensates
this disadvantage in simulation effort. The nonlinear controlled sources in a reduced model
are taken into account in this section. As was shown, the nonlinear controlled sources can be
handled efficiently in the model reduction process.

4.3.3.3 Robust Network Synthesis

A method to enhance the network synthesis, used for the generation of a network after applying
port reduction and model reduction algorithms, is presented in this section. Especially a method
is shown, which avoids a large number of controlled sources that make the model less robust.

If filter synthesis methods are used, the synthesized networks do not contain any controlled
sources by construction, but the size of the network depends strongly on the number of ports.
After order reduction by using a method based on the system description, the system matrices
are typically dense. For a synthesis step from this reduced order matrices, a network having
a large number of controlled sources is created by using direct stamping methods. By using a
synthesis method based on the system description, as for example GC-Synthesis (Sec. BZ2) or
RLCSYN [[I2], a lower number of controlled sources is necessary. The resulting synthesized
network still has a quite a large number of controlled sources, as for example shown for a sec-
tion of a network synthesized with the GC-synthesis in Fig. E29. The RLCSYN method is able
to generate synthesized networks without any controlled sources, as described in Sec. BZ2, un-
der the assumption of (J-)symmetric reduced system matrices C G and that B L are incidence
matrices. The cost for this is a higher order of the reduced system. As C, G are not changed
with the port reduction method, this condition is still fulfilled for C, G after order reduction us-
ing adapted methods. However, as B L are not in incidence form after applying port reduction

(Sec. B33, the order reduced matrices B L are not in incidence form as well.

A method for generating a network without controlled sources with RLCSYN, or a network
with a reduced number of controlled sources with GC-Synthesis or other network synthesis
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Figure 4.29: Synthesized network using GC-synthesis and a large number of controlled sources

methods based on the reduced system, is enabled by the following additional synthesis step.
Assuming the order reduced system generated by projection

<Sé + é) X = |:]§pins ﬁsources] : [upins g(iv t)]T

TT
Lpins
=T

~

L

v = X 4.112)

sources

= =T =
where Boyrces 15 a full matrix and L, ... = Bsources holds. By expanding the right-hand-

side of the system with matrices of proper size

— By fé} Jopine 8&E 0T

-~ = I 0 I 0 -
= -Bpins Bsources:| 1o ]:és_olurces ] 1o ﬁsomces ] - [Wpins g(x,1)]
=[Byns 1] My Buorees - 2(® 0)]" 4.113)

~-1
where the calculation of the pseudo-inverse ﬁsoumes is not necessary. With this step the number
of ports for the sources is increased at most to the order n of the reduced system, which is not
critical, as the system is already order reduced and the number of ports is not a limitation
anymore. At each node an independent source or nonlinear controlled source is connected,
realizing the superposition

T~
hi(Zt) =Y Brpoee 0(Xt)  1<k<n 4.114)
=1

With this step a synthesized network without controlled sources for ﬁsoumes is generated. The
dual electrical values at the elements realizing h(X, ¢) are used as outputs, avoiding the use of
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controlled sources for synthesizing L sources- Only for the connection of the pins by synthesiz-
ing Bpms, mes, linear controlled sources are necessary. The resulting synthesized networks
has a lowered number of controlled sources. As an example a section of a network synthesized
with the GC-synthesis is shown in Fig. B30, which has a lowered number of controlled sources
compared to Fig. B29. The behavior at the nodes of interest, typically the nodes of the pins, is

p pins

YT@) A
/
& < % ZL‘E“‘I:IZ:ﬂEmé?ZZ:l By u, éf h,(t)

Figure 4.30: Synthesized network using GC-synthesis and a reduced number of controlled
sources

exactly the same for both synthesis methods. By additionally utilizing RLCSYN the controlled
sources for the pins are avoided and the synthesized network does not contain any controlled
sources at all. With this method, the disadvantage of the lost incidence structure in the port
reduced systems matrices B, L of the network with replaced sources, what is passed through

into the reduced system matrices ]§, L, can be compensated. With this method the incidence
structure of the system matrices is rebuilt after order reduction. This allows for using a syn-
thesis based on the reduced system matrices, where a lowered number of controlled sources is
necessary, making the reduced network more robust in simulations.

4.3.4 Reduction Efficiency

This section shows the higher efficiency of the model reduction of models, whose number of
ports is reduced with the port reduction method of this work. The illustrative example used
throughout this work, as well as the RCI-grid of Sec. BT, are used for illustration purpose.

4.3.4.1 lllustrative Numerical Example

The system of the network with replaced sources of the illustrative example network used
throughout this work (Fig. 2 and Fig. B) is reduced in this section. The system is of order
three, as shown in Sec. B33, and has only two ports. This is one port less compared to the
three ports of the system of the network with extracted sources in Sec. T2 1l. For the system
of the network with extracted sources it was shown in Sec. ET 2T that no feasible model
reduction is possible. Thus in this section, if the proposed port reduction method is utilized,
the higher efficiency of the model reduction will be presented.
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Firstly, in Fig. B31 the approximated HSV of the system of the network with replaced sources
are compared with the approximated HSV of the system of the network with extracted sources.
Note that the decay is much higher for the system of the network with replaced sources. For
the system of the network with extracted sources with three ports the HSV are mainly in the
same order of magnitude. With the proposed port reduction method the magnitude of the HSV
decays more than two orders of magnitude, comparing the largest and smallest HSV. As the
decay of the magnitude of the HSV gives an insight into the reducibility of a system, better
model reduction results of the port reduced system can be assumed.
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Figure 4.31: HSV for the system of the illustrative network with extracted and with replaced
sources

For the model reduction a moment matching as well as a Gramian-based method are used,
as for the reduction of the system of the network with extracted sources in Sec. ET 1. The
frequency range of interest, where the behavior at the pin is to be approximated, is set from
10~5Hz to 10°Hz as in Sec. BT 8 and Sec. T2, At first, the system is reduced from order
N = 3 down to n = 2 with both methods. The resulting reduced systems and corresponding
transfer functions are presented in the following, whereas all values are rounded for readability.
The moment matching based reduced system of order n = 2 is built using a first order Krylov
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subspace K in one real expansion point s, = 102, which leads to

C G X

10, ( 1998 —0.448 o -1 -1-107°
Lo 1 —0.448 1.4003 Wﬁ 4.47-107% —2.2361
Uy -1 447-107* ~
= Aﬂ
us —1-1073% —2.2361 n2
N——

y L
(4.1 15)
The transfer function is given with two real poles by
Zonols) ~ 0.2221 0.9294 1 0.7779  —0.9294 1
n=2127 710 0.9294  3.8895 ) s+ 1.1608 —0.9294 1.1105 s+ 2.2376°
(4.116)

Using the Gramian-based order reduction, the reduced system of order n = 2 is given with

C G X B

o 10 13999 0.4472 o= \ _ [ 6.65-107°  —2.2361
01 0.4472  1.9999 o~ | 1 —1.49-1074

( U, ) B < 6.65-1077 St
un —2.2361 —1. 49 1074 %
y LT

(4.117)

with the transfer function with two real poles

Zono(s) ~ 0.2215 0.9286 1 0.7785  —0.9286 1
n=22 00,9286 3.8924 ) s+ 1.1614 —0.9286 1.1076 s+2.2384°

(4.118)

Note that the transfer functions of both reduced systems are quite similar, differing only in
decimal places. This is due the low complexity of the illustrative example. For systems larger
than this illustrative example, the differences in the coefficients of the reduced models will be
higher.

The size of the reduced system, reduced with the moment matching method, depends directly
on the number of ports. The lower bound of the reduced size is the number of ports. As the
system has two ports, no reduction below n = 2 is possible. With the Gramian-based method
the number of ports is an indirect limitation in the reduction process, and no lower bound exists.
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By model reduction down to an order of n = 1, the Gramian-based reduced system is given
with

u

& 1= B .
s (1) +(1.3999) (5771) _ (66510 —2.2361 ) ( i )
up \ [ —6.65-107\ /~
< usn ) N ( —2.2361 (‘f’m) 4.119)
— —
y LT X

The transfer function of the reduced system now has only one real pole and is given with

.10-9 .10~4 1
4.4184-1079 1.4863-10 > (4.120)

Zn=1(s) ~ < 1.4863-10~* 5 s+ 1.3999°

The pole is of the reduced system is now situated between the poles of the n = 2 reduced
systems.

A comparison of the reduced systems transfer function with the unreduced systems transfer
function is given in Figs. E33-E3Y. Both models with a reduced order of » = 2 show a good
agreement with the unreduced model. The relative approximation error in the frequency range
of interest stays below 10% for the magnitude and below 20% for the phase. The reduced
model with the order of n = 1 has a higher approximation error, especially in the magnitude
behavior. The reduced model with only one pole cannot approximate the magnitude slope of
the unreduced model for the Z5 ; impedance as well as the phase change of 180 degree. This
shows that the port reduced system cannot be approximated by a reduced system of order one,
but with a reduced system of order two.
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Figure 4.32: Illustrative example transfer function Z7 ; of the original and the reduced models
with replaced sources
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Figure 4.33: Relative approximation error of the illustrative example transfer function Z; 1 of
the reduced models with replaced sources
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Figure 4.34: Illustrative example transfer function Z3 ; of the original and the reduced models
with replaced sources
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Figure 4.35: Relative approximation error of the illustrative example transfer function Zs 1 of
the reduced models with replaced sources

In Sec. BET271 it was shown that the system of the network with extracted sources, which has
three ports, is not reducible at all. With the port reduction method proposed in this work, the
number of ports is lowered down to two and a model reduction of the illustrative example is
enabled. Both models with a reduced order of n = 2 are good approximations to the model of
order N = 3. The order one model is unfeasible, due to the high approximation error. With this
illustrative example it is shown that using the proposed port reduction enables a more efficient
model reduction of networks with distributed sources.

4.3.4.2 lllustrative RC-Grid

In this section the efficiency increase is further investigated by using the preceding port reduc-
tion method in model reduction of networks with distributed sources.

For the illustration of the efficiency of the port reduction, the RCI-grid of Sec. BT is used.
A large number of sources generates, by extraction of these sources, a large number of ports
of the reducible system. As shown in Sec. BT 77, this large number of ports results in a lower
efficiency of the model reduction. This was shown in Sec. ET27 by observing the HSV of
systems with a varying number of sources. In this section it will be shown that, for the port
reduction method proposed in this work, the efficiency of the model reduction is higher. It
will be shown that the limitation of the efficiency of the model reduction by the number of
sources in the RCI-grid is eliminated by the port reduction. Only the number of the necessary
basis functions of the reduced dimension function space, necessary for the approximation of
the functions of the sources, limits the model reduction efficiency.

For the investigations of the reducibility of the RCI-Grid in Sec. BT, the waveforms of
the distributed independent current sources are not considered. For the port reduction of this
work the waveforms are now taken into account. It is assumed that all ¢ waveforms of the
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independent sources can be sufficiently well approximated by r basis waveforms by using
the methods of Sec. E31. The independent sources are replaced and a network as shown in
Sec. B3 is built. The corresponding system is created by using the method of Sec. B3l

Firstly, the reducibility of the network is compared for a given number of independent sources
and a varying number of basis functions necessary to describe the functions of all sources.
The reduced network has 900 nodes (d = 30) and a fixed number of 200 independent current
sources. In Fig. B34 the approximated HSV calculated with the Gramian-based PMTBR al-
gorithm are shown for a varying number r of basis functions. It can be seen that with the port
reduction method the approximated HSV of the system of the network decay faster than for the
system of the network with extracted sources. Also it can be seen that, for a lower number of
basis functions, the approximated HSV decay faster. For a larger network with 10000 nodes
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Figure 4.36: HSV for the d = 30 RClI-grid networks with ¢ = 200 extracted sources and
replaced sources with a varying dimension 7 of the approximating function space

(d = 100) and 250 independent current sources the same trend of the approximated HSV can
be observed, as shown in Fig. B3, With these two examples it is shown that, according to the
decay rate of the approximated HSV, the model reduction is more efficient for a given approx-
imation error of the reduced system by using the proposed port reduction as preceding step.
Alternatively, for a given size of the reduced model the approximation error will be lower by
using the port reduction method of this work.

Secondly, the reducibility is compared for a fixed number of basis functions suitable to describe
a varying number of sources in the network. For the network with 900 nodes (d = 30) a
differing number of independent sources (5 < ¢ < 200) is connected. It is assumed that
all waveforms of the independent sources can be approximated by » = 3 basis functions. In
Fig. B3 the approximated HSV of the systems differing by the number of ports are shown.
It can be seen that the approximated HSV decay slower with a lower number of sources g,
as already shown in Sec. BT, If the port reduction method is applied, using » = 3 basis
waveforms, the HSV decay faster. For every port reduced system the HSV decay is quite
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Figure 4.37: HSV for the d = 100 RCI-grid networks with ¢ = 250 extracted sources and
replaced sources with a varying dimension 7 of the approximating function space

similar, independently on the number ¢ of functions that are described by the 7 basis functions.
A similar trend is observed for the network with 10000 nodes (d=100) and a varying number
of independent sources (20 < ¢ < 250) in Fig. B39, where it is assumed that all sources’
functions can be approximation by » = 10 basis functions. The first conclusion is that, for
networks with a low number of independent sources, the gain achievable in model reduction
by using the port reduction is quite low. If for example ¢ = 5 sources are replaced by models
of r = 3 basis functions (black solid and dotted lines in Fig. E3R), the decay of the HSV
differs only slightly. For networks with a large number of independent sources and r < ¢ the
port reduction is more effective, as for example shown for ¢ = 200 waveforms replaced by
r = 3 basis functions (red solid and dotted lines in Fig. E3R). The second conclusion from
this investigation is that, independently on the number of sources in the original network, the
HSV decay of every system with the same reduced number of ports is similar, as can be seen
in Fig. B38. Thus the number of basis functions used for the approximation of the sources’
functions is responsible for the efficiency of the model reduction. By using the proposed port
reduction, the number of distributed sources used in the model is not a limiting factor of the
reduction, as in the standard extraction of all sources. By using the port reduction, the number
of basis functions used in the reduced dimension function space is the limiting factor of the
reduction efficiency, which is a weaker limitation.

In this section the efficiency increase of model reduction by using the port reduction presented
in this work as preceding step, is investigated. The higher efficiency in model reduction was
demonstrated with several example networks with distributed sources
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Figure 4.38: HSV for the d = 30 RCI-grid networks with a varying number of extracted
sources ¢ and replaced sources with a dimension of r = 3 of the approximat-
ing function space
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Figure 4.39: HSV for the d = 100 RClI-grid networks with a varying number of extracted
sources ¢ and replaced sources with a dimension of » = 10 of the approximating
function space
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4.4 Comparison and Classification

In this section the port reduction method presented in this work (Sec. BE3) is compared to exist-
ing methods (Sec. B7) dealing with the reduction of systems with a large number of ports. The
capabilities of the methods in reducing networks with a large number of sources are compared.
Advantages and disadvantages of the methods are highlighted.

Several methods based on partitioning of the network or the system (Sec. E2211) rely on the in-
ternal structure of the network to be efficient. Mainly these methods can be applied to networks
having a block structure. Methods based on the correlation (Sec. EZ) of ports also rely on
the internal structure in the network, allowing for the reduction of the number of ports. These
methods are mainly applied if the network is regularly structured. For systems that cannot be
partitioned into subsystems with a small number of ports, or systems with a small correlation
of the ports, these methods fail. The advantage of the presented method, compared to the par-
titioning and port correlation methods, is the complete independence on the internal structure.
Independently on the network structure the proposed port reduction method can be applied.

Another disadvantage of the methods based on partitioning of the model (Sec. BE2Tl) is that the
problem of the reduction of a system with a large number of ports is shifted to the problem
dealing with a large number of systems. Each system has only a small number of ports, but
the number of systems can be very large. Thus an advantage of the presented port reduction
method in this work is the creation of only one system, having a small number of ports.

In the methods, compared in the former paragraphs with the method presented in this work,
no information about the elements connected with the ports is needed nor taken into account.
Several reduction methods exploit information of the connected models at the ports in model
reduction (Sec. £23).

The methods of Sec. E2Z37 are including the input information in the reduction process, re-
quiring all inputs to be determined. Thereby these methods cannot handle pins where arbitrary
(nonlinear) elements are connected after model reduction. Thus, these methods are more in
the simulation field. The advantage of the proposed method, compared to these simulation
methods, is the generation of a reduced model, which can be connected with other models in a
simulation environment.

Methods based on predetermined loads (Sec. E2373) shifting the problem of a large number of
ports to the problem of a large number of parameters, and are only able of dealing with simple
parameterized linear network elements connected to the ports. The port reduction method in
this work allows for a reduced model, where arbitrary elements can be connected to the pins.

The method based on correlated input signals (Sec. E231) has a wide applicability for the
reduction of networks with distributed sources. This method can handle ports with arbitrary
connected network models, like the method presented in this work. Also, like the presented
method, it is possible to efficiently handle ports where the input information is determined.
Advantageous of method based on correlated input signals, compared to the method presented
in this work, is the fact that the inputs do not have to be determined exactly. The allowed vari-
ation of the inputs allows for a wide field of application in reducing networks with distributed
sources. Nevertheless, the rigorous use of the a priori defined knowledge of the distributed
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sources in the models under consideration allows for a higher efficiency of the method devel-
oped in this work. However, another advantage of the presented method is the inclusion of
not only functions of time but also nonlinear controlled sources’ functions. In addition, the
presented method does not rely on a single model reduction algorithm. The presented method
can be used as a preceding step to almost all model reduction methods, contrary to the method
based on correlated input signals.

The preservation of properties of the system, as well as properties of the network, is another
advantage of the method proposed in this work. Properties of the system matrices such as
(J-)symmetry, (semi-)definiteness and block structure can be preserved. Passivity, stability and
reciprocity are preserved in the port reduced model and can be further preserved during the
model reduction by using appropriated reduction algorithms. Most of the existing algorithms
dealing with a large number of ports are as well able to preserve some of these properties. Nev-
ertheless, most state-of-the-art methods cannot preserve all properties. For example, several
methods create reduced systems, which are not realizable as electrical networks. For example,
the reduced models of methods using predefined loads and using parametric model reduction
(Sec. EZ3T) are parameterized and hence not realizable as an electrical network. The meth-
ods using partitioning of the complete system (Sec. B21l) generate reduced models that have
a differing number of inputs and outputs and lose properties like reciprocity and passivity of
the original model. The presented method in this work has, compared to these methods, the
advantage of preserving all relevant properties of networks.

The main advantage of the presented method is the inclusion of the knowledge of the functions
of the inputs at the ports to improve efficiency. For the networks under consideration, having
a large number of distributed sources, this information is known a priori. Nevertheless, the
disadvantage is that only the number of ports for the connection with distributed sources can
be lowered and the number of ports for the connection with other network models remains the
same.

The main limitation of the efficiency of the proposed method is in the complexity of the dis-
tributed sources’ functions. If the distributed sources’ functions are quite simple, the function
space can be approximated with a very low dimensional function space. If the distributed
sources functions are complex, a large number of basis functions is necessary and the dimen-
sion of the reduced function space may be quite high. Nevertheless, as the dimension of the
reduced function space equals the number of necessary ports of the reducible network, even
a low reduction results in a reduced number of ports and allows for a higher model reduction
efficiency. Also, as a large variety of methods exist that are capable of reducing the dimen-
sion of a function space, the method presented in this work can be applied to a large class of
distributed sources’ models.

Another advantage of the proposed port reduction method is the fact that, as the method is
a preceding step, it allows for the usage of almost all reduction algorithms. In addition, the
reduced model of the presented method can be synthesized as an electrical network. Due to the
preservation of all relevant properties of systems describing a network, the network synthesis
can be carried out by using practically all network synthesis methods.

Concluding, the existing methods are capable in reducing networks with a large number of
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distributed sources, but are limited in efficiency. Several boundary conditions, not always
fulfilled in a reducible model, are necessary for using existing methods. The method presented
in this work is very flexible, as arbitrary RLC-networks can be handled. The rigorous inclusion
of the knowledge of the distributed sources’ behavior in a preceding port reduction step enables
a high efficiency of the model reduction. The class of distributed sources that can be handled in
the port reduction is quite high, due to the possible use of several approximation methods for
the reduction of function spaces. Additionally, in the port reduced model all relevant properties
of networks are preserved. The properties can furthermore be preserved in a reduced model by
using appropriate model reduction methods.
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5 Examples

In this chapter several networks modeling distributed systems with distributed sources are re-
duced. With the help of the port reduction presented in Sec. and a subsequent model
reduction as presented in Sec. @ a reduced network is generated. Several aspects of the port
reduction as well as the model reduction are highlighted. It is shown that by using the state-of-
the-art model reduction methods directly (Sec. B), as well as with the methods developed for
the reduction of system with a large number of ports (Sec. B2), no or only a slight reduction
of networks with a large number of sources is possible. The higher efficiency of the model re-
duction by using the port reduction proposed in this work as preceding step is illustrated. Two
actual computers? are used to determine the speed-up of the reduced systems in simulations.

Three examples of networks modeling distributed systems with a large number of distributed
sources are presented. An RC-grid with independent sources (Sec. Bl), an RC-grid with non-
linear controlled sources (Sec. E2) and an industrial emission model used in the IC design
(Sec. B3) are to be reduced.

5.1 RC-Grid with Independent Sources

As an example, the RCI-grid, presented in Sec. ET"2 and shown in Fig. ER is used. The
example RCI-grid in this section contains 2500 nodes (d = 50) and ¢ = 55 independent
current sources. The element values for the 4900 resistors and 2500 capacitors are chosen
randomly with 1 £ 0.5(2 and 0.1 £ 0.05F" as described in Sec. ET 2. All 55 waveforms of
the independent current sources are piece-wise linear functions f(t), described by six sections,
which are periodically repeated. Examples of one period of the current sources waveforms
It; = fi(t); 1 <4 < 55 are shown in Fig. Bl
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Figure 5.1: Example waveforms of the independent current sources in the RCI-grid

The network has the structure of a power grid, used in the modeling of the power distribution
in the IC design flow [, IT]. It is well-known that such networks are hardly reducible with
model reduction techniques [[23], which was also illustrated in this work in Sec. ET 27,

Intel Harwich 8 Dual Core Xeon (Tulsa) 16GB RAM and Intel Core 2 Duo 8400 4GB RAM
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The network is described with the help of MNA, leading to a system of order N = 2500. With
the method of extracting all independent current sources, and connecting them through ports
with the system, a number of 55 ports for the independent sources and two ports for the pins
are created, leading to overall 57 ports. The number of ports is quite large compared to the
order of the system.

Several state-of-the-art approaches dealing with the reduction of systems with a large number
of ports with respect to the size of the network (Sec. E2) are reviewed for applicability on
this example. The coupling of the network does not allow for partitioning of the network into
sub-blocks (Sec. BEZT) with a lower number of ports. Each sub-block of a partitioned network
would contain at least the nodes at the boundaries of the sub-block as ports, which is quite
high due to the coupling of all adjacent nodes. The transfer function partitioning methods
(Sec. EZXT) cannot be applied, as the reduced model has to be synthesized as a passive and
reciprocal electrical network. In addition the generation of a large number of reduced models,
describing the complete model, is inefficient for this model as the behavior of the overall model
is of interest. The example network is regularly structured, which allows for the usage of
the methods based on port correlation (Sec. BE27). Nevertheless, the distribution of all ports
across the complete model results in only a small correlation of all ports. Thus still a large
number of representative ports would be necessary. The reduced order simulation method
(Sec. EZ37) assuming all inputs to be determined cannot be applied, as the driver models at
the two pins are not a priori defined. As can be seen in Fig. Bl the correlation of the waveforms
is quite low, which also limits the applicability of the methods based on input signal correlation
(Sec. B2 3M).

The state-of-the-art methods are not capable of efficiently reducing this example network.
Thereby the port reduction method of this work is applied to illustrate the possibility of a high
efficiency reduction. The waveforms of the distributed sources’ models are taken into account
in the port reduction step prior to the model reduction in the following.

5.1.1 Port Reduction

For the port reduction method of this work the waveforms of the sources are taken into account.
The PWL-functions of the 55 independent current sources span a ¢ = 55 dimensional function
space. A function space with a lower dimension, which is capable to describe all 55 waveforms
is searched for the port reduction. As there are six sections for the description of the waveform
in one period by decomposition into ramp functions six basis periodic functions can be found.
In Fig. the six basis functions I, ; = g;(t); 1 < i < 6 are graphically shown. The six basis
functions span a reduced dimension function space of the distributed sources behavior. Also
a decomposition into the three basis functions shown in Fig. B3 is possible, resulting in only
three basis waveforms I, ; = gi(t); 1 <i < 3. Thereby the dimension of the reduced function
space is only three. As the number of basis waveforms is the limiting factor of the efficiency
of the following model reduction, the lower number of basis waveforms with » = 3 is used.

The network with replaced sources as presented in Sec. B3 and a reduced number of ports
is built. For the network with replaced sources only three ports for the independent sources
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Figure 5.2: Ramp basis functions for the independent current sources in the RCI-grid
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Figure 5.3: Another set of basis functions for the independent current sources in the RCI-grid

with the r = 3 basis waveforms and two ports for the pins are created, leading to overall 5
ports. With this it is shown that the port reduction enables significant reduction of the number
of ports, compared to the standard method of extracting the distributed sources. The number
of ports is lowered from 57 down to 5, which allows for a higher efficiency of the following
model reduction, as will be shown in the next sections.

5.1.2 Model Reduction

With the help of order reduction both system descriptions, the system of the network with ex-
tracted as well as the system of the network with replaced sources, are to be reduced. The
frequency behavior is chosen to be approximated, according to the values of the resistors and
capacitors, in the range from 10 °Hz to 10°Hz. Two order reduction methods, based on mo-
ment matching and based on the Gramians are used for the reduction of the models.

5.1.2.1 Moment Matching based Order Reduction

As first order reduction algorithm an implicit moment matching method is used. A projection
on a multipoint Krylov subspace as described in Sec. BT is used.

Firstly, both systems are reduced to a comparable accuracy by implicit moment matching.
For the reduction of the network with extracted sources two expansion points (s; = 1073,
so = 1) and two Krylov subspace iterations are used. The resulting reduced system has an
order of neyyr. = 228. For a comparable accuracy of the reduced model after port reduction, the
model reduction is performed with three expansion points (s; = 1073, sy = 1, s3 = 10%) and
three Krylov subspace iterations. This larger number of expansion points and Krylov subspace
iterations is necessary for comparable accuracy. Nevertheless, due to the lower number of ports,
the reduced system of the network with replaced sources has a lower order of n,..p;. = 45. For

138



CHAPTER 5. EXAMPLES

accuracy comparison the transfer function Z ;(s) is used in the following, which describes the
impedance behavior at the first pin of the network. For all other transfer functions the results are
comparable. The results of the model reduction are shown in Fig. B4 and the approximation
error is shown in Fig. B3. The approximation error of both reduced models is comparable,
but the reduced model of the port reduced network with replaced sources is much smaller,
Nyepl. = 45 compared t0 negyr, = 228.
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Figure 5.4: RCI-grid transfer function Z; ; of the original and the moment matching reduced
models with comparable approximation error

Secondly, both system are reduced by moment matching to a comparable size. For the re-
duction of the port reduced network with replaced sources the same three expansion points as
before and three Krylov subspace iterations are used, resulting in the reduced order 7n;.¢p;. = 45
model. For a comparable size for the reduction of the network with extracted sources, only
one expansion point (s; = 1) and one Krylov subspace iteration can be used, resulting in an
order of neyy,- = 57 for the system of the network with extracted sources. For a similar size of
the reduced models, the accuracy of the reduced model of the network with replaced sources is
better than of the reduced model of the network with extracted sources (Figs. B8 and B72).

5.1.2.2 Gramian-based Order Reduction

As second order reduction algorithm a Gramian-based reduction with PMTBR as described in
Sec. BT is used.

For this order reduction algorithm an approximation to the HSV is calculated. The largest
approximated HSV for the system of the network with extracted sources as well as for the
system of the network with replaced sources are shown in Fig. 8. The HSV of the replaced
sources network decay much faster than for the extracted sources network. As the HSV give
an estimation of the approximation error of the reduced model depending on the reduced order,
it can be seen that for equal reduced order the approximation error of the reduced system for
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Figure 5.5: Relative error of the RCI-grid transfer function Z; ; of the moment matching re-
duced models with comparable approximation error
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Figure 5.6: RCI-grid transfer function Z; ; of the original and the moment matching reduced
models with comparable size
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Figure 5.8: HSV of the RCI-grid networks with extracted and replaced sources
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the replaced sources network will be lower than for the reduced system of the network with
extracted sources. Vice versa it can be expected that for an equal approximation error of the
reduced systems, the reduced system of the network with replaced sources is smaller.

Firstly, both system are reduced to the same highest preserved HSV of 1073, With that the
orders of the reduced systems are set to n,¢p = 40 and ne.¢ = 165 according to Fig. B3,
for the system of the network with replaced and extracted sources, respectively. In Fig. B9 the
results of magnitude and phase for the transfer function Z; ; for the original as well as both
reduced systems is shown. Both transfer functions of the reduced systems are indistinguishable
from the original transfer function, which shows the high accuracy of the model reduction. In
Fig. BT0 the relative errors of both reduced transfer functions are shown. Over the whole
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Figure 5.9: RCI-grid transfer function Z ; of the original and the Gramian-based reduced mod-
els with comparable approximation error

frequency range of interest the error is below two percent in magnitude as well as in phase
for both reduced models. This shows that if a low estimated error, according to the approxi-
mated HSV, is chosen, the resulting reduced systems are very accurate for both networks with
extracted or replaced sources. Nevertheless, the order of the reduced system of the network
with replaced sources is much lower than for the network with extracted sources, n,¢p = 45
compared to ney, = 165. As both reduced systems are very accurate, the system of the net-
work with replaced sources is much smaller and can be henceforth much faster simulated. This
shows that if the reduction is carried out according to an estimated approximation error of the
reduced model, the proposed port reduction enables a stronger model reduction.

Secondly, both system are reduced to the same order of n,¢p = negtr = 40. In Fig. BETT
the simulation results of magnitude and phase of the transfer function Z ; for the original
as well as both reduced systems is shown. In Fig. B2 the relative errors of both reduced
transfer functions are shown. As can be seen the reduced system of the network with replaced
sources is well approximated while the system of the network with extracted sources shows
inaccuracies in the complete frequency range of interest. The reduction of both networks to the
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Figure 5.10: Relative approximation error of the RCI-grid transfer function Z;; of the
Gramian-based reduced models with comparable approximation error
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Figure 5.11: RCI-grid transfer function Z; 1 of the original and the Gramian-based reduced
models of the same size
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Figure 5.12: Relative approximation error of the RCI-grid transfer function Z;; of the
Gramian-based reduced models of the same size

same order shows that the system of the network with replaced sources is more accurate than
the reduced system of the network with extracted sources. Thus the proposed port reduction
method, creating a network with replaced sources, enables a higher accuracy of the reduced
model.

5.1.2.3 Order Reduction Results

The results of the order reduction are summarized in Tab. BTl. For the measurement of the
speed-up, MATLAB calculations of the transfer function of the reduced systems in several
frequency points are used. On different computers slightly different speed-ups are achieved
and the corresponding ranges are given in the table. It can be seen that for the reduction of
the network with extracted sources only a speed-up of 16 can be achieved with an acceptable
accuracy of the reduced model. For the proposed port reduction method, using replacing of the
sources, the possible speed-up is much higher, in the range of up to 200. For the same size of
the reduced systems the speed-up is comparable for the systems of the networks with extracted
and replaced sources. Nevertheless, the accuracy of the reduced system of the network with
extracted sources is unacceptable as described in the former sections. Note that the transfer
function of the unreduced system of the network with replaced sources can be calculated 3-4
times faster than the transfer function of the system of the network with extracted sources as
the number of port-port-relations is lower due to the lower number of ports.

5.1.2.4 Network Synthesis

With the algorithms described in Sec. the reduced systems can be synthesized as an elec-
trical network. Several preliminary considerations are necessary for choosing the synthesis
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Table 5.1: Comparison of order reduction results for the RCI-grid network

Original Order Ports | Reduced | MATLAB | Accuracy
N = 2500 P Order n Speed-up
(Reduction)
Extracted sources 57 2500 1x Exact at
- the pins

Extracted sources 57 228 7x-8x Very
Moment matching reduction (90.9%) Good

Extracted sources 57 57 45x-55x Bad
Moment matching reduction (97.7%)

Extracted sources 57 165 11x-16x Very
Gramian-based reduction (93.4%) Good
Extracted reduced with 57 40 60x-120x Bad

Gramian-based reduction (98.4%)
Replaced sources 5 2500 3x-4x Exact at
- the pins
Replaced sources 5 45 80x-180x Very
Moment matching reduction (98.2%) Good
Replaced sources 5 40 90x-200x Very
Gramian-based reduction (98.4%) Good
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method. As the simulation environment is not to be changed for the simulation of the reduced
model, time-variant models cannot be taken into account. Due to the quite high order of the
reduced systems, the calculation of the poles is numerically crucial. Thus an efficient synthe-
sis method, which does not need to calculate the poles of the system, is preferable, avoiding
the use of filter synthesis methods. In the simulation environment HSPICE polynomial con-
trolled sources (Eqn. B94) are available. Unfortunately, no dynamic elements are available,
which avoids the use of direct stamping methods, as the size of the network will be quite large.
The reduced matrices ]~3, L do not have an incidence structure, ruling out the use of synthesis
methods based on the reduced system without using controlled sources. The remaining syn-
thesis method, the GC-synthesis method presented in this work, can be used due to preserved
(J-)symmetry in the reduced system matrices (~3, G. By using the GC-synthesis, a network
with a small number of nodes and a low number of controlled sources is built, which can be
investigated in the simulation environment.

With the method of extracting the sources, the corresponding reduced systems are larger in
size or inaccurate for similar sizes than with the proposed method of replacing the sources.
Thereby the synthesized network will be larger in size and the simulation effort is higher.
For a similar size of the reduced models, the synthesized network of the reduced system with
extracted sources will lead to inaccurate simulation results, as the transfer functions are bad
approximations to the original network. Hence only the smallest and still most accurate reduced
order system, the Gramian-based reduced system of the port reduced network with replaced
sources of order 7., = 40 is synthesized. The resulting network consists of 1685 elements,
including resistors, capacitors and controlled sources, connecting 45 nodes and is exported as
SPICE netlist.

5.1.3 Simulation Results
The netlist containing the reduced network is simulated with HSPICE. On both pins of the

network 1V DC voltage sources in series with an 1§2 resistor are connected. An overview of
the network size and the simulation effort with HSPICE is given in Tab. B2. For the simulation

Table 5.2: Comparison of model reduction results for the RCI-grid network

Original Reduced
Network Network
Network elements 7450 1685
Network nodes 2500 45
SPICE parsing time 18s 0.9s
SPICE simulation time 27s 2.6s
SPICE memory 16.7mbytes | 2.1mbytes

of the original network, around 45 seconds are necessary on an actual computer. In this simu-
lation, 27 seconds for the transient analysis and 18 seconds for reading the netlist, calculation
of the operation point and other overhead calculations like error check are used. The reduced
network is simulated on the same computer and the overall simulation time is only 3.5 seconds.
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The transient analysis takes 2.6 seconds while the rest is used for the other calculations. This
shows that the reduced network is around ten times faster in transient simulations than the orig-
inal network. In addition the reduced model needs only 13% of the memory resources. This
proves the efficiency of the reduction method. The speed-up is not as high as in the MATLAB
calculation of the transfer behavior of the system, but nevertheless still high for this example.

Results for the simulation of the reduced network in comparison to the original network are
shown in Figs. BT3 and BET4. Due to the distributed sources in the network, current and
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Figure 5.13: RCI-grid voltage fluctuation at pinl of the original and the Gramian-based reduced
model with replaced sources

voltage fluctuations are generated at the pins. In Fig. B3 the voltage waveform at pinl is
shown. Good agreement between the behavior at the pin of the original as well as the reduced
network can be seen. Also for the current fluctuation at pinl (Fig. BT4) only small derivations,
due to the approximation error of the model reduction, are observed. Noticeably, the differences
in simulation are only due to the model reduction approximation, as the port reduction is exact
for this example by using an exact reduction of the dimension of the function space of the
distributed sources.

5.1.4 Conclusion of RC-Grid Reduction

In this section an example network of a system with distributed sources was reduced. Due to
the large number of distributed sources in the network, the existing model reduction methods
are limited in efficiency. B y using state-of-the-art methods for the reduction of the example
network either quite large reduced models are generated or the reduced models have large
approximation errors. Methods for the reduction of systems with a large number of ports
cannot be efficiently applied for the reduction of the example, due to their limitations regarding
network structure or input signals. It is shown that the port reduction method presented in this
work is capable of efficiently reducing the example network. By incorporating the knowledge
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Figure 5.14: RCI-grid current flow at pinl of the original and the Gramian-based reduced
model with replaced sources

of the distributed sources’ behavior, a system with a lowered number of ports is generated.
This port reduced system can be more efficiently reduced by using existing model reduction
methods. With the example in this section the method proposed in this work is validated. It is
shown that the proposed method enables an efficient model reduction.

5.2 RC-Grid with Nonlinear Controlled Sources

As an example for a network with distributed sources, modeled by nonlinear elements, an RC-
network as shown in Fig. T3 is used. The network contains 10x10 nodes, 180 resistors, 100
capacitors, 12 nonlinear elements and two pins for the connection with other networks. The
order of the system describing the linear part is N = 100. The behavior at the pins should be
approximated in a frequency range of 10 °Hz to 10°Hz during model reduction, while the size
of the network is to be reduced.

The values of the linear RC-elements are randomly chosen in the ranges 1 & 0.5¢2 and 0.1 £
0.05F for the resistors and capacitors, respectively. Between arbitrarily chosen nodes in the
network nonlinear elements are connected, modeling the distributed sources’ behavior. The
nonlinear elements are functions of the voltage V5, defined between a node in the middle
of the linear RC-part of the network and ground. The nonlinear elements are described with
q = 12 functions

ao,j + Vis(ar,; + a2k Vis)
I = fi(x) = T av2 £
45 45
1<j<1% ap,j,a1,j,a2,; € R. (5.1)

The extraction of all nonlinear controlled sources elements would lead to 12 ports. The number
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Figure 5.15: Section of the RCNL-grid with nonlinear elements modeling distributed sources

of ports is quite high with respect to the order of N = 100 of the model, which limits the model
reduction of this example.

The state-of-the-art approaches dealing with the reduction of systems with a large number of
ports (Sec. BE7) are reviewed for the reduction of this example model. For the partitioning
(Sec. BEZXTI) and port correlation methods (Sec. B2Z2) the same applies as for the RC-Grid with
independent sources in Sec. Bl. The reduced order simulation method (Sec. BE2Z3 ) cannot
be applied as only independent sources can be handled. The nonlinear controlled sources
of this example model cannot be included in this reduction method. The methods based on
input signal correlation (Sec. EZ31)) are also not capable of dealing with nonlinear controlled
sources, which rules out the use of these methods.

In the following it is shown that, despite the state-of-the-art methods, with the port reduction
method presented in this work as preceding step a significant model reduction of the example
is possible. As the extraction of these 12 nonlinear elements would lead to a large number
of 12 ports, the port reduction method of this work is applied as preceding step to the model
reduction. To enable the port reduction, a reduced dimension function space for the nonlinear
elements functions is searched for. Although the numerator of the distributed sources equations
can be expanded, resulting in » = 3 basis functions, a partial-fraction-decomposition of the
equations is used for illustration purposes resulting in » = 4 basis functions

g1(x) =1/(Vas + 1)

g2(x) = 1/(Vis + 1)

g3(x) =1/(Vas — 1)

ga(x) =1/ (Va5 — 1)2. (5.2)

The 12 nonlinear functions can now be calculated by linear combination of the four basis
functions with the corresponding weighting factors w

Ij = w191 + w292 +W3,jg3 + Waj94
W15, W25, W35, Wy j € R. (5.3)

The network with replaced sources as presented in Sec. B3 A is built, and the weighting factors
w are used as gains of the controlled sources. The system of the network with replaced sources
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now has a smaller number of six ports (4 for g(x) + 2 pins) compared to the system with ex-
tracted sources having 14 ports (12 for f(x) + 2 pins) and can thus be reduced more efficiently
as will be shown in the following.

For the model reduction of the linear part the Gramian-based PMTBR algorithm is used. The
approximated HSV during the reduction are shown in Fig. &TA. The HSV of the system of the
linear part of the network, where the nonlinear elements are replaced by the lower dimensional
function space g(x) elements, decay much faster than for the linear system of the network
where the nonlinear elements f(x) are extracted, which promises a better reduction. For com-
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Figure 5.16: HSV of the RCNL-grid networks with extracted and replaced sources

parison both systems are reduced to the same order (n,cp = negtr = 20) and to the same
maximum HSV (1072), resulting in an order of n;.cp = 20 and neyy = 36. Magnitude and
phase of the impedance behavior Z7 1 at the first pin of the original as well as the reduced
systems are shown in Fig. BT4. The errors of approximation with model reduction are shown
in Fig. BI8. The reduced linear systems of the network with replaced sources (1n,.¢p, = 20)
as well as of the network with extracted sources (n¢,¢ = 36) show a good agreement with the
unreduced system with respect to the transfer behavior at the pins. The transfer function of the
reduced system of low order (n..¢ = 20) of the network with extracted sources deviates from
the original transfer function.

The reduced systems are investigated in time domain with MATLAB by numerical integration.
For the time-domain simulation on the first pin a sinusoidal current source I = 0.1 - sin(t) + 1
and on the second pin a DC current source with one ampere are connected and the voltage
at the pins is observed. Simulation results of the reduced linear systems connected with the
nonlinear parts are shown in Figs. BT9 and for the voltage at the first pin.

The MATLAB simulation speed-up for the order 7,.¢p; = negr = 20 models is 2x and 1.1x for
the order n,y = 36 model in comparison to the original model. It can be seen that all reduced
models show a good agreement with the original one. Nevertheless, the reduced system of
the network with replaced sources (1, = 20) is more accurate than the reduced system of
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Figure 5.17: RCNL-grid transfer function Z; 1 of the original and the Gramian-based reduced
models
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the network with extracted sources of the same size (ne.¢ = 20). Furthermore, for similar
accuracy, the reduced system of the network with replaced sources (¢, = 20) is smaller
than the reduced system of the network with extracted sources (n.t = 36). Therefore the
computational effort in simulations is lower.

For illustration of the port reduction of a network, where the distributed sources’ models are
in addition time varying, the network is slightly changed. A time variance in the models of
the distributed sources is introduced. The ¢ = 12 nonlinear elements additionally depend
periodically on the time with

_agk + Vas(ar g + a2k Vis)
I, = fr(x) = sin(t)— : :
1—2VE + Vi

1<k <12 ag,k, a1k, a2,k € R. 5.4

where the = 4 basis functions of the reduced dimension function space are again calculated
by partial fraction decomposition

g1(x) = sin(t)/(Vas + 1)

g2(x) = sin(t)/(Vas + 1)?

g3(x) = sin(t)/(Vas — 1)

ga(x) = sin(t)/(Vis — 1)*. (5.5)

The basis functions can be mapped to the distributed sources’ functions with the corresponding
weights. This shows that the time-variance of the nonlinear elements can be included easily
in the port reduction flow. The basis functions spanning the reduced dimension function space
of the distributed sources’ behavior are now also functions of the time. The time is handled
as just another variable, which has to be included in the algorithm for reducing the dimension
of the function space of the distributed sources. As the linear part of the network is equal to
the former example, the reduction results of the linear network are the same. The resulting
time simulations for 1A DC current sources connected to the pins of the original as well as the
reduced networks are shown in Fig. 211 for the voltage at the first pin.

With this illustrative examples it is shown that the port reduction method proposed in this work
can lead to smaller and more accurate reduced models in comparison to the standard approach.
Instead of extracting the models of the distributed sources, a lowered dimension function space
for the sources’ behavior is found. By replacing the time-variant nonlinear models of the
distributed sources, the number of ports of the reducible part is lowered. With the proposed
method a significant model reduction is enabled while with the existing methods no or only a
slight reduction is possible with acceptable accuracy.
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Figure 5.21: Further RCNL-grid voltage fluctuation at pinl of the original and the Gramian-
based reduced models

5.3 Emission Model of an IC

In this section an industrial network model of a distributed system with distributed sources, an
emission model of an IC, is to be reduced. With decreasing feature sizes in microelectronic
applications, electromagnetic compatibility (EMC) and reliability (EMR) have to be consid-
ered early in the design phase [[, TZOHI7A]. Macromodels of the electromagnetic behavior of
chips are created to help semiconductor manufacturers to take EMC/EMR effects into account
during the design process. With these models the most appropriate placement and routing
configurations for chip and package can be found. One part of the EMC/EMR effects is the
electromagnetic emission of integrated circuits (ICs). The electromagnetic emission of an IC
is determined by the operation activity plus the propagation paths through the power network
of the IC, the package and the printed circuit board traces.

The emission behavior of an IC can be modeled with an IC conducted emission model (ICEM)
[7Q, T73]. For modeling, the IC is divided into sections, whereas each section is modeled by
a so-called supply line model. The supply line models consist of a model of the passive power
distribution network and a model for the internal sources [[ZO]. A supply line model contains
RLC-elements modeling the electric behavior of the power distribution network of this section
and an independent current source modeling the current due to switching of the transistors
inside the IC. The whole ICEM is built with up to tens of thousands of supply line models for
the complete IC [[Z3, I74]]. The pins of the IC are modeled at the corresponding nodes of the
ICEM as ports for the connection with other EMC/EMR models. A section of the ICEM can be
seen in Fig. B2, The parameters of the ICEM can be obtained by several methods. The RLC-
parameters of the IC supply line models can be determined either during the IC design phase by
taking into account material parameters or by taking measurements on an existing chip [[Z0,
[74)]. The independent sources representing the simultaneous switching of the transistors [[CZ0]
are obtained by simulations of a predefined state of the IC. The waveforms of the current
sources are generated with the help of standard parameters for rise-/fall-times, switching period
and amplitude, by taking measurements or by netlist-based emission modeling [[73]. The
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Figure 5.22: Section of the network of the ICEM

complete IC is divided into blocks, corresponding to the functional block, for example digital
logic or memory, where each blocks contains a large number of supply line models. Within
every block of the IC, the supply line model parameters for the passive elements are the same
as well as the prescribed waveforms of the independent sources [[[Z3, [Z4)]. In addition to the
supply line models, several other parts of the IC are included in the modeling process. For
modeling the substrate coupling a resistive network is used. The model of the package of the
IC also consists of passive RLC-elements. For the network model of the pads passive RLC-
elements, as well as independent current sources for the activated pads due to switching of the
inputs/outputs of the IC, are used.

The resulting ICEM network models the IC as well as the distributed sources in the IC. Overall
the ICEM can contain thousands of passive RLC-elements and independent sources as well as
a large number of pins [[Z3, Z4]. The high complexity leads to long simulation times, in the
range of days for typical investigations. Due to the large number of elements this model re-
quires a high computational effort in simulations, which will be reduced with model reduction.
Since only the behavior at the pins of the IC is of interest, the electrical values of the internal
nodes of the ICEM can be disregarded. A smaller model however, which engulfs the main
properties and enables faster simulations can be obtained by model reduction. The use of the
reduced model instead of the original one speeds up time- and frequency-domain simulations.

The large number of independent sources used in the ICEM modeling is a limitation for the or-
der reduction algorithms (Sec. EI). In the following sections two ICEM examples are reduced
and it will be shown that the proposed port reduction enhances the reduction efficiency, and
thereby overcomes the limitations by the large number of sources in model reduction.

5.3.1 Supply Voltage Domain Related Model

As first example the supply voltage domain related ICEM of the Infineon TriCore1796, a 32
Bit automotive microcontroller with 30 million transistors, is used. The supply pins of the
microcontroller are grouped with respect to their voltage domain in this model. Every voltage
domain pin is used as a pin of the network model. The resulting model is an ICEM, which can
be investigated at each voltage domain block. The reduced model should be valid in frequencies
ranging from DC to one GHz.
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The electrical network contains around 30000 passive RLC-elements and ¢ = 567 independent
current sources with a piece-wise linear waveform [[CZ3]. The order of the system for the
example network is N = 24967. As the model contains four voltage domains, four supply pin
ports are necessary.

Due to the large number of independent current sources 571 ports, 567 for the sources and four
for the pins are necessary, if all sources are extracted. This number is quite high and limits
the model reduction efficiency. The state-of-the-art approaches dealing with the reduction of
systems with a large number of ports (Sec. E3) are reviewed for applicability of the reduction
of the ICEM. The coupling of the network does not allow for a partitioning into sub-blocks
(Sec. ET) with a lower number of ports. An obvious partitioning would be to divide into
package model, substrate, supply domain model and so on. Each sub-block would contain at
least the nodes at the boundaries of the sub-block as ports, which is in the range of several
hundred nodes for this example and is still too high for an efficient model reduction. In addi-
tion, a partitioning of the supply line model part, where most of the sources are connected, is
not possible, due to the high coupling like in the RC-grid with independent sources (Sec. B).
The transfer function partitioning methods (Sec. EZTl) cannot be applied, as the resulting re-
duced model has to be synthesized as an electrical network. The generation of a large number
of reduced models, describing the complete model, leads to a high overhead in the reduced
network for coupling the subsystems. The example network is not regularly structured, as the
package, pad and substrate models are included with the supply domain model in the network,
which does not allow for the usage of the methods based on port correlation (Sec. B2Z). The
reduced order simulation method (Sec. BEZZ37) assumes all inputs to be determined and can-
not be applied, as the models, which are connected with the supply pins are not known. The
correlation of the waveforms is quite high, which allows for the application of the methods
based on input signal correlation (Sec. BE2Z3Tl). Nevertheless, this method is restricted to the
use of a Gramian-based model reduction method using Lyapunov equations. The high order of
the system does not allow for the Gramian-based reduction using Lyapunov equations due to
the high numerical effort. In addition the block structure for the RLC-elements in the system
matrices of the system of the ICEM has to be preserved during reduction, which is not possible
by using the reduction method based on input signal correlation.

The state-of-the-art methods are not capable of efficiently reducing this example network. Thus
the port reduction method of this work is applied to illustrate the possibility of a high efficiency
reduction. The waveforms of the distributed sources’ models are taken into account in a preced-
ing port reduction step (Sec. B3). For every modeled block of the IC the prescribed waveforms
of the independent sources are the same [[[3]. For finding the basis function of the reduced
dimension function space this property is used. The independent current sources waveforms
can be divided up into = 2 proportional waveform characteristics, one for 31 current sources
and one for 536 current sources. Realizing the network with replaced sources by adding » = 2
additional independent current sources having the two basis function waveforms and replac-
ing the 567 independent sources by CCCS leads to a reduced number of independent sources
(Sec. E3). As only two independent sources are used in the network with replaced sources,
only two ports for the sources are necessary. Overall, the port reduced system consists of a
mere six ports, two for the basis functions of the sources waveforms and four for the supply
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pins. As the waveforms of the distributed sources can be exactly determined from the lowered
dimension function space the behavior at the four supply pins of the network with replaced
sources is exactly the same as in the network with extracted sources.

Both systems, the system of the network with extracted sources and 571 ports, and the system
of the network with replaced sources and six ports, are reduced. As order reduction method the
implicit moment matching is used. In two expansion points (1Hz and 1MHz) four moments are
to be matched in a reduced order model. A comparison of the results of the model reduction of
the original system and the port reduced system is given in Table B3.

Table 5.3: Comparison of model reduction results of the voltage-domain-related ICEM net-

work
Extracted sources | Replaced sources
Original elements / nodes ~29000 / ~=16500 | ~29000 / ~16500
Order N 24967 24967
Ports in circuit equations 571 6
Reduced order n 4568 48
MATLAB speed-up factor no savings 1080
Reduced network elements / nodes | ~14-10°%/5139 1650/ 54
HSPICE speed-up factor no savings 800

By order reduction the order of the system of the network with extracted sources can only be
reduced by 80% to an order of n¢yy,- = 4568. This results in MATLAB simulations of the trans-
fer function being not faster than the unreduced system, since the reduced matrices are smaller
but dense, in contrast to the sparse unreduced system matrices. With the same parameters for
the model reduction the order of the circuit equations of the network with replaced sources are
reduced by 99.8% to an order of n,..,; = 48. With this reduced model the MATLAB simulation
of the transfer functions has a speed-up factor of around one thousand. The reduced system of
the port reduced system shows a close consistency with the unreduced system in the frequency
range of interest up to 1GHz. As an example a transfer function of an arbitrarily chosen supply
pin is shown in Figs. 23,874

The reduced system is synthesized as a network with the GC-synthesis (Sec. B27). The re-
duced system of the network with extracted sources has a lot more elements than the original
network and therefore is not feasible. A network with 1650 elements and only 54 nodes is gen-
erated from the n,., = 48 reduced system, which is much smaller than the original network.
The model is embedded in the surrounding network containing supply voltage sources. As this
model is used for early estimations in the design process, the desired accuracy is not as high as
for other applications [[CZ3]. The results of the time domain simulations in the HSPICE sim-
ulation environment show an acceptable accuracy, as can be seen in Figs. B73 and for a
supply voltage pin of the ICEM. A speed up of around 800 is achieved in simulations. If further
improvements are necessary, the parameters for model reduction can be adjusted, which leads
to bigger and slower, but more accurate reduced models. In any case, the reduced model of
the port reduced network is always much smaller than the reduced model of the network with
extracted sources, which proves the efficiency of the proposed method.
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Figure 5.23: ICEM transfer function Z; 1 of the original and the reduced model
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Figure 5.26: ICEM current flow at pinl of the original and the reduced model
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5.3.2 Supply Voltage Pin Related Model

As a further ICEM example the pin related model of the Infineon TriCorel1796 used. The ex-
ample differs from that in the former section, in the sense that the voltage pins are not grouped
with respect to their voltage domain. Every supply voltage pin is used as a pin of the ICEM
network.

The whole model of the microcontroller contains now 61 supply pins. The number of passive
elements is around 35000. For modeling the internal activity overall ¢ = 328 independent
current sources, 316 sources for the ICEM as well as 12 sources for the pads are included in
the model. The circuit equations of the complete model have an order of 25062. The model is
to be reduced, and the reduced model should be valid in frequencies ranging from DC to one
GHz.

With the standard method, where every independent source of the network model is extracted
and connected through a port with the reducible system, the system has 389 ports including
the pins. For this example the same review of the applicability of the state-of-the-art model
reduction methods dealing with a large number of ports of the supply voltage domain related
model applies (Sec. B3). As existing approaches are not capable of efficiently reducing the
ICEM network, the port reduction method presented in this work is employed. With respect to
their prescribed waveforms the current sources of the network can be grouped in eight groups.
Two groups of proportional waveforms for the supply line models, one representing 300 and
one representing 16 waveforms, and six groups for the pad sources, concluding in = 8 basis
functions, are found. The network with replaced sources as shown in Sec. B3 is built. Note
that, as the waveforms of the model can be exactly determined from the lowered dimension
function space, the behavior at the 61 pins of the network with replaced sources is exactly
the same as in the network with extracted sources. Together with the pins of the model the
resulting systems has 69 ports, which is much less than in the system of the network with
extracted sources having 389 ports.

For comparison both systems are reduced with an implicit moment matching method based on
Krylov subspaces (Sec. BT ) and with the Gramian-based order reduction method PMTBR
(Sec. BT3). The results for the order reduction are presented in Table B4.

Table 5.4: Comparison of model reduction results of the supply-pin-related ICEM network

Order | Ports | Reduced | Reduction | Speed-up
N P Order n
Extracted sources and
Gramian-based reduction 25062 389 590 97.6% 33x
Replaced sources and
Gramian-based reduction 25062 69 201 99.2% 188x
Extracted sources and
moment matching reduction | 25062 389 1556 93.8% 2.8x
Replaced sources and
moment matching reduction | 25062 69 276 98.9% 132x

For the implicit moment matching the number of expansion points is set to two (1kHz and
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1GHz) and two moments in each expansion point are to be matched. As there is a direct
dependency of the order of the reduced model on the number of ports, there is a significant
difference in the reduced order for the extracted and replaced sources networks system. Since
the system of the network with extracted sources has more than five times as many ports as the
system of the network with replaced sources, the reduced model is over five times larger.

For the Gramian-based order reduction, where the reduced order does only indirectly depend
on the number of ports, the approximation to the HSV, which represent the error depending on
the order of the reduced model, is shown in Fig. B2, It can be seen that the approximated
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Figure 5.27: HSV of the ICEM networks with extracted and replaced sources

HSV of the port reduced system decay faster than the approximated HSV of the system of the
network with extracted sources. This means that, for a given maximum error, the system of the
network with replaced sources can be more efficiently reduced. Likewise for a given reduced
order the reduced model of the system of the network with replaced sources is more exact than
the reduced model of the network with extracted sources. For our model the maximum HSV is
set to 101, which results in a reduced order of 201 and 590 for the port reduced and standard
system, respectively. With this model reduction algorithm the reduced model of the system of
the network with replaced sources is three times smaller than the reduced model of the system
with extracted sources.

All models show a close alignment in the frequency-domain and can be investigated with math-
ematical simulators. The close agreement of the reduced models with the unreduced model,
in the frequency range of interest up to a few GHz, for the transfer function Z3 3 of a supply
pin, is shown in Fig. B28. The error between the original and the reduced models is plotted in
Fig. B79.

The speed up in frequency-domain simulations, which is achieved with the reduction of the
model is shown in Tab. B4. For the implicit moment matching based reduction of the sys-
tem of the network with extracted sources, although the order is reduced by more than 93%,
the speed up factor is below three. The reason for this is that the reduced matrices are dense
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while the original matrices are sparse and therefore require more computational effort for solv-
ing. If the system of the network with extracted sources is reduced with the more efficient
Gramian-based order reduction method, the speed up is higher, approximately in the range of
30. Nevertheless, much faster simulations, more than 100 times faster than the original model,
can only be achieved with the port reduction as preceding step, which proves the efficiency of
the proposed method. Both model order reduction algorithms enable stronger reductions and
therewith faster simulations, if the port reduced network with replaced sources is used.

For investigations with electrical simulators, the reduced models can be synthesized with well-
known network-synthesis algorithms as described in Sec. B, which allows for simulations
with circuit simulators.

5.3.3 Conclusion of ICEM Reduction

In this section the reduction of industrial example networks, two ICEM models, is presented.
Due to the large number of distributed sources modeling the internal switching currents, the
efficiency of existing model reduction methods is limited. The model reduction of the example
network either leads to quite large reduced models or the reduced models have large approx-
imation errors. The existing approaches dealing with systems with a large number of ports,
as generated by extracting the distributed sources, are not capable of reducing the ICEM ef-
ficiently. The port reduction method presented in this work is capable of reducing the ICEM
model. A system with a lowered number of ports is generated by introducing the knowledge
of the behavior of the distributed sources in a preceding port reduction step. The examples
can be more efficiently reduced by using the port reduction method presented in this work as
preceding step for a model reduction. The increase in efficiency of the model reduction was
shown by exemplary reducing two industrial ICEM models.
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In the first part of this conclusion a summary of the methods investigated and the developed
methods in this work is given. Open problems of the presented methods and ideas for further
steps are presented in the second part.

6.1 Conclusion

Physical distributed systems are modeled by large electrical networks to enable fast and ef-
ficient investigations. In this work methods for reducing the size of network models of dis-
tributed systems with distributed sources are presented. While reducing the size of the network,
in the sense of lowering the number of nodes and elements, the behavior at several specified
nodes should be preserved or at least approximated. Examples for nodes where the behavior
should be preserved or approximated are nodes for the connection with other network models
and observed nodes. Properties of networks and mathematical descriptions of networks are
highlighted and the necessity of their preservation in a reduced model is motivated.

In the first part of this work algorithms based on circuit theory, control theory and system identi-
fication are examined in a common framework for the applicability to the reduction of electrical
networks and their mathematical models. Synthesis methods, realizing reduced mathematical
models as electrical network, are investigated. A synthesis method is presented, called GC-
synthesis, which is capable of efficiently realizing reduced order systems of networks as an
electrical network. If existing methods are used, the need for controlled dynamic elements
in the simulation environment, for creating small and efficient networks, is a disadvantage.
By using the proposed GC-synthesis this disadvantage vanishes. Based on preserved system
properties, a small and efficient network can be built, which does not need controlled dynamic
elements.

The second part of this work concerns the reduction of a class of networks, having in addition
to a large number of linear resistive, capacitive and inductive elements, also a large number
of sources. The sources can be independent sources, or in the more general case, nonlinear
controlled sources. In existing methods the sources’ models are extracted from the linear part
of the network. The linear part and the extracted sources are connected by ports, resulting in a
large number of ports for a large number of sources. The model reduction methods are capable
of reducing the linear part of the network while the behavior at the ports is approximated in
the reduced network. Nevertheless, the standard model reduction methods suffer from low ef-
ficiency for a large number of ports. Extended methods, especially dealing with the reduction
of systems with a large number of ports, are investigated. The advantages as well as the dis-
advantages and limitations of the existing methods in reducing networks with a large number
of sources are highlighted. Mainly, existing methods are either not able to preserve network
relevant properties, are limited to special classes of networks, or are limited in efficiency.

A new method is presented in this work, especially dealing with the model reduction of net-
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works with a large number of sources. In the presented method not all sources are extracted,
avoiding the generation a large number of ports in this way. Instead, based on the a priori
defined functions of the sources, a function space is spanned by the sources’ functions. With
methods from approximation theory a function space with a lower dimension is found, rep-
resenting the function space of the sources’ functions. This lower dimension function space
is realized with additional electrical elements in the network model. The sources in the net-
work model are replaced by linear controlled sources, mapping the reduced dimension function
space to the function space of the distributed sources. The overall network model now contains
a lowered number of elements, which cannot be included in the model reduction process. By
extracting this lowered number of elements, a reducible system with a lowered number of ports,
compared to the extraction of all sources as in the standard method, is created. This system
with a smaller number of ports can be reduced more efficiently with model reduction methods.
In this work the complete flow for creating the port reduced system is presented. Several ap-
plicable methods for the reduction of the dimension of the function space of the sources are
given, able to handle a large variety of distributed sources’ models. The realization of the re-
duced dimension function space in the network is shown, while relevant network properties are
preserved in the reducible system. Implementation hints are given, to enable the extension of
existing model reduction flows to the capability of reducing systems with a large number of
sources.

The increase in efficiency of the reduction of network models with a large number of sources
by using the port reduction proposed in this work is shown. By reducing illustrative examples
as well as industrial examples with a large number of sources, the improved accuracy of the
reduced models and the higher efficiency of the model reduction is demonstrated.

6.2 Future Work

Several ideas for further development of the methods presented in this work will be specified
in the following.

Firstly, the model reduction of networks still faces several open issues. Due to the mathemat-
ically based reduction of systems of networks, the resulting reduced model typically is not
based on physical parameters anymore. Despite the fact that the model of the distributed sys-
tem contains only physically based element values, the reduced network, synthesized from the
reduced mathematical model, contains non-physical element values. The element values of the
reduced models can be quite small or quite large, compared to the range of elements created
by modeling. Even negative element values can arise, having no physical basis. Due to the in-
vestigation of the reduced network in simulation environments, normally dealing with physical
models, numerical problems can occur. Other numerical issues occur during the reduction of
the models. For example, though the preservation of passivity is guaranteed by the algorithm,
the reduced model may be active, due to finite precision of the numerical calculations.

Secondly, future work for the port reduction presented in this work remains open. The pre-
sented methods for the reduction of the dimension of the function space of the sources are only
a small prospect. Several other methods exist, and for every model an applicable method has
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to be found. Due to the large variety of possible functions of the distributed sources, no gen-
eral method exists. Especially in the case of nonlinear controlled sources, used for modeling
distributed sources’ behavior, a large number of controlling variables can lead to only small or
even no possible reduction of the dimension of the function space of the sources.

The realization of the reduced dimension function space basis functions as additional network
elements is another relevant point. Typically the basis functions belong to the same class
as the functions of the sources. For example, if the sources’ functions are piece-wise linear
functions, the basis functions of a reduced dimension function space are as well piece-wise
linear. Thus, if the distributed sources’ models are implemented in the simulation environment,
the basis functions of a reduced dimension function space can be most likely implemented in
a similar way. Nevertheless, due to limitations of the simulation environment, in a few cases
the realization of the basis functions may be complicated or even impossible, which has to be
further investigated.

Another open issue, especially by approximating the function space of the sources, is the ac-
curacy. The effect of a small accuracy derivation, during the reduction of the function space of
the distributed sources, on the behavior at the network nodes of interest has to be investigated
properly. In fact, the behavior at the nodes of interest is approximated in up to three different
steps. The first step is the approximation of the behavior of the distributed sources with a lower
dimension function space. If the function space of the distributed sources can only be obtained
approximatively and not exactly from the reduced dimension function space, deviations of the
behavior at the nodes of interest occur. The second approximation is introduced by applying
model reduction to the linear network part. A possible third approximation is by converting the
nonlinear controlled sources’ models to be controlled from the reduced networks values. Over-
all, all of these approximations have to be handled with care, and the corresponding influence
on the behavior at the nodes of interest has to be monitored.

In the actual implementation of the proposed port reduction a few manual steps are necessary.
Especially in the field of lowering the dimension of the function space of the sources, knowl-
edge has to be included for finding an appropriate approximation method. The presented port
reduction method can be further fully automated for several classes of functions describing dis-
tributed sources. The definition of these classes, and the implementation of a fully automated
process of the port reduction for several classes of distributed sources’ models, remains open
for future work.
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