On the Importance of Ecologically
Valid Usable Security Research for
End Users and IT Workers

DER FAKULTAT FUR ELEKTROTECHNIK UND INFORMATIK
DER GOTTFRIED WILHELM LEIBNIZ UNIVERSITAT HANNOVER
ZUR ERLANGUNG DES AKADEMISCHEN (GRADES
DOKTOR DER NATURWISSENSCHAFTEN

DR. RER. NAT.

GENEHMIGTE DISSERTATION VON

DipPL.-INF. SASCHA FAHL
GEBOREN AM 23.03.1985
IN ESCHWEGE

2016

Referent: Prof. Dr. Matthew Smith
Koreferent: Prof. Dr. Robert Jaschke
Tag der Promotion: 30.05.2016

Foreword

The research that is the heart of this thesis would not have been possible without the
support of my advisor, co-authors, colleagues, students, research assistants, friends
and my family.

I owe my deepest gratitude to my family. My family has always encouraged me to
be curious, tenacious, and ambitious. My parents, Jutta and Albert Fahl, are the
ones who made all this possible from the beginning, for which I will be eternally
thankful. T am grateful to my wonderful wife Yasemin, who always provided me
with her patience and support and helped me through all the long nightshifts we
went through over the last three years. Your support was manifold: You helped me
picking the right research questions, pushed me when I was unmotivated and made
the best soy latte when we were working nightshifts. I dedicate this to you and our
wonderful marriage.

I would like to thank my advisor Matthew Smith for being a great supervisor. He
gave me the chance to work on almost all ideas I had as a doctoral candidate, en-
couraging me to tackle all the challenges working towards a doctor’s degree keeps
ready and made me a thoroughbred researcher.

I am also grateful to Professor Robert Jéaschke, for being my secondary examiner.
Gabriele von Voigt, head of the distributed systems institute, did a great job as
the second-in-command and always was a sensitive and reliable discussion partner.
Also, my colleagues at the Distributed Systems and Security Group, Henning Perl,
Michael Brenner, Thomas Muders, Hinrich Tobaben, Benjamin Henne, Christian
Szongott, and Jan Wiebelitz, made for a very pleasant and inspiring working envi-
ronment. Furthermore, I would like to thank Sergej Dechand at University Bonn,
with whom it was great to collaborate on multiple projects; Jaromir Smrcek from
Zoner Inc., who provided me access to very interesting telemetry data of their An-
droid Anti-Virus software; and finally Adrienne Porter-Felt from Google, who made
parts of my Ph.d. student time as an intern at the Chrome Usable Security team in
Mountain View a very special experience.

I enjoyed collaborating on several projects with the greatest research assistants I
could imagine: Christian Stransky, Rafal Lesniak, Felix Fischer, Marten Oltrogge,
Oliver Weidner, Pascal Urban, Steffen Busch, Maximilian Kaulmann, Richard Neu-
mann, Jannis Koénig, Mohamed Brahim Rekik and Roman Zimbelmann. Finally,
I would like to thank the students that wrote their Bachelor and Master theses
under my supervision: Marten Oltrogge, Christian Stransky, Markus Kotter, Felix

Fischer, Falk Garbsch, Pascal Urban, Eugen Bier, Jannis Konig, David Bluhm, Leif
Erik Wagner, Toni Bartilla, Marcus Wobig and Andre Brinkop.

Hannover, June 19, 2016

Summary

In past research, the focus of IT security research was in investigating and develop-
ing novel IT security mechanisms and technologies such as cryptographic primitives
and protocols. However, over the last decade, researchers in academia and industry
realized that human factors are of crucial importance when developing and deploying
IT security mechanisms. Since then, usable security and privacy research attracts
increased interest, focusing on improvement of the usability of human interaction
with I'T security mechanisms of any kind.

Researchers for example investigated password based authentication or the com-
prehension and adherence of warning messages. The majority of previous works
focused on end users of I'T security measures and collects data in first contact stud-
ies, making intensive use of self-reporting questions.

However, one important question has not received adequate attention in the usable
security and privacy research community:

What is the impact of and interdependence between IT security measures for end
users, administrators, software developers and system designers on the overall secu-
rity and usability of IT ecosystems?

In this thesis, I present and discuss the results of seven research projects with end
users, administrators, developers and system designers.

First, I present a study on the usability and acceptance of a security measure to
encrypt Facebook private messages. Second, I present and discuss multiple studies
on the usability of programming and configuration interfaces for administrators and
developers. Results illustrate that usability issues for administrators and developers
working with IT security mechanisms have a huge impact on the security and us-
ability of end user measures. Subsequently, I present a novel mechanism that allows
easy and straightforward verification of the authenticity and integrity of software. 1
also discuss usability advantages for app market designers and end users.

While working on the above topics, I found that a large fraction of previous works
that focused on user studies mention concerns about the ecological validity of their
study designs and results. Those concerns address the question of whether data
gathered in user studies is valid and allows to draw reliable conclusions. However,
there is no dedicated work that addresses these questions. To motivate more founda-
tional research in that area, I present and discuss a study on the ecological validity
of a password study.

To the best of my knowledge, my work is the first to reveal the importance of usable
security and privacy research to address human factors for end users, administrators,
developers and system designers to improve overall usability and security. Moreover,
I demonstrate the relevance of foundational research that concentrates on ecological
validity of user study designs, data collection and result reporting for future usable
security and privacy research.

Keywords: Usable Security, End Users, I'T Workers

Zusammenfassung

Der Fokus von IT-Sicherheitsforschung lag lange Zeit vornehmlich in der Er-
forschung und Entwicklung neuer Sicherheitsmechanismen und -technologien wie
zum Beispiel kryptografischen Verfahren und Protokollen. Erst in den letzten Jahren
wurde Forschern in Wissenschaft und Industrie bewusst, dass der Mensch und seine
Bediirfnisse eine wichtige Rolle bei der Entwicklung und vor allem der Verbreitung
und Akzeptanz von Sicherheitsmafinahmen spielen. Die seitdem stetig bedeutsamer
werdende Forschung zu benutzbarer I'T-Sicherheit und Privatsphére beschéftigt sich
mit der Verbesserung von Benutzbarkeit der Interaktion zwischen Benutzern und
IT-Sicherheitsmechanismen jeglicher Art.

Intensiv erforschte Bereiche sind beispielsweise Passworter zur Authentifizierung
oder die Verstédndlichkeit und Effektivitdt von Warnungsmeldungen. Ein Grofiteil
der vergangenen Forschungsarbeiten konzentriert sich auf Endnutzer von IT-Sicher-
heitsmechanismen und erhebt Daten im Rahmen von Erst-Kontakt Studien mit ho-
hem Selbsteinschiatzungsanteil. FEine zentrale Fragestellung wurde in der Usable
Security and Privacy Forschungsgemeinde bisher jedoch relativ wenig beachtet:

Worin besteht die Bedeutung und die gegenseitige Abhdngigkeit von IT-Sicherheits-
mechanismen fiir Endnutzer, Administratoren, Softwareentwickler und Konstruk-
teure von IT-Systemen in Bezug auf die globale Sicherheit und Benutzbarkeit von
IT-Okosystemen?

Im Rahmen dieser Arbeit gehe ich daher auf Ergebnisse von sieben Forschungsar-
beiten mit Endnutzern, Administratoren, Entwicklern und Konstrukteuren von IT-
Systemen ein. Zunéchst stelle ich eine Analyse der Benutzbarkeit und Akzeptanz
von Sicherheitsmafinahmen zur Verschliisselung von privaten Nachrichten auf Face-
book vor. Danach gehe ich auf verschiedene Studien zur einfachen Benutzbarkeit von
Programmier- und Konfigurationsschnittstellen fiir Entwickler und Administratoren
ein. Die Ergebnisse zeigen auf, dass Benutzbarkeitsprobleme auf Entwickler- und
Administratorenebene mafigeblichen Einfluss auf die Sicherheit und Benutzbarkeit
von Endanwendersystemen und -sicherheitsmechanismen haben. Im Anschluss stelle
ich einen neuartigen Mechanismus zur einfachen Uberpriifung der Authentizitit und
Integritéat von Software vor und diskutiere Benutzbarkeitsvorteile fiir Konstrukteure
von App-Markets und End-Nutzer.

Viele vorherige Arbeiten, die sich mit Benutzerstudien beschéftigt haben, sprechen
die Problematik der 6kologischen Validitdt von Studienergebnissen an. Im Kern
dieser Fragestellung geht es darum, einzuschétzen, ob in Benutzerstudien erhobene
Daten valide und verldssliche Aussagen erlauben. Es gibt jedoch keine Vorarbeiten,
die sich gezielt mit diesen Fragen beschéftigen. Als Ausblick auf zukiinftige zentrale
Grundlagenforschung im Bereich in der Usable Security and Privacy Forschung stelle
ich zuletzt eine Studie zur 6kologischen Validitdt von Forschungsergebnissen iiber
Passwortstudien vor.

Insgesamt macht die vorliegende Arbeit als eine der ersten deutlich, dass sich
Forschungsarbeiten zu Usable Security and Privacy mit menschlichen Faktoren,
die auf Endanwender, Administratoren, Entwickler, und Konstrukteure von IT-
Systemen wirken, beschéftigen miissen. Weiterhin wird auerdem aufgezeigt, dass
Grundlagenforschung zu Fragestellungen der 6kologischen Validitdt von Benutzer-
studien ein wichtiger Gegenstand zukiinftiger Usable Security and Privacy Forschung

sein sollte.
Schlagworter: Benutzbare I'T-Sicherheit, Endanwender, IT Arbeiter

Contents

10

Introduction

1.1 Contributions

1.2 About this Thesis.

Background

2.1 Usable Security and Privacy Research

2.2 Research Methods

2.3 Background and Related Work
2.3.1 Passwords
2.3.2 Email Encryption L.
2.3.3 Transport Layer Security
2.3.4 Appified Platforms

24 SUmMmMAaryo ..o e

End Users: Encrypting Facebook Messages

3.1 Motivation
3.2 Background Lo
3.3 Exploratory Phase o
3.4 Usable Facebook Message Encryption
3.5 Evaluation.
3.6 Limitations
3.7 Summaryo e

Administrators: Configuring HTTPS Webservers

4.1 Motivation
4.2 Background
4.3 Administrator Study
4.4 Discussion
4.5 Limitations
4.6 SUMMATY o e e e e e e e e e e
Developers: Implementing Password Managers

5.1 Motivation L L
5.2 Background
5.3 Password Sniffing on Androido
5.4 Security Analysis L
5.5 Developer Study
5.6 Countermeasuresot e

13
16
17

19
20
21
23
23
26
27
29
30

32
33
34
36
45
48
o6
o6

58
99
60
61
69
71
72

5.7 USecPassBoard User Interface
5.8 Summaryo e e

Developers: Customizing Certificate Validation

6.1 Motivation L
6.2 Background Lo
6.3 Evaluating Android TLS Usage
6.4 Userstudy: TLS Warning Messages
6.5 Summary e

System Designers: Rethinking TLS Development

7.1 Motivation
7.2 Background
7.3 TLSoniOS e
7.4 Developer Study
7.5 TLS Development Re-thought
7.6 Limitations
7.7 Summary ... Lo e

System Designers: Distributing Software in a Bullet-Proof Way
8.1 Motivation

8.2 Backgroundo
8.3 App Signing Practices
8.4 Threat Model
8.5 Application Transparency
8.6 Summary e

Closing the Ivory Gap: Ecological Validity

9.1 Motivation L
9.2 Background L
9.3 A Study of Studying Passwords
9.4 Results. e
9.5 Limitations
9.6 Summary e e e

10 Conclusions

10.1 Future Work e

Appendix: Message Encryption Study
A.1 Questionnaire Items
A.2 Interview Guideline,

Appendix: Webmaster Study
B.1 Contact Email

Appendix: Studying Android’s TLS Warning Message
C.1 Online Survey

138
139
141
144
147
148
160

162
163
164
167
177
182
184

187
190

192
192
195

197
197

198

11

D Appendix: Ecological Validity of a Password Study

D.1 Question Plan . . .
D.2 Contingency Tables

Bibliography

Curriculum Vitae

12

202
202
203

206

218

1 Introduction

13

Over the last decades, academic and industry research contrived novel concepts
and tools to improve information security.

From a conceptual point of view, many of those mechanisms provide (almost) per-
fect security. Users’ information can be efficiently protected against all different sorts
of attacks and attackers. Email can be PGP [211] or SMIME [191] encrypted and
signed, network security mechanisms such as virtual private networks (VPN) [89]
and transport layer security (TLS) [52] can secure information in transit, encrypted
filesystems and databases can protect persistently stored data and strong authen-
tication mechanisms like client certificates [52] or security tokens can be used to
protect information against unauthorized access.

Leaving the ivory tower and stepping into the world of average Internet users,
administrators of IT systems, software developers and I'T system designers, reality
looks very different.

The Snowden revelations [103] show that at least powerful nation state attackers
such as intelligence services attack users’ data regularly and on a global scale. In the
era of organized cybercrime, data breaches are commonplace [150]. Given a report
by Facebook [72], even after the Snowden revelations, most Email is still not sent
over encrypted channels, giving everyone with access to the network instant access
to the Emails’ content. Although no data for the use of end-to-end Email encryption
such as PGP or S/MIME is available, their deployment might be even lower. Also,
the deployment of HT'TPS as the secure protocol in the web is not as advanced as it
should be [132], allowing attackers with network access to easily snoop on and even
modify data in transit. Researchers (e.g. [21, 48]) demonstrated that many users
(re-)use weak passwords and service providers do not properly secure their users’
data [150].

A large number of studies (e.g. [188, 114, 2, 130, 201, 82, 83]) investigates hu-
man factors of I'T security measures. These studies identify underlying root causes
responsible for hindering widespread adoption of IT security measures or stimulate
their insecure usage.

However, not only careless or uneducated Internet users fail to make use of the
many oftentimes effective but complicated security measures that are available to-
day. Additionally and maybe more gravely, professional information workers such
as system administrators, software developers and IT system designers contribute
to the state of fragmentary information security today.

The current deployment of TLS is an overwhelming example: TLS warning mes-
sages are shown to browser users whenever a server’s certificate could not be success-
fully validated. Those warning messages are intended to inform users of a serious
attack. However, previous studies show that users oftentimes ignore or do not un-
derstand them (e.g. [82, 188]). Internet wide measurements (e.g. [3, 4, 73]) demon-
strated that handling TLS certificates is not just challenging for end users, but also
for administrators of webservers. They showed that a significant amount of TLS cer-
tificate configurations are misconfigured and trigger false warning messages. This
leads to users seeing TLS warning messages in harmless cases, which contributes
gravely to the problem. Users usually are overwhelmed by distinguishing the just
mentioned harmless cases from erroneous certificates issued by valid certificate au-

14

thorities — either accidentally or deliberately — were used to attack real Internet
users in the past '. In addition to end users and administrators of webservers,
also software developers who deal with secure network connections contribute to
the fragile condition of the TLS ecosystem: They regularly fail to implement non-
default but secure certificate validation [76, 96] leaving their applications vulnerable
to Man-In-The-Middle attacks.

This reality check impressively illustrates to what extent the current lack of us-
ability in I'T security measures — at all layers — limits the effectiveness of protecting
information in the digital world.

The usable security and privacy research community has identified and investi-
gated only a part of the problem: 15 years ago, Sasse et al. [2] were the first to
investigate the fact that security is almost never the user’s primary task. Most of
the previous works stayed in the line of Sasse et al. and focused on end users. For
example, Whitten and Tygar [201] conducted early and frequently cited work in our
field, investigating the root causes of why users were unable to use PGP 5.0 correctly.
Thereafter, the usable security and privacy community was established and in 2008,
the first book on usable security and privacy research was released by Cranor and
Garfinkel. From then on, the awareness of the importance of the usability of security
and privacy mechanisms has increased and stimulated a positive development in our
community. Warning messages today are easier to understand than a decade ago
[188, 82|, password meters may help users to create stronger passwords [193, 61],
the comprehension and adherence of permission dialogs increased as demonstrated
in studies over the last decade.

One common thread is that investigations of usability issues almost exclusively
focus on end users. However, I'T security measures also apply for other actors in
IT ecosystems such as administrators, software developers and system designers. In
contrast to end users, their impact on overall usability and security is much stronger
and has yet not been the focus of extensive research.

Taken the above reality check and the development of our community within the
last decade into account, it is obvious that studying end users alone is not enough.
Instead, I argue that usable security and privacy research should focus on multiple
actors in an IT (security) ecosystem:

End Users are the main audience of IT security measures and were the focus of
most of the usable security and privacy research in the past. When used in
real world scenarios such as authentication in the web or warning messages for
TLS, IT security measures need to prove their effectiveness. Since end users’
primary tasks usually do not focus on security, effectiveness means both secure
and usable. If not usable, end users regularly circumvent I'T security measures.
Instead of perfect security in theory, their data stays unprotected in reality.

Administrators and Developers are important users of IT security systems and
mechanisms: They are responsible for the secure development of software
and the administration and configuration of computer systems. IT security

Lef. https://blog.comodo.com/other/the-recent-ra-compromise/ — last access
13.04.2016

15

https://blog.comodo.com/other/the-recent-ra-compromise/

measures they employ, should be designed and implemented with informa-
tion workers’ needs in mind: Administrators and developers oftentimes do not
have a strong IT security background and their primary tasks include the im-
plementation of new features or the operation of production systems. Being
of secondary or tertiary priority, security measures need to be easily imple-
mentable and configurable.

System designers decide about the deployment and implementation of IT security
measures in their products and should balance between their economic inter-
ests and their users’ security and privacy needs. Since their focus usually is
monetization, complicated security mechanisms that scare their users are out
of the question. Instead, security measures must not narrow their features
and should be as easy to use as possible. Ideally, system designers want an IT
security measure to provide additional value for their services.

Addressing all the above actors leverages the understanding of essential problems
in current IT systems regarding users’ information security and privacy. A better
understanding will help to more effectively protect sensitive user information.

1.1 Contributions

In this thesis, I extend the state of the art of human factors in I'T security measures:
I present multiple case studies of the human factors in different areas of I'T security
dealing with end users, administrators, developers and system designers. Moreover,
I demonstrate the importance of a holistic approach when working on usable security
and privacy topics: If and only if the most important actors in I'T ecosystems are
included, IT security measures can achieve best efficiency.

I begin with illustrating how human factors influence the deployment of I'T security
measures for end users. This demonstrates how end users reason about a message
encryption mechanism and then decide for or against such mechanisms. This line of
work provides novel insights into which factors play a central role when IT security
measures for end users are deployed and which pitfalls should be avoided.

As a next step, I conduct multiple technical analyses and user studies with a focus
on administrators and developers. Based on the insights from related work and the
first chapter, I move on to the creators and maintainers of I'T security measures.

I investigate usability issues administrators encounter when configuring HTTPS
enabled webservers. I conduct a survey with administrators that use misconfigured
TLS certificates. My research provides new insights into the challenges for adminis-
trators and root causes of misconfigured TLS certificates. Based on these findings,
I suggest changes to workflows and tools that help typical — non IT security experts
— administrators in their daily work.

I identify usability challenges for mobile app developers when confronted with
security critical tasks. Based on interviews with developers, I extract common chal-
lenging patterns. The lesson to be learned from this line of my research is that most
developers — very similar to end users and administrators — first are no IT security

16

experts and second do mostly perceive IT critical aspects of their work as superflu-
ous obstacles in conflict with the timely fulfillment of their original tasks. Hence, it
is crucial to offer them easy to use mechanisms, tools and APIs to allow a smooth
integration of secure solutions.

I identify usability issues of TLS APIs in mobile app development, investigate
their root causes and shed light on why many developers fail when implementing
security related code. Using these findings as a foundation, I re-think how developers
should interact with TLS code. I provide insights in how system designers should
address security related challenges for developers working with their systems.

Afterwards, I present and evaluate a novel framework that can help designers of
central software distribution ecosystems such as app markets to offer their users an
easy to use mechanism to verify the authenticity and integrity of software. This
framework secures the current central software distribution points that currently
allow powerful attackers to easily deploy customized (malicious) software to users.
My framework is an example for the importance of easy to use mechanisms system
designers may deploy to increase their users’ information security and privacy.

While working on different user studies and reviewing research focuses on usable
security and privacy questions, one important aspect researchers in our community
are confronted with again and again is the question of the ecological validity of their
research methods and study designs. However, the community still lacks sufficient
work that addresses these questions for usable security and privacy research. To
motivate more extensive future work in this area and to provide an example of how to
conduct a study that focuses on ecological validity, I question the design of a popular
type of study: Previous works often investigates human aspects of the deployment
of passwords as the most widely used authentication mechanism in the wild. Those
studies usually let users create passwords in laboratory or online studies and then use
them to draw conclusions about aspects such as password strengths, memorability
and usability. My work provides new insights into the ecological validity of this
study design. I also show in which way data collected in these studies can or cannot
be used to draw generic conclusions.

In summary, my research shows that usable security and privacy research should
follow a holistic approach to study end users, administrators, developers and IT
system designers with the aim to improve overall usability of security and privacy
mechanisms. To the best of knowledge my work is the first to demonstrate the
importance of usable security and privacy research for end users, administrators,
developers and system designers. Additionally, I motivate more extensive founda-
tional future usable security and privacy research with a focus on ecologically valid
research methods.

1.2 About this Thesis

My thesis follows both a constructive and analytical approach. I analyze weak points
in IT security measures for end users, administrators, developers and system design-
ers and based on these findings construct novel usable tools and methods. I chose

17

this hybrid approach as building easy to use and secure IT security measures needs
to focus on all involved actors: System designers need to choose to use secure tech-
nologies and their decisions directly impact all remaining actors in the ecosystem.
Developers and administrators need to be able to develop and configure computer
systems. Their choices and limitations they need to work with are based on deci-
sions of system designers and directly impact the security and usability of end users
working with their software. End users interact with IT security measures provided
by system designers, developers and administrators. Their interactions with IT se-
curity measures is mostly limited to their own information and does rarely affect
other actors in IT ecosystems. While they can contribute to their indirect security
in some ways, insecure choices by the other actors often affect them directly and can
seldomly be rectified at the end user level.

I hope my work will prove to be an in-depth foundation for other researchers, sys-
tem designers, developers and administrators interested in making security measures
easy to use.

In the time of writing this thesis, I have published several peer reviewed high
quality conference research papers as first author or co-author with the invaluable
help of many colleagues.

In these research papers, I do not focus on one topic exclusively; instead I took
care to investigate the important key areas that lack proper coordination (often due
to unclear interfaces and usability problems) and spawn security issues.

For this thesis, I discuss the findings presented in seven of these research pa-
pers, that clearly show a central point: We — as a researchers’ community — need
to understand that improving security measures to protect information in transit
or persistently stored in computer systems requires a holistic approach. We need
to apply valid methods to obtain reliable results and need to include end users,
administrators, developers and system designers of IT security measures.

Most chapters in this thesis are based on previously published peer reviewed re-
search papers and are thus marked with a disclaimer that explains my personal as
well as my co-authors’ contribution to each of those works. I am deeply grateful to
my co-authors for helping me to work on these ideas. Without them, a large part of
my research would not have been possible.

18

2 Background

19

This chapter gives background information for the subsequent chapters. Both,
usable security and privacy research methods as well as technical foundations needed
to understand the remainder of this thesis are described. This chapter can be either
read before proceeding to read the following chapters, or be consulted as needed for
the chapters, which each target different research areas and employ different research
methods.

2.1 Usable Security and Privacy Research

This section is intended to give a brief introduction in usable security and privacy
research and gives some information on the methods that are commonly used by
researchers and practitioners. With their groundbreaking work “Why Johnny Can’t
Encrypt: A Usability Evaluation of PGP 5.0” in 1999 Whitten and Tyga [201]
demonstrated the importance of usability and human computer interaction (HCI)
as part of the design and implementation of IT security measures. Since then,
researchers investigated usability aspects of security and privacy mechanisms ex-
tensively and published their results at top tier conferences such as IEEE Secu-
rity & Privacy, ACM Computer Communications and Security (CCS), Networked
Distributed Systems Security NDSS, USENIX Security, ACM SIGCHI or USENIX
SOUPS. This movement accounts for the fact that studying usability and human
factors had long before been recognized as an integral part of computer system
design and implementation in general.

The security community tenaciously worked on creating mechanism that users
can interact with easily and effortlessly. Different norms and standards express the
importance of this topic. Usability engineer Jakob Nielsen for example describes
five different components to carefully consider when designing and implementing a
computer system L.

Learnability How easy is it for novice users to interact with a system for the first
time?

Efficiency Having learned how to interact, how quickly can tasks be performed?
Memorability How easy is it to interact with the system after periods of non-use?

Errors How many errors occur during interaction? How does the system deal with
errors? How hard is it for users to recover from errors?

Satisfaction How pleasant do users find the interaction to be?

Using usability principles helps to build IT systems in general and IT security
systems in particular that humans can interact with easily and effortlessly. However,
one should consider carefully that the usability of IT systems depends on which type
of user is trying to achieve which goals in which context. Types of users range from

"https://www.nngroup.com/articles/usability-101l-introduction-to-usability/
— last access 07.02.2016

20

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

end users, administrators, software developers to system designers — i.e. all types
of consumers and producers of IT security systems and mechanisms.

Usability research covers many different topics and aspects of IT security but
focuses mainly on end users. Previous works evaluated how users handle passwords
(e.g. [50, 61, 186, 114, 130, 23, 48, 21, 130]), apply encryption mechanisms (e. g. [192,
201, 92, 133, 179, 169]), interact with permission systems (e. g. [159, 83, 84, 161, 109,
123] and warning messages(e. g. [188, 184, 82]) and perceive threats and risks in the
online world (e.g. [25, 27, 26, 108]).

2.2 Research Methods

Usable security and privacy research supplements other fields of I'T security research
with the research methods applied. For example, system security researchers apply
formal methods to construct secure operating systems, malware analysts use reverse
engineering and static and dynamic code analysis [65] and cryptographers apply
formal security analyses and mathematical proofs [152] to demonstrate properties
of their systems. In addition, usable security and privacy research applies empiri-
cal methods as found in sociology, psychology and the HCI community [137] with
the aim to make existing I'T security measures easier to use or to design usable IT
security measures from the ground up. Researchers often make use of surveys, inter-
views, focus groups and laboratory and field studies to shed light onto new research
questions. This section will give a very brief overview of research methods typically
applied in usable security and privacy studies. A more in-depth introduction into
the methods applied by usable security and privacy researchers can be found in [137].
To conduct usable security and privacy studies the ecological validity of a study is
of outstanding importance: The ecological validity of a (user) study means that the
methods, materials and setup of the study must approximate the real-world that is
being examined [91].

Interviews typically are used to collect information from an individual at a time.
The interviewee uses an interviewer guideline that can be open (i.e. only consisting
of some important aspects), semi-structured (i. e, consisting some questions but leave
enough room to flexibly react to the interviewee if necessary) or structured (i.e,
consisting of a fixed list of questions, leaving no room for variations). Interviews are
used to collect qualitative data and help to explore new fields [115].

Focus groups are similar to interviews: They are usually used to collect qualitative
data. However, instead of interviewing one single interviewee, a focus group consists
of multiple participants (usually six to ten people) and the researcher acts as a mod-
erator, whose primary task is leading a discussion between the focus group members.
Taking notes or recording a focus group may help researchers to explore new ideas
and concepts the focus group members brought up during their discussion [115].

Surveys are a method to collect quantitative data [137]. They are used to make
statistical inferences about the population that is surveyed. Surveys consist of sets
of different types of questions (e.g. likert scales, yes/no, multiple choice or open
questions) that heavily rely on self-reporting. Surveys can be conducted using pen

21

and paper or online. Online surveys’ popularity increased over the last years due to
the small effort required to reach out to a large population. Statistical methods [85]
typically are used to infer general conclusions.

In a laboratory study, participants are invited to the researchers’ facilities to test
new technologies or mechanisms. Participants work on specific tasks and afterwards
are interviewed or fill out surveys [137]. Laboratory studies can be used to collect
qualitative or quantitative data and are typically used to test novel technologies or
mechanisms.

In contrast to inviting participants to the researchers’ facilities, in field studies,
participants test technologies or mechanisms in their familiar environment (e.g. at
home or at work) [137]. Similar to laboratory studies, participants commonly are
interviewed or asked to fill out surveys.

For all types of studies, the participant selection process is important. Participants
should be a representative sample of the population that is studied. However, the
selection process is complex and requires special attention by the researcher [137].
For example, it is common practice to recruit university students as participants
in (end user) studies. However, it is important not to ask students who are in
some way (e.g. through teaching) affiliated with the researcher. Those participants
are very likely biased and would falsify the study results. Recruiting professional
information workers is more challenging since an easy to use recruiting platform as
available for end users is missing. Researchers often circumvent this limitation by
recruiting computer science students, posting studies at websites such as craigslist 2
or asking developers who published apps in Google Play (e.g. [155]).

While traditionally small surveys, interviews, focus groups and lab studies were
the dominant methods found in research papers, a current trend is the use of crowd-
sourcing services such as Amazon Mechanical Turk [32]. MTurk knows two types
of users: Requesters can create “human intelligence tasks” (HITs) which were orig-
inally introduced to help requesters with tasks computers cannot easily solve such
as tagging or categorizing images or texts. Workers (MTurkers) can then choose
those HITs, solve them and get payed a small amount of money. MTurk enjoyed
great popularity in the HCI community in general and the usable security and pri-
vacy community in particular - it is used for simple online experiments or surveys.
Although the population of MTurk workers is different from the general population
and workers might be motivated to cheat to finish as many tasks as quickly as pos-
sible, MTurk enables researchers to have easy access to a large pool of potential
participants, which is a major improvement compared to the past [32].

Another trend in usable security and privacy studies is to collect participant in-
formation via self-reporting questions (e.g. [163, 5, 7, 9, 35, 37, 56, 106, 126, 165,
121, 125, 172]). Those studies show participants tasks or questions and ask them to
fulfil or answer them to the best of their knowledge and belief. Psychologists and so-
ciologists report limitations of that methodology [55]. However, usable security and
privacy researchers use it a lot and many results are based on subjective opinions of
study participants.

Since ecological validity has been a concern for research projects (e.g. [124, 130,

2¢f. nttp://www.craigslist.com — last access 13.04.2016

22

http://www.craigslist.com

178, 118]), I investigate a fundamental question of usable security and privacy re-
search with the aim to motivate more foundational research in the future: Which re-
search methods and study designs produce ecologically valid results? While it is rel-
atively simple and straightforward to create an online survey and ask users for their
opinion, past experiences or future plans, drawing conclusions based on purely self-
reported information might produce wrong and/or mis-leading results [55]. There-
fore, it is important to evaluate the selection of methods and study design and

compare study results with real world data as often and in as much detail as possi-
ble.

2.3 Background and Related Work

In this section, I give a brief introduction into the technical concepts required to
understand the work in the remainder of this thesis. Additionally, this section
introduces relevant related work. This section can be skipped and subsections can be
referenced individually as needed to understand the work presented in the individual
chapters.

2.3.1 Passwords

Text-based passwords are the most common, widespread and possibly the most
debated authentication mechanism in use. Logins to personal computers, unlock
solutions for mobile devices and online service accounts are the most prominent use
cases for text-based passwords. The inherent conflict of creating usable (e.g. user
memorable) but secure (e.g. hard to guess) passwords has kept security researchers
busy ever since the introduction of passwords to computer systems in the 1960s.
Bonneau et al. [23] provide an excellent overview of the challenges of finding a
good replacement for passwords. Using passwords as the primary authentication
mechanism has many drawbacks.

It is known that users tend to use insecure passwords that are often easy to
compromise by attackers [17, 21, 50, 87, 141, 149].

Another problem with the widespread deployment of passwords is their re-use [48,
141]. Users register with many services on the Internet, each requiring them to create
a new username/password tuple. Previous research has shown that users often deal
with this password overload by re-using the same or similar passwords for multiple
accounts [95, 178]. Password re-use is a serious concern, since one compromised
password can make multiple user accounts vulnerable.

However, not only end users are careless with their passwords: Operators of online
services also often fail to properly protect their users’ passwords as demonstrated
by several password leaks in the past 3.

Multiple excellent surveys and systematizations [22, 23, 38| provide an extensive
overview of the field.

Shttp://www.informationisbeautiful.net/visualizations/
worlds—-biggest-data-breaches—hacks/ — last access 07.02.2016

23

http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

A substantial amount of password and password policy advice is based on anec-
dotal evidence and theoretical security measures. However, particularly the last few
years have seen an increasing number of academic studies into password security
and usability. Previous works can be split into the following categories:

e Analyzing the security of real world passwords (leaks).

e Evaluating aspects such as memorability and security of passwords created in
user studies.

e Investigating the usability and security of improvements of text based pass-
words.

e Proposing and evaluating alternatives to text based passwords.

Collecting leaked real world passwords and analyzing their security and cracka-
bility has attracted many researchers in the past [120, 21, 149, 131]. Bonneau [21]
analyzed the guessability of an anonymized corpus of 70 million Yahoo! users’ pass-
words. They estimate that text passwords provide less than 10 bits of security
against online and 20 bits of security against offline attacks. Das et al. [48] study
several hundred thousand leaked passwords from eleven web sites and investigate
how an attacker can leverage a known password from one site to more easily guess
that user’s password for other sites. They report that 50% of their users re-used
the same passwords across multiple accounts which allowed them to guess 30% of
the passwords in their dataset in less than 100 attempts.

With the rise of usable security and privacy research and the persistence of pass-
words, the number of research papers that investigated usability aspects of passwords
in user studies increased [149, 194, 88, 114, 177, 129, 186].

Inglesant and Sasse [114] conducted a qualitative study with 32 staff members
who kept a password diary for one week. This way they collected 196 passwords
which allowed them to investigate the effectiveness of the password policies in place.
In follow up interviews, the researchers found that users are in general concerned to
maintain security, but that current security policies are too hard to satisfy. They
conclude that instead of focusing password policies on maximizing strength and
frequency alone, policies also should be designed using human factors principles.

Ur et al. [194] used previous studies that documented features that lead to easily
guessable passwords as an opportunity to ask users why they craft weak passwords.
To understand the participants’ motivation, Ur et al. conducted a qualitative inter-
view study with 49 participants. Most of the participants had a well-defined process
for creating passwords. Common strategies are adding “!” to the end of a password
or using words that are difficult to spell to seemingly make passwords secure.

Stobert and Biddle [186] conducted a series of interviews to investigate how users
cope with needing to keep track of a large number of accounts and passwords. While
they found that most of their participants reused passwords and wrote them down,
they identified diverse personalized strategies. Although many users obviously dis-
regard security advice, they involve a fine-grained self-management of sensitive re-
sources. The researchers identify a password life-cycle that illustrates the users’
strategies limitations.

24

In addition to investigations of the weaknesses of text-based passwords, multiple
mechanisms have been proposed to support the user in choosing more secure pass-
words (e.g. [176, 193, 129]). Most of them focus on encouraging stronger passwords
using password meters.

Ur et al. [193] presented a 2,931-subject study of password creation in the presence
of 14 different password meters, analysed their effects and proposed guidelines for
the design of effective password meters. They found that password meters with a
variety of visual security indications led users to choose longer passwords. However,
to make passwords not only longer but also more resistant to cracking, meters that
scored passwords stringently were most effective.

Komanduri et al. [129] investigated a mechanism called Telepathwords. Telepath-
words is intended to discourage the creation of weak, predictable passwords. During
password creation, it makes realtime predictions for the next character of a password
the user will type. In an MTurk study with 2,560 participants, they found that par-
ticipants using Telepathwords created significantly fewer weak passwords compared
to conventional password creation policies.

Another proposal to reduce problems related to text passwords is to use password
managers. These typically require that users remember only a master password.
Password managers store ideally randomly generated account passwords and send
them on behalf of the user. However, password managers have their own usabil-
ity [41, 122, 168] and security [187, 181, 138] issues (cf. Chapter 5, Page 75).

Since text-based passwords have security and usability drawbacks and efforts to
improve the current situation have not lead to significant improvements, researchers
work on alternative mechanisms (e.g. [190, 189, 16]).

Graphical passwords use series of images instead of text as a secret to authenticate.
Biddle et al.[16] investigated both security and usability of graphical passwords
conducting a large literature review.

Thorpe et al. [190] introduced GeoPass, a geographic location-password scheme.
GeoPass users choose one or multiple places as their password. To investigate its
security, usability and memorability, the researchers conducted a multi-session in-
lab/at-home study. They found that 97% of their participants could remember their
location-password for 8-9 days. Their security analysis finds that GeoPass passwords
have reasonable security against online guessing attacks — even considering social
engineering.

Czeskis et al. introduced PhoneAuth [46] which uses a smartphone as an au-
thentication token and intends to replace text-based passwords. They address us-
ability and deployability troubling challenges conventional two-factor authentication
schemes. PhoneAuth provides security assurances comparable to or stronger than
conventional two-factor authentication mechanisms while offering the same authen-
tication experience as text-passwords.

While the above selection is not meant to be complete, it gives a good overview
of password (related) research in the last decade. This section provides helpful
background for Chapters 3, 5, 9, which, in some form or another touch passwords
and their usability and security challenges.

25

2.3.2 Email Encryption

Mechanisms for email encryption are a hotly debated topic in the security com-
munity. On the one hand technologies such as PGP [211] or S/MIME [191] have
the potential to protect email content against eavesdroppers. On the other hand,
widespread adoption is still missing. PGP and S/MIME both apply asymmetric
cryptography and digital certificates to encrypt and sign emails. Since my thesis
focuses on usability issues, no detailed overview of the different properties of secure
encryption protocols — such as PGP and S/MIME - is given at this point. How-
ever, joint work with Unger et al. [192] provides a comprehensive systematization on
protocols and mechanisms that can be used to implement secure messaging systems.

Traditionally, usable security and privacy researchers worked on helping users to
encrypt their email. Therefore, this section will briefly describe previous research in
this field.

In 1999, Whitten and Tygar’s Johnny study [201] raised awareness of the usability
problems in email encryption with PGP 5. Only one third of their twelve participants
was able to send encrypted and signed emails in their 90-minute test. 25% of the
participants accidentally sent confidential information without encryption. Whitten
and Tygar found significant problems with the user interface and questioned PGP’s
analogy between cryptographic and physical keys. They concluded that the interface
“does not come even reasonably close to achieving our usability standard” and that it
“does not make [exchanging secure email] manageable for average computer users”.

Garfinkel and Miller [92] built and evaluated a system based on key continuity
management (KCM). Their prototype, CoPilot, addressed the problem of finding
other users’ public keys by automatically extracting senders’ keys from incoming
messages. Their study revealed that after using CoPilot for less than an hour, users
generally understood the advantages of securing their emails. They found that while
the KCM approach generally improved security, only a third of the participants chose
encryption for confidential data and most sent information in an unprotected fash-
ion. Some participants expected their email program to protect them from making
mistakes and said that if encryption was important, a system administrator would
have configured the email program to send only encrypted messages. This is a strong
indicator that message encryption systems need to provide clear information about
the security of the outgoing messages and apply security mechanisms automatically
whenever possible [133].

Sheng et al. [179] conducted a follow-up pilot study to Whitten and Tygar’s
Johnny study with six novice users in order to understand the usability of PGP
9 and Outlook Express 6.0. Compared to the prior study of PGP 5, Sheng et al.
found that PGP 9 made improvements in automatically encrypting emails, but the
key verification process was still problematic and signatures in PGP 9 were actually
more problematic than in PGP 5.

Ruoti et al. [169] conducted a usability study of a privacy enhancing webmail
system. Their system hid as many security related details as possible — i.e. it
includes automatic key management and automatic encryption. They evaluated
the impact of hidden and transparent security mechanisms on the usability of their
system. They found that a significant number of their participants mistakenly sent

26

out unencrypted messages and did not trust the system at all. A follow-up study
that introduced some manual steps — i.e. copy-and-pasting encrypted ciphertext
— did not negatively impact the acceptance, but prevented users from mistakenly
sending unencrypted messages and drastically increased the users’ trust.

While the above selection is not meant to be complete, it gives a good overview
of what email encryption (related) research looked like in the last couple of years.
This section provides helpful background for Chapter 3, Page 33.

2.3.3 Transport Layer Security

Transport Layer Security (TLS) is a cryptographic protocol that was introduced to
protect network communication from eavesdropping and tampering [47]. TLS is the
successor of SSL [90] and was introduced to fix security issues of the SSL protocol.
For brevity, we will refer to both protocols as TLS, since features and issues described
in this thesis affect both SSL and TLS in the same way. It is the transport layer
protocol used to secure plain HT'TP connection. The TLS secured HTTP protocol
is called HTTPS [166, 86]. To establish a secure connection, a client must securely
gain access to the public key of the server. In most client/server setups, the server
obtains an X.509 certificate that contains the server’s public key and is signed by a
Certificate Authority (CA). When the client connects to the server, the certificate
is transferred to the client. The client must then validate the certificate.

The basic validation checks include: a) does the subject (CN) of the certificate
match the destination selected by the client?; b) is the signing CA a trusted CA?;
c) is the signature correct?; and d) is the certificate valid in terms of its time of
expiry? Additionally, revocation of a certificate and its corresponding certificate
chain should be checked, but downloading Certificate Revocation Lists (CRLs) or
using the Online Certificate Status Protocol (OCSP [70]) is often omitted.

TLS does not come with a mechanism for the client to communicate the hostname
of the server to which it intends to establish a secured connection to an TLS-enabled
server. However, especially in the presence of multiple virtual hosts running at a
single underlying IP address, it may be desirable for clients to provide this informa-
tion. In order to communicate this server name information, an TLS extension —
called Server Name Indication (SNI) — exists, wich allows a client to send the server
name in the client hello message of an TLS handshake[19]. The server receiving the
client hello message can then choose the appropriate X.509 certificate to match the
requested SNI value and include this certificate in its server hello response.

In a Man-in-The-Middle attack (MITM attack), the attacker is in a position to
intercept messages sent between communication partners. In a passive MITM at-
tack, the attacker can only eavesdrop on the communication (attacker label: Eve),
and in an active MITM attack, the attacker can also tamper with the communica-
tion (attacker label: Mallory). MITM attacks against mobile devices are somewhat
easier to execute than against traditional desktop computers, since the use of mobile
devices frequently occurs in changing and untrusted environments. Specifically, the
use of open access points [116] and the evil twin attack [182] make MITM attacks
against mobile devices a serious threat.

27

A particular version of a MITM attack is TLS stripping [142, 143] that downgrades
HTTPS links on websites to HT'TP links. A MITM attacker who captures a plain
HTTP website is able to replace HT'TPS links with HT'TP links and hence weakens
the security of end users and threatens their privacy. To prevent TLS stripping is
important to use HT'TPS exclusively and not mix HT'TP with HTTPS connections.
Mechanisms such as HSTS [112] and Public Key Pinning [71] extend the HTTPS
protocol to effectively protect against TLS stripping.

TLS is fundamentally capable of preventing both Eve and Mallory from executing
their attacks. However, the cases described above open up attack vectors for both
Eve and Mallory. Trivially, the mixed-mode/no TLS case allows Eve to eavesdrop
on non-protected communication.

In case X.509 certificate validation fails, modern browsers show their users warning
messages. These warning messages might imply that a MITM attack is occurring.
Another reason for failures are misconfigured servers, e.g. a webmaster did not
update an expired certificate or operates a certificate for an invalid hostname.

If there is a chance that the warning message is a false positive (i.e. the website’s
administrator (deliberately) misconfigured the X.509 certificate), browsers will show
a bypassable warning message, discouraging users from clicking through.

Warning messages illustrate that the TLS ecosystem poses usability challenges
to two types of users: On the one hand correctly configuring TLS certificates is a
challenge for webmasters, on the other hand deciding whether to proceed or not
when confronted with a warning message is a challenge for end users.

TLS has attracted various research that investigates different aspects of TLS se-
curity and usability [44, 3, 57, 188, 4, 82, 96]. Previous research can be split into
the following categories:

e Analyzing the security of the TLS protocol and its implementations.

e Scanning the Internet and investigating the security and usability of real world
TLS deployments.

e Conducting user studies to investigate usability challenges of TLS (warning
messages).

Since my thesis focuses on usability issues, no complete overview of previous re-
search on TLS will be given here. In particular, this section does not cover resesarch
papers that investigate TLS protocol and implementation flaws (e.g. [36, 30, 15]).
However, Clark and van Oorschot [44] provide a comprehensive overview of previous
work on security and usability challenges of TLS.

Akhawe et al. [3] passively collected TLS handshakes of multiple US universities
and 300,000 users over a period of nine months in 2012 and 2013, concentrating
on the frequency of X.509 certificate validation errors in TLS handshakes. Overall,
they found that 98.46% of the 3.9 billion TLS handshakes they monitored validated
correctly, while 1.54% failed for different reasons: 70.51% used an unknown issuer,
2.99% a self-signed certificate, in 7.65% of all handshakes the certificate was expired
and 18.82% of all handshakes generated hostname validation errors. Due to the

28

unlikeliness of an actual Man-In-The-Middle attack, they assume all validation errors
to be false positives. Durumeric et al. [57] presented ZMap — a fast internet-wide
scanner — and conducted 110 scans of the world-wide HT'TPS infrastructure over one
year, collecting more than 42 million unique certificates of which 6.9 million were
browser trusted. These numbers demonstrate that TLS certificate configuration is
not a straightforward task.

In 2009, Sunshine et al. [188] conducted lab studies with over 400 internet users to
evaluate the effectiveness of browser TLS warning messages as well as their human
understandability, finding that participants made unsafe choices when confronted
with warning messages. They suggest reducing the number of warning messages
altogether, taking the decision whether to trust an unsafe connection or not out of
the users’ hands.

In 2013, Akhawe and Porter Felt [4] used Firefox and Chrome’s telemetry feature
to measure click-through rates for TLS (and other) warning messages for different
browsers in situ. Over a period of two months, they collected 16,704,666 TLS warn-
ing impressions for Chrome and 10,976 for Firefox. However, they were not able
to see the respective handshakes or certificates that led to the warnings, thus they
assume that almost all warning messages they saw were false positives. These results
leave room for improving TLS warning messages.

In 2015, Felt et al. [82] report on the task to design TLS warnings with the goal of
improving comprehension and adherence for users. They conducted multiple user-
studies using microsurveys and a field experiment with Chrome’s telemetry feature.
They report that they failed at their goal of designing an easy-to-understand warn-
ing message, although 30% of their participants chose to remain safe after seeing
their warning. They attribute this fact to the opinionated design approach they
chose that made it attractive to users but failed to improve comprehension.

Georgiev et al. [96] investigated TLS certificate validation implementations in the
wild. They find that many certificate validation implementations are completely
broken and thus vulnerable to MITM attacks. Applications and libraries at all levels
are affected. This work arose in parallel to my research in Chapter 6, Page 93. Both,
my work and the work done by Georgiev et al. inspired researchers to investigate in
the field of Chapter 6, Page 93 (e.g. [110, 185, 13]).

2.3.4 Appified Platforms

Appified platforms have recently seen a boom: Android and iOS became the de-
facto standards for appified operating systems with hundreds of millions of users
and millions of apps. In particular Android security and privacy research attracted
various researchers over the last years, resulting in manifold research papers [10, 42,
43, 66, 83, 84, 117,127, 147, 156, 158, 161, 159]. However, since the work in my thesis
focuses on developer and system operator usability and security challenges, I do not
provide a comprehensive overview of Android security and privacy research. Instead,
I point to joint work with Acar et al. [1]. This paper surveys and systematizes the
relevant research in this area. Briefly, Android security and privacy research can be
split into the following problem areas:

29

e Permission research attempts to incrementally improve Android’s permission
mechanisms.

e Alternative approaches to permissions are being proposed and evaluated to
improve access control handling for Android apps.

e Webification research addresses security, privacy and usability challenges in-
troduced by Android’s move to using web techniques for apps.

e Developer centric research focuses on security, privacy and usability issues
caused by developers of Android apps.

e Software distribution research addresses security, privacy and usability issues
induced by Android’s concept of central software repositories as the de-facto
standard to distribute apps.

Since my thesis also investigates usability aspects of app developers and software
distributors, the remainder of this section briefly discusses relevant related work.

Egele et al. [59] ask whether app developers use Android’s cryptographic APIs in a
way that provides typical notions of security such as IND-CPA security. They apply
static code analyses techniques to automatically check Android apps on Google Play.
Overall, they find that 88% of the apps that use cryptographic APIs make at least
one mistake in protecting sensitive user information.

Poeplau et al. [158] conduct a security analysis of Android’s external code loading
feature that allows developers to load source code at runtime. They apply static
code analysis techniques to automatically detect external source loading at runtime
and conduct a study of 1,632 free, popular apps from Google Play. 9.25% of those
apps’ developers implement external code loading in an insecure way, leaving their
apps vulnerable to unwanted code injection attacks.

Sounthiraraj et al. [185] investigated the vulnerability of Android apps against
Man-In-The-Middle attacks. Their work is based on methodology and results of my
work presented in Chapter 6, Page 93. They present and evaluate a tool called SMV-
Hunter that allows for automatic large-scale identification of Man-In-The-Middle
vulnerabilities in Android apps by combining static and dynamic analysis techniques.
SMV-Hunter is evaluated against a set of 23,418 apps downloaded from Google Play
finding that 726 apps in their sample were vulnerable. Their results are very similar
to the results I report in Chapter 6, Page 93.

2.4 Summary

The first section of this chapter gave a brief introduction into the field of usable
security and privacy research. The second section discussed methods applied in
the area of usable security and privacy research. In Section 2.3, I summarized
relevant background and related work around message encryption, passwords, TLS
and appified platforms. The work I present in the following chapters extends the
state of the art as follows:

30

I present the design and evaluation of a security workflow for message encryp-
tion in Chapter 3, Page 33.

I present a qualitative study with webmasters on the root causes of misconfig-
ured TLS certificates for webservers in Chapter 4, Page 59.

I analyze the security of password managers for Android and present results of
a qualitative study with developers of those password managers to shed light
on usability challenges for developers in Chapter 5, Page 75.

I quantitatively analyze the occurrence of insecure code in custom implementa-
tions of TLS certificate validation in Android applications and present results
that illustrate usability challenges for Android developers in the context of the
secure implementation of TLS in Chapter 6, 93.

I present results of a qualitative study with Android developers that allowed
me to re-design the handling of TLS certificates in the Android ecosystem in
Chapter 7, 112.

I present and discuss a novel and easy to use mechanism that allows providers
of central software repositories to prove the authenticity and correctness of the
distributed software to their users in Chapter 8, Page 139.

I motivate more foundational research concerning ecological validity of usable
security and privacy research methods in Chapter 9, Page 163.

31

3 End Users: Encrypting

Facebook Messages

32

Disclaimer: The contents of this chapter were previously published as part of the
paper “Helping Johnny 2.0 to Encrypt His Facebook Conversations” 8" presented
at the Symposium On Usable Privacy and Security (SOUPS) in 2012 [79] together
with my co-authors Marian Harbach, Thomas Muders, Uwe Sanders and Matthew
Smith. As this work was conducted with my co-authors as a team, this chapter
will use the academic “we” to mirror this fact. The idea and initial concept for
this work came from myself. I designed and implemented the message encryption
backend: implementing the frontend was joint work with Marian Harbach. The
design of the laboratory study was joint work with Matthew Smith and Uwe Sanders:
I lead the study execution. Thomas Muders and Marian Harbach assisted in the
study execution. Analyzing the laboratory study results was joint work with Marian
Harbach. I designed, executed and analysed the interviews by myself. Together
with Marian Harbach, Thomas Muders and Matthew Smith, we jointly discussed the
work’s implications and compiled the paper for publication.

Software described in this chapter is available at https://zenodo.org/record/
50524.

3.1 Motivation

The usability of email security for end users has been the subject of research for
almost two decades. Whitten and Tygar [201] conducted the first Johnny study in
1999, analysing the usability of PGP5, followed by the more recent evaluations of
S/MIME in Outlook Express in Garfinkel and Miller’s Johnny 2 study [92] and the
re-evaluation of the original Johnny study using PGP9 by Sheng et. al. [179]. In
this work, we address the issue of message security in the context of Online Social
Networks (OSN) in general and Facebook in particular. Even though the Web 2.0
paradigm is now more than a decade old and OSN sites such as Facebook play a
major role in many people’s online lives, there has been very little work on the
usability of message security in this domain.

Facebook is the largest online social network. In 2010, when Facebook had only
500 million users, Facebook published internal statistics showing that more than 4
billion private messages (including chat messages) were sent every day !. Also in
2010, a Gartner study predicted that social networking services would replace emails
as the primary vehicle for interpersonal communications for 20 percent of business
users 2. To put these numbers into perspective, Google announced that Gmail had
350 million users in January 2012 3.

While there are some solutions available to cryptographically protect Facebook
conversations, to the best of our knowledge, there is no widespread use of them.
Thus, the aim of this work was to find out why this might be the case and what
could be done to help end users to encrypt their Facebook conversations. While

http://techcrunch.com/2010/11/15/facebook-350m-people-using-messaging-more-than
-4b-messages-sent—daily/ — last access 13.04.2016
?http://www.gartner.com/it/page.jsp?id=1467313 — last access 13.04.2016
Shttp://www.email-marketing-reports.com/metrics/email-statistics.htm — last
access 13.04.2016

33

https://zenodo.org/record/50524
https://zenodo.org/record/50524
http://techcrunch.com/2010/11/15/facebook-350m-people-using-messaging-more-than
-4b-messages-sent-daily/
http://www.gartner.com/it/page.jsp?id=1467313
http://www.email-marketing-reports.com/metrics/email-statistics.htm

mechanisms to protect email messaging could in principle be adapted to Facebook
conversations in a straightforward manner, previous usability studies show signifi-
cant problems with the existing email encryption mechanisms. One of this work’s
goals was therefore to see if the changes brought about by the OSN paradigm might
open up new possibilities for a usable security mechanism protecting private OSN
messages.

To answer these questions, we conducted multiple studies to evaluate needs sur-
rounding the protection of users’ conversations on Facebook and then compared
different existing solutions for conversation encryption. Based on these intermediate
results, we developed an approach to encrypt Facebook conversations and tested
those in two user studies to ascertain whether the solution provided good usability
characteristics while at the same time protecting user privacy. The results of the
final study show that the OSN paradigm does indeed offer new ways of simplifying
message encryption and finding security /usability trade-offs which are acceptable to
users.

Interesting related work in the field of email encryption can be found in Sec-
tion 2.3.2.

3.2 Background

Before exploring how users could protect their Facebook conversations, we conducted
a screening study to gain an overview of the level of interest in protecting these
conversations. We invited 16,915 students at the Leibniz University Hannover via
email to participate in the study. It was introduced as a poll on Facebook privacy.
We did not attempt to hide the fact that we were interested in Facebook message
privacy, since we explicitly wanted to study those users who would like to protect
their conversations. There was no direct reward for completing the poll, however
the possibility of a paid follow-up study was stated.

In the poll, we queried some Facebook usage statistics and asked whether or
not the participants thought that Facebook could read their private messages as
well as whether or not this would be a cause for concern for them. We received 514
responses. Of these, 413 (80.35%) were aware that Facebook was able to access their
private messages. When asked whether this concerned them, 263 (63.68%) answered
“yes”, 78 (18.88%) answered “no” and 72 (17.43%) stated they didn’t care. The other
101 (19.65%) participants stated they were not aware that Facebook could read their
private messages. When asked whether it would concern them if Facebook could read
their private messages, 79 (78.21%) answered “yes”, 12 (11.88%) answered “no” and
10 (9.90%) stated they did not care. In total, 342 (66.53%) of the 514 participants
stated that they were or would be concerned by Facebook being able to read their
private messages.

Since there were users who were concerned that Facebook could read their con-
versations, we used Google, Bing and Yahoo (in September 2011) and searched for
products which could be used to encrypt private messages on Facebook. Encipher.it*

‘http://encipher.it — last access 12.04.2016

34

http://encipher.it

and uProtect.it® were the top hits which could also be installed. The discontinued
product FireGPG was not compatible with current browsers®, so we did not consider
it a viable solution that normal users could currently install.

Encipher.it

Encipher.it provides a bookmarklet for Firefox, Chrome and Internet Explorer (IE)
that is capable of encrypting text in any HTML text area. Thus, to encrypt a
Facebook message, the user writes the message text into the Facebook message
composer as usual and then has to click on the Encipher.it bookmarklet in the
upper browser bar. Next, a popup in the centre of the screen appears and asks the
user to “Enter encryption key”. Internally, Encipher.it uses AES [154] in Counter
Mode [167] for encryption, i.e. the same symmetric key is used for encryption and
decryption. To derive a secure symmetric key from the user’s input, PBKDF2 [119]
is used. After a key is entered, the user must press the “Encrypt” button. The
bookmarklet then replaces the clear text in the Facebook message box with an
enciphered version that can be sent as normal with Facebook’s “Send” button. Key
management is left entirely to the user, which means the user must find a secure
way of sharing the encryption key with the receiving party.

uProtect.it

Unlike the generic Encipher.it solution, uProtect.it was a third-party service specifi-
cally designed for Facebook. The user has to create a uProtect.it account and needs
to install the uProtect.it browser plugin. Plugins are provided for Firefox and Google
Chrome as well as a bookmarklet for other browsers. After the user has created a
new uProtect.it account and installed the plugin, a green bar appears at the top of
the browser window and asks the user to log into uProtect.it when the user is on
Facebook. Subsequently, orange encryption buttons are placed next to text areas.
Messages are encrypted and decrypted by pushing the orange button.

Unlike Encipher.it, key management is handled automatically by the service. Un-
fortunately, uProtect.it does not provide any information concerning their internal
security mechanisms. They do however state that they store the user content on
their servers alongside the encryption keys. Thus, they are able to eavesdrop on the

users’ data, as stated in their Terms of Services’.

Academic Solutions

Apart from the approaches above, which the average user can easily find on search
engines, there are also several academic solutions. Even though these publications
focus mainly on the cryptographic aspects of their solutions, each is briefly outlined

Shttp://uprotect.it — last access 07.03.2012

Shttp://blog.getfiregpg.org/2010/06/07/firegpg-discontinued/ — last access
12.4.16

7https ://uProtect.it/terms — last access 07.03.2012

35

http://uprotect.it
http://blog.getfiregpg.org/2010/06/07/firegpg-discontinued/
https://uProtect.it/terms

in the following. In 2008, Lucas et al. [140] proposed flyByNight, a prototype Face-
book app that encrypts and decrypts messages using public key cryptography. The
flyByNight server handles the key management and uses its own database to store
the encrypted messages. This is a standalone app which does not protect messages
sent via the standard Facebook messaging centre, but rather requires the user to
send all messages via the app. Lucas et al. noted that usability would be an issue
for future work.

Scramble! [14] is a PKI-based Firefox plugin that can store encrypted social net-
work content either on a third-party TinyLink server or directly at the SN provider.
However, as with most PKI solutions, key management is an issue, since it relies
on PGP mechanisms and must be dealt with by the user. When sending encrypted
content, the user composes a message with the Facebook Ul and selects the text he
wants to encrypt, whereupon Scramble! requires the user to choose the contacts to
encrypt the content for manually. The encrypted text or a TinyLink URL is then
placed into the message composer and can be sent through the regular UI.

Another approach was taken by Guha et al. [104], who use shared dictionaries
to map different “atoms” of information to a similar, valid piece of information.
For example, Alice’s address would be randomly replaced by Bob’s, according to
some mapping key. Their NOYB prototype can hide the fact that content is being
protected but also necessitates key exchange using email. Additionally, reusing other
users’ information can have privacy implications of itself.

Baden et al. [11] present Persona, a privacy-enhanced social network platform,
using public key cryptography and attribute-based encryption (ABE). They ac-
knowledge the need to integrate their new service with the popular networks and
demonstrate a prototype that provides their services as a Facebook application.
They argue that existing SN apps can be gradually migrated to use the Persona
platform, at least for storage. Using the Facebook API, it is however not possible to
access the messaging service. The Persona user Interface and workflow for sending
confidential messages is not explicitly described.

Anderson et al. [6] and Dodson et al. [54] present concepts to use rich-clients as
a way to improve privacy. The SN provider is reduced to a mere content distribu-
tion server while the client handles cryptography and information semantics. This
approach would require a user to migrate to another SN and change the interaction
patterns, which is a different scenario from that this paper addresses.

3.3 Exploratory Phase

Unlike in the related email-based studies, where relatively mature and stable im-
plementations of PGP and S/MIME were available and could be studied directly
(cf. Section 2.3.2, the solutions for Facebook are partly general purpose encryption
products which can also be used with Facebook or early academic prototypes and
niche products with usability issues which stem more from implementation limita-
tions than design issues. For this reason, we decided to extract the design decisions
and build mockups to study the basic building blocks and their usability issues. A

36

further reason for choosing this abstract approach over a direct product evaluation
was that the two available solutions, Encipher.it and uProtect.it, differ in several
key areas, which would have made it very difficult to judge which features made
the one more usable than the other. Thus, we extracted core features of the above
solutions to study the usability of encryption for Facebook conversations.

Three features are particularly well suited to distinguish the above approaches:
encryption Ul, key management and integration. For the encryption UI, some so-
lutions require the user to trigger the encryption process manually by activating
a bookmarklet or pressing a button, others trigger encryption automatically. The
different key management options require the user to get involved in the key manage-
ment process by manually sharing or selecting keys, while other solutions automate
this issue. A further feature is integration. Some solutions require the user to send
private messages via a completely separate Ul instead of Facebook’s standard Ul,
while others integrate their solution into Facebook. In order to keep the study design
as simple as possible, we chose to focus on integrated solutions, because we believe
it is better not to force the user to leave the normal Facebook UI. Table 3.3 gives
an overview of the values for the two remaining variables in the two real-world so-
lutions. Based on this extraction, we built four mockups, described in the following
section, which were then used for the laboratory study.

Encipher.it uProtect.it
Key Management manual automatic
Encryption manual manual

Table 3.1: A comparison of key management and encryption/decryption concepts
applied by Encipher.it and uProtect.it.

To evaluate the different interface and workflow concepts for sending encrypted
Facebook messages as discussed above, we built mockups using Greasemonkey®.
The mockups allowed us to test the independent variables shown in Table 3.3 in
the context of sending encrypted private Facebook messages. Screenshots of the
mockups are shown in Figures 3.1 and 3.2.

Mockups

Table 3.3 gives an overview of which condition is dealt with in which task. Based
on these tasks, we created mockups 2 — 5 for conducting our user study.

Figure 3.1 shows mockups 1 and 3 corresponding to manual encryption combined
with both manual and automatic key management. In the case of manual encryption
with manual key management, the user enters the message text as usual (Step 1).
The user must then click the new “Encrypt” button. A popup asks the user for an
encryption password with which the message is encrypted (Step 2) and the resulting
ciphertext is placed in the message box. The user can then send the message using
the original “Send” button (Step 3). The encryption password must be shared with

8http ://www.greasespot.net/ — last access 13.04.2016

37

http://www.greasespot.net/

Task Interface Encryption Key Management

TBase Facebook None None
TEmKm Mockup 1 Manual Manual
TEaKm Mockup 2 Automatic Manual
TEmKa Mockup 3 Manual Automatic

TEaKa Mockup 4 Automatic Automatic

Table 3.2: Properties of the tasks in the lab study.

the recipient manually. This corresponds to the Encipher.it workflow. All steps are
repeated for every message sent.

In the case of manual encryption with automatic key management, the key man-
agement model from uProtect.it is used to replace the manual key management of
Encipher.it. This means that Step 2 only needs to be executed once per Facebook
session, since the password can be cached locally and the entered password does not
need to be shared manually with the recipients.

1

To: | Marian Harbach |

Message: | This is a sample message that requires manual encryption |

and key management.

b = ~E

[[sne [

2 Encrypt message

Please enter your encryption password

Ml |--..."-u. |[WII Cancel |

b @)
v [5o |2
3

To: | Marian Harbach |

Message: | NGSpaDBaYmUzbmUzdithemZuWGNocityWFM2 clhVRWVNL
VpkRVBORCEWWES xemNhUVZQUVBsekt/Vz)BSDEBkeUZxN1Z

b @ [
vy | sev0 [

Figure 3.1: The three steps in mockups 1 & 3

Figure 3.2 shows mockups 2 and 4 corresponding to automatic encryption com-
bined with both manual and automatic key management. With these mockups, the
user does not need to manually trigger encryption. Rather, when the Facebook

38

“Send” button is pressed (Step 1), encryption is triggered automatically. In the case
of manual key management, the user needs to choose an encryption password for
each message to be sent and share it with the message recipient manually (Step 2).
In the case of automatic key management, the user only needs to enter the pass-
word once per Facebook session, as in the uProtect.it workflow. In order to offer a
similar amount of visual feedback as in mockups 1 and 3, the message is not sent
instantly after completion of Step 2. Instead the ciphertext is shown in the message
composer’s text area with a spinner animation for two seconds to visually indicate
successful encryption after which the message is sent (Step 3).

We also added red and green visual security indicators to the text area and the
“Send” button of mockups 2-5 as a visual aid, as suggested by Egelman et. al. [62]
and Maurer et. al. [148].

In addition to mockups 1 to 4 described above, we built mockup 0 without any
modifications of the Facebook message composer to serve as control condition.

1

To: ‘ Matthew Smith |

Message: | This is a message that is automatically encrvpted.|

b @]

[sona [0

2] Encrypt message

Please enter your encryption password :|

| oK || Cancel |

b @)

B cve)

3

To: ‘ Matthew Smith F |

Message: | b3Y1NFMOKOFmdOx4UTBRcZIWZW)2eFFZd LhodO)IY1RUATIRW
FNc1hteWd3NUVpbyt1ajhCOOVRWDIxdIRURLZIMDO=

b @ ~E

B e

Figure 3.2: The three steps in mockups 2 & 4

Laboratory Study

Based on the concepts and mockups presented above, we conducted a laboratory
study. The goal of the study was to evaluate the basic building blocks of a message

39

encryption mechanism. We therefore tested the influence of manual vs. automatic
encryption and manual vs. automatic key-management on usability, acceptance
and perceived security. We also wished to find out what role password or key
recovery plays in the acceptance of an encryption mechanism. Depending on the
cryptographic principle used, the loss of the encryption key can result in complete
loss of the encrypted data in case the key cannot be recovered and as a result
decreases both the acceptance and the utility of a solution.

During the study, each condition (cf. Table 3.3) was dealt with in a separate task
with a separate mockup.

Technical Setup

The study took place in our usability lab, where we had set up a PC with Firefox
9, Greasemonkey, the mockups and a webmail interface for each participant. We
created artificial Facebook accounts and email addresses, so that the participants
did not have to use their real accounts and data. The mockups simulated send-
ing private messages, rather than actually sending the messages which might have
accidentally triggered the anti-spam protection of Facebook, resulting in blocked
accounts. However, we did ensure that we simulated the behaviour of Facebook’s
standard message composer, so that participants would not notice that messages
were not actually sent.

Participants

For this study, we were interested in participants who would potentially want to
use an encryption mechanism to protect their Facebook conversations. Educating
or motivating participants who are not worried about their conversation’s privacy
was outside the scope of this work. We randomly selected test candidates from
the poll participants (cf. Section 3.2), who met the following criteria: they needed
to be concerned that Facebook could access their private messages and needed to
use Facebook at least on a weekly basis. We excluded infrequent Facebook users
to minimise the risk of technical difficulties when using Facebook. Finally, we ex-
cluded computer science students to avoid bias based on technical skills and possible
familiarity with encryption mechanisms.

This left us with 291 possible candidates, from whom 100 were randomly selected
for the study. 96 of these attended their appointed slot. Each participant received
a compensation of 10 Euros. All participants were students from the Leibniz Uni-
versity Hannover. Table 3.3 gives demographics for the participants.

Ethical Considerations

The study was conducted in Germany and thus was not required to pass an IRB
review. Nevertheless, our studies complied with the strict German privacy regula-
tions. We did not use the participants’ real Facebook accounts and all data was
collected anonymously. After the study, the participants were debriefed and any
questions regarding the study were answered.

40

N=96

Gender

Male 44
Female 52
Age M=22,SD=2
< 20 12
20 - 25 69
> 25 15
Facebook Membership

6 months 7
1 year 16
2 years 37
longer 34
don’t know 2
Facebook Password Loss in The Last 12 Months

not once 79
once 9
twice 3
three times 2
more than three times 3
Facebook use

several times per week 10
< 1 hour per day 27
1 - 2 hours per day 41
2 - 4 hours per day 15
more than hours per day 2
Facebook Friends M=207,SD=130
50 - 100 20
101 - 150 24
151 - 250 28
251 - 350 13
> 350 11
Facebook Messages / Week M=24.35,5D=46.68
< 10 45
10 - 20 27
21 - 30 8
> 30 16
Facebook Chat Use

several times a day 15
daily 23
weekly 28
less frequent 17
not at all 13
Prior Contact With Encryption Mechanisms

yes 33
no or don’t know 63

Table 3.3: Demographics of the laboratory study participants.

Procedure

The participants were informed that they would be testing five different technologies
to encrypt Facebook conversations. To avoid bias, we explained that the technologies
were not built by us and that we were testing the technologies, not the participants.

41

Each participant was watched by a study monitor, who measured the time needed
to complete each task and noted errors. The monitor was allowed to assist with
the browser tabs and the webmail program, but no help or information was given
concerning the mockups or the tasks themselves. The next section outlines the basic
structure of each task (cf. Table 3.3).

Tasks To keep the design simple, all tasks were focused on encrypting and sending
private Facebook messages to three different friends (Jan, Vanessa and Heike). The
decryption process is analogous to encryption and was therefore not tested explicitly.

Handouts were given to the participants which explained the procedure of sending
an encrypted message with the given technology. The messages to be sent were as
follows:

To Jan: Hello Jan. Please transfer the money to my bank account, account number
123456 and sort code 100200.

To Vanessa: Jan has transferred the money to my bank account.

To Heike: Hi Heike. Have you transferred the money yet?

Since all participants had a self-reported interest in protecting their Facebook
conversations from unauthorised access, we chose sample messages which contained
financial information with the aim of inducing a similar wish for privacy in all
participants.

Task TBase was the control group task. Participants were asked to send the
messages using the normal Facebook message composer. The task was used to get
a baseline for error rates and speed of the individual participants. Like in the other
tasks, the participants were told that their messages were encrypted. In contrast to
TEmKm to TEaKa, message encryption was not featured explicitly, but included
in the regular sending process without visual indicator or actions. The control task
therefore additionally lends itself to examine whether or not the participants would
accept and trust a mechanism that provides “invisible” security.

During the manual key management tasks (TEmKm and TEaKm), the partici-
pants needed to use the webmailer to send an arbitrarily chosen key to the corre-
sponding recipients out-of-band. Using webmail is of course not the optimal out-
of-band solution in terms of security. However, since the study’s focus was on the
Facebook UI and not the out-of-band communication capabilities of the participants,
it was used as a mechanism which would cause little technical trouble during the
study. In a real world setting additional problems could arise here.

In the automatic key management tasks (TEmKa and TEaKa), only the first
message required the participants to enter their password. The password was cached
for the rest of the session.

The only difference between the manual and automatic encryption tasks is that
the “Encrypt” button needs to be pushed before sending the message.

42

Study Design

Since the study encompassed reading and comprehension, we chose a within-subjects
design [137]. To minimise the bias of the learning effect, we also chose a random
latin square setup, so that each task was equally distributed over each position in
the within-subjects design.

In the post-task questionnaires for each of the five tasks (cf. Section 3.3 and
Appendix A.1, Page 193), we collected the system usability score (SUS [29], see
Appendix A.1, Page 193) as well as additional items concerning the end users’ will-
ingness to use the corresponding mechanism in the future for private and general
messaging (“acceptance”). A final item gauged how well the users felt their messages
were protected.

After completing the tasks, the participants were given a final questionnaire (cf.
Appendix A.1, Page 193). Apart from gathering demographic information, the ques-
tionnaire also presented a hypothetical question, asking whether or not the partic-
ipants would use an encryption method which would render all previous encrypted
messages unreadable if they forgot their password. We also asked supporting ques-
tions to ascertain the reasoning behind this decision.

Results

Across all cases, we found the highest mean SUS values in TEmKa (86.51) and
TEaKa (89.79), as well as in the control TBase (88.20, cf. Table 3.3). TEmKa and
TEaKa also received the highest acceptance ratings for both private and general
messaging. However, the users felt best protected in TEmKm and TEaKm.

Task SUS sdsus
TBase 88.20 15.32
TEmKm 64.27 18.56
TEaKm 65.86 18.43
TEmKa 86.51 11.43
TEaKa 89.79 14.20

Task Apriv Sdpm'v Qqall sdai Sf Sdsf
TBase 2.62 1.438 2.67 1.449 1.57 0.778
TEmKm 3.19 1.439 1.87 1.136 3.49 1.133
TEaKm 3.35 1.421 1.87 1.117 3.42 1.158
TEmKa 3.87 1.259 291 1.437 3.20 1.148
TEaKa 3.92 1.319 3.30 1415 3.23 1.174

Table 3.4: Mean usability (SUS) and acceptance for private (apriy) and all messages
(aan), as well as security feeling (sf) across tasks.

We aggregated the SUS

9The System Usability Scale (SUS) provides a reliable tool for measuring the usability. It consists
of 10 questions and has a score between 0 (poor usability) and 100 (great usability). A SUS
score above a 68 would be considered above average and anything below 68 is below average. [28]

43

and acceptance ratings for tasks with (non-)automatic key management (TEmKm-
TEaKm and TEmKa-TEaKa) and encryption (TEmKm-TEmKa and TEaKm-TEaKa)
respectively. Normality tests indicated significant or almost significant deviations
for these scores and ratings, since the distributions were cut off at the upper score-
interval boundary. Therefore, we used the non-parametric Wilcoxon Signed Ranks
test to analyse the scores and ratings. We found a significant difference in SUS
for automatic key management (Z = —8.102, p < .01) and automatic encryption
(Z = —=3.230, p < .01). We found similarly significant differences in acceptance
ratings for all messages with respect to automatic key-management (Z = —6.884,
p < .01) and automatic encryption (Z = —2.692, p < .01). Acceptance for sending
private messages differed significantly for automatic key-management (Z = —3.644,
p < .01) but not for automatic encryption (Z = —1.637, p = .102). We there-
fore conclude that an optimal workflow would use automatic key management while
automatic encryption did not have a significant impact in the study.

To test how fear of losing data influences the need for password recovery, we
divided the participants into those who stated that they were worried or very worried
about losing all their old messages or forgetting their password (group A, n =
49) and those who were not (group B, n = 47), using top-2-box scores of a 5-
point Likert scale. We found a significant difference between group A and group
B using a Chi-Square Test concerning whether or not they would use a mechanism
without password recovery (x3 = 18.383, p < .001) and whether or not they would
prefer a mechanism with password recovery (x? = 10.341, p < .001). In group
A, 72.3% would not use a mechanism without recovery and 78.7% would prefer a
mechanism with password recovery, while in Group B these figures were 28.6% and
46.9% respectively. Hence, we believe that password recovery is desirable for users,
especially for those who worry about forgetting their password.

To test the correlation between the perceived usability and the stated acceptance
of a message protection mechanism, we used Spearman’s rho and found significant
values in all five tasks (see Table 3.3). However, the correlations are only weak to
medium and therefore merely suggest that higher usability correlates with higher
acceptance. We investigated this issue further in the interviews (cf. Section 3.5).

Task Pprivate p Pall p

TBase .253 <.05 .260 <.05
TEmKm .54 <.01 361 < .01
TEaKm .466 <.01 249 <.05
TEmKa .533 <.01 407 < .01
TEaKa .530 <.01 .507 < .01

Table 3.5: Spearman’s correlation between usability and acceptance for private/all
messages across tasks.

In order to investigate the perceived level of protection across mechanisms, we ran
a Friedman test on the participants’ answers concerning their perceived protection
in tasks TEmKm through TEaKa. We found a highly significant difference in the
mean ranks (x3 = 15.947, p < .001). The top-2-box scores show that in tasks

44

TEmKm and TEaKm 54.2% of the participants felt well protected and in TEmKa
and TEaKa only 41.7% and 40.6% felt the same way. We therefore suspect that
the complexity of a mechanism — in this case creating individual encryption keys for
each recipient and distributing them manually — heightens a user’s subjective sense
of security. However, we could not find any meaningful correlations to support this.

It is noteworthy that only 2% of the participants felt well protected in the control
task. Even though they had been told that the mechanism presented in TBase would
protect their message, they apparently placed little faith in this statement. While
this could be due to their familiarity with Facebook, we also suspect that an entirely
invisible and effortless protection mechanism does not generate a feeling of security
and is not trusted by users. This is an interesting question, since “invisible” security
is often claimed to be a desirable feature. However, our results suggest that trust in
the mechanism could be a problematic issue. This study was not set up to analyse
this observation further, but this issue might be worth a dedicated investigation in
the future.

To analyse who was perceived to be the biggest privacy threat, we also asked
participants to rate how easy it would be for different entities to access their Face-
book conversations on a 5-point Likert scale. Facebook employees and hackers were
perceived as having the easiest access to that information: 87.5% and 84.4% said
that they thought it would be easy or very easy for these actors to access their pri-
vate messages, followed by the government of the USA (62.5%), advertising agencies
(49.0%) and the German government (35.4%). Only 12.5% believed that it was easy
or very easy for their friends to access these messages. Additionally, we wanted
to know how motivated the participants believed these entities would be to access
their messages. Advertising agencies were believed to be the most eager (70.8%).
Facebook (44.8%), Hackers (29.2%), the US government (28.1%) and the German
government (25.0%) are believed to have less motivation to access private messages.
Friends were believed to be the least motivated (18.2%). Finally, we asked how bad
the participants would feel if these entities accessed their private messages. 55.2%
would find it bad or very bad if friends could access private messages not intended
for them. For all the remaining actors, the participants almost unanimously agreed
that access to their private messages would be bad or very bad (82.3% to 90.6%).

3.4 Usable Facebook Message Encryption

Our aim was to create a security system with good usability which addressed the
concern that Facebook and potentially other third parties could read private mes-
sages sent via Facebook. Considering the findings of the lab study, we based our
design on the interface and workflow of mockup 5. While the manual key manage-
ment mockups 2 and 3 created a higher security feeling, they also had significantly
lower acceptance and usability scores. We chose mockup 5 over mockup 4 due to the
higher acceptance and usability scores of 5. While mockup 4 included some manual
operations, there was no significant difference in the perceived level of protection
between mockup 4 and 5.

45

One of the key decisions for our implementation concerns the use of a PKI. Based
on the fact that previous Johnny studies have shown that PKI based key manage-
ment and message protection has severe usability problems, we decided to avoid
the use of a PKI and opt for a simpler approach. Hence, our implementation of
message encryption for Facebook addresses confidentiality and integrity, using the
non-cryptographic message authentication offered by Facebook. By dispensing with
digital signatures, it was possible to create a simpler overall system. This is a securi-
ty/usability tradeoff. Since the main aim of protecting users’ private messages from
entities which are currently able to read them can be achieved with confidentially
alone, the reduction in complexity was the deciding factor in this matter.

However, we would like to briefly discuss message authentication in the social
web. The use of Facebook brings about some interesting changes in certain aspects
of the message authentication landscape. While emails can be easily forged and are
also used to initiate communication with unknown communication partners, in the
social network context much of the communication over Facebook is conducted in
the context of “friendship-connections” which are established a priori and filled with
additional information. This reduces the need for authentication on the message
level to a certain extent. While there are social-engineering-based attacks, in which
users can be duped into falsely believing a message originated from a friend, we
believe these are currently less relevant than for example email-spoofing attacks.
This makes the lack of message level authentication less problematic for a social
web context than for emails. However, this last statement is speculative and needs
to be the focus of a separate study.

The choice to offer only confidentially also enabled us to offer a key recovery
feature that allows users to recover their encryption passwords. For this, we opted
for a service-based approach offering confidentiality as a service which we named
FBMCrypt. Special attention was paid to creating a service that does not enable
the FBMCrypt provider to access the private messages, but allows automated key
management at the same time. To enrol in the service, a user needs to register and
bind his Facebook account to FBMCrypt. This will be illustrated in the following.

Registration

For registration with the FBMCrypt provider, we chose a simple username/pass-
word authentication scheme, since this method is a well-known scheme to Web 2.0
users. Although passwords are not the strongest authentication credentials, they
enjoy widespread application and are the most widely accepted concept by online
users [111]. The registration process relies on Email-Based Authentication and Iden-
tification (EBIA) [93], the most prevalent authentication scheme for online accounts.

Account Binding & Browser Plugin

Once the registration process is complete, the user needs to bind his Facebook
account to the newly created FBMCrypt account. This is initiated by clicking a
button to log into Facebook using Facebook’s Social Plugin API. After Facebook

46

has confirmed the authentication — through Facebook’s OAuth mechanism — the
user agrees to allow the FBMCrypt provider to see the email address registered
with Facebook. The FBMCrypt provider uses this email address to send a second
validation link, which establishes that the currently logged-in FBMCrypt user also
has access to the Facebook account in question and can furthermore read email sent
to that account. This process only proves that the current FBMCrypt user has
access to the Facebook account, but does not give the FBMCrypt provider access
to the Facebook account. After the successful binding of a Facebook identity to a
FBMCrypt account, the user is subsequently able to use the FBMCrypt provider’s
services with the bound Facebook identity.

The user finally needs to install a browser plugin which handles the actual encryp-
tion and decryption of the messages. Similar to the mockups, our prototype plugin
uses a Greasemonkey user-script, which is easy to install. The plugin communicates
transparently with the FBMCrypt provider and handles all the cryptographic opera-
tions for encryption and decryption without requiring any further user involvement,
apart from entering the FBMCrypt password once per session.

Sending an Encrypted Message

The FBMCrypt plugin automatically checks if the recipients of a message are regis-
tered with the FBMCrypt service. If they are not, the message cannot be encrypted
and can only be sent in the clear. We modified the message composer to make the
user aware of an unencrypted message exchange, as illustrated in Figure 3.3.

- [ahewsmh] |

Message: |This is an unencrypted message||

___ 5
'

:&WARNING: This message will be sent unencrypted!
\Ask your friends (in red) to register at FEM-Crypt to enable !

Figure 3.3: The modified message composer in case a message will be sent
unencrypted.

If the recipients are enrolled with the FBMCrypt service and the “Send” button
is clicked, the FBMCrypt plugin connects to the FBMCrypt service over a secure
HTTPS connection. The plugin authenticates the user to FBMCrypt by sending
the previously bound Facebook ID and the user’s hashed FBMCrypt password.

The plugin then triggers FBMCrypt’ automatic key management (cf. our previous
work in [78]) procedure and encrypts the message.

47

Before actually sending the encrypted message via Facebook, the plugin prefixes
##caasfo## to the message to allow for automatic decryption on the recipient’s
side.

Reading an Encrypted Message

To read an encrypted message, decryption is integrated into the usual workflow
as transparently as possible. The plugin automatically analyses the messages site
and searches for FBMCrypt-encrypted ciphertexts. If one is detected, the plugin
checks the user’s credentials, authenticates him to the FBMCrypt service and trig-
gers automatic decryption. Figure 3.4 shows the message view with a decrypted and
encrypted message.

Sascha Fahl
* |Wov.-, how easy it is to send an encrypted Facebook message.
el
Cleartext after CaaS decryption

Ciphertext stored at Facebook

Sascha Fahl @
u ##caasfb##b1f694728b620fae7b1621dde17dbc39728c2f3e65cf
" 27b5b4b259bfb1d8d0c6|ycS)dplcyB/KhBbpxkPO6g==|igVedSFM
0oMrI7Hvmp0gPsh30cSMuXn9XjqrpahQVjnDSMOiievFfGnQ80eD
MFUdOAF)cGIWB/K+x+0=

Figure 3.4: Cleartext and ciphertext of a FBMCrypt protected message

We provide a more detailed technical description of the confidentiality as a service
backend and the encryption mechanism as well as a security discussion in [77, 78].
The following focuses mainly on the usability aspects of the message encryption
mechanism.

3.5 Evaluation

Case Study

The registration and account binding procedure (cf. Sections 3.4 and 3.4) was de-
signed to enable FBMCrypt to fulfil the requirements derived from the laboratory
study. Since these steps form the basis for the rest of the system and poor design
could potentially deter users from the outset and make further development unnec-
essary, we conducted an initial study of the registration and binding design to ensure
the usability of our concept, before proceeding with the development of the rest of
the system.

We ran a field study with 20 participants (all undergraduate students, 9 females,
11 males, with an average age of 23) and asked them to register an FBMCrypt
account, bind that to a Facebook account and install the plugin. Since this was only
a simple ten minute task to eliminate early issues in the design phase, we recruited
students randomly on campus. We asked them if they were Facebook users and

48

interested in participating in a ten minute scientific study that was about a security
mechanism for their private Facebook messages in exchange for some candy bars.

The technical setup was similar to the lab study: we provided a laptop with
Firefox 9 and Greasemonkey and asked them to log into their Facebook and email
account. We deleted all browsing data after the experiment ended. For this initial
study, we were interested in the time needed to set up a working FBMCrypt plugin
installation and corresponding error rates.

All participants were able to successfully create an FBMCrypt account, bind the
account to Facebook and install the FBMCrypt plugin for Facebook. On average,
the entire process took 3 minutes and 8 seconds, with a range of 90 seconds to 6
minutes and 18 seconds. Since no problems with the installation and binding process
were identified, the design was integrated into the rest of our approach.

Interviews

To evaluate the usability of the proposed FBMCrypt service (cf. Section 3.4) as a
whole, we conducted a final qualitative study with 15 participants in which the entire
process was evaluated in conjunction with an online survey and a semi-structured
interview. During the study, one interviewer and one assistant were present.

Participants

We randomly recruited the participants from the same pool of users that we used
for the laboratory study, excluding those that had already taken part. There were 6
male and 9 female participants. On average, their age was 22 (sd = 3.39) and 13 of
them had been using Facebook for more than a year. Three of them had forgotten
their Facebook password at least once and 14 used Facebook for at least one hour
per day. They had 233 Facebook friends on average (sd = 125) and all of them sent
at least five private Facebook messages per week. More detailed demographics can
be found in Table 3.5.

The technical setup and procedure was analogous to the laboratory study, except
that during the task participants were audio recorded and asked to “think aloud”.
To test our encryption mechanism for Facebook conversations, all participants were
asked to fill out an online survey, complete a task involving three subtasks and
participate in a semi-structured interview. The entire study lasted between 28 and
44 minutes (mean = 33, sd = 4).

Task

Firstly, the participants were asked to register for the FBMCrypt service.

After the EBIA procedure (cf. Section 3.4) was completed and a new FBMCrypt
account created, this account had to be bound to the Facebook account provided
for the participants (cf. Section 3.4). Successfully binding the accounts allowed
the participants to install the encryption plugin as the last step of the first subtask.
After the plugin was installed and operational, they started with the second subtask.

49

N=15

Gender
Male 6
Female 9
Age

< 20 3
20 - 25

> 25

Facebook Membership

1 month

6 months

1 year

2 years

longer

Facebook Password Loss in The Last 12 Months
not once 12
once

more than three times 1
Facebook use

< 1 hour per day 6
1 - 2 hours per day

several times per week
Facebook Friends

50 - 100

101 - 150

151 - 250

251 - 350

> 350

Facebook Messages / Week
< 10

10 - 20

21 -30

> 30

Use Harddisk Encryption
Heard of AES

w ©

Tt Ot W =

— 0o

W Wk N W

=N = W s

Table 3.6: Demographics of the interview participants.

Here, the participants were asked to have an encrypted Facebook conversation
with the assistant. The conversation was initiated by the assistant, who sent the
following message: Hi <participant’s first name>, what is your major at university?
Next, the participant was asked to answer the question as he would usually do when
sending a Facebook message. The assistant sent a new encrypted message: Sounds
interesting. Do you happen to know what AES is? Depending on the participant’s
answer, the assistant either answered: No problem, thanks anyway and have a nice
day! or Thank you very much, you really helped me. Have a nice day!

Finally the last subtask was to send another pre-defined Facebook friend an ar-
bitrary message. This friend, however, was not yet registered with FBMCrypt. In
order not to bias the participants, we did not indicate that this message would be
sent in an unencrypted fashion.

50

Interview

The interview component of the final study was conducted as a semi-structured in-
terview. The framework of themes to be explored during the interview encompassed
a usability evaluation of the encryption service registration, binding and plugin
installation, sending/reading an encrypted message, the perceived security and rea-
sons for or against the proposed password recovery mechanism (cf. Appendix A.2,
Page 195).

Data Analysis

We transcribed the audio recordings of the interviews. Trends were identified and
answers grouped into categories for each question in the interview.

Results

This section presents the findings of our final study. Firstly, we describe the recep-
tion of the FBMCrypt registration, binding and installation process, such as how
users feel about creating an extra FBMCrypt service account, choosing a different
password than the one for their Facebook account and installing the plugin. Sec-
tion 3.5 describes usability findings while sending and receiving encrypted Facebook
messages. Section 3.5 describes the perceived security while using FBMCrypt. The
last subsection discusses the participants’ attitudes to the key recovery feature.
We refer to the participants as P01, P02, ..., P15. P14 stated that he already used
a mechanism to encrypt his Facebook messages. No participant used any encryption
for their email, though P02 and P06 already had experience with software to encrypt
their hard disks. P05 and P07 did not know whether they used any software to
encrypt their data and the rest stated they did not use any encryption mechanism.
We asked the participants to rate their computer expertise by telling us how they
handle computer problems they or their friends have. P02 and P15 self-reported
their computer expertise as high, P06, P09 and P13 as medium and the rest as low.

N=15 mean sd
I’'m sure that I used the mechanism correctly 3.93 1.03
I would send sensitive messages with this mechanism in the future 4.06 0.96
I would send all my messages with this mechanism in the future 3.46 1.06
I have the feeling that my messages are now well protected 3.53 1.06
I found applying the encryption mechanism irksome 1.67 0.89

Table 3.7: Case study post-task survey. (1=Strongly disagree; 5=Strongly agree)

The mean values we found using the post-task survey were slightly better than
those in the lab study (cf. Section 3.3), but there were no statistically significant
differences. Table 3.5 gives a descriptive overview of the survey answers.

In general, after creating a new FBMCrypt account, installing the browser plugin
and actually encrypting messages, participants were confident that they were using
the system correctly, would like to send future messages protected by the FBMCrypt

51

mechanism and did not perceive the encryption as obstructing their workflows. The
following subsections will discuss the results of individual aspects of our final study.

The Setup Process We asked our participants about their impressions of the regis-
tration, binding and installation process of the FBMCrypt service and plugin. Addi-
tionally, we asked the participants to compare the process with creating a Facebook
or an email account. During the task, all 15 participants were able to successfully
register an FBMCrypt account, bind this account to the provided Facebook account
and download and install the plugin. On average, the complete setup phase took
3:51 minutes (sd = 51s).

In the interview, we first asked the users to rate the account registration process
itself. Overall, the registration process was described as “easy” and “appropriate” in
the context of online service accounts. P02 said “I would describe the effort involved
in setting up such an account as relatively small. I think it took me about 30 seconds
— if it really helps to protect my messages this is definitely worthwhile.” Only P07
described the registration process as “complex — just like setting up my Facebook
account. For that I asked my boyfriend to help me to setup the account.” and
described the registration effort as “too high”. Two participants added a condition
to their rating and said the effort would be acceptable if the service really provided
protection for their data and was not a subsidiary of Facebook. Eight participants
described the FBMCrypt registration process as “more pleasant” than creating a
new Facebook account, because “they did not want to know so much information,
such as my birthday or phone number”.

All participants described the fact that the FBMCrypt password needed to be
different to the user’s Facebook account as “understandable and unproblematic”.
P10 said “using two different passwords for Facebook and the encryption service is
obvious, because every hacker that knows my Facebook password also would try this
password to login to my FBMCrypt account to read my conversations. And if both
passwords are the same the encryption would be pointless.” 11 participants stated
they used different passwords for online services that they either memorise or write
down. The rest used three to six different passwords for all their online accounts.
In general, the participants stated that they rarely forgot or lost their passwords —
only “passwords for services I rarely use” (P06, P08, P10, P12) were liable to be
forgotten. P12 added: “but in this case there is this great ‘lost password’ button I
already had to use a couple of times”. In contrast to other online services, Facebook
passwords were forgotten less frequently. Only P06 had once forgotten her Facebook
password. The participants estimated that their FBMCrypt password would be as
“safe” as their Facebook password, because encryption service is so “closely linked”
to their Facebook account: “If I have to enter my FBMCrypt password each time I
read my Facebook messages, I am pretty sure not to forget it [because I use Facebook
so often]”.

The account binding process was rated as “coherent” and “appropriate” in general.
Three participants had security concerns during the binding process. Two partici-
pants (P02 and P12) falsely identified the binding process as a Facebook App, which
they distrusted in general and did not use. P02 said: “in general I have an aversion

52

to Facebook apps, because I don’t know what information they secretly use”. During
the “think aloud” phase, P05 said she would not have downloaded and installed the
plugin on her own laptop because “my boyfriend told me not to download anything
from the Internet”.

Encryption/Decryption We asked the participants to rate the process of sending
and receiving encrypted as well as unencrypted private Facebook messages. Two
participants (P11 and P14) would use FBMCrypt to send “sensitive” messages but
not “smalltalk messages that are not very private” (P11). The other participants
said they would like to send “all messages with FBMCrypt enabled, if possible”.
The “if possible” condition had two different manifestations — two participants (P01
and P08) would use it for all their messages if they felt that the service “really was
secure” and the second group of participants would send all their messages with
FBMCrypt if the service gained widespread adoption and their friends used it as
well.

We asked the participants to attribute properties to the process of sending and
reading (un-)encrypted messages with the FBMCrypt plugin. The participants gave
answers such as “uncomplicated, simple, secure” and “as easy as without the service”.
P15 stated: “I thought there would be annoying popups and I really liked that none
appeared.”. P10 described it as an “invisible assistant”. Next, the participants were
asked to describe the interface for sending and reading (un-)encrypted messages.
Two participants (P04 and P14) did not perceive any difference compared to the
normal interface.

The green and red borders, indicating encrypted and unencrypted messages re-
spectively, were thought to have two different meanings. Six participants interpreted
the different border colours as “a green border stands for secure messages” and “a
red border stands for insecure messages”. Four participants said the green border
indicates their conversation partner “also has the programme installed” while a red
border indicates the conversation partner is not an FBMCrypt user. Six partici-
pants noticed that the ciphertext was displayed before an encrypted message is sent
or an encrypted message is decrypted. Five participants stated they saw that the
messages were encrypted “because of the jumbled up text that was displayed”. Four
other participants described the ciphertext as “jumbled up text” but did not recog-
nise it as ciphertext. However, the presence of ciphertext did not disturb them in
their workflow or caused concern.

All but one participant (P13) would recommend FBMCrypt to their friends to
enlarge the group of people they can securely communicate with. We also asked
the participants if they would be willing to pay money to encrypt their Facebook
conversations. Four participants said no — while P01 would not pay money for such a
service for herself she said: “if I had children who used Facebook, I would pay money
to protect their privacy.” All the others were willing to pay “a small amount of
money”. Five participants preferred a single payment: “the price should be similar
to an iPhone App”. Seven participants stated that they could imagine paying a
“monthly fee” ranging from 5 to 10 Euros.

93

Perceived Security We were interested to see if the application of FBMCrypt
affected the perceived security of the participants. Firstly, we asked the participants
whether they would send messages which are more confidential via Facebook if
FBMCrypt were used. None of the participants affirmed this. All of them said they
could not sufficiently “trust” the encryption mechanism at this point because they
could not verify if it was functioning properly. So while they were all satisfied with
the usability and would use FBMCrypt for their current messages, messages with a
higher level of confidentiality would still not be sent over Facebook.

Participants’ views on this can be divided into two groups: Four participants were
sceptical by default and would not trust computer systems in terms of data security
without more detailed knowledge. P06 said: “in the Internet, you can download a
program to crack everything, so I do not trust computer systems in general. This
1s similar to online banking. Although I see this little lock in my browser, I am not
really sure that no one can steal my data [because I think anyone could put a lock
like that in my browser bar]”. The second group of 11 participants did not trust the
mechanism because they did not know “if it really works”. P02 (who also falsely
identified the FBMCrypt plugin as a Facebook App) said: “I really cannot say if
the program does what it purports to do. I mean, any app could probably draw a
green border around my message to simulate security. I would need some proof of
security.”.

To investigate why the participants were so sceptical and to ascertain what could
be done to alleviate their doubts, we asked why they did not trust the mechanism.
They all said they could not verify whether or not the mechanism really did what
it said and needed “proof”. When we asked what kind of proof that might be, there
were three types of answer. Three participants said they would trust “reports in
specialist magazines”. Participant P10 said his trust would depend on the operator
of the FBMCrypt service: “I would trust the encryption service if it was operated by
a university or a monprofit organisation that campaigned for privacy on the Inter-
net.”. The remaining participants would trust the judgement of “friends that know
computers well”.

We also asked the participants if the application of FBMCrypt influenced their
perception of privacy. Eight participants stated that they had a more positive per-
ception of their message privacy when using FBMCrypt. Two participants (P04
and P09) referred to the displayed ciphertext before sending a Facebook message
as the reason for their changed perception. P15 said that “installing the extra pro-
gram made me feel better”. P05 said: “entering a second password results in a
double protection for my messages which makes me feel more secure.”. The rest of
the participants said that applying FBMCrypt did not improve their perception of
privacy.

Password Recovery To get a better understanding of the trend towards preferring
a mechanism that allows for key recovery (cf. Section 3.3), we asked the participants
if they would use the FBMCrypt mechanism if “losing the password resulted in not
being able to access messages that were encrypted with the FBMCrypt mechanism”.
Eleven of the participants would not use the service if losing the password resulted

54

in losing their messages. P15 said: “I sometimes use Facebook to share important
job-related information. [...] I would definitely need a recovery mechanism because
losing access to my data would be disastrous.”. Five participants suggested integrat-
ing a password recovery mechanism similar to Facebook’s. P15 wanted a “more
secure recovery mechanism with telephone verification in addition to a confirmation
email.” Only one participant stated that she would not use a mechanism with pass-
word recovery because of security concerns (P12): “This would be much less secure,
because a hacker who has access to my email and Facebook account can then also
decrypt my Facebook messages.” Three participants of this group said they “never
read old Facebook messages” (P05 and P03) or they would ask the conversation
partner about the content (P6), hence they were unconcerned about losing access
to their previous conversations.

We also asked the participants if they would prefer a password recovery mecha-
nism. Twelve participants would prefer a password recovery mechanism. Most said
that they could not guarantee that they would never forget their password (even if
“from an empirical point of view, my risk is very low” — P05) but they did rely on
being able to access their archived messages. Again, P12 would not chose a password
recovery mechanism because of security concerns.

Discussion

During the task, we focused on the usability of the FBMCrypt service and the par-
ticipants’ willingness to use the mechanism. The results show that most participants
rated the registration, binding and installation process as appropriate and easy in
terms of usability. The few participants who found it too complex or had other con-
cerns described themselves as “untalented” computer users who often asked others
for help. All participants described the process of sending encrypted messages and
reading encrypted messages as “normal” and non-disruptive and most would use
FBMCrypt to send all their private Facebook messages if their friends were using it
as well.

All but one participant noticed the visual security indicators and most of the
participants connected them to “message security”. An interesting finding during the
interviews was that the displayed ciphertext was perceived as a trustworthy indicator
for functioning encryption while the green and red borders were not. This aspect
should be explored in more detail in further studies. A second interesting finding
is that while the participants confirmed good usability attributes, the problem of
establishing trust was described as something FBMCrypt itself could not provide.
Instead, third parties were described as sources of information and trust. Some
participants seemed to expect more overhead when encrypting a message. While
Whitten and Tygar [201] as well as Garfinkel and Miller [92] showed that too complex
a system results in rejection, the question of whether an appropriate amount of
overhead could improve the perceived privacy and hence increase acceptance is an
interesting one.

95

3.6 Limitations

This work has the following limitations. Precision: due to the within-subjects design
of our lab study, carry-over and fatigue effects could have affected the study results.
While a brief between-subject analysis based on the latin square setup did not show
any worrying trends, a larger dedicated between-subjects study would be needed to
rule out these effects.

Generalizability: Participants were all university students, selected for their fre-
quent use of Facebook and their desire for Facebook message privacy. We believe
the two selection criteria are valid, since this is the target group of our Facebook en-
cryption mechanism. However, future studies of participants outside the university’s
demographic is of course desirable. Additionally, extending the sample to include
non-privacy-aware users could also yield interesting insights into why people do or
do not wish to protect their messages and how technology affects this.

Realism: The participants were restricted to using the computer provided for them
during the study and using dummy Facebook and email accounts. Furthermore, only
the first-time user experience was studied; we did not examine daily usage behaviour.
Long-term studies using real Facebook accounts would address this.

3.7 Summary

In this work, we presented several user studies concerning conversation security
on Facebook. In an initial screening study with 514 participants, we showed that
within our student population, there is a desire to protect Facebook conversations.
We identified two key design features of existing solutions: automatic or manual key-
management and encryption. In a laboratory study with 96 participants, we tested
the four combinations of these features using mockups and found highly significant
preferences for automatic key-management and automatic encryption. Furthermore,
participants who were worried about forgetting their password or losing access to
their previous conversations stated that they would not use a mechanism without
password recovery. Even though the automatic mechanisms had a higher acceptance
rate, we also found that the two more complicated encryption mechanisms generally
made the participants feel better protected.

As a result of our findings in the user studies, we designed and implemented an
encryption mechanism for Facebook conversations. Several key design decisions were
made to provide good usability. A service-based approach was chosen, providing
confidentiality and integrity with automatic key management and recovery instead
of burdening the user with complex cryptographic details. Security /usability trade-
offs in this work were made considering the context of the Web 2.0 and Online Social
Networks. For cases where these trade-offs are acceptable, our solution offers better
usability than the email encryption systems tested in previous Johnny studies: All
our study participants successfully encrypted their Facebook conversations without
making any mistakes.

The interviews conducted during the final study revealed that usability alone is

56

not a sufficient incentive for accepting a mechanism for message security on Face-
book. Many interviewees stated that actually seeing the mechanism do something
— displaying ciphertext for example — heightened their perceived protection. How-
ever, we also found considerable distrust of security software in general. Participants
stated that they would need to be convinced of the correctness by friends or trusted
third parties, such as computer magazines before entrusting sensitive information to
a message security mechanism. While this last statement was made after using the
presented mechanism for Facebook conversations encryption, the interviewees often
stated that this was a general attitude they had towards unknown security software.

This chapter gave new and promising insights into the motivation for end users
to adopt an end-to-end encryption mechanism. While it illustrates the potential of
well established usability, its limitations are made clear. A motivated and risk-aware
user can chose to use a secure mechanism to protect information. However, secu-
rity incidents and data breaches in the past ' showed that even end users with a
very strong interest in their information’s security and privacy can easily become
vulnerable by the actions of inexperienced or careless system administrators. The
next chapter illustrates this connection: To make sure that information on the web
is protected, end users can take care to use only secure HT'TPS connections. Modern
browsers indicate secure HT'TPS connections by showing passive security indicators
or extended validation information in the address bar. Looking out for these indica-
tors is the only action end users can take to make sure their connections are secure.
However, whenever administrators of websites decide to only provide plain, insecure
HTTP connections or deploy invalid HT'TPS certificates, end users’ options are very
limited. In those cases, they can only choose not to visit an insecure website.

To take this circumstance into account, the next chapter describes a study with
administrators of websites. In the next chapter, I investigate their motivation to
operate secure HTTPS enabled webservers and propose measures to improve the
status quo.

¢t http://arstechnica.com/security/2016/01/time
-warner—and-linode-report—-possible-password-breaches/ — last access 13.04.2016

o7

http://arstechnica.com/security/2016/01/time
-warner-and-linode-report-possible-password-breaches/

I Administrators:

Configuring HTTPS
Webservers

58

Disclaimer: The contents of this chapter were previously published as part of
the paper “Why Eve and Mallory (Also) Love Webmasters: A Study on the Root
Causes of SSL Misconfigurations” presented at 9" ACM Symposium on Informa-
tion, Computer and Communications Security (ASIACCS) in 2014 [73] together
with co-authors Yasemin Acar, Henning Perl and Matthew Smith. As this work
was conducted with my co-authors as a team, this chapter will use the academic
“we” to mirror this fact. The idea and initial concept for this work came from my-
self. The user-study with administrators who operated misconfigured HT'TPS enabled
webservers was designed and conducted by me. However, my co-authors contributed
in different ways. Analyzing the study results was joint work with Yasemin Acar.
Before compiling the paper for publication, Yasemin Acar, Henning Perl, Matthew
Smith and I jointly discussed the study’s implications.

4.1 Motivation

For the authentication of a server during a TLS handshake, clients perform multi-
ple validation steps to check whether the server’s X.509 certificate is trustworthy
or should better be rejected. Self-signed and expired certificates, certificates that
were signed by an unknown CA, certificates that are not delivered with a complete
issuer chain as well as certificates issued for the wrong hostname result in rejection.
Whenever there is a problem with X.509 certificate validation, modern webbrowsers
generate warning messages so users can decide how to proceed with the (possibly)
critical X.509 certificate in question.

Previous research has shown that users tend to click-through these warning mes-
sages without paying attention to them, since supposedly most of the TLS warning
messages users see when surfing the web are false positives, e.g. resulting from
misconfigurations on the server side and are not real Man-In-The-Middle (MITM)
attacks [4, 188]. Further research revealed that misconfigurations of HTTPS-enabled
webservers are a widespread issue. The EFF conducted an internet-wide scan of all
public IPv4 addresses on port 443 and collected the respective X.509 certificates’.
Thus, they illustrated the state of X.509 certificates and presented details of X.509
certificates in use concerning the questions which CAs are in use, which certificates
are self-signed, which certificates are expired etc., all of them essential for the TLS-
handshake. Since then, multiple projects crawled the public part of the Internet for
HTTPS certificates and analyzed different aspects of their deployment in the wild.
Holz et al. [113], Akhawe and the ICSI Certificate Notary [3] collected X.509 cer-
tificates either actively or passively and concluded certain properties of the current
CA-based TLS infrastructure:

While previous research provides valuable insights into the current TLS ecosys-
tem, their focus is solely on technical aspects of TLS configurations or on the be-
havior of webbrowser users confronted with TLS warning messages but leaves out
the following interesting questions: (1) Why are HTTPS-enabled websites operated
with non-validating X.509 certificates at all? (2) How many misconfigured websites

lef. https://www.eff.org/observatory — last access 13.04.2016

99

https://www.eff.org/observatory

are frequently visited with webbrowsers and hence throw TLS warning messages?
(3) For how many users do TLS warning messages occur unexpectedly? Based on
the knowledge that a non-negligible percentage of TLS handshakes fail and that a
large percentage of warning messages is dismissed by users [4], to the best of our
knowledge we conducted the first qualitative study with website administrators to
investigate the root causes for X.509 misconfiguration that cause browser warning
messages.

We collected 755 study results to assess the motivation for the use of non-validating
X.509 certificates on the web. We were interested in the reasons and motivation for
administrators to operate non-validating X.509 certificates, how these administrators
assess the operation of their non-validating certificates and the number of affected
users and the protected data types. Additionally, we were interested in suggestions
to improve the usability of certificate configuration.

Our findings suggest that a remarkable number of websites that operate non-validating
X.509 certificates either do so intentionally or are not actively in use and hence do
not trigger warning messages at all. However, we also find that many administrators
misconfigure their HT'TPS webservers due to the high complexity of TLS configu-
ration options or due to a misunderstanding of the security features of TLS.

Our contributions can be summarized as follows: (1) We conduct the first user-
study with administrators of HT'TPS-enabled websites to identify the root causes
for TLS warning messages in modern webbrowsers. (2) We find that a large amount
of non-validating certificates is meant to be that way and clicking through them
can be classified as deliberate. (3) We find that mainly websites with a manageable
user count throw certificate validation errors. In many of these cases the users
were previously informed, have probably been helped with the installation of the
respective CA or trust the certificate and thus are not shown a warning message when
browsing the site. (4) We report that a remarkable amount of websites employing
non-validating certificates as can be found by crawlers are not meant to be actively
used, are only ever accessed by crawlers and thus do not trigger real world warning
messages for users. (5) We find that a substantial number of administrators are
overwhelmed by the complexity of TLS and the configuration parameters offered by
HTTPS webservers. (6) We provide a list of suggestions to improve the usability of
X.509 certificate configuration on webservers given by the administrators.

4.2 Background

Interesting related work to TLS and its security and usability challenges can be
found in Section 2.3.3

Webserver Configuration

Most webservers provide the option to serve content via HT'TP and HTTPS. The
Apache HTTP Server Project is a widely deployed webserver that supports both

60

HTTP and HTTPS. All configuration options such as vHosts, SNI and TLS param-
eters are placed in one or multiple configuration files. To enable TLS for an Apache
webserver host, SSLEngine on has to be added to the configuration file. If no X.509
certificate is given via the SSLCertificateFile and SSLCertificateKeyFile
directives, the default self-signed snakeoil X.509 certificate is used. SNI is configured
by adding the previous SSLCertificate directives to a VirtualHost environ-
ment. The given X.509 certificate is then mapped to the ServerName present in
the VirtualHost environment and is sent in the ServerHello message whenever the
client’s SNI values match the VirtualHost’s ServerName value.

Listing 4.1: Apache configuration for an HTTPS-enabled website
<VirtualHost 192.168.0.1:443>

SSLEngine on

SSLCertificateFile ssl.crt

SSLCertificateKeyFile ssl.key

ServerName www.example.org
</VirtualHost>

While the basic scenario for X.509 certificate configuration is straightforward,
more complex environments can easily lead to misconfigurations on the server side
and TLS warning messages for the websites’ users. In case the certificate in use was
signed by an intermediate CA, the administrator needs to set the SSLCertificate-
ChainFile parameter. Otherwise browsers will throw a warning message. In case
the administrator’s browser previously cached the intermediate CA in use, no warn-
ing message is shown, probably leaving the administrator unaware that other users
will be shown a warning message. Another more complex scenario is the use of
virtual hosts. Whenever multiple virtual hosts are operated on the same server, the
correct certificate must be configured for each virtual host which can easily become
a complex task and lead to false positive warning messages.

4.3 Administrator Study

While previous research either focused on a technological analysis of the deployed
X.509 certificates in the wild or evaluated the users’ behaviour when faced with
a TLS warning message, our work incorporates the third important pillar in the
TLS infrastructure: the administrators of HT'TPS-enabled websites. Knowing the
technical reasons why TLS handshakes fail and produce warning messages and how
users react to those warning messages are important aspects. However, to achieve
a better understanding of the whole picture, we conduct the first study with ad-
ministrators to assess the root causes why administrators operate non-validating
X.509 certificates. We think this will help both the research community as well as
practitioners to work out more usable solutions in the future, to understand the
reaction of users when faced with a TLS warning message and to reduce the overall
occurrence of warning messages. To understand the motives of administrators to
operate non-validating X.509 certificates we conducted an online survey with 755

61

Error Type #Certificates

Valid 3,876,497 86.38%
Self-Signed 89,981 2.0%
Expired 309,350 6.89%
Hostname Mismatch 146,941 3.27%
Unknown Issuer 64,694 1.44%

Table 4.1: Distribution of certificate validation error types.

administrators. The following section will give details on the methodology and will
present and discuss the results of our study.

Methodology

To find websites that operate non-validating X.509 certificates, we gathered certifi-
cates deployed in the wild in a first step. We applied a technique different from
previous work to collect X.509 certificates from websites: We used the body of cer-
tificates Google’s webcrawler collected over a period of 12 months. The webcrawler
collected X.509 certificates for 55,675,334 (~ 55.7 million) different hosts, resulting
in a body of 4,487,463 X.509 certificates. This certificate body overcomes two es-
sential problems common to other approaches reported in literature: (1) Actively
crawling X.509 certificates for the complete IPv4 space such as Holz et al.[113]
and the EFF TLS observatory resulted in a comprehensive map of IPv4 addresses
and corresponding X.509 certificates — in this case one cannot deduce for which
hostname the certificate was configured, hence post-validation does not allow for
hostname verification. (2) Passively recording X.509 certificates similar to Akhawe
et al. [3] only collects X.509 certificates for the websites their users visit — although
they collected both X.509 certificates and Server Name Indication (SNI) [19] values
for the corresponding TLS handshakes, they might have missed an essential part of
the HTTPS-enabled part of the Internet. The X.509 certificate body of Google’s
webcrawler provides both, an encompassing list of X.509 certificates and their corre-
sponding hostnames of the publicly available part of the Internet and the possibility
to perform all three steps of X.509 certificate validation in postprocessing steps: (1)
CA signature validation, (2) expiration checks and (3) hostname verification. We
used the webcrawler’s certificate body and performed the following steps to select
candidates for our study: Firstly, we re-validated all X.509 certificates, using the
NSS library as proposed by Akhawe et al. [3] which gave us the following results:

Altogether, our re-validation left us with 610,966 X.509 certificates that generate
warning messages when users visit the corresponding websites. We picked a random
sample of 50,000 of all failed X.509 certificates® and subsequently re-visited all web-
sites of our 50,000 certificate sample to learn the current TLS configuration status
of the corresponding webserver. This left us with 46,934 X.509 certificates and their
corresponding webservers. In this remaining sample, the certificate validation error
distribution was as follows:

2We conservatively estimated a success rate of reaching 10% of the administrators, and another
10% response rate to the study, which would have provided us with 500 answers

62

Error Type #Certificates

Self-signed 7,016 14.95%
Expired 22,952 48.9%
Hostname Mismatch 12,287 26.18%
Unknown Issuer 4,679 9.97%

Table 4.2: Distribution of certificate validation error types in the remaining sample.

We decided to get in contact with all of the affected administrators. Therefore we
started by extracting email addresses from the collected X.509 certificates. When-
ever we found an email address pointing to a Certificate Authority’s or a webhosting
provider’s info address, we ignored it. For all other email addresses, we ran DNS
queries for MX entries for the email’s domain. In case of a positive response, we
stored the email address for contacting the administrator later. We checked those
email addresses for duplicates, so we would only contact any given administrator
once, to not unnecessarily bother them. In order to contact the administrators for
whom we did not find email addresses embedded in the certificate, we decided to
send an email to webmaster@domain.com, as the administrator email address is
specified in RFC2142 [45] as a recommended address for any domain. To avoid send-
ing multiple emails to one recipient and to improve the chances of actually reaching
the person responsible for the certificate configuration in question, we did not tar-
get the postmaster@domain.com or abuse@domain.com email addresses. To
avoid triggering spam warnings, we sent out the emails very slowly at a rate of
2,000 emails per day. Altogether, we sent 46,145 emails to email addresses either
embedded in an X.509 certificate or to the domain’s corresponding administrator
email address. We sent 40,480 emails to webmaster@domain.com and 5,664 to
embedded addresses. 37,596 of those could not be delivered, leaving us with 8,549
successfully delivered emails (cf. Appendix B, Page 197 for the email we sent). We
received 755 complete responses to our survey, a response rate of 8.83%.

We decided on a set of questions that would take only 5-7 minutes to answer,
including two free text questions why the administrators were using exactly this
X.509 certificate on their website and the free text prompt to report problems with
the configuration and wishes to make configurations for HT'TPS more usable. We
were mainly interested in the following aspects:

(1) Reasons and Use Cases for employing HTTPS: We were interested in how
the website was primarily accessed, how many users were visiting it and in which
context (e.g. commercial, private etc.) the website was mostly used.

(2) Technical Knowledge concerning TLS: We asked several questions to asses
how much the administrators knew about TLS and if they had set it up themselves;
we asked for estimations for the pricing of X.509 certificates and problems they had
with TLS.

(3) Risk Assessment Concerning Misconfigured TLS: We asked how impor-
tant TLS was for their website and how strong the risk for users was due to the
non-validating certificate.

(4) Complaints, Wishes and Suggestions for TLS: In the end, we asked them
to fill in a free text about if they had problems with configuring the certificate for

63

their webserver, also asking them for complaints and ideas to “make things better”.

Ethics

The study was conducted in Germany and thus was not required to pass an IRB
review. Nevertheless, our studies complied with the strict German privacy regula-
tions. We discussed our study design and goal with the Privacy Officer. The purpose
of making contact with the affected administrators was two-fold: (1) we intended to
inform administrators of the misconfiguration of their website and (2) kindly asked
them to support our research. However, administrators would benefit from our email
without participating in the study.

We were aware that sending emails to all candidates at once could cause resent-
ment in the recipients. To reduce negative side-effects, we specifically contacted the
administrator of the website by sending an email to the webmaster@domain.com
address that is specifically intended for questions and comments concerning technical
problems, as stated in RFC2142 [45]. However, we felt we were offering the admin-
istrators valuable information, as we only contacted those who operated an invalid
certificate and pointed this out to them. We did not follow any commercial goals
and went out of our way to ensure that we would send only one email to each ad-
ministrator. Hypothetically, any Internet user browsing any of those websites would
have encountered a warning message, which would have asked them to contact the
administrator. Additionally, we kindly asked them to fill out a survey and explained
our research interest to them. Altogether, when we decided whether to contact the
administrators, we needed to weigh the benefits for the individual administrators,
their websites’ users and — following our survey — the whole Internet community
against the risk of being seen as spam. Our results confirm our estimation of the
situation: most administrators reacted in a grateful or at least friendly way, some
nicely explained why we saw the invalid certificate or thanked us for alarming them
to the non-validating certificate and some of them said they wanted to fix the TLS
configuration of their websites immediately.

Only three administrators complained about our email (cf. Section 4.3). Since we
did gather valuable results from the survey, and received mostly positive feedback,
we argue that even though we were not directly prompted to send out the emails,
we were not at all generating spam.

Handling Complaints

When we planned to send several thousand emails to administrators of misconfigured
HTTPS-enabled webservers, we were aiming for a fairly low number of complaints.
Therefore we set up a website which explained the intention of the email and de-
scribed our study. The link to this website was attached to every email we sent out.
We also offered an email address for further contact. Overall we got mostly positive
feedback from the site administrators we contacted for participating in the study.
Only 19 of the candidates complained about receiving our email at the first step. 16
of those 19 wanted to find out the intention of our data collection and if the study

64

and research group was real. After we contacted them, answered all their questions
and explained the purpose of our study to them, all of them responded very friendly
and agreed to fill out the survey. Only three administrators explained that they had
no interest in participating in the study and demanded being added to a blacklist
to prevent any further study invitations. Of course, we complied with their wish.

Study Results

Of the 755 administrators, 154 (20.4%) operated websites with an expired certificate,
for 250 (33.1%) websites hostname validation failed (13 were also expired), 160
(21.2%) websites used an X.509 certificate issued by a CA not included in the Mozilla
truststore and 191 (25.3%) websites operated self-signed certificates.

Reasons and Use Cases for employing HTTPS

The primary access method was said to be via browsers in 681 cases, 15 by apps,
15 by embedded systems, and 44 stated they did not know. 319 administrators
estimated they had less than one hundred visitors per month, 165 estimated between
one hundred and thousand, 95 between thousand an ten thousand, 66 between ten
thousand and a hundred thousand, 19 between a hundred thousand and a million,
5 more than a million. We asked them to rate a valid certificate’s value. 242
stated a valid X.509 certificate is worth 0%, 253 stated an X.509 certificate is worth
between 1$ and 208, 93 stated the worth between 20$ and 50$, 80 stated the worth
between 50$ and 100$, 40 stated it between 101$ and 500$, 13 stated it between
501% and 1000$ and 34 stated the worth of a valid X.509 certificate more than 1000$.
Of the 134 administrators who offered information about their websites’ users, 84
(62.7%) said it was used only by themselves (primarily for administrative purposes),
11 (8.2%) said it was mostly used by friends and 39 (29.1%) said it was used by
their company and colleagues. An important question of interest was why exactly
the websites operated a non-validating X.509 certificate. Of the 495 administrators
who gave information as to why the certificate was configured in a way that would
throw a warning message, 330 said they had configured it in such a way on purpose.
W713, who operated a self-signed certificate, stated: “The site is a development
system not accessed by customers or the public and the warning message “issue” is
known internally.”, while W49 stated: “The X.509 certificate is used for access to
sensitive parts of the site. It is only being used by skilled operators, i. e. people who
are able to check the fingerprint of the certificate to determine its authenticity and
then store it for subsequent uses.” W23 on the other hand mentioned: “Using TLS
with a commercial CA issued certificate that is not under total control by myself is
inherently insecure, since every CA owner can hijack the security and all providers
that acquired an intermediate CA certificate can do so. And in the last years we
have seen how weak some CAs are protected against cybercriminals. So it’s much
more secure for users to accept a certificate that was signed by my own CA once and
get cautious when it changes.” Another prominent statement came from W31: “Our
users are explicitly required to provision the CACert.org root CA before visiting the
website. The website generates no warning then.” As can be seen, a fair amount of

65

Error Type Deliberate Misconfiguration Not Actively Used

Self-Signed 90 45 20
Expired 74 38 16
Hostname Mismatch 82 50 51
Unknown Issuer 84 32 14
Total 330 165 101

Table 4.3: The distribution of different error types between administrators that de-
liberately use non-validating X.509 certificates, made a mistake while con-
figuring their servers or stated that their HI'TPS-enabled webserver is not
actively used any more.

administrators made a fairly informed decision not to employ a validating certificate
and explained why they did what they did. Site operates a self-signed certificate:
“I just wanted to try HTTPS on our website and the used X.509 certificate is the
default Apache provider template.” (A595) Site operates a CACert certificate: “Our
users are explicitly required to provision the CACert.org root CA before visiting the
website. The website generates no warning then.” (A31) While 495 administrators
stated they use the questionable certificate deliberately, 165 administrators said
they had accidentally misconfigured their X.509 certificate. Again, the reasons for
employing a non-validating certificate are manifold. W218 for example stated, “I am
the administrator of a website in the medical domain that must be HIPAA compliant
and the HIPAA guidelines require HTTPS for websites. Since we did not want
to spend money on a commercial X.509 certificate we decided to use a self-signed
certificate.”, while W284 stated “Actually you see the warning message because the
certificate was issued for xxx.com and not www.zrr.com. If you click through the
warning message you will be redirected to the correct website and will see no warning
message at all.”. W98 stated “I'm using one certificate for many sites (my server
did not support SNI until a recent update), so I had to list every one of them in the
alternative domain name. Since it is tiresome to add an additional entry for every
one of them to account for the the correct subdomain, I did not bother [...] But your
survey brought up to my attention this cases and I will fix the issue immediately”
Site operates an expired certificate: “This domain is an old domain only used as a
redirect to our new domain. This domain was last used over five years ago. We
deemed it was no longer worth the money to purchase an X.509 certificate.” (A190)
The deliberate setup group self-reported a mean TLS technical knowledge of 4.08,
while the misconfiguration group reported a mean TLS technical knowledge of 3.80.
The deliberate group rated their data sensitivity to be a mean of 2.48 out of 5, while
the misconfiguration group rated it to be a 2.43. 101 of the participants stated that
their websites were not actively in use or said that they were sure that there were no
hyperlinks pointing to their website and hence no browser warning messages would
ever be thrown.

66

Technical Knowledge Concerning TLS

We asked the administrators who had set up the X.509 certificate for their HT' TPS
server. 613 stated they had set it up themselves, 63 certificates were set up by a
coworker, 12 by a retired coworker, 68 by their service provider and 11 did not know
who set up the certificate. We asked the participants to self-report their technical
knowledge of TLS on a 5-point likert-scale between very low and very high. 12 self-
reported their TLS knowledge as very low, while 236 said their technical knowledge
of TLS was very high. In the mean they rated it as a 3.96. Many administrators
were uninformed about the pricing of X.509 certificates and strongly overestimated
the actual costs. We asked how much they think a valid X.509 certificate costs 3.
181 administrators estimated a valid X.509 certificate to cost 0%, 114 said it would
cost between 1$ and 208, 145 said it would cost between 21$ and 508, 156 said it
would cost between 51$ and 100$, 131 said it would cost between 101$ and 5008, 24
said it would cost between 501$ and 1000$ and 4 said it would cost more than 1000$.
A total of 87 (11.5%) administrators did not know their configuration could lead to
browser warning messages prior to our survey (those who did know reported a mean
technical TLS knowledge to be 4.02, those who did not reported their mean technical
TLS knowledge to be 3.50). One interesting finding was that six survey participants
stated they do not need the features provided by CA-issued X.509 certificates. They
argued that for their use cases they did not need the authenticity features CA-
issued certificates provide but only rely on “strong encryption” to transport sensitive
data. These statements demonstrate a lack of understanding of the TLS security
features. Although they rely on strong encryption, they oversee the fact that without
properly verifying the identity of the server, no secure communication channel can
be established in a reliable way since a MITM attacker could easily exchange the
original with a malicious certificate.

Risk Assessment Concerning Misconfigured TLS

We asked the participants to rate the importance of HT'TPS for the operation of
their website on a 5-point likert-scale from not important at all to very important.
217 said that HT'TPS is not important at all, while 190 stated that it is very im-
portant for their websites’ users. In the mean they rated it as a 3.00. We also asked
them to rate the sensitivity of the data their website serves via HT'TPS on a 5-point
likert-scale ranking from 1 as not sensitive at all to 5 as very sensitive. 252 rated the
sensitivity of their data as not sensitive at all, while 81 rated it as very sensitive. In
the mean they rated it as a 2.53. We also had them rate the risk the non-validating
X.509 certificate they are using poses to their users. On a 5-point likert-scale they
could choose from wery low to very high. 524 rated the risk as very low, while 23
said the risk for their users was very high. In the mean they rated it as a 1.55 Of
the 755 respondents, 612 stated their users never complained about the occurring
warning message, 7 administrators reported they receive complaints at least once a
week, 12 received complaints on a monthly basis, 26 on a yearly basis, 77 receive

3We asked both questions — to rate a valid certificate’s value and how much our participants think
a certificate costs — to measure the perceived value versus the assumed monetary cost.

67

complaints less often and 21 could not remember how often they receive complaints.
We had been looking for interesting correlations between certificate error types and
certain self-reported values. However, except for the results described above, we
did not find a statistically significant correlation that would have helped us predict
what kind of error would occur because of which characteristic. This underlines
the importance of increasing the usability of X.509 certificate configuration and de-
ployment in general, as well as building in more failsafe mechanisms and generally
taking the weight of correct and secure X.509 certificate configuration and deploy-
ment away from administrators.

At the end of the study, we asked the administrators to describe problems they en-
countered with setting up TLS for their website and suggestions they had to make
X.509 certificate configuration more usable. We present their concerns and sugges-
tions in what we call the Admins’ Wishlist.

Admins’ Wishlist

We asked our participants to describe improvements they would like to add to make
X.509 certificate configuration for HT'TPS webservers easier and what they think is
missing in the current system. In the following section we analyze their statements
and describe what most participants find lacking in the current system. Of the
755 responding administrators, 87 offered suggestions, some of them more than one.
Their suggestions can be categorized into six different groups:

Lowering The Price: 13 of the participants mentioned that the current price
range for X.509 certificates that do not throw warning messages in browsers is not
adequate. They find that paying a high amount of money for such a low cost task
such as digitally signing an X.509 certificate is not fair and they would like to see
a change in the current pricing policy of commercial Certificate Authorities. They
criticize that the current CA infrastructure “is a money printing machine without
providing strong security for both service providers and their users” (W29). Nine
of them asked for a CA that issues free certificates that are accepted by popular
browsers. Four participants complained that they have to configure X.509 certificates
for multiple subdomains and that current wildcard certificates are too expensive.
They wished to get access to cheaper wildcard certificates to reduce the number of
false positive warnings on their websites.

Allowing CACert: 45 websites operated an X.509 certificate issued by CACert?.
10 of these proposed to add the CACert root CA to all popular browsers to provide
an alternative to the commercial CAs issuing trusted certificates. The motivation to
use a CACert certificate was two-minded: 28 of the administrators preferred CACert
certificates since they did not want to support the commercial CAs and are of the
opinion that basic encryption mechanisms as provided by TLS should be accessible
by everyone for free. The remaining (17) did not trust the centralized trust model
of commercial CAs after the breaches of DigiNotar and Commodo. They argued
that the CACert’s web of trust model provides more security and better protection
against Certificate Authority compromise attacks.

4ef. nttp://www.cacert.org — last access 13.04.2016

68

http://www.cacert.org

Better Support for Non-Validating Certificates: 15 participants complained
that they were forced to use certificates issued by commercial CAs to avoid TLS
warning messages. They can be categorized into three different groups: Seven par-
ticipants would like to change the current trust model. While two did not describe
their idea of a different trust model, three would prefer a trust-on-first-use-based
model such as known from the Secure Shell [205] which would allow them to use a
certificate of their choice. Two other responders would prefer the TACK trust model
proposed by Moxie Marlinspike® since they explicitly did not trust commercial CAs.
Five participants would like to have an easy way to use self-signed certificates with-
out giving concrete ideas of how such a system could work and four participants
wanted to have an easier-to-use mechanism to validate certificate fingerprints to
be able to securely deploy self-signed certificates for their users. Three participants
were using their own CA in an enterprise environment and criticized the complicated
workflow of adding their custom CAs to their users’ browsers.

Better Tool Support: Six survey participants suggested to improve the tool
support to generate and configure X.509 certificates for webservers. They found
the command line interface for the OpenSSL tool® too complicated and wished for
better documentation. The TLS configuration options of popular webservers were
also criticized. Particularly the configuration of virtual hosts was described as very
complicated and error-prone and administrators generally requested a more easy to
use mechanism to configure X.509 certificates for multiple hostnames on a single IP
address.

Auto-Update Reminder: Eight survey participants who used an already ex-
pired certificate were not aware of that fact before we contacted them. They criti-
cized the fact that they would not receive an automatic message when their certifi-
cate expired and would like to have a service that keeps an eye on the expiration
date of their certificate: “Ideally an automatic message would be sent out to not
miss the date to re-new a server’s certificate” (W643).

4.4 Discussion

Our study reveals new findings and helps to better understand previous work in the
field. While Akhawe and Felt [4] desire a 0% click-through rate for TLS warning
messages, in our study 330 of 755 website administrators stated that they deliber-
ately operate non-validating X.509 certificates and that their users are informed of
the warning message beforehand. In these cases, TLS warning messages are no un-
expected security warnings, but can be seen as information dialogs that users expect
and to which they react by clicking through the warning because their administrator
told them to. For users who know how to verify the fingerprint of an X.509 certifi-
cate, deploying a non-validating X.509 certificate does not pose an extra security
risk. However, manually verifying the fingerprint of an X.509 certificate is not trivial
for the average Internet user and it might be even easier to trick the non-technical

S5c¢f. http://tack.io/draft.html — last access 13.04.2016
6cf. http://www.openssl.org/ — last access 13.04.2016

69

http://tack.io/draft.html
http://www.openssl.org/

user into clicking-through an attacker’s X.509 certificate: In situations where users
expect a TLS warning message and are said to click-through by their administrator
they have almost no chance to differentiate an attacker’s X.509 certificate from the
non-validating but benign X.509 certificate installed by the administrator.
Whenever websites with non-validating certificates are re-visited by users, and the
users did not add the non-validating certificate or the browser-untrusted CA to their
truststore, they will repeatedly click through the warning. Since Google Chrome
does not open the change to its trust store in the warning menu, it is likely that
users will click-through a warning message on every visit. This is one possible expla-
nation for the huge difference in click-through rates as reported by Akhawe et al.[4]:
They count every repeated click-through in Chrome, while they count click-throughs
in Firefox only at the first visit to the respective website (which may or may not have
occurred during the period of their data collection). Thus, our findings support the
assumptions that Chrome’s click-through rate is massively influenced by re-visits of
websites that operate non-validating certificates.

We found that many administrators reported that their site was either not in use
any more, or that the TLS version of the specific domain we encountered had never
been meant to be accessible for users at all and had respectively never been hyper-
linked anywhere on the Internet. This attests to a very important finding: Studies
using datasets of TLS certificates that were accumulated by certificate crawlers are
prone to massively overreport handshake failures and hence TLS warning messages
in browsers not only by assuming a possibly not applicable set of trusted certificate
issuers, but also by including unused websites.

We found that the administrators generally rated their knowledge about TLS to be
rather high, which is surprising: We would have expected there to be two sets of
administrators that strongly differ in their knowledge about TLS: Those who de-
liberately configured their webserver in a way that their X.509 certificate does not
validate, and those who accidentally misconfigured their webserver. We would have
expected the former group to self-report a remarkably higher technical knowledge
than the latter group. While they did report a 4.08 versus a 3.80, compared to the
difference in skill they demonstrated, this difference in self-reporting seems rather in-
significant. We gained valuable insights from the free texts the administrators wrote
about problems with TLS and improvement suggestions. Many of them wished for
more simplicity: 165 had accidentally misconfigured TLS. Some wished for either
a simpler interface to set up a webserver, others wanted an automatic renewal for
expiring certificates.

330 administrators had configured their webservers in a non-validating way on pur-
pose. 15 of them wished that there was a broadly-accepted alternative to commercial
CAs; in general there were complaints about the pricing of CAs. This is a very inter-
esting finding: 20 of the 85 administrators who suggested improvements requested
a free alternative to paid CA certificates. Obviously these administrators were not
aware of the fact that there are free alternatives’ that provide free and trusted X.509
certificates, which demonstrates that there is not only the need for a better technical
education but also for a broad and basic documentation, complete with examples

“cf. https://letsencrypt.org/ — last access 13.04.2016

70

https://letsencrypt.org/

and links for administrators, who understandably do not call TLS their primary
field of expertise. While there exists a fair number of alternatives and suggested
improvements to the current TLS infrastructure [144, 200, 145, 135], none of them
has been widely deployed yet. They each come with a collection of advantages and
disadvantages over the current TLS system. As we could see in our study, many
administrators are confused and overwhelmed by configuring X.509 certificates cor-
rectly. These findings reveal that any new TLS system not only has to improve
security and usability issues for end users but also needs to focus configuration and
deployment usability for administrators.

4.5 Limitations

Population: We contacted administrators from a random sample of 50,000 websites
which operated non-validating X.509 certificates without considering the popularity
of the given website. While this might have resulted in contacting many websites
that are only rarely visited, this was of very much interest in the context of our study.
Our results imply that X.509 certificate warnings occur more frequently on websites
with low traffic which is often regarded as unproblematic by their administrators:
they claim that their users are aware of the presence of a TLS warning message
causative certificate.

Self-Selection Bias: All our participants were self-selected. They chose to fill out
the survey, which could mean that more active administrators answered.

Bounced emails: We tried to reach administrators either by using the contact
email address in the website’s X.509 certificate or the webmaster@domain.com
email address. 37,596 of all emails we sent were bounced. Hence, the majority of
websites with non-validating X.509 certificates does neither follow best practices and
nor provide an easy-to-find contact email address. It might be possible that those
administrators have different reasons for using a non-validating X.509 certificate on
their websites.

No incentive: We did not offer a monetary incentive to our study participants.
A study by Callison [33] shows that volunteers offer good work. Our decision to
focus on volunteers might have prevented administrators that expected some kind
of monetary reward for answering a short research survey. Hence our results might
not reflect their motives for operating non-validating X.509 certificates. While it is
common-practice to pay participants of end user studies, we decided to not offer a
financial incentive to the website administrators since we found it very hard to for
several reasons. First of all, monetary incentives could increase the probability of
being seen as spam. Secondly, it would have been impractical to pay them, since
they would have had to trust us with some banking account information.
Underreporting: Some of our conclusions are drawn from answers which were
given as free text. Thus we do not have data on all of our participants for several
issues: Some did not report on whether their website is in use/is meant to be used
at all, while others did. Not all of the users report on who the TLS connection is
intended for. Therefore it is possible that we underreport the websites which are

71

out of use, as well as the websites which exist for administrators’ use only.

4.6 Summary

We conducted the first study with administrators who operate non-validating X.509
certificates on their HT'TPS-enabled websites to understand their motives. There-
fore, we used the body of 4,487,463 certificates Google’s webcrawler had collected
over 12 months. We identified 610,966 non-validating certificates, chose a random
sample of 50,000 of these, established if they were still operating and non-validating
certificates, extracted email addresses for their administrators and emailed them.
Of those emails, 8,549 were successfully delivered. Of these, 755 administrators who
operated websites with non-validating X.509 certificates responded to our study.
101 said that their website was not meant to be accessible, and that actual users
would not have encountered the certificate as the webcrawler did. We found that
of the 495 who reported on this issue, 330 said that their use of a non-validating
certificate was deliberate, while only 165 explained it with an accidental misconfig-
uration. 44 of the administrators (25% of those who had accidentally misconfigured
their webserver) stated that they were confused about TLS configuration in general,
strengthening the our assumption already made in previous research [81] that, while
warning messages and user behavior are an important field of study, studies with
IT professionals in general and administrators and developers in particular are an
important and often neglected issue. We confirm findings from Akhawe et al., who
state that Google Chrome users tend to click through warning messages more easily:
This goes well with our finding that many administrators use non-validating certifi-
cates on purpose and inform their users about it. Clicking through these warnings
will add the certificate to Firefox, while Google Chrome will show a new warning on
each revisit.

This leads us to a point made by previous research. Habituation is a problem
for users when confronted with warning messages, both in general, but also in the
following specific scenario: Users who frequently visit websites where they expect
warning messages do have a lowered risk perception for the respective websites.
Those sites may seldomly be targets for Man-In-The-Middle attacks due to their
low overall user count, but if an attack takes place, users who did not add the
website’s certificate or custom CA to their browser’s truststore but simply click
through the warning have no chance to differentiate between the expected warning
and an actual attack.

This chapter gave mew and promising insights into the motivation for admin-
istrators of webservers to (not) deploy valid TLS certificates, leaving the security
and privacy of their end users at risk. However, the impact of administrators on
an ecosystem’s security and privacy strongly depends on the developers shaping the

72

ecosystem. For erxample, administrators of IT systems can enforce strong end user
authentication by enforcing secure password policies, e.g. not allowing weak pass-
words that can easily be looked up in a dictionary. End users adhering to their
administrators’ password policies have different strategies at hand to manage pass-
words. One popular strategy is the use of a password manager. The overall system’s
security then not only depends on secure password policies defined by administra-
tors and end users adhering these policies, but also strongly depends on the secure
implementation of password manager software.

To investigate this circumstance and gain insights into the developers’ role, the
next chapter consists of two parts: The first part analyzes the security of mobile
password manager software for the Android platform. The second part includes a
study with developers of those apps to obtain a better understanding of challenges
for developers during the implementation of secure password managers.

73

5 Developers:

Implementing
Password Managers

74

Disclaimer: The contents of this chapter were previously published as part of
the paper “Hey, You, Get Off of My Clipboard - On How Usability Trumps Se-
curity in Android Password Managers” presented at 17" International Conference
on Financial Cryptography and Data Security (FC) in 2013 [80] together with co-
authors Marian Harbach, Thomas Muders, Marten Oltrogge and Matthew Smith. As
this work was conducted with my co-authors as a team, this chapter will use the aca-
demic “we” to mirror this fact. The idea and initial concept for this work came from
myself. I developed the “pwsniff” attack, implemented the proof-of-concept exploit
and analyzed all affected password managers. The interviews conducted with devel-
opers of vulnerable Android password manager apps were designed, conducted and
analyzed by myself. However, my co-authors contributed in different ways. Marten
Oltrogge assisted in implementing the “USecPassBoard” keyboard as a countermea-
sure for the “pwsniff” attack. Together with Marian Harbach, Thomas Muders and
Matthew Smith, we jointly discussed the work’s implications and compiled the paper
for publication.

Software described in this chapter is available at https://zenodo.org/record/
50527.

5.1 Motivation

Text-based passwords are the most prominent authentication scheme in computer
systems. Although researchers have been criticising this scheme as being hard to use
in a secure way, it is still the most widely adopted system for authenticating users.
However, due to the bounded cognitive abilities and motivation of users, pass-
word re-use is commonplace (cf. Section 2.3.1). Password managers (PMs) aim to
overcome this problem: they help the user to handle a large number of different pass-
words by storing them in encrypted form. To access the encrypted passwords, the
user usually has to enter a single master secret that decrypts the password database.
Password managers often include a password generator to simplify the creation of
new unique and secure passwords. For convenience, login forms are pre-filled and
account information for new websites is captured on the fly. Another prominent
feature is the synchronisation of password databases between multiple devices.
While early password manager applications were limited to desktop computers
and their browsers [168], current implementations offer mobile password manager
apps, that can be synchronised over the cloud to ensure that the password database
is available on all of the users’ devices. In contrast to the smooth integration of
password managers on desktop browsers, current mobile platforms lack such plu-
gin facilities and therefore do not provide convenience features, such as automatic
account creation or credential fill-in. While users of desktop password managers
benefit from a smooth integration into browsers, password manager apps on mobile
platforms offer less comfort. First, web browsers on smartphones and tablets often
do not provide a plugin interface, that would allow for a smooth integration of pass-
word managers. Second, the existence of dedicated apps for many online services
steadily increases the number of users that access online services through an app

75

https://zenodo.org/record/50527
https://zenodo.org/record/50527

instead of a website in a general-purpose web browser. This circumstance requires
that mobile password managers have to be able to manage passwords not only for
browsers but also for apps. Unfortunately, there is a fundamental problem with
password manager apps on Android: The OS does not offer an API to integrate
password managers with the browser or other apps. This has led to the adoption of
a highly insecure practice to overcome this weakness: Password managers use the
OS clipboard to transfer credentials from a password manager app to the browser
or other apps. This method effectively broadcasts credentials to all apps installed
on the smartphone.

5.2 Background

While early password managers were simply a username/password database embed-
ded in desktop computers’ browsers, the features of modern password managers are
much more extensive and can be categorised as follows:

Browser-Embedded PM

Most web browsers, such as Google Chrome, Microsoft Internet Explorer, Mozilla
Firefox or Apple’s Safari, include an embedded password management feature. In
case a user logs into a website for the first time, the PM inquires whether the login
credentials should be saved to ease future logins by automatically filling the username
and password into the login form. These embedded password managers traditionally
store credentials locally on the user’s computer, but are increasingly syncing them
between multiple devices using proprietary Cloud services. Some browsers do not
encrypt credentials stored locally or require the user to set a master secret to enable
encryption. For example, Chrome uses the Google Account password to encrypt
the synced password database by default, but offers to use a dedicated secret as an
advanced feature.

Browser Plugins

The majority of modern desktop web browsers provide an API to extend their func-
tionality by allowing the user to install third-party plugins or extensions. Many
password managers are hence available as browser plugins. KeePass!, 1Password?
and Lastpass® are prominent examples of plugin-based password managers. They
encrypt passwords and protect them with a master secret. These third-party pass-
word managers often provide further functionality and act as encrypted storage for
more than just usernames and passwords: other sensitive information such as credit
card numbers, online banking information or secret notes can be stored as well.

lef. nttp://keepass.info/ — last access 13.04.2016
2¢f. https://agilebits.com/onepassword — last access 13.04.2016
3cf. nttps://lastpass.com — last access 13.04.2016

76

http://keepass.info/
https://agilebits.com/onepassword
https://lastpass.com

Password Managers on Desktops

Password managers on desktop computers are generally well integrated into the
users’ everyday Internet-facing software, such as browsers and email clients. Re-
gardless of whether an embedded password manager or a third-party plugin is used,
when the user accesses an online account for the first time or creates a new account,
the password manager automatically comes into play and offers the user to securely
store the new account information. The plugin APIs of modern browsers offer a
very comfortable integration of password managers into the users’ workflows. When
a user visits a website that requires authentication, a password manager typically
auto-fills the username and password and might even automatically submit the login
form.

Early password managers for desktop computers (e. g. [168]) assumed a single de-
vice environment. Nowadays users often work with multiple devices such as desktops,
notebooks, smartphones and tablet PCs, which makes it necessary to synchronise
password databases between multiple devices to have credentials available whenever
needed. For this reason, some password managers offer to sync databases between
multiple devices by storing credentials in the Cloud or by putting the database on
USB drives. A popular way to sync password databases is the Dropbox service. The
encrypted password database is stored in the user’s Dropbox account and can be
accessed from all the user’s devices. 1Password for example maintains an encrypted
database for sensitive information and allows users to store and share the database
via their Dropbox account.

Password Managers on Mobile Devices

While password managers in desktop environments are well integrated into browsers
and users’ workflows, the situation for third-party password managers on mobile
platforms is different. Neither of the major mobile platforms (Android, iOS and
Windows Mobile) nor mobile browsers provide a plugin API comparable to desktop
computers. Additionally, the paradigm shift away from the browser as a generic tool
to surf the Internet towards the “there is an app for everything” approach makes
integrating PMs into mobile ecosystems even harder.

API limitations and the requirement to support arbitrary apps creates a different
usage pattern for mobile PMs. Instead of storing new account information automat-
ically and auto-filling authentication forms, the workflows of mobile PMs typically
consist of the following steps:

1. The user has to switch to the PM app,

2. then needs to find the appropriate username/password tuple from a list of
stored credentials,

3. copies the password to the clipboard,

4. switches back to the app that requires authentication, and

7

5. finally pastes the password into the corresponding text field before submitting
the login form.

6. In case the user does not remember the username for a given service, these
steps (except step 2) are repeated for the username as well.

Although this workflow’s usability is far from optimal, it is the best mobile pass-
word managers can provide so far. To understand why users nevertheless use pass-
word managers on mobile devices, we analyzed 2,000 user reviews in Google’s Play
Market. To this end, we downloaded user reviews, manually extracted factors that
motivate users to use PMs on their Android device and identified the following
reasons to be substantial:

Protection: Users feel that embedded PMs do not store the passwords in a way they
believe to be secure (e.g. some users were angry that Android’s stock browser
does not encrypt stored usernames and passwords).

Confidentiality Users do not trust embedded PMs in keeping their data confidential
(e.g. users were afraid that their credentials could be sent to Google).

Features: Embedded PMs are usually limited to usernames/passwords. Users often
want to store other confidential data, such as banking information.

Availability: Embedded PMs are usually limited to a single browser. Since many
users need access to their information on multiple devices and browsers, a
vendor-independent PM is preferred.

Related Work

Gasti and Kasper [94] analyze the security of 13 popular password manager databases
and their storage formats. They find even popular password managers such as
Google Chrome store password databases in clear text providing no security against
attacks. However, even password managers such as Mozilla Firefox and Microsoft’s
Internet Explorer that use a master password to encrypt password databases are
vulnerable against weak attackers. Overall they find that only one of the password
managers they analyzed was secure against their attacks.

Li et al. [138] investigated the security of web-based password managers that run
in browsers as plugins and store the password database remotely on the web. They
evaluate the security of five different web-based password managers and find that
four of them have sever security vulnerabilities that allow an attacker to learn users’
credentials. The root causes are mainly developers misunderstanding the concepts
of web security in addition to vulnerabilities such as CSRF and XSS.

Silver et al. [181] study the security of the most popular password manager soft-
ware and their policies on automatically filling in passwords on websites. In addition
to web-based password managers, they also investigate mobile password managers
and standalone apps. Their work on mobile password managers extends our work
in this chapter. They find that autofill policies are hard to implement correctly
and can therefore lead to serious consequences allowing a network attacker to sniff
credentials without any user interaction.

78

5.3 Password Sniffing on Android

As illustrated in Section 5.2, the workflow of mobile password managers requires
the user to copy account credentials to the clipboard before switching to the tar-
get app and pasting them before actually logging in. There are some problems
with this practice: On Android, writing data to or reading data from the clip-
board does not require any permission. Therefore, every app currently running
on an Android device can read the items stored in the clipboard at any time.
To make matters worse for password managers, the Android SDK provides the
android.content.ClipboardManager.OnPrimaryClipChangedListener
interface, which defines a listener callback that is invoked each time the primary item
on the clipboard changes. This can be used by malicious apps to harvest passwords
as they are passed through the clipboard. As a proof of concept we implemented
a password sniffer named PWSniff using this mechanism. PWSniff runs as a back-
ground service and does not require any Android permission to work properly.

As long as no changes to the clipboard occur, the background service idles and
therefore does not consume any CPU cycles. Directly after a new item is copied to
the clipboard, the listener callback is invoked by Android and the idling PWSniff
background service is notified and then reads the primary item. Next, PWSniff
determines the app which is currently in the foreground. This information can also
be acquired without requesting any permission. We assume that the foreground app
at the time of copying is the app from which a user copied data (cf. Section 5.2
step 1). In case this app is a known password manager, we assume that the primary
clipboard item is either a service URL, a username or a password (cf. Section 5.2
step 3). Whether the app is a password manager can be determined based on the
app’s user ID, which is assigned at install time and can be mapped to the a unique
app market ID. The third step in our attack is to wait for a foreground app switch
by checking the current foreground app in a loop and waiting until the user brings
another app to the foreground. In case we identified the primary clipboard item as
possibly confidential data (no matter if it is a username or a password) copied from
a password manager, the new foreground app is assumed to be the destination of
the credentials-copy-operation (cf. Section 5.2 step 4).

Hence, by exploiting features of the Android SDK that require no special per-
missions in combination with a typical workflow in the context of using password
manager apps on Android, it is easily possible to harvest (still potentially noisy)
usernames and passwords from the world readable clipboard.

At this point, an attacker cannot be sure which item is the username and which
the password. But, in many cases it is possible to differentiate between both items
based on their structure. Usernames are often chosen to be easily memorable (e.g.
an email address) while passwords, especially those which are managed with PM
software, usually are more “cryptic”. Even in cases where the username and password
cannot be easily distinguished, an attacker could first try one combination of the
sniffed items and in a second attempt the reversed order. In both cases, breaking
into an account is straightforward.

79

Advanced Username Capture

The attack described above relies on the user copying and pasting both the username
and the password. Since users might just type their usernames from memory or use
browser or app autofill features to save this effort, it might become necessary to
acquire the username through an alternative method. For this, PWSniff can be
equipped with the GET__ACCOUNTS permission. The permission allows the app
to see usernames that other apps handle on the smartphone and which are registered
with the AccountManager®. This also includes all email addresses used on the device.
Since many online services use email addresses as usernames, this list offers a good
basis from which to guess usernames for many services.

The downside of this extension is that it involves the danger of a user becoming
suspicious of the app’s permissions, which are presented to the user at install time.
However, Felt et al. [84] demonstrated that users pay little attention to the per-
missions of an app and mostly do not understand the permissions’ meaning. While
Felt et al’s. results account for Android’s permission system in general, an app’s
permissions are also grouped and classified based on their security relevance. In this
respect, the GET__ACCOUNTS permission does not rank particularly high and
thus is not often shown on the first page. To ensure that the GET ACCOUNTS
permission is not shown on the first page, an attacker only needs to request more
than three popular permissions such as INTERNET, LOCATION and STORAGE
which are used by many apps. The best composition of permissions to mask the
GET_ACCOUNTS permission is outside the scope of this work.

Advanced Account Capture

In Section 5.3, we illustrated that an Android app which holds no special permissions
is able to sniff online account credentials that are copied to the clipboard when
working with any password manager on Android in most cases. It is also possible
to learn from which app a value was copied to the clipboard and into which app the
value was pasted. If the target app has a special purpose (e.g. the Skype app only
logs into Skype), it is easy to guess to which online service the harvested credentials
belong. However, in case the target app is a multi-purpose Internet client such as a
web browser, finding the intended service is not quite as straightforward.

To learn for which account a password is used, an attacker can benefit from
Android’s ProcFS features. The ProcFS is an interface to the kernel and provides
information about a device such as information about the CPU, memory and network
details. On Linux-based systems such as Android, the ProcFS is usually mounted
at /proc. Most entries in /proc and its subdirectories can be read by everyone.
The /proc/net/tcp file contains information about all TCP connections on an
Android device and is also world-readable and hence accessible by every app without
requiring any permissions. Information such as source IP and port, destination IP
and port and the UID of the process that created the network connection are listed
there. Since Android creates a static mapping of Apps to a UID at install time, one

4ef. http://developer.android.com/reference/android/accounts/
AccountManager.html — last access 13.04.2016

80

http://developer.android.com/reference/android/accounts/AccountManager.html
http://developer.android.com/reference/android/accounts/AccountManager.html

can easily learn which app connects to which Internet hosts based on the UID entry
in /proc/net/tcp. Having the destination IP for an app’s network connection at
hand allows an attacker to easily infer to which online service a credential pair is
connected by logging all network connections of an app, immediately after a copy
operation from a PM to another app was discovered.

Exfiltrating the Data

As we will report in Chapter 6, Page 93, we found that 92.8% of 13,500 pop-
ular Android apps request Internet access. Adding the Internet permission to
PWShniff should thus not raise undue concern. With this permission, transmit-
ting the harvested data is of course trivial. However, if a zero permission at-
tack app is desired, exfiltration of the harvested data can still be done using an-
other flaw in Android’s permission system. Egners et al. [64] describe a loop-
hole in Android’s permission system that we adopt for our purposes and which al-
lows PWSniff to send gathered credential information to a remote HTTP server
without requiring the Internet permission. After the account login information
was gathered, the harvested data is cached until the device’s display is turned
off. 'When this happens, an HTTP URL with the following structure is built:
http://<pwsniff-master>/pwHusernamefservice. This URL is used to
invisibly open Android’s stock browser when the display is turned off by using An-
droid’s PowerManager API. We explicitly call Android’s stock browser since some
third-party browsers do not hand back control for unknown protocols to the Android
OS, which is required to keep the attack stealthy.

The server behind the URL replies with a location header containing a custom pro-
tocol, for example: ' Location:pwsniff://all.ok’. Since PWSniff includes
an activity that previously registered for the custom pwsniff:// protocol, the
browser passes handling for the URI pwsniff://all.ok to PWSniff. Staying
invisible, the activity then simply terminates.

After demonstrating how credentials can be sniffed when Android password man-
agers are used, how they can be mapped to online accounts and how this information
can be exfiltrated stealthily, the next section gives some relevant excerpts of our de-
tailed security analysis of PMs on Android.

5.4 Security Analysis

We analyzed 13 free and 8 paid Android PM apps in detail (cf. Table 5.4). Our
intention was to analyze which apps include the clipboard feature for credential
copy & paste, which encryption algorithms protect the password database, whether
or not the app includes an embedded browser, whether or not the SD card is used
to store the password database and whether or not the app removes itself from
the recent apps view. For analysis, we installed all apps on a Samsung Galaxy

81

http://<pwsniff-master>/pw#username#service
'Location: pwsniff://all.ok'
pwsniff://
pwsniff://all.ok

Nexus with Android 4.0. We applied forensic techniques® to learn database and

configuration files’ structures of the installed password manager apps.

To learn

internals of the password managers, we decompiled them® and conducted manual
static code analysis.

We also conducted static code analysis on the same dataset as in Chapter 6,
Page 93 and found that only two apps in this dataset registered for the clipboard
change listener. We analyzed both apps manually and found no malicious behaviour
in the apps. 907 apps (6.7%) in the sample access the clipboard API programatically
to share more complex objects than simple text strings such as images, video or

audiofiles.

Free

App Installs’ EM KD C&P EB SD RA
PassDroid 100-500k AES SHA-256 v - Backup v
1Password 100-500k AES PBKDEF2 v v Always v
KeePassDroid 500k-1m AES? SHA-256 v - Always v
UPM 100-500k AES PBE v - Backup v
Pocket 100-500k AES PBE v Backup v
NS Wallet 10-50k AES - v - v v
LastPass 100-500k AES ot v v - -
PasswdSafe 10-50k AES - v - v v
OI Safe 100-500k AES PBE v - v v
aWallet 100-500k AES? SHA-256 v Backup Vv
Moxier Wallet 10-50k AES SHA-256 v — — v
Keeper 1-5m AES SHA-1 v v Backup v
RoboForm 100-500k ot ot v v Backup v
Paid

mSecure 100-500k Blowfish SHA-256 v - v -
Secret Safe 50-100k AES? SHA-256% v - Backup Vv
SafeWallet 10-50k AES HmacSHA1 v - v v
SPB Wallet 10-50k AES ot v - v v
eWallet 10-50k AES PBE v - v -
Handy Safe Pro 10-50k Blowfish — v — — v
DataVault 1-5k AES - v - Backup v
Password Box 5-10k AES - v - v v

Table 5.1: Overview of the analysed Android password manager apps.

(EM=Encryption Method, KD=Key Derivation, C&P=copy&paste
functionality, EB=Embedded Browser, SD=Writes database to SD
card, RA=Removes itself from the recent apps view)

! KeePassDroid combines AES and Twofish

2 aWallet combines AES, Blowfish and 3DES

3 Secret Safe combines AES and Twofish for encryption and multiple rounds of SHA-256 and

Whirlpool for key derivation.

4 This information could not be found by reverse engineering.

5We used the adb tool (cf. http://developer.android.com/tools/help/adb.html — last
access 13.04.2016) for logical extraction.

We used a bundle of decompilation tools:

JD-GUT (cf.

http://java.decompiler.

free.fr/?g=jdgui — last access 13.04.2016), apktool (cf. http://code.google.com/p/
android-apktool/ — last access 13.04.2016) and dex2jar (cf. http://code.google.com/
p/android-apktool/ — last access 13.04.2016)

82

http://developer.android.com/tools/help/adb.html
http://java.decompiler.free.fr/?q=jdgui
http://java.decompiler.free.fr/?q=jdgui
http://code.google.com/p/android-apktool/
http://code.google.com/p/android-apktool/
http://code.google.com/p/android-apktool/
http://code.google.com/p/android-apktool/

Encryption

One important aspect of PM security is the encryption mechanism to store creden-
tial databases. Android’s stock browser does not encrypt stored passwords in any
way but protects them from unauthorised access by file system permissions. An-
droid’s AccountManager mechanism provides centralised credential storage and also
protects user credentials from unauthorised access by file system permissions, but
the accounts.db database is not protected with an extra layer of encryption. This
does not protect the password from forensic analysis.

All third party PMs we analyzed apply some encryption mechanism to protect the
data. Android supports (3)DES, RC2, and RC5” to encrypt data out of the box.
Other encryption algorithms require the developer to add third-party libraries to
their app. We decompiled the PMs to find out what kind of encryption algorithm is
applied in each PM app. To provide stronger security, most password managing apps
use the Advanced Encryption Standard (AES) with several key lengths. aWallet uses
a combination of AES, Blowfish and 3DES.

A critical aspect of encrypting password databases is the derivation of the encryp-
tion key [119] that is directly connected to the master secret used to unlock/decrypt
the password database. Seven apps use a dedicated key derivation function to derive
the symmetric encryption key from the user’s master secret to strengthen the security
of encrypted credentials. We found one app that directly inputs the user’s password
as the encryption key, truncating passwords longer than 16 characters. In case the
password has less than 16 characters, the string “FEDCBA9876543210” is appended
to “strengthen” the password. Another app uses an HMAC algorithm with SHA-256
and the fixed initialization vector “notverysecretiv” for key derivation.

Database Structure

Password managers from Table 5.4 differ in the way they store entries in their
databases. Some apps such as KeePassDroid store password databases in a single,
completely encrypted file® and encrypt all data including username, password and
online service identification (e.g. the online account’s website). 1Password and NS
Wallet, on the other side, do not encrypt all information. 1Password puts each entry
into a separate JSON-structured file that stores the account’s location (i.e. website
URL) in cleartext. Passwords and usernames are stored as unsalted hash values.
Hence, accounts with equal usernames and/or passwords have the same hash values
and enable an attacker to carefully select which hashes might be worth breaking. In
their FAQ, the 1Password developers explain that they only encrypt parts of their

databases for performance reasons®.

Tef. http://developer.android.com/re-ference/javax/crypto/—spec/
package—summary.html — last access 13.04.2016

8KeePassDroid uses the .kdbx format.

http://help.agilebits.com/1lPassword3/agile_keychain_design.html — last ac-
cess 13.04.2016

83

http://developer.android.com/re-ference/javax/crypto/-spec/package-summary.html
http://developer.android.com/re-ference/javax/crypto/-spec/package-summary.html
http://help.agilebits.com/1Password3/agile_keychain_design.html

Storage

Most password managers, including Android’s stock browser, store password databases
in files or SQLite databases that are only accessible by the password manager app
itself. Hence, other Android apps cannot access account information regardless of
whether it is encrypted or not. Ten of the analysed PMs store databases on the
SD card that is world readable without requiring further permissions on all devices
with Android 4.0 and older. In combination with inappropriate database structures
(not encrypting all information stored in the password manager), an attacker is for
instance able to learn for which services a user holds accounts or for which services
the same username and/or passwords are used.

Recent Apps

An essential feature of Android devices is an overview of the currently running
apps, also called the Recent Apps View. The Recent Apps View shows thumbnails
of current foreground activities of all running apps. While a security feature of
all analysed password managers is the automatic locking of the password database
either immediately after the password manager app was left or after a configurable
amount of time, we found only three apps that also replace their thumbnails in the
recent apps view (cf. Table 5.4). In case the user copied online account information
(usually the location, username and password) and then leaves the password manager
app to paste the information into another app, the account information is left in the
recent apps view and can be seen by anyone with physical access to the user’s
device. Although this threat is orthogonal to our attack (cf. Section 5.3), it outlines
a security risk for users’ online credentials.

Cloud Sync

While all password managers store their databases locally and allow synchronisation
of their databases, most offer a more manual functionality using Dropbox or similar
services. LastPass, SecureSafe and RoboForm provide dedicated Cloud storage fea-
tures to automatically synchronise all passwords remotely. In Chapter 6, Page 93
we analyzed popular Android apps and found that many app developers fail to ap-
ply TLS appropriately, being vulnerable to active Man-In-The-Middle attacks. Al-
though LastPass, SecureSafe and RoboForm protect their network communication
with TLS, SecureSafe and RoboForm fail to verify the cloud servers’ TLS certifi-
cates. Instead, they accept all certificates. In case of SecureSafe this however has
not further security implications since in addition to TLS, SecureSafe uses a session-
specific symmetric key, which is set up during the SRP-login [203], to additionally
encrypt password-data end-to-end. However, RoboForm leaks the users’ credentials
which are used for password encryption in the default case (i.e. the user did not
choose an extra password for encryption). Hence, an attacker can gain access to the
data in cleartext under this circumstances.

84

5.5 Developer Study

After analysing Android password managers on a technical basis, we contacted their
developers via email and informed them about a possible security threat for their
users. We offered them to get in contact either via email or telephone to discuss the
details of the PWSniff attack. We also posed the following questions:

e Why was the C&P feature used in the password manager app?

e Were developers aware of the security threats arising from using the clipboard
for username/password sharing, and, if so, why did they add the C&P feature
nonetheless?

e Which features, if any, do developers miss in Android’s SDK for developing a
password manager app?

15 of the 21 developers agreed to participate in the email interview and are anony-
mously referred to as P1, ..., P15 in the following.

Results

During the discussions with developers, we were able to identify three different
reasons to add the usability-enhancing clipboard feature to PM apps. One was
because the developers themselves were users of their apps and desired the feature
themselves. (“As I'm a [...] program user too, I added the copy feature because I
needed to transfer usernames (that are usually long email addresses) and passwords
to login forms in web browsers.”; P7). The second reason provided by PM developers
was the wish to come as close as possible to PM functionality on the desktop, because
developers believed that users would reject their apps if they were not sufficiently
usable. (“Copy to clipboard has been in [...] Android from early on. [...] It was
something that we knew we needed to make the application usable at all”; P4).
Lastly, developers reported that users directly requested a C&P feature for their
app (“The feature was highly requested by users. The most common example: users
want to login to a website on their mobile device, so he/she copies credentials from
[our PM] to the clipboard and then pastes them into the browser.”; P15).

All but one developer were aware of security threats resulting from putting pass-
words into a device’s clipboard. Developers who were aware of the security threat
justified adding the clipboard integration, stating that they had no other choice.
They described it as a tradeoff between usability and security which was decided in
favour of increasing usability (“It’s a balance between ease of use and security. Of
course it would be much more secure to not use the clipboard, however people ac-
cept the risk of doing so; the alternative of not using a password manager is worse.”;
P3). One developer interestingly described his decision not as a usability-security
tradeoff but as a “one type of security versus another type of security” decision,
alluding to the fact that without password managers users would choose less secure
passwords. Additionally, P4 stated: “On the whole, I think that password reuse |[. ..]

85

is currently the biggest single problem with password security today. And so, if a
password manager gets people to use unique passwords for each site, the dangers of
a publicly readable clipboard is a security risk that can be worthwhile. [...] What’s
the alternative?”.

All developers criticised Android’s missing support for password manager apps.
A native integration into third party apps and browsers was described as the most
effective countermeasure against the password sniffing security threat (“Android
doesn’t offer hooks into the native default browser [...] and does not allow our app
to access input fields of other apps [...] which makes it necessary that password
managers make heavy use of the clipboard.”; P3).

Based on the lack of API support for third-party password managers on the An-
droid OS, developers decided to opt for the best usability they could achieve by
including the clipboard feature to allow users to copy-and-paste usernames and pass-
words from their apps to other apps. Although all but one developer were aware of
the possible security threat, they decided that better usability was more important
than stronger security. A justification multiple developers offered was that they had
no other choice and that it was necessary to add the best possible usability even if
security was threatened.

5.6 Countermeasures

With the results of our analysis and the developers’ comments in mind, we first
discuss possible countermeasures to improve the security of a smartphone’s clipboard
facilities as a global shared memory. Additionally, we present a PM implementation
for Android based on a customised soft-keyboard that provides usability features
similar to desktop PMs and does not leak credentials over public channels.

Secure Clipboard Architecture

Sniffing confidential information on Android devices is currently easy since on the one
hand, a proper plugin API for integrating password managers is missing and, on the
other hand, the design of the current clipboard mechanism on Android is not made
for sharing confidential information between apps. The current clipboard model al-
lows an arbitrary app to access clipboard items deposited by any other app. With
the assumption that both, the copy as well as the paste operation are triggered by the
user, such a clipboard model does not cause security concerns. However, on Android,
two other API features open the door for malicious activity: Android’s background
service feature for apps and the ClipboardManager.OnPrimaryClipChangedListener
allow for stealthy harvesting of clipboard items (cf. Section 5.3). Therefore, we
present two possible modifications to improve Android’s clipboard model when it is
accessed using API functionalities:

Permissions The current clipboard model allows every app to programmatically
read data from and write data to the clipboard, without requiring permission
for that. While user-triggered clipboard operations can remain unchanged,

86

we propose two new permissions for API-based access to clipboard function-
ality: WRITE_TO_CLIPBOARD and READ_FROM_CLIPBOARD. Although the
limited effects of Android’s permission model for the average app user have
been discussed (cf. Felt et al. [84]), these permissions should be added for com-
pleteness. This way, at least the tech-savvy users would have a chance to see
if an app is capable of accessing the clipboard programmatically and can warn
the rest of the community. Since we identified only very few apps to access
the clipboard programatically (cf. Section 5.4), the proposed changes would
only impact a small number of apps. Regular, user-triggered copy-and-paste
operations would not be influenced by this modification.

Targeted Clipboard Copying a value to the clipboard on current Android smart-
phones is equivalent to broadcasting the information to all other apps. This
is contrary to the users’ intuition of using a copy-and-paste feature that is
generally used to transfer information from one app to another. Therefore we
propose to extend API calls to the clipboard with a “target app” parameter
that the app may request from the user. Keeping usability in mind, the number
of target apps should be kept to a minimum. Apps providing an API-based
copy feature may let the user choose target apps from a list of all apps or
suggest useful targets as well as remember previous preferences. If clipboard
operations are triggered by the user, reading the clipboard’s contents should
only be possible through explicit user interaction as well.

The modifications to Android’s current clipboard model proposed above do not
only protect credentials from unwanted disclosure, but can also serve to shield any
other (possibly confidential) information (such as financial or medical information),
that a user might copy to the clipboard.

USecPassBoard

While the above solutions would alleviate the current security problems of PMs,
they would also require modification of the Android OS itself. Additionally, these
measures cannot address the usability issues of mobile PMs, i.e. that the user needs
to manually select credentials, switch apps and manually paste. To offer both better
security and usability we propose a novel password manager: USecPassBoard. To
overcome the issues plaguing the traditional approach of mobile password managers,
we went down a different path. We created a soft-keyboard which integrates a
password manager. Since soft-keyboards are available in every app and can access a
shared credential database, they integrate well with most scenarios where credentials
need to be entered. A custom soft-keyboard implementation on Android replaces the
default keyboard and provides a custom means to input data into user-input fields.
Figure 5.1 shows the user interface of the USecPassBoard PM. Besides preserving
the regular keyboard functionality, it essentially adds two operations: (1) Creating
a new username/password entry and (2) inserting a username/password tuple at
the user’s discretion. Since USecPassBoard is a soft-keyboard, it is available in
every application, including the browser and stores passwords in a master secret-

87

protected AES-256 encrypted database!® to protect username/password tuples from
unauthorized access. This effectively avoids the use of copy-and-paste on usernames
and passwords while maintaining the flexibility of all available password managers.

5.7 USecPassBoard User Interface

New Account

USecPassBoard analyses the context of user input to determine if credentials are
being entered. The password context is determined by identifying which app is cur-
rently used (i.e. which app is in the foreground) and in case the foreground app
is a browser, it determines the website which is displayed by reading the browser’s
first item cached in the history. Apps are uniquely identified based on their package
names managed by the Android operating system'!. USecPassBoard then caches the
input of all textfields in the foreground activity. This is possible since soft-keyboards
on Android are triggered when a textfield is activated by the user. Additionally, a
soft-keyboard receives a reference of the EditorInfo class'? which identifies an
input as a text or a password field. After the user completes the input and the key-
board loses the focus on a password field, a notification is displayed in the status bar
that a new dataset was created (cf. Figure 5.1) if there is no identical username/-
password tuple for the current context in the database. New username/password
tuples are bound to the target app — based on its package name — and are not avail-
able for possibly malicious apps. In case the user would like to share credentials
between different apps (e.g. between two Facebook client apps), we allow this in
the settings menu of USecPassBoard.

Credential Insertion

In case USecPassBoard recognises a known password context (i.e. a package name
of an app for which credentials are stored in the database), the user can choose to
insert this information by tapping into the input field for the username or password.
A popup message appears after the user tapped onto the key button (cf. Figure 5.1)
and a list of available credentials for the given password context is displayed. Sub-
sequently the selected username/password tuple is inserted at the user’s discretion
and the login process can be started.

Security Considerations

All interactions between the USecPassBoard virtual keyboard and a target app must
be initiated by the user by tapping into a text input field. This creates a communi-

10We use the SQLCipher (cf. http://sqlcipher.net/sqglcipher—for-android/ — last ac-
cess 13.04.2016) database.

Hef. http://developer.android.com/guide/topics/manifest/manifest-element.
html — last access 13.04.2016

21, https://developer.android.com/reference/android/view/inputmethod/
EditorInfo.html — last access 13.04.2016

88

http://sqlcipher.net/sqlcipher-for-android/
http://developer.android.com/guide/topics/manifest/manifest-element.html
http://developer.android.com/guide/topics/manifest/manifest-element.html
https://developer.android.com/reference/android/view/inputmethod/EditorInfo.html
https://developer.android.com/reference/android/view/inputmethod/EditorInfo.html

me to
Iman 360

User Name: |janedoe

Password: [eeeeeer

Store credentials for gs.com?

No Yes

If you have a SecurlD® Card, please enter your User N.
and in the password field enter your SecurlD passworc
PIN followed immediately by the 6 digits showing on tt
front of your SecurlD® Card.

Important Information about Phishing
GS&Co.'s Statement of Financial Condition

For assistance please call

US & Canada: 1-866-727-7000
The Americas: 1-212-357-9994
Europe & Africa: 44-20-7552-2555
Japan 81-3-6437-4844
Asia 65-6889-2266

(a) Asking the user to store new cre-
dential tuple.

me to
Iman 360

User Name:

janedoe
om

a s d figh jk

DEL
z/'x cvb nmcaocg

123

(c) Selecting existing credential tu-
ple.

in stored credentials.

ne to
man 360

User Name: |janedoe

Credentials stored
successfully

If you have a SecurlD® Card, please enter your User Nal
and in the password field enter your SecurlD password
PIN followed immediately by the 6 digits showing on th
front of your SecurlD® Card.

Important Information about Phishing
GS&Co.'s Statement of Financial Condition

For assistance please call
US & Canada: 1-866-727-7000
The Americas: 1-212-357-9994
Europe & Africa: 44-20-7552-2555
Japan 81-3-6437-4844
(b) Successfully stored new creden-

tial tuple.

ne to
man 360

User Name: |janedoe

Password: [seeeee

Remember my User Name and Pas:
Login

qw e t'y u

all st i °HY Fa| Fh BT Pk

DEL
Z X ¢cvb nmcao

123 : Go

(d) Credentials filled in.

Figure 5.1: The USecPassBoard workflow for storing new credential tuples and filling

89

cation channel between the keyboard and the target app through Android’s Input-
MethodManager!® which is not accessible from other third party apps. This allows
the automatic storage of new account credentials and insertion of stored credentials
into uniquely identifiable target apps.

Target apps are uniquely identified based on their package name that is managed
by the Android OS and cannot be spoofed by malicious apps'*. In case the target
app is the browser, a password context consists of the browser’s package name and
a target website. We identify the target website by reading the top item from the
browser’s history. This is accessible with Android’s READ__HISTORY__BOOK-
MARKS permission and gives us the currently viewed website. Hence, we can avoid
that users falsely insert credentials another website.

Since the focus of this work was on investigating developers’ challenges when
working with security relevant APIs, we did not evaluate the security and usability
of the USecPassBoard solution. This was out of scope of this work. However, after
we notified password manager developers of the copy & paste security issue, the
developers of LastPass (cf. Table 5.4) implemented a custom keyboard similar to
our solution.

5.8 Summary

With the rise of mobile devices, mobile password manager apps could be an integral
security tool for smartphone and tablet PC users. Since Android based devices lack
APIs for the integration of password managers, current solutions rely heavily on
the clipboard to share credentials between the PM and other apps. We analysed 21
popular password managers on Android which all are vulnerable to credential sniffing
because a device’s clipboard is a publicly available storage that can be accessed from
any app. We showed that, using additional context information, malware is able
to link the stolen credentials to the corresponding online account in many cases.
We interviewed developers of the analysed PM apps and found that the majority
of them were aware of possible security threats but accepted the risk to provide
better usability. Based on the analyses’ findings and developers’ feedback, we discuss
modifications to Android’s clipboard mechanism to increase security for sensitive
information. Finally, we present a soft-keyboard that integrates a secure and easy
to use password manager which prevents the leakage of usernames/passwords via
the clipboard. This password manager design is the first to offer both usability and
security for Android-based password managers.

This chapter investigated how Android app developers work around security re-

13¢f. http://developer.android.com/reference/android/view/inputmethod/
InputMethodManager.html — last access 13.04.2016
Mef. http://source.android.com/tech/security/ — last access 13.04.2016

90

http://developer.android.com/reference/android/view/inputmethod/InputMethodManager.html
http://developer.android.com/reference/android/view/inputmethod/InputMethodManager.html
http://source.android.com/tech/security/

lated APIs that provide an unsafe default, i. e. using the clipboard to copy passwords
from a password manager into another app leaks passwords. Working around this
would require developers to implement a more secure solution than available by de-
fault. However, even after we informed developers of the vulnerability, only a small
fraction started working on a more secure solution that circumvented the system’s
insecure API. While a security-focused, experienced developer should be able to find
a usable solution for this class of API issue, the insecure default sets the bar high
for the average developer.

Hence, looking at the use of security related APIs for safe defaults could provide
interesting insights into how their usability affects the security of software. To in-
vestigate this circumstance, the next chapter describes analyses of how Android app
developers work with X.509 certificates to secure network connections. While the
Android APIs provides a safe default, developers have the freedom to work around
these defaults to implement exotic use cases. The intention of this flexible API was
to be able to implement more restrictive certificate validation such as public key
pinning. However, developers can misuse the API to turn off certificate validation
entirely and weaken the security of their apps.

The next chapter offers a more complete picture of how developers work with
security APIs, both APIs providing safe defaults and APIs not providing safe de-
faults.

91

6 Developers:

Customizing
Certificate Validation

92

Disclaimer: The contents of this chapter were previously published as part of the
paper “Why Eve and Mallory Love Android: An Analysis of Android SSL (In)Security”
presented at 19" ACM Conference on Computer and Communications Security
(CCS) in 2012 [76] together with my co-authors Lars Baumgdrtner, Bernd Freisleben,
Marian Harbach, Thomas Muders and Matthew Smith. As this publication was joint
work with my co-authors as a team, this chapter will use the academic “we” to mirror
this fact. The idea and initial concept for this work came from myself. I developed
the static analysis tool “MalloDroid” that was I to analyze 13,500 popular Android
apps for their correct usage of TLS certificate validation. I personally analyzed most
of the apps we manually checked. The user study to measure the effectiveness of
Android’s browser TLS warning message was designed and conducted by myself.
However, my co-authors contributed in different ways. Thomas Muders assisted in
manually analyzing potentially vulnerable Android apps. Lars Baumgdriner reverse
engineered the Zoner Anti-Virus app. Marian Harbach assisted in analyzing the
user study results and together with Bernd Freisleben and Matthew Smith helped in
compiling the paper for publication.

Software described in this chapter is available at https://zenodo.org/record/
50526.

6.1 Motivation

Unlike the “walled garden” approach of Apple’s App Store, Android software devel-
opment and the Google Play Market are relatively open and unrestricted. This offers
both developers and users more flexibility and freedom, but also creates significant
security challenges. The coarse permission system [69] and over-privileging of appli-
cations [159] can lead to exploitable applications. Consequently, several efforts have
been made to investigate privilege problems in Android apps [84, 69, 49, 31, 162].
Enck et al. introduced TaintDroid [66] to track privacy-related information flows
to discover such (semi-)malicious apps. Bugiel et al. [31] showed that colluding
malicious apps can facilitate information leakage. Furthermore, Enck et al. an-
alyzed 1,100 Android apps for malicious activity and detected widespread use of
privacy-related information such as IMEI, IMSI, and ICC-ID for “cookie-esque”
tracking. However, no other malicious activities were found, in particular no ex-
ploitable vulnerabilities that could have lead to malicious control of a smartphone
were observed [67].

In this work, instead of focusing on malicious apps, we investigate potential secu-
rity threats posed by benign Android apps that legitimately process privacy-related
user data, such as log-in credentials, personal documents, contacts, financial data,
messages, pictures or videos. Many of these apps communicate over the Internet
for legitimate reasons and thus request and require the INTERNET permission.
It is then necessary to trust that the app adequately protects sensitive data when
transmitting via the Internet.

The most common approach to protect data during communication on the Android
platform is to use the TLS protocols. This work is a continuation of the work in

93

https://zenodo.org/record/50526
https://zenodo.org/record/50526

Chapter 4, page 59 which focused on system administrators of HT'TPS enabled
webservers. In contrast to system administrators, developers of Android apps have
a different view on the TLS ecosystem. Apps written by developers interact with
webservers operated by system administrators and have to handle (possibly insecure)
configurations. This circumstance allows us to investigate a very important question:
Are developers able to deal with real world TLS deployments provided by system
administrators?

To evaluate this question in the context of the state of TLS use in Android apps,
we downloaded 13,500 popular free apps from Google’s Play Market and studied
their properties with respect to the usage of TLS. In particular, we analyzed the
apps’ vulnerabilities against MITM attacks due to the inadequate or incorrect use
of TLS.

For this purpose, we created MalloDroid, an Androguard!' extension that per-
forms static code analysis to a) analyze the networking API calls and extract valid
HTTP(S) URLs from the decompiled apps; b) check the validity of the TLS cer-
tificates of all extracted HTTPS hosts; and c¢) identify apps that contain API calls
that differ from Android’s default TLS usage, e.g., contain non-default trust man-
agers, SSLSocketFactory or HostnameVerifier implementations with per-
missive verification strategies. Based on the results of the static code analysis, we
selected 100 apps for manual audit to investigate various forms of TLS use and
misuse: accepting all TLS certificates, allowing all hostnames regardless of the cer-
tificate’s Common Name (CN), neglecting precautions against TLS stripping, trust-
ing all available Certificate Authorities (CAs), not using public key pinning, and
misinforming users about TLS usage.

Furthermore, we studied the visibility and awareness of TLS security in the context
of Android apps. In Android, the user of an app has no guarantee that an app uses
TLS and also gets no feedback from the Android operating system whether TLS
is used during communication or not. It is entirely up to the app to use TLS and
to (mis)inform the user about the security of a network connection. However, even
when apps present warnings and security indicators, users need to see and interpret
them correctly. The users’ perceptions concerning these warnings and indicators
were investigated in an online survey. Finally, several countermeasures that could
help to alleviate the problems discovered in the course of our work are discussed.

The results of our investigations can be summarized as follows:

e 1,074 apps contain TLS specific code that either accepts all certificates or
all hostnames for a certificate and thus are potentially vulnerable to MITM
attacks.

e 41 of the 100 apps selected for manual audit were vulnerable to MITM attacks
due to various forms of TLS misuse.

e The cumulative install base of the apps with confirmed vulnerabilities against
MITM attacks lies between 39.5 and 185 million users, according to Google’s

lef. https://github.com/androguard/androguard — last access 13.04.2016

94

https://github.com/androguard/androguard

Play Market.? This number includes 3 apps with install bases between 10 and
50 million users each.

e From these 41 apps, we were able to capture credentials for American Express,
Diners Club, Paypal, bank accounts, Facebook, Twitter, Google, Yahoo, Mi-
crosoft Live ID, Box, WordPress, remote control servers, arbitrary email ac-
counts, and IBM Sametime, among others.

e We were able to inject virus signatures into an anti-virus app to detect arbi-
trary apps as a virus or disable virus detection completely.

e It was possible to remotely inject and execute code in an app created by a
vulnerable app-building framework.

e 378 (50.1%) of the 754 Android users participating in the online survey did
not judge the security state of a browser session correctly.

e 419 (55.6%) of the 754 participants had not seen a certificate warning before
and typically rated the risk they were warned against as medium to low.

6.2 Background
Android & TLS

The Android SDK offers several convenient ways to access the network. The java.net,
javax.net, android.net and org.apache.http packages can be used to cre-
ate (server) sockets or HTTP(S) connections. The org.webkit package provides
access to web browser functionality. In general, Android allows apps to customize
TLS usage — i.e., developers must ensure that they use TLS correctly for the in-
tended usage and threat environment. Hence, the following (mis-)use cases can arise
and can cause an app to transmit sensitive information over a potentially broken
TLS channel:

Trusting all Certificates. The TrustManager interface can be implemented to trust
all certificates, irrespective of who signed them or even for what subject they
were issued.

Allowing all Hostnames. It is possible to forgo checks of whether the certificate was
issued for this address or not, i.e., when accessing the server example.com,
a certificate issued for some-other—-domain.com is accepted.

Trusting many CAs. This is not necessarily a flaw, but Android 4.0 trusts 134 CA
root certificates per default. Due to the attacks on several CAs in 2011, the
problem of the large number of trusted CAs is actively debated.?

2@oogle’s Play Market only gives a range within which the number of installed apps lies based on
the installs from the Play Market. The actual number is likely to be larger, since alternative
app markets for Android also contribute to the install base.

3¢f. http://android-ssl.org/s/5 — last access 13.04.2016

95

example.com
some-other-domain.com
http://android-ssl.org/s/5

Mixed-Mode/No TLS. App developers are free to mix secure and insecure connec-
tions in the same app or not use TLS at all. This is not directly an TLS issue,
but it is relevant to mention that there are no outward signs and no possibility
for a common app user to check whether a secure connection is being used.
This opens the door for attacks such as TLS stripping (cf. Chapter 2.3.3,
Page 27) or tools like Firesheep.

On the other hand, Android’s flexibility in terms of TLS handling allows advanced
features to be implemented. One important example is TLS Pinning®, in which ei-
ther a (smaller) custom list of trusted CAs or even a custom list of specific certificates
is used. Android does not offer TLS pinning capabilities out of the box. However,
it is possible to create a custom trust manager to implement TLS pinning.

Android Security

There have been several efforts to investigate Android permissions and unwanted or
malicious information flows, such as the work presented by Enck et al. [69, 66], Felt
et al. [84, 159], Davi et al. [49], Bugiel et al. [31], Nauman et al. [153] and Egners et
al. [63].

There are several good overviews of the Android security model and threat land-
scape, such as Vidas et al. [196], Shabatai [175] et al. and Enck et al. [68, 67].
These papers do not discuss the vulnerability of TLS or HT'TPS on Android. Enck
et al. [67] does mention that some apps use sockets directly, bearing the potential
for vulnerabilities, but no malicious use was found (cf. [67], Finding 13). Our inves-
tigation shows that there are several TLS-related vulnerabilities in Android apps,
endangering millions of users.

McDaniel et al. [151] and Zhou et al. [209] also mainly focus on malicious apps in
their work on the security issues associated with the app market model of software
deployment. The heuristics of DroidRanger [209] could be extended to detect the
vulnerabilities uncovered in our work.

While previous works in the field of Android security investigated different areas,
our work is the first to analyze the security of custom TLS code in third party
Android apps.

TLS Security

A good overview of current TLS problems can be found in Marlinspike’s Black Hat
talks [142, 143]. The talks cover issues of security indicators, Common Name (CN)
mismatches and the large number of trusted CAs and intermediate CAs. Marlinspike

4Firesheep is a browser extension that uses a packet sniffer to intercept unencrypted cookies
from websites. The tool was released to demonstrate the security risk of session hijacking
vulnerabilities to users of web sites that only use HTTPS for the login and do not encrypt the
cookie(s) created during the login process. (cf. https://codebutler.com/firesheep —
last access 13.04.2016)

Sc¢f. http://android-ssl.org/s/6 — last access 13.04.2016

Scf. http://android-ssl.org/s/7 — last access 13.04.2016

96

https://codebutler.com/firesheep
http://android-ssl.org/s/6
http://android-ssl.org/s/7

also introduces the TLS stripping attack. The fact that many HTTPS connections
are initiated by clicking a link or via redirects is particularly relevant for mobile
devices, since the MITM attack needed for TLS stripping is easier to execute [182,
116] and the visual indicators are hard to see on mobile devices. More information
on TLS can be found in Chapter 2.3.3 on Page 27.

Shin et al. [180] study the problem of TLS stripping for desktop browsers and
present a visual-security-cue-based approach to hinder TLS stripping in this envi-
ronment. They also highlight the particular problem of this type of attack in the
mobile environment and suggest that it should be studied in more detail.

Egelman et al. [60] and Sunshine et al. [188] both study the effectiveness of browser
warnings, showing that their effectiveness is limited and that there are significant
usability issues. Although both of these studies were conducted in a desktop envi-
ronment, the same caveats need to be considered for mobile devices. In this work,
we conduct a first online survey to gauge the awareness and effectiveness of browser
certificate warnings and HTTPS visual security indicators on Android.

6.3 Evaluating Android TLS Usage

Our study of Android TLS security encompasses popular free apps from Google’s
Play Market. Overall, we investigated 13,500 applications. We built MalloDroid,
an extension of the Androguard reverse engineering framework, to automatically
perform the following steps of static code analysis:

Permissions. MalloDroid checks which apps request the INTERNET permission,
which apps actually contain INTERNET permission-related API calls and
which apps additionally request and use privacy-related permissions (cf. [159]).

Networking API Calls. MalloDroid analyzes the use of HTTP transport and Non-
HTTP transport (e.g., direct socket connections).

HTTP vs HTTPS. MalloDroid checks the validity of
URLS found in apps and groups the apps into HTTP only, mized-mode (HTTP
and HTTPS) and HTTPS only.

HTTPS Available. MalloDroid tries to establish a secure connection to HT'TP URLs
found in apps.

Deployed Certificates. MalloDroid downloads and evaluates TLS certificates of hosts
referenced in apps.

TLS Validation. MalloDroid examines apps with respect to inadequate TLS val-
idation (e.g., apps containing code that allows all hostnames or accepts all
certificates).

12,534 (92.84%) of the apps in our test set request the network permission android. -
permission.INTERNET. 11,938 (88.42%) apps actually perform networking re-
lated API calls. 6,907 (51.16%) of the apps in our sample use the INTERNET

97

permission in addition to permissions to access privacy related information such as
the users’ calendars, contacts, browser histories, profile information, social streams,
short messages or exact geographic locations. This subset of apps has the potential
to transfer privacy-related information via the Internet. This subset does not include
apps such as banking, business, email, social networking or instant messaging apps
that intrinsically contain privacy-relevant information without requiring additional
permissions.

We found that 91.7% of all networking API calls are related to HTTP(S). There-
fore, we decided to focus our further analysis on the usage of HTTP(S). To find out
whether an app communicates via HTTP, HTTPS, or both, MalloDroid analyzes
HTTP(S) specific API calls and extracts URLs from the decompiled apps.

HTTP vs. HTTPS

MalloDroid extracted 254,022 URLs. It can be configured to remove certain types
of URLs for specific analysis. For this study, we removed 58,617 URLs pointing to
namespace descriptors and images, since these typically are not used to transmit
sensitive user information. The remaining 195,405 URLs pointed to 25,975 unique
hosts. 29,685 of the URLs (15.2%) pointing to 1,725 unique hosts (6.6%) are HTTPS
URLs. We further analyzed how many of the hosts referenced in HT'TP URLs could
also have been accessed using HT'TPS.

76,435 URLs (39.1%) pointing to 4,526 hosts (17.4%) allowed a valid HTTPS
connection to be established, using Android’s default trust roots and validation
behavior of current browsers. This means that 9,934 (73.6%) of all 13,500 tested
apps could have used HTTPS instead of HI'TP with minimal effort by adding a
single character to the target URLs. We found that 6,214 (46%) of the apps contain
HTTPS and HTTP URLs simultaneously and 5,810 (43%) do not contain HTTPS
URLs at all. Only 111 apps (0.8%) exclusively contained HTTPS URLs.

For a more detailed investigation, we looked at the top 50 hosts, ranked by the
number of occurrences. This group mainly consists of advertising companies and
social networking sites. These two categories account for 37.9% of the total URLs
found, and the hosts are contained in 9,815 (78.3%) of the apps that request the
INTERNET permission.

Table 6.3 presents an overview of the top 10 hosts. The URLs pointing to the
these hosts suggest they are often used for Web Service API calls, authentication and
fetching/sending user or app information. Especially in the case of ad networks that
collect phone identifiers and geolocations [66] and social networks that transport
user-generated content, the contained information is potentially sensitive.

34 of the top 50 hosts offer all their API calls via HT'TPS, but none is accessed
exclusively via HTTPS. Of all the URLs pointing to the top 50 hosts, 22.1% used
HTTPS, 61% could have used HTTPS by substituting http:// with
https://, and 16.9% had to use HTTP because HT'TPS was not available. The hosts
facebook.com and tapjoyads.com are positive examples, since the majority of
the URLs we found for these two hosts already use HTTPS.

98

facebook.com
tapjoyads.com

Host has TLS # URLs # HTTPS

market.android.com v 6,254 3,217
api.airpush.com v 5,551 0
a.admob.com v 4,299 0
ws.tapjoyads.com v 3,410 3,399
api.twitter.com v 3,220 768
data.flurry.com v 3,156 1,578
data.mobclix.com v 2,975 0
ad.flurry.com v 2,550 0
twitter.com v 2,410 129
graph.facebook.com v 2,141 1,941

Table 6.1: The top 10 hosts used in all extracted URLs and their TLS availability,
total number of URLs and number of HTTPS URLs pointing to that
host.

Deployed TLS Certificates

To analyze the validity of the certificates used by HTTPS hosts, we downloaded the
TLS certificates for all HT'TPS hosts extracted from our app test set, yielding 1,887
unique TLS certificates. Of these certificates, 162 (8.59%) failed the verification
of Android’s default TLS certificate verification strategies, i.e., 668 apps contain
HTTPS URLs pointing to hosts with certificates that could not be validated with
the default strategies. 42 (2.22%) of these certificates failed TLS verification because
they were self-signed, i.e., HT'TPS links to self-signed certificates are included in
271 apps. 21 (1.11%) of these certificates were already expired, i.e., 43 apps contain
HTTPS links to hosts with expired TLS certificates.

For hostname verification, we applied two different strategies that are also avail-
able in Android: the BrowserCompatHostnameVerifier” and the StrictHostnameVer-
ifier® strategy. We found 112 (5.94%) certificates that did not pass strict hostname
verification, of which 100 certificates also did not pass the browser compatible host-
name verification. Mapping these certificates to apps revealed that 332 apps con-
tained HTTPS URLs with hostnames failing the BrowserCompatHostnameVerifier
strategy.

Overall, 142 authorities signed 1,887 certificates. For 45 (2.38%) certificates, no
valid certification paths could be found, i.e., these certificates were signed by au-
thorities not reachable via the default trust anchors. These certificates are used
by 46 apps. All in all, 394 apps include HTTPS URLs for hosts that have certifi-
cates that are either expired, self-signed, have mismatching CNs or are signed by
non-default-trusted CAs.

Custom TLS Validation

Using MalloDroid, we found 1,074 apps (17.28% of all apps that contain HTTPS
URLs) that include code that either bypasses effective TLS verification completely by

Tef. http://android-ssl.org/s/8 — last access 13.04.2016
8¢f. http://android-ssl.org/s/9 — last access 13.04.2016

99

http://android-ssl.org/s/8
http://android-ssl.org/s/9

accepting all certificates (790 apps) or that contain code that accepts all hostnames
for a certificate as long as a trusted CA signed the certificate (284 apps).

While an app developer wishing to accept all TLS certificates must implement
the TrustManager interface and/or extend the SSLSocketFactory class, allowing all
hostnames only requires the use of the org.apache.http.conn.ssl.Allow-
AllHostnameVerifier that is included in 453 apps. Additionally, MalloDroid
found a FakeHostnameVerifier, NaiveHostnameVerifier and Accept-
AllHostnameVerifier class that can be used in the same way.

To understand how apps use “customized” TLS implementations, we searched
for apps that contain non-default trust managers, TLS socket factories and host-
name verifiers differing from the BrowserCompatHostnameVerifier strategy.
We found 86 custom trust managers and TLS socket factories in 878 apps. More
critically, our analysis also discovered 22 classes implementing the TrustManager
interface and 16 classes extending the SSLSocketFactory that accept all TLS
certificates. Table 6.3 shows which broken trust managers and TLS socket factories
were found.

Trust Managers

Socket Factories

AcceptAllTrustM AcceptAllSSLSocketF
AllTrustM AllTrustingSSLSocketF
DummyTrustM AllTrustSSLSocketF
EasyX509TrustM AllSSLSocketF
FakeTrustM DummySSLSocketF
FakeX509TrustM EasySSLSocketF
FullX509TrustM FakeSSLSocketF
NaiveTrustM InsecureSSLSocketF
NonValidatingTrustM NonValidatingSSLSocketF
NullTrustM NaiveSslSocketF
OpenTrustM SimpleSSLSocketF
PermissiveX509TrustM SSLSocketFUntrustedCert
SimpleTrustM SSLUntrustedSocketF
SimpleX509TrustM TrustAllSSLSocketF
TrivialTrustM TrustEveryoneSocketF
TrustAllManager NaiveTrustManagerF
TrustAllTrustM LazySSLSocketF
TrustAnyCertTrustM UnsecureTrustManagerF
UnsafeX509TrustM

VoidTrustM

Table 6.2: Trust Managers & Socket Factories that trust all certificates (suffixes
omitted to fit the page)

This small number of critical classes affects a large number of apps. Many of the
above classes belong to libraries and frameworks that are used by many apps. 313
apps contained calls to the NaiveTrustManager class that is provided by a crash
report library. In 90 apps, MalloDroid found the NonvalidatingTrustManager
class provided by an SDK for developing mobile apps for different platforms with
just a single codebase. The PermissiveX509TrustManager, found in a library
for sending different kinds of push notifications to Android devices, is included in
76 apps. Finally, in 78 apps, MalloDroid found a SSLSocketFactory provided by

100

a developer library that accepts all certificates. The library is intended to support
developers to write well designed software and promotes itself as a library for super-
easy and robust networking. Using any of the above Trust Managers or Socket
Factories results in the app trusting all certificates.

Manual Investigation

The static code analysis presented above only shows the potential for security prob-
lems. The fact that code for insecure TLS is present in an app does not necessarily
mean that it is used or that sensitive information is passed along it. Even more
detailed automated code analysis, such as control flow analysis, data flow analysis,
structural analysis and semantic analysis cannot guarantee that all uses are cor-
rectly identified [67]. Thus, we decided to conduct a more detailed manual study
to find out what sort of information is actually sent via these potentially broken
TLS communication channels, by installing apps on a real phone and executing an
active MITM attack against the apps. For this part of the study, we narrowed our
search down to apps from the Finance, Business, Communication, Social and Tools
categories, where we suspected a higher amount of privacy relevant information and
a higher motivation to protect the information. In this test set, there are 266 apps
containing broken TLS or hostname verifiers (Finance: 45, Social: 94, Communi-
cation: 49, Business: 60, Tools: 18). We ranked these apps based on their number
of downloads and selected the top 100 apps for manual auditing. Additionally, we
cherry-picked 10 high profile apps (large install base, popular services) that con-
tained no TLS-related API calls but contained potentially sensitive information, to
see whether this information was actually sent in the clear or whether some protec-
tion mechanism other than TLS was involved. Subsequently, we analyze the actual
impact of insecure certificate verification implementations on users of those Android

apps.

Test Environment

For the manual app auditing, we used a Samsung Galaxy Nexus smartphone with
Android 4.0 Ice Cream Sandwich. We installed the potentially vulnerable apps on
the phone and set up a Wi-Fi access point with a MITM TLS proxy. Depending
on the vulnerability to be examined, we equipped the TLS proxy either with a self-
signed certificate or with one that was signed by a trusted CA, but for an unrelated
hostname.

Of the 100 apps selected for manual audit, 41 apps proved to have exploitable
vulnerabilities. We could gather bank account information, payment credentials for
PayPal, American Express and others. Furthermore, Facebook, email and cloud
storage credentials and messages were leaked, access to IP cameras was gained and
control channels for apps and remote servers could be subverted. According to
Google’s Play Market, the combined install base of the vulnerable apps in our test
set of 100 apps was between 39.5 and 185 million users at the time of writing. In
the following, we briefly discuss our findings to illustrate the scope of the problem.

101

Trusting All Certificates

21 apps among the 100 selected apps were vulnerable to this attack. We gave our
MITM attack proxy a self-signed certificate for the attack. The apps leaked infor-
mation such as login credentials, webcam access or banking data. One noteworthy
contender was a generic online banking app. The app uses separate classes for
each bank containing different trust manager implementations. 24 of the 43 banks
supported were not protected from our MITM attack. The app also leaks login cre-
dentials for American Express, Diners Club and Paypal. The Google Play Market
reports an install base between 100,000 and half a million users. A further app
vulnerable to this attack offers instant messaging for the Windows Live Messenger
service. The app has an install base of 10 to 50 million users and is listed in the top
20 apps for the communication category in the Google Play Market (as of April 30th,
2012). Username and password are both sent via a broken TLS channel and were
sniffed during our attack. This effectively gives an attacker full access to a Windows
Live account that can be used for email, messaging or Microsoft’s SkyDrive cloud
storage. We also found a browser with an install base between 500,000 and one
million users that trusts all certificates. The browser does not correctly handle TLS
at all, i.e., it accepts an arbitrary certificate for every website the user visits and
hence leaks whatever data the user enters. All three apps do not provide any TLS
control or configuration options for the user. None of the other apps vulnerable to
this attack showed warning messages to the user while the MITM attack was being
executed.

Allowing All Hostnames

Next, we found a set of 20 apps that accepted certificates irrespective of the subject
name, i.e., if the app wants to connect to https://www.paypal.com, it would
also accept a certificate issued to some—domain.com. We used a certificate for an
unrelated domain signed by startSSL? for our attacks in this category. The apps
leaked information such as credentials for different services, emails, text messages,
contact data, bitcoin-miner API keys, premium content or access to online meet-
ings. A particularly interesting finding was an anti-virus app that updated its virus
signatures file via a broken TLS connection. Since it seems that the connection is
considered secure, no further validation of the signature files is executed by the app.
Thus, we were able to feed our own signature file to the anti-virus engine. First,
we sent an empty signature database that was accepted, effectively turning off the
anti-virus protection without informing the user. In a second attack, we created a
virus signature for the anti-virus app itself and sent it to the phone. This signature
was accepted by the app, which then recognized itself as a virus and recommended
to delete itself, which it also did. Figure 6.1 shows a screenshot of the result of
this attack. This is a very stark reminder that defense in depth is an important
security principle. Since the TLS connection was deemed secure, no further checks
were performed to determine whether the signature files were legitimate. The app

9f. https://www.startssl.com/ — last access 13.04.2016

102

https://www.paypal.com
some-domain.com
https://www.startssl.com/

has an install base of 500,000 to one million users.'®

Zoner AntiVirus Free

One threat found:

Mallory.sends.her.regards
Zoner AntiVirus Free

Remove

Figure 6.1: After injecting a virus signature database via a MITM attack over broken
TLS, the AntiVirus app recognized itself as a virus and recommended
to delete the detected malware.

A second example in this category is an app that offers “Simple and Secure”
cloud-based data sharing. According to the website, the app is used by 82% of the
FORTUNE 500 companies to share documents. It has an install base between 1 and
5 million users. While the app offers simple sharing, it leaks the login credentials
during the MITM attack. One interesting finding in this app was that the login
credentials were leaked from a broken TLS channel while up- and downloads of
files were properly secured. However, using the login credentials obtained from the
broken channel is sufficient to hijack an account and access the data anyway.

A third example is a client app for a popular Web 2.0 site with an install base of
500,000 to 1 million users. When using a Facebook or Google account for login, the
app initiates OAuth login sequences and leaks Facebook or Google login credentials.

We also successfully attacked a very popular cross-platform messaging service.
While the app has been criticized for sending messages as plaintext and therefore
enabling Eve to eavesdrop, the TLS protection that was intended to secure ’sensitive’
information such as registration credentials and the user’s contact does not protect
from Mallory. For instance, we were able to obtain all telephone numbers from a
user’s address book using a MITM attack. At the time of writing, the app had an
install base of 10 to 50 million users.

TLS Stripping

TLS stripping can occur if a browsing session begins using HT'TP and switches to
HTTPS via a link or a redirect. This is commonly used to go to a secure login page
from an insecure landing page. The technique is mainly an issue for Android browser
apps, but it can also affect other apps using Android’s webkit .WebView that do

Ohonored as the “Best free anti-virus program for Android” with a detection rate > 90% — http:
//www.av-test.org/en/tests/android/ — last access 13.04.2016

103

http://www.av-test.org/en/tests/android/
http://www.av-test.org/en/tests/android/

not start a browsing session with a HI'TPS site. We found the webkit.WebView
in 11,038 apps. Two noteworthy examples vulnerable to this attack are a social
networking app and an online services client app. Both apps use the webkit view to
enhance either the social networking experience or use online services (search, mail,
etc.) and have 1.5 to 6 million installs. The two apps start the connection with a
HTTP landing page, and we could rewrite the HTTPS redirects to HT'TP and thus
catch the login credentials for Facebook, Yahoo and Google.

One way to overcome this kind of vulnerability is to force the use of HTTPS, as
proposed by the HTTP Strict Transport Security IETF Draft!'!, or using a tool such
as HTTPS-Everywhere.'? However, these options currently do not exist for Android.
Android’s default browser as well as available alternatives such as Chrome, Firefox,
Opera or the Dolphin Browser do not provide HT TPS-Everywhere-like features out
of the box, nor could we find any add-ons for such a feature.

Lazy TLS Use

Although the Android SDK does not support TLS pinning out of the box, Android
apps can also take advantage of the fact that they can customize the way TLS
validation is implemented. Unlike general purpose web browsers that need to be
able to connect to any number of sites as ordained by the user, many Android
apps focus on a limited number of hosts picked by the app developer: for example,
the PayPal app’s main interaction is with paypal.com and its sister sites. In such
a case, it would be feasible to implement TLS pinning, either selecting the small
number of CAs actually used to sign the sites or even pin the precise certificates.
This prevents rogue or compromised CAs from mounting MITM attacks against the
app. To implement TLS pinning, an app can use its own KeyStore of trusted root
CA certificates or implement a TrustManager that only trusts specific public key
fingerprints.

To investigate the usage of TLS pinning, we cherry-picked 20 high profile apps
that were not prone to the previous MITM attacks and manually audited them. We
installed our own root CA certificate on the phone and set up an TLS MITM proxy
that automatically created CA-signed certificates for the hosts an app connects to.
Then, we executed MITM attacks against the apps. Table 6.3 shows the results.
Only 2 of the apps make use of TLS pinning and thus were safe from our attack.
All other apps trust all root CA signatures, as long as they are part of Android’s
trust anchors, and thus were vulnerable to the executed attack.

Missing Feedback

When an app accesses the Internet and sends or receives data, the Android OS
does not provide any visual feedback to the user whether or not the underlying
communication channel is secure. The apps are also not required to signal this
themselves and there is nothing stopping an app from displaying wrong, misguided
or simply no information. We found several apps that provided TLS options in their

Hef http://android-ssl.org/s/10 — last access 13.04.2016
126f, https://www.eff.org/https—everywhere — last access 13.04.2016

104

http://android-ssl.org/s/10
https://www.eff.org/https-everywhere

App Installs TLS Pinning
Amazon MP3 10-50 million
Chrome 0.5-1 million
Dolphin Browser HD 10-50 million
Dropbox 10-50 million
Ebay 10-50 million

Expedia Bookings
Facebook Messenger
Facebook

0.5-1 million
10-50 million
100-500 million

Foursquare 5-10 million

GMail 100-500 million

Google Play Market All Phones

Google+ 10-50 million

Hotmail 5-10 million

Instagram 5-10 million

OfficeSuite Pro 6 1-5 million

PayPal 1-5 million

Twitter 50-100 million v
Voxer Walkie Talkie 10-50 million v

Yahoo! Messenger
Yahoo! Mail

10-50 million
10-50 million

Table 6.3: Results of the TLS pinning analysis.

settings or displayed visual security indicators but failed to establish secure TLS
channels for different reasons.

We found banking apps in this category that we could not fully test, since we did
not have access to the required bank accounts. However, these apps stated that they
were using TLS-secured connections and displayed green visual security indicators,
but suffered from one of the MITM attack vulnerabilities shown above. We were
therefore able to intercept login credentials, which would enable us to disable banking
cards and gather account information using the app.

We found several prominent mail apps that had issues with missing feedback.
Both were dedicated apps for specific online services. The first app with an install
base between 10 and 50 million users handled registration and login via a secure
TLS connection, but the default settings for sending and receiving email are set
to HTTP. They can be changed by the user, but the user needs to stumble upon
this possibility first. Meanwhile, there was no indication that the emails were not
protected.

An instant messaging app with an install base of 100,000 to 500,000 users transfers
login credentials via a non-TLS protected channel. Although the user’s password is
transferred in encrypted form, it does not vary between different logins, so Eve can

record the password and could use it in a replay attack to hijack the user’s account.
We found a framework that provides a graphical app builder, allowing users to

easily create apps for Android and other mobile platforms. Apps created with
this framework can load code from remote servers by using the dalvik.system.
DexClassLoader. Downloading remote code is handled via plain HTTP. We ana-
lyzed one app built with the framework and could inject and execute arbitrary Java
code, since the downloaded code is not verified before execution.

105

dalvik.system.DexClassLoader
dalvik.system.DexClassLoader

Sign In Error

Oops, a little hiccup here. Please
adjust the time on your device to the
current time.

L ree——

Figure 6.2: A sample warning message that occurs in an app that is MITM attacked.

During manual analysis, we also found that 53 apps that were not vulnerable
to our MITM attacks did not display a meaningful warning messages to the user
under attack. These apps simply refused to work and mostly stated that there were
technical or connectivity problems and advised the user to try to reconnect later.
There was also an app that recommended an app-update to eliminate the network
connection errors. Some apps simply crashed without any announcement. Figure
6.2 shows a confusing sample error message displayed during a MITM attack.

A Login Failed

Sorry, login Failed to reach Facebook
servers. Please check your network
connection or try again later.
(hostname in certificate didn't

match: <api.facebook.coms> != <*,
mallory.coms [javax.net.ssl.
SSLException])

e

Figure 6.3: Facebook’s TLS warning.

An additional 6 apps not vulnerable to our MITM attacks did display certificate
related warning messages, but did not indicate the potential presence of a MITM
attack. The official Facebook app is not vulnerable to the MITM attacks described
above and is a positive example for displaying a meaningful warning message. Even
if the warning message contains tech-savvy wording, the user at least has the chance
to realize that a MITM attack might be occuring (cf. Fig. 6.3).

Interestingly — apart from browser apps — there was only one app that allows the
user to choose to continue in the presence of an TLS error.

Limitations

This study has the following limitations: a) During static code analysis, the studied
applications were selected with a bias towards popular apps; b) The provided install
base numbers are only approximate values as provided by Google’s Play Market; ¢)
We only checked 100 of the apps where MalloDroid found occurrences of broken TLS
implementations manually. For the rest, the existence of the unsafe code does not
mean that these apps must be vulnerable to a MITM attack; d) Static code analysis

106

might have failed in some apps, for instance if they were obfuscated. Hence, there
might be further vulnerable apps that we did not classify as such; e) During manual
audits, the applications were selected with a bias towards popularity and assumed
sensitivity of data they handle; f) We could not test the entire workflow of all apps,
e. g., it was not possible to create a foreign bank account to see what happens after
successfully logging into the bank account.

6.4 Userstudy: TLS Warning Messages

The previous sections in this chapter focused on developer issues implementing TLS
certificate verification in Android apps and their impact on end users. However, this
section goes beyond and presents a userstudy on the challenges for end users in case
correct certificate verification is implemented and meaningful warning messages in
error cases are presented.

The default Android browser is exemplary in its TLS use and uses sensible trust
managers and host name verifiers. Also, unlike most special purpose apps, it displays
a meaningful error message when faced with an incorrect certificate and allows the
user to continue on to the site if (s)he wants to. Thus, it relies on the ability of the
user to understand what the displayed warning messages mean and what the safest
behavior is (cf. Figure 6.4). There have been many studies of this issue conducted
in the context of desktop browsing. Here, to the best of our knowledge, we present
the first survey to investigate the users’ perceptions when using secure connections
in the Android browser.

Online Survey

The goal of our online survey was to explore whether or not the user can assess
the security of a connection in the Android browser. We wanted to test that a) a
user can distinguish a HTTPS connection from a regular HTTP connection and b)
how the user perceives an TLS warning message. Previous work has addressed the
effectiveness of warning dialogues in several scenarios, mostly for phishing on regular
computers (e.g., [60, 188]). Felt et al. [84] conducted a survey on the prompts in-
forming users of the requested permissions of Android apps during installation. The
online survey in this work is based on a similar design, but studies TLS certificate
warnings and visual security indicators in Android’s default browser.

Participants were recruited through mailing lists of several universities, compa-
nies and government agencies. The study invitation offered a chance to win a 600$
voucher from Amazon for participation in an online survey about Android smart-
phone usage. The survey could only be accessed directly from an Android phone.
We served the survey via HI'TPS for one half of the participants and via HTTP
for the other. After accessing a landing page, we showed the participants a typ-
ical Android certificate warning message, mimicking the behavior of the Android
browser. Subsequently, we asked whether the participants had seen this warning
before, if they had completely read its text and how much risk they felt they are
warned against. We also wanted to know whether or not they believed to be using a

107

& o0

[+ 4 Security certificate

&g This certificate isn't from a trusted
authority.
Issued to:

Common name:
www.google.com

Organization:
PortSwigger

Organizational unit:
PortSwigger CA

Serial number:
89:21:EA:34
Issued by:

Common name:
PortSwigger CA

Organization:
PortSwigger

Organizational unit:
PortSwiaaer CA

View page info

Ay T

Figure 6.4: TLS warning message in Android’s stock browser for Android versions
earlier than 4.0.

secure connection and their reasons for this belief. Finally, we collected demographic
information on technical experience, Android usage, previous experience with com-
promised credentials or accounts as well as age, gender and occupation. More online
survey related information can be found in Appendix C.1, Page 198.

Results

754 participants completed the survey. The average age was 24 years (sd = 4.01),
88.3% were students while the rest mainly were employees. 61.9% of our participants
did not have an IT-related education or job (non-IT experts in the following) and
23.2% had previous experience with compromised credentials or accounts. Overall,
the self-reported technical confidence was high: participants stated a mean value
of 4.36 for IT experts and 3.58 for non-experts on a scale from 1 (often asking for
help) to 5 (often providing help to others). 51.9% of IT experts and 32.8% of non-IT
experts have been using an Android smartphone for more than a year and 57.1% of
experts and 69.8% of non-experts had only 25 apps or less installed.

Concerning connection security, we found that 47.5% of non-IT experts believed
to be using a secure connection, while the survey was served over HT'TP. On top
of that, even 34.7% of participants with prior IT education thought that they were
using a secure channel when they were not. In both groups, 22.4% were unsure
about the protection of their connection. Only 58.9% of experts and 44.3% of non-
experts correctly identified that they were using a secure or insecure connection when

108

prompted. The majority of users referred to the URL prefix as the reason for their
beliefs and 66.5% of participants that were unsure said that they did not know how
to judge the connection security. Those users that were wrongly assuming a secure
connection stated that they use a trustworthy provider (47.7%), trust their phone
(22.7%) or thought that the address was beginning with https:// even though it was
not (21.6%) as a justification for their beliefs. Interestingly, participants that stated
that they had suffered from compromised credentials or online accounts before did
significantly better in judging the connection state (x? = 85.36,df = 6,p < 0.05).

Concerning the warning message, the majority of participants stated that they had
not seen such a certificate warning before (57.6% of non-IT experts and 52.3% of IT
experts) or were unsure (5.9%/9.2%). 24% of all participants only read the warning
partially and 4.5% did not read it at all. These numbers did not differ significantly
based on whether or not they had seen the warning before. The participants rated
the risk they were warned against with 2.86 (sd = .94), with 1 being a very low
risk and 5 a very high risk. The perceived risk did not differ significantly between
IT-experts and other users.

Overall, the results of our online survey show that assessing the security of a
browser session on Android’s default browser was problematic for a large number
of our participants. While certificate handling is done correctly by the browser app
and basic visual security indicators are offered, the user’s awareness for whether or
not her or his data is effectively protected is frequently incomplete.

Limitations

Our survey is limited in the following ways: We used official mailing lists to distribute
the invitation for the survey. While, on a technical level, this should not affect the
trustworthiness of the mail or the survey site - we did not digitally sign the emails
and we served the survey with a URL that was not obviously linked to the university.
Therefore, the emails could have been spoofed. Nonetheless, it is likely that a higher
level of trust was induced in most participants, due to the fact that the survey was
advertised as a university study (c.f. [183]). We therefore refrained from evaluating
the users’ reasons for accepting or rejecting a certificate in this concrete scenario.

Participants were self-recruited from multiple sources, but we received mainly
entries from university students for this first exploration. While a study by Soti-
rakopoulos et al. [184] found little differences between groups of students and the
broader population in the usable security context, a more varied sample of partici-
pants would improve the general applicability of the results.

6.5 Summary

In this work, we presented an investigation of the current state of TLS usage in
Android and the security threats posed by benign Android apps that communicate
over the Internet using TLS. We have built MalloDroid, a tool that uses static
code analysis to detect apps that potentially use TLS inadequately or incorrectly

109

and thus are potentially vulnerable to MITM attacks. Our analysis of the 13,500
most popular free apps from the Google Play Market has shown that 1,074 apps
contain code belonging to this category. These 1,074 apps represent 17% of the
apps that contain HTTPS URLs. To evaluate the real threat of such potential
vulnerabilities, we have manually mounted MITM attacks against 100 selected apps
from that set. This manual audit has revealed widespread and serious vulnerabilities.
We have captured credentials for American Express, Diners Club, Paypal, Facebook,
Twitter, Google, Yahoo, Microsoft Live ID, Box, WordPress, IBM Sametime, remote
servers, bank accounts and email accounts. We have successfully manipulated virus
signatures downloaded via the automatic update functionality of an anti-virus app
to neutralize the protection or even to remove arbitrary apps, including the anti-
virus program itself. It was possible to remotely inject and execute code in an app
created by a vulnerable app-building framework. The cumulative number of installs
of apps with confirmed vulnerabilities against MITM attacks is between 39.5 and
185 million users, according to Google’s Play Market.

The results of our online survey with 754 participants showed that there is some
confusion among Android users as to which security indicators are indicative of a se-
cure connection, and about half of the participants could not judge the security state
of a browser session correctly. We discussed possible countermeasures that could al-
leviate the problems of unencrypted traffic and TLS misuse. We offer MalloDroid
as a first countermeasure to possibly identify potentially vulnerable apps.

This chapter illustrated the challenges for developers and end users of Android
apps when using TLS. On the one hand, our end user study confirmed findings of
previous works for desktop computers: Users are overwhelmed when confronted with
security warnings and often fail to react securely. On the other hand, identifying
developer issues when dealing with custom certificate validation revealed that usabil-
ity also is of great importance when developing secure software leading me to an
important assumption: Similarly to end users and administrators, developers are
limited by security decisions made by other actors in the ecosystem. In case of TLS
certificate validation, a careful developer can increase the security and privacy for
her end users drastically by using a valid TLS certificate to secure network connec-
tions. However, to successfully and securely implement customized TLS certificate
validation, developers need a thorough understanding of TLS, i.e., a strong secu-
rity background. This chapter highlights the possible impact of an ecosystem that
is designed with consideration for the usability of security relevant mechanisms for
software developers.

Therefore, the next chapter investigates the root causes of why many developers
fail when implementing customized certificate validation. Based on these results, I
propose an easy to use redesign of how TLS development can be implemented in the
future.

110

i System Designers:

Rethinking TLS
Development

111

Disclaimer: The contents of this chapter were previously published as part of the
paper “Rethinking SSL Development in an Appified World” presented at 20" ACM
Conference on Computer and Communications Security (CCS) in 2013 [81] together
with co-authors Marian Harbach, Markus Kotter, Henning Perl and Matthew Smith
(alphabetical order). As this work was conducted with my co-authors, as a team, this
chapter will use the academic “we” to mirror this fact. The idea and initial concept
for this work came from myself. I developed the system design for the integration
of a novel TLS architecture into the Android operating system. I manually analyzed
108 apps for their correct TLS certificate validation usage. The interviews conducted
with developers of vulnerable mobile apps were designed, conducted and analyzed by
myself. However, my co-authors contributed in different ways. Implementing the
integration of our novel TLS architecture into the Android operating system was
joint work with Markus Kétter. Together with Henning Perl, Marian Harbach and
Matthew Smith, we jointly discussed the work’s implications and compiled the paper
for publication.

Software described in this chapter is available at https://zenodo.org/record/
51120.

7.1 Motivation

In the previous chapter, an in-depth study of 13,500 Android apps showed that a
large number of apps did not use TLS correctly, thus making them vulnerable to
MITM attacks. The affected applications ranged from home-brew and open source
apps to those developed by large corporations and security specialists, suggesting
that TLS problems are not just a matter of untrained developers getting it wrong.

While the previous chapter and a related study by Georgiev et al. [96] discuss
possible reasons for why so many apps across such a wide range of developers are
affected and make recommendations on how to prevent these problems in the fu-
ture, the actual causes of the problems have not yet been identified nor have the
potential countermeasures been evaluated. In this work, we continue where this
work left off and evaluate the root causes of TLS coding problems. Based on these
findings, we argue that the way developers work with TLS needs to be changed
significantly. We designed a framework for TLS development to demonstrate our
proposal, implemented it for Android, evaluated it against the set of 13,500 popular
apps we analyzed in our previous study and conducted developer interviews to show
its functionality and feasibility.

Our solution makes several changes to the status quo: First, it removes the need
for developers to write actual TLS code. Instead an app developer can turn on
and configure TLS using only configuration options in case they intend to deviate
from the standard use case. Second, unlike in the current system, all use-cases we
found in apps and those described by developers are supported securely, removing
the need for dangerous customization. Third, the framework can make a distinction
between developer devices and end user devices. This allows developers to rapidly
prototype applications and tinker without much effort, but it also automatically

112

https://zenodo.org/record/51120
https://zenodo.org/record/51120

and properly protects end users. Fourth, in the remaining rare cases that there is a
problem with TLS, the end user is reliably informed about the nature of the problem
which means that apps can no longer silently ignore these warnings and invisibly
make users vulnerable to MITM attacks. Finally, our approach allows for novel
TLS validation strategies and infrastructures, such as Certificate Transparency [136],
Convergence [146], and AKI [128], to be deployed centrally instead of potentially
requiring tens of thousands of app developers to make adjustments to their code,
thus significantly easing the deployment of novel TLS validation strategies!.
Our contributions can be summarized as follows:

e We conducted the first analysis of iOS TLS security to ascertain whether the
walled garden approach and stricter code auditing process of Apple could pre-
vent the kind of problems previously seen on Android. We manually examined
1,009 iOS apps. The results show that, similar to Android, 14% of apps using
TLS do not implement TLS validation correctly and are thus vulnerable to
active MITM attacks.

e We conducted the first in-depth study of the reasons behind the widespread
problems with TLS on the two major app platforms Android and iOS, including
both technical aspects as well as an in-depth study with affected developers.

e Based on the above research, we designed and implemented countermeasures
for handling TLS on Android. This solution can also serve as a blueprint for
TLS handling on other appified platforms.

e We conducted an extensive evaluation of our approach by auditing 13,500 apps
and showing that our solution covers all use-cases present in these apps. We
also conducted a follow-up developer study to ensure our approach does not
break any development needs and would find acceptance within the target
community.

7.2 Background

TLS on Appified Platforms

Background information on TLS can be found in Chapter 2.3.3 on Page 27.

Research has shown that the appification and app market trend has caused new
security and privacy challenges for users, developers and researchers [174, 49, 63,
210, 76, 34, 196, 159, 84]. This research focused mainly on the threats posed by
malicious entities and their apps. The problems with TLS we [76] and Georgiev et
al. [96] discovered are different in that they are not caused by malicious intent, but
nonetheless pose a serious threat.

While the bulk of TLS connections on desktop systems occurs in browsers which
validate TLS certificates correctly, there are also applications that use TLS to protect

'"We believe this last feature could be useful in the light of the many novel solutions (e.g. [136,
146, 128]) suggested in this domain that are currently facing adoption/deployment problems.

113

their communication. Georgiev et al. [96] analyzed the security of TLS certificate
validation in a wide range of TLS libraries and programming frameworks. They
conclude that many popular libraries fail when it comes to TLS certificate validation
and thus endanger the applications which are based on these libraries.

In Chapter 6 we examined the state of TLS on Android. We analyzed the TLS
security of 13,500 popular free apps from Google’s Play Market. The results showed
that 1,074 apps contained TLS code that either accepted all certificates or all host-
names for a certificate and thus leaves the users potentially vulnerable to MITM
attacks. The cumulative install base of the apps with confirmed vulnerabilities
against MITM attacks ranged between 40 and 185 million users.

Georgiev et al. [96] make recommendations for what could be done to alleviate
these widespread problems. They recommend that app developers should use fuzzing
and adversarial testing. Developers should not modify application code and disable
certificate validation for testing with self-signed and/or untrusted certificates, but
create a temporary keystore with the untrusted CA’s public key in it. They also
recommend that app developers should not rely on TLS libraries to do things cor-
rectly for them. Instead they should set all necessary security parameters themselves
explicitly. For library developers, they recommend that TLS libraries be made more
explicit about the semantics of their APIs. They also recommend that libraries use
safe defaults as much as possible. Furthermore, they should not silently skip impor-
tant functionalities such as hostname verification and should remain consistent in
using return values or flags for reporting purposes.

Our central suggestion was to drastically limit custom TLS handling in apps. In
an alternative approach we suggested that a static code analysis be performed by
the app store or the app installer to then inform developers/users about potentially
unsafe code.

Both works only briefly describe their potential countermeasures as part of their
recommendations for future work. No implementations or evaluations were pre-
sented. Interestingly, the countermeasures suggested by the two parties diverge
somewhat in their direction. Georgiev et al. call for better APIs for developers,
emphasize that developers need to check their apps themselves instead of relying on
libraries to do things correctly and to work around API restrictions using custom
keystores instead of modifying validation for development purposes, while we suggest
almost the opposite approach by recommending to limit the developers’ capabilities
for customizing TLS and adding checks to prevent broken apps from entering the
market or the device. Subsequently, we will examine the root causes of the problems
facing developers when using TLS to better judge which countermeasures are likely
to achieve the best results.

TLS Development Paradigm

There are countless TLS libraries and TrustManagers that aim to make the integra-
tion of TLS into apps easier. However, as the studies by Georgiev et al. [96] and
us [76] have shown, many of these are either broken or so error-prone that develop-
ers break their apps using them. This work makes important contributions to both

114

these areas.

7.3 TLS on iOS

To examine whether or not the widespread TLS problems of apps and libraries intro-
duced above are endemic to the Android and open source ecosystems, we conducted
the first in-depth analysis of iOS apps to see if the more restrictive and curated
Apple App Store would prevent apps with broken TLS code from entering the iOS
ecosystem. While iOS does not offer developers as many options as Android, it still
offers similar freedom concerning the implementation and use of TLS. Developers
can decide if they want to use TLS or not and just like on Android they can use
TLS but can turn TLS certificate validation off. They are also left alone with the
challenge to find an appropriate way to handle certification validation errors and in-
form the user: In terms of TLS APIs, Android and iOS are fairly similar. However,
Apple performs a code analysis on all apps, in order to prevent apps that do not
conform to their policies from entering the store.

We did not have the means to automatically crawl Apple’s app store and use
static code analysis on tens of thousands of apps as we did with Android, so we
opted for a manual approach. Initially, we downloaded 150 cherry-picked apps for
analysis. Based on the findings in these apps we conducted developer interviews
as described in section 7.4. We then extended our study to include 1,009 apps for
a more robust evaluation. We downloaded the 1,009 apps by selecting the most
popular free apps. Since iOS does not work with permissions the way Android does,
it was not possible to see which apps have access to sensitive information and can
connect to the Internet before installation. We therefore installed all of the apps
on an iPhone 4S running iOS 5 to study them in action. We then mounted active
Man-In-The-Middle attacks against TLS connections using a transparent proxy to
see how the apps react and what kind of sensitive information we could gather.

We captured network traffic from 884 apps and TLS-protected network traffic from
697 of these 884 apps. Of these 697 apps, 98 (14%, 9.7% of all 1,009 apps) were
vulnerable to our MITM attack and leaked sensitive information. Of the remaining
599 apps that were not vulnerable to our active MITM attack, 312 apps presented the
user with a warning message; 58 apps presented a warning message indicating that
there were problems with the TLS certificate. 254 presented warning messages that
did not give an appropriate description of what was going on, for instance stating
that the login credentials were wrong or that there was no Internet connection
available. Finally, 287 apps simply did not connect to the attacked host either
doing nothing, hanging indefinitely or crashing. Additionally, 82 (9.27%) of the
884 apps used plain HT'TP connections to transfer sensitive information. Two apps
were vulnerable to TLS stripping attacks. One of these was an online banking app
that loaded the bank’s website via plain HTTP, while the other app connected to
the HTTP version of Facebook. Thus we were able to gather sensitive information
from 182 apps, i.e. 20.5% of apps from which we captured network traffic. The
information included the usual suspects of login credentials, banking accounts, data

115

stored on cloud storage services, emails, or chat messages.

This shows that the TLS problems on iOS are similar to those on Android and
that Apple’s more restrictive and curated app development model and App Store do
not prevent TLS-related security issues. Just like on Android, app developers turn
off TLS certificate validation, write apps that are vulnerable to TLS stripping and
even in cases where apps apply TLS certificate validation correctly, they often do
not present sensible feedback when validation fails.

While there are many more details worth discussing in the context of iOS, for
the purpose of this work, the fact that iOS apps suffer from a similar number of
TLS problems shows that these problems must have underlying causes which are
not specific to a platform or app store model.

For instance, when presented with an invalid certificate, the official Facebook i0OS
app only shows a sad smiley, that says “something went wrong” and suggests the
user to try again (cf. Figure 7.1). So as on Android many app developers leave
their users entirely open to attack and even those who don’t, do not warn them
sufficiently when an attack does occur.

[5) status Photo £ CheckIn

Try Again

Figure 7.1: The iPhone Facebook app shows this warning message in case TLS cer-
tificate validation fails.

iOS Development Frameworks

Several of the vulnerable apps we found were created using popular programming
frameworks. Since any bug introduced by such a framework could potentially affect
a large number of apps, we decided to take a closer look at these frameworks. Dur-
ing our analysis, we identified two cross-platform mobile application SDKs and an
iOS networking wrapper library that all create code that contains vulnerable TLS
certificate validation.

116

MKNetworkKit The MKNetworkKit? is a networking wrapper library for iOS with
the aim to be easy to use and to simplify the iOS default networking stack. In online
forums, such as stackoverflow.com, developers often complain about problems
with i0OS’s built-in networking APIs, accounting for the popularity of libraries such
as MKNetworkKit, which provides lightweight methods for standard networking
tasks. The library can also handle HT'TPS requests, but fails when it comes to TLS
server certificate validation. In the MKNetworkOperation.m module, custom cer-
tificate validation is implemented. Instead of throwing an exception when certificate
validation fails, the code silently continues as if no error occurred. The library is
also available for Mac OS X., exhibiting the same problems there as well. Thus, iOS
apps using the MKNetworkKit library for networking tasks are vulnerable to active
MITM attacks.

Titanium Framework The Titanium cross platform mobile application SDK? is a
JavaScript-based platform which enables developers to write mobile apps in JavaScript
and automatically translates them into native mobile apps. Titanium targets iOS,
Android and HTML5, making it particularly attractive for web developers who want
to create mobile apps. While the Titanium framework generates secure TLS code
for Android, TLS certificate validation for iOS apps is turned off. Based on app
creation statistics posted on their website, this could affect more than 30,000 apps
built with the framework. During our manual app testing, we found a car shar-
ing app (cf. Zipcar http://www.zipcar.com) that was built with the Titanium
framework and is promoted as a flagship app on the Titanium website. The app
belongs to the world’s largest car sharing service and is available in North Amer-
ica and Canada. In 2011, the app was labeled one of the 50 best iPhone apps by
Time Magazine. Features of the app include locating and booking cars, sounding
the horn and unlocking the doors. The app uses TLS to transmit login credentials
but does not validate TLS certificates. Thus, an attacker can steal credentials and
subsequently is able to book and unlock a car in the name of the attacked user.

PhoneGap PhoneGap? is a free open source framework for developing mobile apps
for seven platforms including Android and iOS, using HTML, CSS and JavaScript. It
contains dedicated classes for data transfer that include customized TLS verification
code. For Android and iOS, the framework produces code that effectively turns TLS
certificate validation off. If developers do not manually check the generated code,
they will not see the comment and thus not be aware of the problem. According to
PhoneGap®, more than 23,000 apps could be affected.

?http://blog.mugunthkumar.com/products/ios—framework-introducing-mknetworkkit/
— last access 13.04.2016

Shttp://www.appcelerator.com/platform/titanium-sdk/ — last access 13.04.2016

‘http://phonegap.com/ — last access 13.04.2016

Shttp://www.slideshare.net/AndreCharland/phone-gap-stats—-growth — last access
13.04.2016

117

stackoverflow.com
http://www.zipcar.com
http://blog.mugunthkumar.com/products/ios-framework-introducing-mknetworkkit/
http://www.appcelerator.com/platform/titanium-sdk/
http://phonegap.com/
http://www.slideshare.net/AndreCharland/phone-gap-stats-growth

Figure 7.2: Users of the car sharing App can unlock their cars with the app — and
so can attackers.

7.4 Developer Study

The iOS study shows that the trouble developers have using TLS correctly is com-
mon to the major platforms and across all applications and platform paradigms.
To develop an effective countermeasure, we wanted to identify the root causes of
these problems. Therefore, we studied entries about TLS development for both An-
droid and iOS in online forums and conducted interviews with developers who had
produced broken TLS code.

Online Forums

We used stackoverflow.com, a popular online forum for software developers,
to search for results that contained text such as “android/ios allow all certificates”
and “android/ios trust all certificates” first. These kinds of results were found in
threads where developers asked how they could “work with self-signed certificates”
or “make ’javax.net.ssl.SSLFException’ go away”. Answers to these and similar ques-
tions mainly contained explanations on how to turn off TLS certificate validation
or hostname verification without mentioning that this would create serious security
issues. Studying these discussions confirmed our impression that many developers
on both platforms — iOS as well as Android — lack an adequate understanding of
how TLS works and were frustrated with the complexity of customizing TLS code
and thus willing to use the quick fixes offered by the forums — potentially without
understanding the consequences. These threads had more than 30,000 views. To
put this number into perspective, searching for “android ssl pinning” or “ios ssl
pinning” returns only one result for Android and two results for iOS with less than
600 views in total.

118

stackoverflow.com

Interviews

While online forums give a good indication of potential issues, a more reliable way
to confirm whether or not these issues are the actual reasons causing the problems
in the thousands of real world apps is to talk to developers. We contacted 78
developers of the 82 vulnerable apps® from the 100 Android and 150 iOS apps we
studied in detail. We informed the developers of the discovered vulnerabilities via
email and kindly asked them to contact us for further information and assistance
in fixing their problems. We received responses from 39 of the 78 developers. We
disclosed the respective vulnerability, offered further assistance and asked whether
the developers were willing to discuss the details of the security bug either via
telephone or email. We promised the developers to anonymize all information they
provided and to make neither their names nor the apps’ names publicly available.
14 developers agreed to an interview while the rest was not willing to discuss the
topic in further detail — often with regard to “constraints” dictated by their legal
departments. The interviews were conducted in German or English, depending on
the developer’s origin. However, not all developers were native speakers. Statements
were translated by the authors, grammatical errors were not corrected.

Ethical Considerations

Our university is located in Germany and thus our study was not required to pass
an IRB review. Nevertheless, the interviews complied with the strict German pri-
vacy regulations. We do not disclose names of affected apps or developers and all
information was evaluated anonymously. After the interviews, the participants were
debriefed and any questions were answered.

Results

One of the main causes for the problems we found, was that developers wanted to
use self-signed certificates during development. 5 of the 14 developers reported that
they needed to turn off TLS certificate validation during development because they
were working with test servers that used self-signed TLS certificates. To avoid cer-
tificate validation exceptions, they implemented their own TLS certificate validation
strategies that accept all certificates, or copied code from the online forums men-
tioned above that promised to help with getting out of the “self-signed certificate
dilemma”. While it is understandable that developers turn off TLS certificate vali-
dation in the development phase, these developers basically forgot to remove their
accept-all code when they released their apps. Three of these five developers realized
that this was a serious security threat and stated that they should fix this security
issue as soon as possible. The other two did not see the problem and even after our
explanations stated the following:

“You said that an attacker with access to the network traffic can see the data
in cleartext. I tried that and I connected my phone to a Wi-Fi hotspot on my

5Some developers were responsible for both an Android and an iOS app; thus there were only 78
developers for 82 apps.

119

laptop. When I used Wireshark to look at the traffic, Wireshark said that this is
a proper TLS protected data stream and I could not see any cleartext information
when I manually inspected the packets. So I really cannot see what the problem
is here.”

This supports the hypothesis stated by Georgiev et al. [96] that too little adversarial
testing is conducted by app developers. However, it also raises the issue that there
are developers, who, while being technically adept enough to use Wireshark to check
if their app’s traffic is really encrypted, do not understand the nature of the threat
and thus take no precautions to counter it.

Apart from developers wanting to use self-signed certificates during development,
we also talked to developers who actually wanted to use them in their production
environment but were unaware of the security implications of accepting any certifi-
cate:

“I was using a self-signed certificate for my app because it is free and CA-
signed certificates cost a lot. But, actually, I had no idea that working with
self-signed certificates could have resulted in such a security issue. I think the
online forum where I found the code snippet only said that it makes self-signed
certificates work.”

“We added this piece of code because our client uses an TLS certificate for his
web-service which was signed by a certificate authority that is not pre-installed
on Android and actually we did not realize that this would cause such trouble.”

Sometimes, the broken TLS code was added because developers had difficulties
understanding the problem and just went for the first solution that seemingly made
the problem disappear:

“This app was one of our first mobile apps and when we noticed that there
were problems with the TLS certificate, we just implemented the first working
solution we found on the Internet. [...] We usually build Java backend software
for large-scale web services.”

However, there were also developers who even after being informed about the prob-
lems and the threat scenario did not properly understand the problem and their
countermeasures did not address the threat arising from a MITM attack:

“We hadn’t realized that it would cause such an issue by using self-signed cer-
tificates in the past time, and we just verified if the certificate was expired. But
after noticing this issue, we strengthened the security check like verifying host
name. We believe this improvement can ensure users’ security. So we still stick
to trust self-signed certificates right now for its smaller size and lower bandwidth
cost.”

So while they added hostname verification after we informed them about the is-
sue, they still accept all self-signed certificates thus defeating hostname verification
entirely. In another case, a development company of a vulnerable online banking
app needed two iterations to fix their app correctly, even though we had sent them

120

the necessary code snippets. There were also cases where developers thought using
broken TLS was adequate to protect information that they deemed to be not that
valuable:

“We checked into this. Only the [...] feature is using a weak TLS certificate
and that connection only sends the device models and IMEI, but that’s not a
security concern.”

Some developers knew that their code could cause security problems but saw no other
option but to work with self-signed certificates by turning off certificate validation
entirely, since their customers wanted to use self-signed certificates.

“This issue exists because many of our customers use self-signed certificates for
SSO (single sign on). Some time back, a fiz was implemented to allow this to
work.”

One of those developers raised the interesting point that Android does not offer any
default warning, forcing developers to provide one for themselves if they wish to
inform users about failed certificate validations:

“The app accepts all TLS certificates because some users wanted to connect to
their blogs with self-signed certs and [...] because Android does not provide an
easy to use TLS certificate warning message, it was a lot easier to simply accept
all self-signed certificates.”

The consequence of this design decision was that all users of this app were at risk
because some wanted to use self-signed certificates.
Finally, the same developer accidentally left two connections unsecured:

“After you informed me about the TLS security issue in my app, I re-checked
the code and another issue that exists came to my mind. I found two endpoints
for RESTful web services I actually wanted to talk to via HTTPS, but actually I
forget the s and now the app talks unencrypted HT'TP. For users of an app and
even for me as the developer it would be nice to have an indicator whether an
app uses TLS for a network connection and even to have something that uses
TLS by default for as many connections as possible.”

The iOS developers in our study tended to rely on frameworks and libraries dur-
ing development and were understandably startled and upset when told that their
apps were endangered because of faulty code generated by the framework (cf. Ap-
pendix 7.3, Page 116):

“I am using the MK NetworkToolkit as a network wrapping library and its TLS
features for HT'TPS. After you informed me of the issue I checked the library’s
code and found that by default TLS certificate validation is off. But, when I
used the library in my app, I trusted it and did not check for the TLS MITM
attack vulnerability because it is a widely used library.”

“When I was starting to build apps for 10S, I had a strong background in cod-
ing web applications. When I came up with the Titanium framework that allows

121

developers to build native mobile apps by writing HT'ML and JavaScript, I de-
cided to use this framework just because it was easier for me. [..] I never
thought that the framework would produce broken code for TLS encryption and
[-..], although we conduct security audits for our apps, we did not include TLS
certificate validation checks into the audit process.”

The feedback from app developers confirms that developers struggle to implement
TLS correctly when they have a need to deviate from the standard use-case. They
also rely on the implementations of frameworks and libraries to protect their apps
without thoroughly testing either the frameworks’ or their app’s security. However,
our investigation also provides some new insights: developers modified certificate
validation code for internal testing purposes, e. g. working with arbitrary self-signed
certificates on test servers, but forgot about that and thus did not remove the code
for the production environment. So even those developers who understood the cur-
rent need for signed and trusted certificates put their customers at risk. Also, the
developers’ problems did not only lie in the complexity of the code, but were based
on a lack of understanding of how TLS works. There were also some cases where de-
velopers turned TLS validation off because of a customer’s request, either accepting
or not realizing the implications. Even when we explained what could go wrong and
how to correct it, developers struggled when trying to fix their app (cf. Section 7.4).
Altogether, our results imply that code-level customization of TLS-handling is an
overwhelming problem for many developers and that there is a fairly high level of
frustration with the complexity of adapting code to their use-cases.

Summary

After studying code snippets and advice in developer forums, as well as talking
to app developers that use broken TLS certificate validation, we believe that in
most cases when Android and iOS developers deviate from default TLS certificate
validation strategies — that are secure on both platforms by default — they apply
customization features in a way that weakens security significantly (c.f. Section 7.5
for a quantitative confirmation). Many developers of affected apps seem to have
only a partial understanding of what TLS does and how it works. Yet, there are
also developers who complain about the bad support for self-signed certificates and
the lack of easy to use TLS warning messages.

One interesting aspect we found in the interviews was that developers in general
seem to be interested in providing a high level of security for their users. We offered
all developers to help them with their TLS problems and most of them took the offer.
After giving background information on the security model of TLS and certificate
validation, 10 of the 14 interviewed developers accepted our assistance. 7 of these 10
developers decided to strengthen their app’s security by implementing TLS pinning.
They did this because it gave them full control over the TLS certificates trusted by
their app and they found that this was the most secure, flexible and cheapest way to
provide a high level of security. We provided the developers with code to integrate

122

TLS pinning based on Moxie Marlinspike’s GitHub page”. All developers agreed
that being able to control exactly which certificates their apps trust is a great way
to increase security, but that they would not have known how to do this without
our help.

Our results imply that allowing app developers to customize TLS handling on
source-code level overburdens many developers and leads to insecure apps. While
it is easy to weaken app security by removing the default TLS certificate valida-
tion code, it is hard to strengthen it by implementing pinning or other security-
strengthening strategies. Only one developer stated that using insecure TLS should
not be taken too seriously, which makes us believe that in most cases insecure TLS
connections are unintentional and that users must be protected against careless de-
velopers and developers who usually are no security experts.

Follow-up Analysis

Our developer study showed that many developers were unaware of the dangers
facing their TLS connections and interested in fixing the issues. Some of the devel-
opers who accepted our help were capable of fixing the TLS problems in their apps.
To analyze how developers cope with this situation without direct help, we ran a
follow-up analysis. All affected developers (i0OS & Android) were informed about
the vulnerabilities and the possible security consequences for their users at the time
of discovery of the vulnerability. They were given the recommendation that they
should fix the identified issues as soon as possible. Three months after the respec-
tive notifications, we downloaded the apps again to check if they had fixed the TLS
vulnerabilities. We found that 51 of the 78 developers did not fix the TLS issues.
Six apps were not available any more which means we could not test them a second
time. Only 21 (26.9%) apps were fixed and implemented correct TLS certificate
validation in their current versions. Of these 21 apps, 9 belonged to developers we
had helped directly during the interview process. However, 5 of the 14 developers
we interviewed did not fix the TLS issues in their apps. Furthermore, developers
of an app that included vulnerable TLS certificate validation on both Android and
iOS only fixed it for Android while the iOS app was still vulnerable in the second
test.

The results of this follow-up analysis indicate that even after informing and ed-
ucating developers about vulnerabilities in their TLS code, problems in correcting
these mistakes and deploying a safe solution still remain. Finding that 73.1% of all
informed developers did not fix the reported TLS issues demonstrates even more
that the current TLS mechanisms on appified platforms need rethinking.

7.5 TLS Development Re-thought

In the previous sections, we showed that incorrect TLS validation is a widespread
problem on appified platforms and analyzed the causes of these issues. In a follow-up

"https://github.com/moxie0/AndroidPinning — last access 13.04.2016

123

https://github.com/moxie0/AndroidPinning

study, we found that only a small part of previously vulnerable apps had fixed their
app’s TLS vulnerabilities, even after we informed the developers about the problems.
In the following, we propose a major change in how system designer could help app
developers to address these issues. While we implemented our ideas for the Android
platform, they can serve as a blueprint for system designers to increase TLS security
on other platforms such as iOS, but also OS X and Windows 8 which are moving
towards the app paradigm as well.

Based on our analysis described above, we believe that simplifying TLS libraries
or trying to educate developers in the context of TLS security will not solve the prob-
lem. For most developers, network security is not a primary concern and they just
want to “make it work” An ideal solution would enable developers to use TLS cor-
rectly without coding effort and prevent them from breaking TLS validation through
customization. However, it is also important not to restrict their capabilities to pro-
duce functional (and secure) applications: If our solution does not offer the needed
functionality, developers will be tempted to break it just like they are breaking the
built-in TLS code at the moment.

Before going into detail, we summarize the desired features for TLS validation
identified during analysis:

Self-Signed Certificates — Development. Developers commonly wish to use self-
signed certificates for testing purposes and hence want to turn off certificate
validation during testing.

Self-Signed Certificates — Production. A few developers wanted to use self-signed
certificates in their production app for cost and effort reasons.

Certificate Pinning / Trusted Roots. Developers liked the idea of having an easy
way to limit the number of trusted certificates and/or certificate authorities.

Global Warning Message. Developers requested global TLS warning messages since
they described building their own warning messages as too challenging.

Code Complexity. Developers described the code-level
customization features of TLS as too complex and requiring too much effort.

In addition to these developer requirements, we add a user requirement to our list
of desired changes on how TLS is handled in apps. We base this goal on the related
area of TLS handling in browsers. While a website can choose not to offer TLS at
all, it cannot prevent the browser from warning the user about an unsafe connection.
The website also cannot turn off TLS validation for the user. In the world of apps,
developers currently have the power to define TLS policies for an app without those
being transparent for the user. While there are well known usability problems with
TLS warning messages in browsers [188], we believe that allowing developers to for
instance silently ignore TLS errors and put the user at risk is worse. We thus define
an additional goal:

User Protection. The capabilities of a developer should be limited in a way that
prevents them from invisibly putting user information at risk.

124

To achieve all these features, several changes to the way TLS is used on appified
platforms are necessary. First and foremost, we propose the following paradigm-
shift: instead of letting all developers implement their own TLS code (and potentially
break TLS in the process, with no chance for the user to notice), the main TLS
usage patterns should be provided by the OS as a service that can be added to
apps via configuration instead of implementation. This is a fairly radical shift in
responsibility, however, we believe there now is enough evidence to warrant this
move. Furthermore, the evaluation of our system presented in Section 7.5 shows
that it is both technically possible and acceptable from the developer’s standpoint.
Configuration instead of implementation also lends itself well to offer other requested
features, such as allowing developers to turn off TLS certificate validation for their
app on their device in the settings during development. This would allow the use
of self-signed certificates during development, but would not affect the installation
of an app on a user’s device. Surprisingly, none of the major mobile or desktop
operating systems provide this feature, although we believe it would offer significant
benefits to all parties.

The platform should offer configurable options for the new TLS service so that
developers cannot and need not circumvent security features on the code level. The
simple removal of the need to tinker with TLS security aspects for testing purposes
will already reduce the amount of vulnerable apps significantly. It will also protect
users from developers who do not understand how TLS works and who therefore
make honest mistakes during implementation.

Table 7.1 gives an overview of our proposed modifications compared to the tradi-
tional code-level approach.

Implementation on Android

Figure 7.3 gives a high-level overview of the modifications we implemented to create
the proposed TLS service on Android. The white boxes contain classes we modified
or created for our solution. The dashed lines show Android components that are
now circumvented since they proved to be insecure. The grey boxes are comments
on what the different components do. The start arrow shows the entry point where
app code passes control over to the central TLS system. The features offered by our
solution are presented in the following sections.

Features
Mandatory TLS Validation

As stated above, we propose that the capability and need to customize TLS certifi-
cate validation and hostname verification on source code-level is removed. Instead,
TLS certificate validation should be enforced for every TLS handshake automati-
cally, while taking into account the different usage scenarios such as development
vs. production.

To this end, we provide the TrustManagerClient and TrustManagerService
that replace the capabilities of Android’s default TrustManager (cf. Figure 7.3). We

125

)
) Q o
T
;:' S EJD
S I
= e A g 0
] .: Q o o
T § 5 & 5
— g Q Q! bD '5’
g F & 2 g =
< < &5 & ¥ 3F
O O ©O A - P
Standard Vv — — — —
Our approach v v v v P

Table 7.1: A comparison between the status quo and our approach concerning vali-

dation features.
v' = supported out of the box;

— = custom code required;
P = pluggable.

only modify methods which are private and final, thus binary compatibility is given
and we do not break modularity. More information on the compatibility of our
approach can be found in Section 7.5. Both the client and service part of our TLS
validation implementation prevent Android apps from using broken certificate vali-
dation. Upon creation of a socket, the newly developed TrustManagerClient au-
tomatically requests TLS certificate validation from the service counterpart. App de-
velopers cannot circumvent secure validation anymore, since customized TrustMan-
ager implementations are prevented by our modification. The TrustManagerService
enforces TLS certificate validation against the trusted root CAs and can drop the
connection or present the user with a warning message in case validation fails (more
on this in Section 7.5).

To mandate secure hostname verification, we patched all stock hostname verifiers
to enforce browser compatible hostname verification. We also added hostname veri-
fication to the central SSLSocketFactory (cf. Figure 7.3). Hostname verification
is conventionally delegated to the application layer: With HTTPS for example, the
hostname for verification is extracted from the requested URL. In contrast, An-

droid’s SSLSocketConnection implementation does not check the hostname, even
Our patch improves this

though it may have been provided in the method call.
behavior by verifying hostnames with the parameters provided during connection

establishment for any TLS connection.
This strict enforcement could cause developer issues in some usage scenarios de-

scribed by our study participants, so several configuration options are described in
the following in order to adapt our solution to different situations. Additionally, we

discuss potential pathological cases in Appendix 7.5, Page 135.

Self-Signed Certificates
To allow developers to use self-signed certificates for testing purposes, we add a
new option (cf. Figure 7.4) to the Developer settings, allowing app developers to

126

Our modifications Existing architecture

FOI'CG hostname (org.apache.http.conn.ssl W

(—
verification LSSLSOCketFactoryJ start
Force certificate validation; i
Configurable by the users |
uses !
(android.net.ssl W x removed
TrustManagerClient |
(in app) |
RSO A
! javax.net.ssl \\
laced by =77~~~ -- -
tses peplaced by | TrustManager
T
(android.net.ssl b
TrustManagerService
(in system)
configures 5
Pluggable Certificate 5
Validation: =
(CA-based validation, CT, ?
AKI, TACK, etc.) User options n
Developer g
Turn on/off TLSPinning, options g
Accept all certificates 5
on developer devices .. =
decisions =
73
Warn the user if con- Human Com- -«
nection is insecure puter Interface

Figure 7.3: This figure illustrates the process of creating an TLS protected network
connection. The grey boxes comment on our contributions.

turn off TLS certificate validation for specific apps installed on their device with-
out needing to modify the code of their app. This option is monitored by the
TrustManagerService and skips certificate validation for this app only. These
settings only affect the specific app on the developer device, not the apps deployed
onto users’ devices or other apps on the developer’s device. Thus, even if develop-
ers forget to turn on certificate validation again, this has no effect on apps on user
devices. This feature effectively protects users from forgetful developers and solves
many of the problems we discovered during code analysis and interviews.

We only allow this option on devices that have developer settings enabled. Thus,
app developers have a simple way to work with self-signed certificates during devel-

127

opment while preventing careless users from turning off TLS certificate validation
for their apps.® Nonetheless, we show a warning message using strong wording that
advises against abuse (cf. Fig. 7.4(b)) when this option is toggled.

=) App info A

Z°”F{, ?[}ﬁ"’"“ Free This is a development option
only. Disabling SSL Validation
makes network connections of
this app insecure and
7 Show notifications consequently puts your
personal information at risk.
NETWORK SECURITY This setting should not be used

to get rid of annoying warnings.

Uninstall

Disable SSL Validation OFF

Cancel 0K
(a) Developer settings to turn off cer- (b) On disabling validation, a mes-
tificate validation for an app. This sage warns against security threats.
option is not displayed for normal
users.

Figure 7.4: Instead of writing code, TLS parameters can be changed with via De-
veloper settings options.

TLS Pinning

TLS public key pinning can be configured by app developers to limit the number
of certificates an app trusts. It can either be used to specify exactly which CA
certificates are trusted to sign TLS certificates for this app or directly specify which
individual TLS certificates are to be used. The standard Android approach to use
certificate pinning requires developers to implement it individually in their source
code, resulting in only very few apps implementing pinning at all.” The standard
approach for limiting the number of trusted issuers is using a custom keystore, which
is also complex and requires custom code to load the keystore. Using our extension, it
is possible to configure TLS certificate pinning in an Android app’s Manifest .xml
file. This allows developers who know which endpoints their app connects to (this
should be most apps) to easily and securely add TLS pinning without having to
write any code. Figure 7.5 shows the Manifest .xml for an Android app with TLS
pinning.

8While it is conceivable that users annoyed by warning messages could find information online on
how to activate developer options and then turn off certificate validation for a specific app, we
believe this risk is fairly low compared to the huge benefit this option brings. Additionally, we
recommend limiting this option to devices that are registered with Google developer accounts
to prevent normal users from carelessly breaking their apps’ TLS security.

90ne of these apps is the Twitter app by Twitter Inc., for whom Moxie Marlinspike developed the
TLS pinning code.

128

<!-- SSLConfiguration for my App -->

<ssl>
<pinning>
<!-- Only trust my self-signed certificate. -->
<pin type="leaf" val="18:DA:D1:9E:26:7D..."/>
<!-- And certificates signed by Verisign. -->
<pin type="issuer" val="8F:57:5A:C8:5B..."/>
</pinning>

<logging level="INFO"/>
<handle-validation-fails action="Do-Not-Connect"/>
</ssl>

Figure 7.5: The new TLS configuration options for an Android app’s Manifest.xml
file allow developers to easily configure different options for handling
TLS. Developers can pin either leaf or issuer certificates, determine if
their app should log TLS-relevant information and observe how their
apps react to failed TLS certificate validations. By default no pin is
set, logging is turned off and apps refuse to connect to hosts for which
certificate validation failed.

Pinning individual leaf certificates also allows developers to use self-signed certifi-
cates in a production environment in a secure way, which is a requirement several
app developers articulated (cf. Section 7.4). In case developers wish to restrict the
number of trusted issuers instead of pinning individual leaf certificates, pins for cer-
tificate issuers can be added to the Manifest.xml file in the same way. The app
then accepts only certificates issued by the pinned certificate issuers. To simplify the
process of creating certificate pins and adding them to the Manifest.xml file, we
extended Eclipse’s Android Development Tools. This way pins for given certificates
can be generated and added to an app’s Manifest.xml file automatically.

Since TLS public key pinning can be problematic in some rare cases, for instance
if a company mandates the use of an TLS proxy!?, we allow for TLS pinning to be
disabled globally using the (enterprise) Device Administration API policies. While
careless users cannot unintentionally turn off TLS pinning since they do not have
access to the Device Administration API, enterprises can configure devices to respect
company policies.

Force TLS

Our analysis of the 13,500 most popular Android apps showed that 9,934 (73.6%)
used HTTP to contact endpoints that supported HT'TPS. The developers thus could
easily have upgraded their apps to use TLS by adding a single character to the target
URLs (as stated by a developer in Section 7.4 “forgetting” the S after the HTTP
could be a common problem across apps). Currently, app users have no way of
influencing if an app uses TLS or not. To enable the user to upgrade existing apps
to TLS, we implemented an HTTPS-Everywhere [116] like approach for the socket

10Some companies use TLS proxy servers to monitor the network traffic of their employees.

129

creation process on Android. The problem of not using TLS/HTTPS on websites
is well-known. To protect the users of desktop browsers, the EFF provides the
“HTTPS-Everywhere” browser plugin'! for Mozilla’s Firefox and Google’s Chrome
browser. Based on a set of regular expression rules of known hosts which support
HTTPS, HTTPS-Everywhere rewrites requests to these websites from HTTP to
HTTPS whenever possible.

We extracted the ruleset database of the current development releases for HT'TPS-
Everywhere'? and extracted hostnames from 13,500 Android apps that support ei-
ther HTTP or HTTPS. The current HTTPS-Everywhere database contains more
than 8,900 rewrite rules. In addition, we extracted 4,500 hosts from our set of
13,500 apps that support HIT'TPS. We combined both databases and are now able
to rewrite plain HT'TP to HTTPS connections for 11,875 hosts, including the most
commonly used hosts on desktop browsers and Android apps. To integrate this
ruleset into the Android API, we modified Android’s PlainSocketImpl class (cf.
Figure 7.3): each time a new socket connection is established, the ruleset database
lookup is performed and in case a rule for target host and port matches, a plain
HTTP connection is replaced with an HTTPS connection. To keep the ruleset
database as flexible as possible, we implemented it as a system service, which is
running in the background and can be queried by every app. Integrating the ruleset
database this way allows us to update and maintain rulesets in a flexible way.

To provide control over TLS enforcement for HTTP(S) to the user, we added new
settings options: Android users can now turn HTTPS enforcement on or off (cf.
Figure 7.4) for all apps in the global security settings. Additionally, we added a
second option to an app’s settings to turn on or off HT'TPS enforcement on a per-
app basis. The per-app setting always overwrites the global setting. If the HTTPS
enforcement option is marked, our modified socket implementation tries to replace
every plain HT'TP with a secure HT'TPS connection. In case enforcement is turned
off, socket connections are left untouched and the app’s implementation is used. If
it is not possible to replace an insecure HT'TP with a secure HT'TPS connection
although the user configured TLS enforcement, a warning message pops up saying
that a secure connection cannot be established and leaves the user a choice to drop
the connection or allow it anyway. For more on warning messages see below.

User Protection

Currently it is entirely up to the developers to implement the Ul to interact with
the user when something goes wrong with TLS. This has led to a large number
of apps silently accepting invalid certificates, crashing or displaying unintelligible
warning messages such as: “Reset your local time to the current time” when faced
with a certificate validation error. The lack of a ready-to-use warning message was
also an issue criticized by developers in our study. It should also be impossible for
app developers to invisibly accept untrusted certificates without the users’ consent.

Uhttps://www.eff.org/https—everywhere — last access 13.04.2016
Phttps://www.eff.org/files/https—everywhere-4.0development.2.xpi — last ac-
cess 13.04.2016

130

https://www.eff.org/https-everywhere
https://www.eff.org/files/https-everywhere-4.0development.2.xpi

We offer a system-triggered, standardized warning that gives app users the chance
to recognize security threats originating from insecure TLS connections, thus pre-
venting app developers from silently accepting invalid certificates. This capability is
needed for apps that connect to endpoints outside of the control of developers and
thus might not have trusted certificates, such as mobile browsers, news readers, blog
aggregators, etc.!3. In these cases, the users are allowed to decide if they want to
connect anyway after being shown a warning message.

Usability studies on TLS warning messages for browsers [188] show that designing
meaningful and effective TLS warning messages is a challenging task. Designing
such a system is outside the scope of this work which is why we use Android’s
stock browser warning message for now. Still, we think that having a standardized
warning message that app developers can use to let the user decide what to do with
untrusted certificates is a good starting point for such future work. Issues such as
habituation need to be taken into account at that point, but showing any warning
message is better than allowing apps to silently accept all invalid certificates due to
developers’ negligence.

While we no longer allow developers to silently accept connections for which vali-
dation fails, we do allow developers to be more restrictive and drop connections for
which validation fails without allowing the user to override. This is the correct (and
default) behavior for most apps where the developer knows which endpoints the app
communicates with and these endpoints have valid certificates, such as online bank-
ing, social networking and most other single purpose apps. As long as developers
exercise due diligence with their server certificates, the only validation errors would
be in the presence of a real MITM attack™. In these cases, users would be effectively
protected from themselves.

The decision of whether a warning message should be displayed or connections
should be dropped was added as a configuration parameter to an app’s manifest (cf.
Fig. 7.5).

Thus, our framework can protect users of multi-purpose apps from developers who
would hide warnings and accept untrusted certificates as well as enabling developers
to protect their users from accidentally accepting connections from MITM attacks
for apps where the endpoints are known in advance.

Alternate TLS Validation Strategies

One feature which offers promising future potential is the capability of our system
to plug new validation strategies into the system and thus protect both new and
existing apps without requiring a large number of app developers to update their
code. This could significantly speed up the adoption of alternatives to the current
weakest-link CA based system. We have created a plugin infrastructure for this

30ne of the developers we interviewed explicitly stated he turned off certificate validation for his
app entirely because his customers wanted to connect to blogs with self-signed certificates.

We realize not all developers practice due diligence with their certificates, however we still believe
this to be the right default setting. With this setting developers would quickly realize that there
is a problem with their certificate and would be forced to update it.

131

purpose and support Certificate Transparency (CT) [136] and AKI [128] as new
approaches to validate certificates.

Evaluation

As Section 7.4 showed, all broken TLS implementations on Android and iOS came
about because developers wanted to customize the way their app uses TLS and failed
to do so safely. While our new approach to TLS-development in apps closes all the
security holes we found, it will only be adopted by developers if all their needs are
met and they feel comfortable with configuration instead of coding. To evaluate our
approach, we conducted two evaluation studies.

We ran interviews with the 14 developers of our previous developer study to
discuss how they perceived our proposed solution and if they would be comfortable
using it. Since the number of developers available for interview was fairly small, we
also did an extensive code analysis of all custom TLS-handling code in the set of
13,500 Android apps to ensure that all use-cases could be covered by our solutions
and thus remove the need for dangerous code-level customization.

Developer Evaluation

We conducted a pre-test study in which novice developers added TLS to their apps
and used pinning and self-signed certificates. Since our framework made all these
tasks trivial, we decided not to deploy this study on a large scale, since it would
not have led to any valuable insights. Instead, we focused on whether the proposed
paradigm shift would find the developers’ approval and make them feel comfortable
with configuring TLS instead of implementing it. We presented our approach to the
14 developers from Section 7.4 and queried them if these features would fulfill their
requirements and remove the need to customize the way their app uses TLS. We
also asked if they would feel comfortable using configuration instead of coding to
add advanced features such as TLS pinning to their apps.

All use-cases of these developers were met with our new design and the reaction of
the developers was very positive. They confirmed their previous statements — that
TLS development is too complex — and that they very much appreciated anything
which would ease the burden. They were particularly positive about the option to
use self-signed certificates during development and to use pinning in such an easy way
for their production apps. None of the interviewed developers were concerned that
they could not fulfill their certificate validation tasks with the provided configuration
options. Due to the small number of developers willing to discuss the problems they
have with TLS development, we decided to follow up this qualitative study with a
quantitative study.

Compatibility Evaluation

To evaluate whether our proposed solution really covers all relevant use-cases, we
ran another static code analysis on the set of 13,500 Android apps [76]. We ex-
tracted all customized TrustManager implementations and manually analyzed the

132

semantics of the checkServerTrusted methods. Unlike in the previous study, we
also analyzed the 2.04% of implementations that customized TLS handling without
breaking TLS. While there are not many apps in this category, it is still imperative
that these good apps also continue to work as expected with our new approach. In
total, we found 3,464 classes that implement customized TrustManagers. We cat-
egorized them based on their handling of TLS validation compared to the default
procedure. Table 7.2 gives an overview of the customizations we found. We denote
a customization that weakens certificate validation with a “—”, a customization that
strengthens validation with a “4+” and customizations that do not affect validation
security with a “=".

£

-

g2
Customized Implementations 3,464 ® .—cE
Accept All Certificates 3,098
Expiry-Only Check 263 —
Leaf-Cert Pinning 47 +
Add Logging to Default Validation 32 =
Add Hostname Pinning to Default Validation 16 +
Limit Trusted Issuers 8 +

Table 7.2: Distribution of Customized TrustManager Implementations in Android
Apps

In the 97.02% of cases where TrustManagers accept all certificates or only check
certificates’ expiry dates, our approach protects app users from careless develop-
ers by enforcing secure certificate validation. As we previously showed in Chap-
ter 6, Page 93, 97.1% of the endpoints in the 1,074 vulnerable apps had valid
certificates. In these cases, our modification fixes the apps without any develop-
ment effort or negative side-effects for the developer or the user. In the remaining
2.9% of cases, the endpoints used by the apps do not have valid certificates. In
these cases, our system would prevent the connection, unless the developer installs
a valid certificate, updates their application to pin the current certificate or sets
the handle-validation-fails option in the manifest (cf. Fig. 7.5) to show
warning messages. Since all three modifications a developer would have to perform
are very easy in our framework, we believe this to be a good trade-off for the broken
apps.

While the majority of all implementations turns effective TLS certificate validation
off entirely, a small number of developers created beneficial customizations. 0.9%
of TrustManagers add logging to the default certificate validation process. While
this does not strengthen certificate validation itself, it still is a potentially positive
feature that should not be made impossible. We therefore added a configuration
option (cf. Fig. 7.5) that allows developers to get log output from the framework’s
validation process.

0.5% of implementations add hostname verification directly to the certificate val-
idation process. This strengthens an app’s security since default TLS certificate

133

validation does not cover checking the hostname during the TLS handshake out-
side of an HTTPSUrlConnection. This feature is covered in our framework (cf.
Section 7.5 above).

In the 1.6% of cases where TrustManagers were used to improve TLS validation
(i.e. through pinning a leaf certificate or a CA), the functionality added by the
custom code is available as a configurable option in our solution. Thus, we found no
custom TLS code which implements a use-case that is not covered by our solution
with significantly less effort. We conducted field trials that confirmed this analysis.

Deployability

All our modifications are implemented as part of Android’s Java Framework. A
system update would thus be the most convenient way to make the new features of
our system available to developers and users. All apps built from then on would use
this update by default and would benefit from our framework’s features. Existing
apps’ binaries do not need to be modified to benefit. However, it is possible for power
users with root access to their device to install our modifications on their devices
without having to wait for an official update or having to make major changes to
their device, such as flashing the device.

A noteworthy feature of our solution is that it does not break binary compatibility
and could in theory be used to protect existing apps as well. Our modifications only
affect private final methods of the Java Framework and thus do not break modularity
or collide with developer code. This would instantly fix all the vulnerable apps we
discovered in our studies. However there are some rare pathological cases which
would need to be considered if our system were to be applied to all apps blindly.

Transition Period

With such a high number of users at risk and such a slow/non-existent response
time by developers when fixing the vulnerabilities, it might be worth considering
activating our framework not only for new apps but for all existing apps as well.
This would instantly fix all instances of apps with broken TLS we could find. There
are two ways in which our framework could be deployed in such a case. The first
approach would simply override custom TLS code. This would work fine for 98% of
the 13,500 apps we analyzed and fix all the broken ones. However, the remaining
2% would lose important functionality (such as custom pinning) until the developers
update their apps. They would still have standard certificate validation but their
custom improvements would be disabled. So while applying our framework for
all apps in this way is simple and helps most apps, it would be good to avoid this
undesirable side-effect. A second approach could combine our framework’s validation
code with the app’s custom TLS validation code. In this case, the simple rule
would be only if both validation methods accept a certificate, then the connection
is established. If one of the two validation processes rejects a certificate, a warning

134

message is shown to the user by our framework.!> The main issue with this is
that users could potentially see two warning messages for the same connection: In
those cases where validation legitimately fails and the developers of the app followed
best practices and warns the user and the users accepts the invalid certificate, our
framework would also warn the user and the user would have to accept again. While
this is not a security threat per se, it is a highly undesirable characteristic to have in
a system. However, our code analysis has shown that these cases should be very rare
when no MITM attacker is present. Thus this could be considered an acceptable
trade-off to fix the many vulnerabilities which otherwise will remain unfixed for
an unknown amount of time. It might also be possible to get the developers of
the “good” apps to update their apps for the greater good by contacting them
before the cold-turkey roll-out. Ironically getting the few “good” developers to
react is probably easier than getting all the developers with vulnerable apps to
react. However, evaluating and discussing the ramifications of this kind of roll-out
is beyond the scope of this work and would need to be discussed in the community.

Pathological Cases

There are some pathological cases that need to be considered when activating our
framework for existing apps:

IP Addresses Instead of Hostnames The current Android API allows URLs and
socket connections to be established with IP addresses instead of hostnames. Using
an IP address has the drawback that hostname verification might not work prop-
erly. The concept of virtual hosts for HT'TP(S) servers hinders effective hostname
verification when an IP address is used to establish a connection instead of a host-
name, since common names for TLS certificates typically are fully qualified domain
names [171]. Yet, there are certificate authorities!® that issue certificates with IP
addresses as the common name. So, while creating a secure connection using an IP
address can cause problems because hostname verification fails, there is also a valid
use-case for this practice. Our TLS API treats IP addresses as normal hostnames
during hostname verification.

We analyzed the set of Android 13,500 apps to find those that include URLs using
IP addresses instead of hostnames to estimate the scope of this practice in Android
apps. In all 13,500 apps, we found 163 apps (1.21%) that include IP address-based
URLs, pointing to 118 different hosts. 88 of these IP addresses did not support
TLS. Of the 30 which supported TLS, only one of the remaining used a certificate
for which hostname verification did not fail. However, this certificate was self-signed,
so none of the IP address-based apps used TLS correctly.

Custom Sockets If an app implements a custom application layer socket that
resolves hostnames by itself, it may rely on the SSLSocketFactory to create an TLS-

5For the cold-turkey approach, the default warning mechanism would be switched from “drop
connection” to “warning” since we cannot automatically tell in advance if the app has a legitimate
reason to connect to untrusted hosts.

164, g. https://www.globalsign.com/ — last access 13.04.2016

135

https://www.globalsign.com/

secured socket based on only an IP, but cater for hostname verification itself at a
later stage. Given the modifications of our framework, this implementation would
break, as our modified SSLSocketFactory would attempt to verify the hostname (in
this case the IP address) during the handshake and fail because the hostname in
the certificate presented by the server is unknown to the SSLSocketFactory. While
it is uncommon to not delegate hostname resolution to the operating system, we
acknowledge that such implementations would need to be updated to work with our
modifications.

7.6 Limitations

The studies presented in this work are limited in several ways. We could only
download a comparatively small number of iOS apps to manually investigate MITM
attack vulnerabilities due to legal restrictions of Apple’s iOS AppStore. In contrast
to our study of Android apps that tested all popular Android apps with static
code analysis, we randomly selected iOS apps of categories of apps we assumed to
handle confidential information such as banking and cloud service apps. However,
we found that 27% of the investigated iOS apps were vulnerable and could identify
popular i0S frameworks with a huge number of apps. Hence, we think that although
our iOS study is not as comprehensive as the Android study, we think that our
results provide valuable information for understanding the reasons of TLS misuse
on appified platforms.

We contacted 78 developers and asked them to participate in interviews about the
identified TLS issues in their apps. Only 14 developers agreed to participate in an
interview while all others either did not respond at all or turned down our request
with reference to company guidelines forbidding them to talk about confidential
information. Despite the relatively small number of participants, we were still able
to identify a wide range of causes which lead to serious security issues in the context
of app development and TLS. After the developer study, we conducted a large scale
code analysis and did not find any indication that there were further issues that
would warrant more interviews.

7.7 Summary

In this work, we argue for a new way of handling TLS connections on appified plat-
forms, since previous work discovered severe problems in this area. To discover the
root causes of these problems, we conducted a study of 1,009 iOS apps to ascertain
whether iOS suffers from the same problems as Android. We also surveyed devel-
oper forums and conducted a developer study. Based on our findings, we proposed
to rethink how developers interact with TLS: instead of requiring developers to work
with TLS on the code level, we designed and implemented a framework that allows
them to protect their network connections via configuration. Our solution prevents
developers from willfully or accidentally breaking TLS, while at the same time giv-
ing them easy access to additional features, such as pinning and the secure use of

136

self-signed certificates. We evaluated our proposal with existing Android apps and
showed that all use-cases we found can be implemented more easily and securely with
our approach. The feedback we gathered from developers was also very positive.

This chapter illustrated how system designers can support software developers in a
meaningful way by providing easy to use APIs to work with security related program-
ming tasks. An important aspect of this work was the integration of developers into
the process of rethinking the current interfaces. While system designers are involved
in designing easy to use APls, their widespread adoption and use remains a joint
achievement of both system designers and developers.

In contrast, the next chapter will focus on an easy to use mechanism to verify
software integrity and authenticity that addresses system designers only (e.g. the
operator of an app market). The involvement of developers is very limited and end
users will not even realize the presence of the mechanism until a malicious event is
detected. This work will show the power of system designers with respect to deploying
easy to use security mechanisms and will demonstrate how end user can be relieved
from technical burdens.

137

8 System Designers:

Distributing Software
in a Bullet-Proof Way

138

Disclaimer: The contents of this chapter were previously published as part of
the paper “Hey, NSA: Stay Away from my Market! Future Proofing App Markets
against Powerful Attackers” presented at 21" ACM Conference on Computer and
Communications Security (CCS) in 2014 [74] together with co-authors Sergej Dec-
hand, Felix Fischer, Henning Perl, Matthew Smith and Jaromir Smrcek (alphabetical
order). As this work was conducted with my co-authors as a team, this chapter will
use the academic “we” to mirror this fact. The idea and initial concept for this work
came from myself. Developing the system design for the Application Transparency
concept and its integration into the Android ecosystem was joint work with Felix
Fischer and Sergej Dechand. I crawled the Google Play market, downloaded approx-
tmately 1 million Android apps and analyzed their app signing practices. I analyzed
the telemetry data provided by the Zoner anti-virus app. My co-authors contributed
in different ways. Implementing the Application Transparency framework was joint
work with Feliz Fischer. Jaromir Smrcek provided access to telemetry data of users
of the Zoner anti-virus app for Android. Together with Sergej Dechand and Henning
Perl, we compiled the paper for publication.

Software described in this chapter is available at https://zenodo.org/record/
511109.

8.1 Motivation

The process of installing software is a highly security relevant action — and in the
face of powerful attackers including nation state adversaries, it is currently a leap of
faith that the software being installed has not been tampered with. While in the past
physical media offered some assurance as to the provenance of software and made it
unlikely that the version of software being installed was tampered with in a targeted
attack, the move to digital downloads and app markets offers a very convenient way
for powerful adversaries to target specific users with customized malware. In the case
of digital downloads from websites, users could in theory verify the software being
installed by comparing checksums'. However, this procedure is hard to use for the
average user and never received widespread adoption. Central software repositories,
and more recently mobile app markets, require developers to sign software /apps prior
to inclusion into the repositories. This offers more convenience and in many cases a
higher level of security for users compared to direct downloads from webpages.

However, there is no automated mechanism for users or developers to verify that
an app being installed is actually the original and untampered app released by the
developer.

Recent revelations have shown how infrastructure organizations can be pressured
or attacked by nation state adversaries who want to gain access to specific tar-
gets. In May 2014, it became public that parcel services gave the National Security
Agency access to routers that were intended to be shipped overseas so they could
install backdoors. The packages were then resealed and shipped containing the back-
doors [101]. In September 2011 the DigiNotar Certificate Authority was attacked

! Assuming the channel used to obtain the checksum was not compromised as well.

139

https://zenodo.org/record/51119
https://zenodo.org/record/51119

by the Iranian government and issued fake TLS certificates to attack 300,000 Ira-
nian Gmail users [195]. These two publicly known attacks illustrate the power that
nation state adversaries can and will assert on infrastructure and service providers
which distribute software and hardware to circumvent security measures.

The central app distribution process via markets or repositories is a similarly
tempting target. An adversary in control of an app market or repository as well
as an adversary who can coerce an app market or repository can easily distribute
custom malware to specific users or groups of users. This is a particularly convenient
attack vector since most app markets require personal registration and hence make
it easy to identify and target specific users. App markets have already been the
target of attacks with the aim to distribute malicious apps in the past [51, 157, 100,
208, 207, 202, 39, 204, 97]. Especially in the light of the limited capabilities of mobile
anti-virus apps [197, 164], Android’s app ecosystem is an attractive candidate for
targeted attacks.

A signature verification process vulnerability discovered in 2013 [20, 18] unveiled
that maliciously modified apps may be planted on around 75% of all Android devices
without users being any the wiser [8]. This attack allows attackers to tamper with
app updates in addition to fresh installs. However, there are more subtle ways app
markets can be used to open up attack vectors against specific users: On a regular
basis, new security vulnerabilities are being discovered, (hopefully) fixed and updates
are released.

However, for an app market it is very easy to withhold updates from specific users,
thus guaranteeing that they remain vulnerable to known security issues. While
most app markets probably have their users’ best interest in mind most of the time,
attacks against the app markets themselves and the Snowden revelations necessitate
the possibility to verify that app markets and software repositories behave correctly
and treat all users equally.

In this work, we conduct an extensive analysis and evaluation of the state of
current Android app markets in terms of transparency and accountability during
app installation and updating. We show that for both end users and developers, the
current model of app distribution is severely flawed and makes targeted (as well as
non-targeted) attacks unnecessarily easy.

To overcome the resulting lack of transparency and accountability, we present a
new framework called Application Transparency (AT). AT protects against “targeted-
and-stealthy” app markets by making attacks against specific users or groups of users
easily detectable. AT extends the concept of Certificate Transparency (CT) [135].
Unlike CT, AT provides synchronous prevention instead of only retroactive notifi-
cation. With respect to app installation and updates, AT guarantees that all users
see the same app and version as everyone else and that developers can be certain
that no tampered versions of their apps are distributed without their knowledge.
Our approach can be applied to any repository or app market based software dis-
tribution system. We fully evaluated and implemented our solution for Google Play
and use this as an example throughout the rest of this work. We chose the Android
app market for the deployment of our solution, as it is one of the largest and most
vibrant app markets and has been the target of a number of real world attacks in

140

the past.

8.2 Background

This section provides background information and related work on the app sign-
ing and installation process on Android as well as an introduction to Certificate
Transparency.

App Signing on Android

Android apps are digitally signed by signing keys held by their developers [99].
Apps’ digital signatures are intended to identify application authors and to establish
trust between apps and Google Play. Google’s recommendation is to use self-signed
certificates with a key size of 2048 bits for RSA keys and a validity period of at
least 25 years. They do not accept apps signed with a certificate that expires before
2033. In case developers author multiple Android apps, they are encouraged to sign
their apps with the same signing key. Furthermore, app updates are expected to be
signed with the same key to enable the detection of malicious updates.

App Publishing in Google Play

To publish apps in Google Play, developers have to package an APK file, sign it and
upload the APK file to Google Play’s developer console. After adding a description
and determining in which regions and for which devices the app should be available,
the app goes through internal checks before being published. One such check is
Google’s Bouncer service which analyzes apps for malware [98]. Other checks include
the verification of the signing key’s expiration date. After uploading the APK file, a
popup is shown to the developer promising to make the app available for download
in the next couple of hours. Usually apps or updates are available within 60 minutes
after upload. Since many mobile app companies offer apps for multiple platforms
such as Android, i0S, Blackberry and Windows Mobile, app building and publishing
is often outsourced to third party companies that take care of signing and publishing
apps (cf. Section 8.3).

Android App Installation and Updates

Whenever a new app is installed on the user’s discretion, Android’s “Verify Apps”
mechanism checks the app with Google’s integrated anti-virus feature, verifies the
APK file’s digital signature with the developer’s certificate and keeps the certificate
for checking future app updates.

Updates for apps need to be signed with the original private key that was used
when the app was built initially. Otherwise updates will be rejected and users are
required to uninstall previous versions before being able to install the app’s latest
version. Thus, in case developers lose their private key and need to sign app updates

141

with a new key, their users are shown an error message stating the updates cannot
be installed.

Certificate Transparency

Certificate Transparency (CT) is a framework proposed by Google that aims to
securely and provably log all X.509 signing activities of Certificate Authorities [135].
The goal is to prevent CAs from creating “attack” certificates which without CT
could then be used to mount Man-In-The-Middle attacks against TLS connections
with a very low risk of being caught. The basic concept of CT is to offer a publicly
available tamper-proof append-only log that contains all CA-issued TLS certificates.
Immediately after an TLS certificate is added to the log, the log responds with a
Signed Certificate Timestamp (SCT) which represents a promise of the log to include
the newly added certificate to the log within the log’s Maximum Merge Delay (MMD)
time. The log provides two different types of cryptographic proofs: (1) Users of the
log can obtain Proofs-of-Presence (PoPs) that allow everyone to verify that a given
TLS certificate is part of the log and (2) users of the log can obtain Proofs-of-
Consistency (PoCos) to verify that a snapshot of the log is a successor of a previous
snapshot. CT knows two different types of clients: (1) auditors are third parties
that monitor CT logs for correct behavior, e.g. an auditor checks whether PoCos
for a log are correct, (2) client software (such as a browser) which does not directly
communicate with a CT log server but relies on the SCTs signed by a log. These
clients must trust the correct behavior of a log, which is checked by the auditors.
Web-browser users are clients of auditors and can check a CT log’s correct behavior
by asking an auditor for the results of its consistency checks. A new extension of
the CT log is built every MMD and includes all existing and new certificates added
within the last MMD. The underlying data structure of CT’s log is a Merkle Tree
(MT), an append-only tree in which every node is labelled with the hash (typically
SHA-256 or SHA-512) of the labels of its children and possibly some additional
metadata describing the node. MTs enable the efficient verification that certain
data is present in the tree. A PoP requires log(n) hashes, n being the layer count of
the MT, and contains one hash of each layer of the tree. Proving that one snapshot
of a MT is the successor of another snapshot can be done in logarithmic time and
space by providing one hash per layer of the tree. The value at the root of an MT is
signed with the private key of the CT log provider and called the Signed Tree Hash
(STH).

Limitations

Asynchronous Proof Validation For performance and infrastructural reasons, CT
does not conduct synchronous proof validation. Instead, CT [135] proposes that
users gossip received SCTs to detect possible attacks as soon as possible. This
mechanism does not protect users when establishing an TLS connection, but un-
covers malicious logs (i.e. logs that issue SCTs but do not add the certificates to
the log after the MMD) and attack certificates with very high probability over time.
This however leaves a time window open for successfully attacking CT users.

142

Revocation While CT provides PoPs, with CT alone it is not possible to check
whether a given TLS certificate is still current and has not been revoked. Revocation
Transparency (RT) [134] is a CT extension that allows certificate revocation. RT
proposes two different methods to store revocation information. The first one is
a so called Sparse Merkle Tree (SMT) that is a regular MT in which most leaves
are zero. A complete path in an SMT has length 256 and represents the SHA-256
hash of an TLS certificate. The path ends with a 0 or 1 leaf according to whether
the certificate is revoked or not. The second proposed structure to store revocation
information is a sorted list organized as a binary search tree. However, Ryan [170]
shows that both proposed approaches are inefficient since proofs requiring linear
space and time require data sizes measured in tens of hundred of gigabytes, which
makes them impractical.

Related Work

In addition to Google’s Certificate Transparency framework, there are further aca-
demic proposals to provide transparency or tamper-proof logs.

Kim et al. [128] propose a system called Accountable Key Infrastructure (AKI)
for TLS certificates. In AKI, so called Integrity Log Server Operators are expected
to log publicly available X.509 certificates and push them to an Integrity Tree which
is a lexicographically ordered hash tree. Since an Integrity Tree is not an append-
only data structure, all operations in the tree are digitally signed and validators
are expected to monitor the correct operation of the Integrity Log Server’s data
structures and perform consistencychecks between different versions of the tree. The
Sovereign Keys (SK) system [58] proposes to operate timeline servers that act
similarly to timestamping servers [105]. SK runs a Trust-On-First-Use model, i.e.
the first registration of an X.509 certificate binds the key to the domain name,
subsequently preventing duplicate registrations for the same name.

Ryan [170] proposes to enhance CT with an effective revocation mechanism.
He introduces a second lexicographically ordered tree called LexTree in addition to
the append-only MT-based data structure called ChronTree. In conjunction, both
trees can now provide proofs of presence, currency and absence of data in the log.
Adding a second tree to the log requires an auditor to not only prove consistency
between two different ChronTree versions but also between the Chron- and LexTree.
Consistency-Proofs between Chron- and LexTrees are linear in time and space. Ryan
proposes to apply the enhanced CT framework to email encryption.

Related work also addresses app installation on Android devices. Barrera et
al. [12] analyzed 11,104 Android apps and extracted 4,141 signing keys. They
found that 18% of the certificates sign more than one app. They also operate
the https://androidobservatory.org service that provides meta informa-
tion such as requested permissions, version code and information about the signing
key for 31,368 Android apps as of February 2014 from Google Play and alternative
markets. Zhou et al. [209] present DroidRanger, a tool to detect malicious apps in
popular Android markets. They propose a permission-based and a heuristic-based
scheme to detect malware in Android app markets and come to the conclusion that

143

https://androidobservatory.org

the evaluated markets are functional and relatively healthy. Zhou et al. [208] an-
alyzed the occurrence of repackaged Android apps in six popular alternative app
markets and found that 5% to 13% apps in those alternative app markets were
repackaged. The problem of repackaging of Android apps was also investigated by
Zhou et al. [207]. Vidas et al. [197] analyzed repackaging in alternative markets and
found that some markets exclusively distribute repackaged versions of apps contain-
ing malware. Permission dialogs allow users to decide whether they agree to an app’s
permission requests. Currently, those dialogs are the only mechanism that protects
users against too permission hungry apps. Felt et al [159] found that many develop-
ers over-privilege their apps and that users have problems to correctly understand
Android’s permission dialogs or even do not read them at all [84].

8.3 App Signing Practices

In the following section we evaluate app signing and packaging strategies currently
employed in Google Play and other alternative markets. Therefore, we analyze the
signing practices of 989,935 distinct free Android apps from Google Play (97% of all
free apps in Play as of April 2014)2.

For these apps, we extracted the signing keys to evaluate Google Play’s current
app signing practices. We extracted 380,345 distinct certificates that were used to
sign all apps in our corpus.

380,285 (99.98%) of the signing keys are self-signed, 5 apps were signed by one
single certificate issued by a dedicated Android CA from Symantec. We found three
certificates signed by CAs from major telco providers such as Sony Ericsson, Cisco
and Samsung. The remaining 47 certificates were signed by developers’ custom CAs.

Table 8.0(a) summarizes the algorithm suites employed by the certificates we
analyzed. While 369,278 (97%) certificates apply current security best practices and
secure algorithm suites, 2860 certificates employ MD5 and 23 certificates use MD2
as their signature algorithm and hence unnecessarily weaken their signature security.

51.6% of the certificates follow Google’s security guidelines and have a key size
of 2048 bits (cf. Table 8.0(c)). 0.1% of the certificates employ larger keysizes and
48.15% employ 1024 bit keys. However, 277 certificates use 512 bit RSA keys and
hence undermine their apps’ security and Android’s security guidelines.

Google recommends a validity period of 25 years or longer for signing keys and
requires that apps published in Google Play must be signed by a certificate with a
validity period ending after 2033. Table 8.0(d) illustrates the distribution of validity
periods in our app corpus.

While 1% of the certificates have a shorter validity period than recommended,
70% are within the recommended validity period (25 — 50 years). 12.3% of the
certificates have a rather optimistic validity period between 100 and 1000 years and
2033 of the certificates are valid for a 1000 years or longer. The longest validity
period we found is a certificate that is valid until the year 10,049. We found 9
certificates that expired before 2033; 4 of them issued in 2013. The most recent of

2Due to geographical restrictions, we were not able to download the remaining free apps.

144

(a) Deployed Signing Algorithms (b) Apps Signed per Certificate

Algorithm Certificates Affected Apps Apps Per Certificate Certificates
shalWithRSA 215,004 584,901 <5 390,254
sha256 WithRSA 154,274 284,607 5-10 10,967
dsaWithSHA1 8,154 20,600 11 -20 3,756
md5WithRSA 2,860 16,669 21 - 50 2,292
sha512WithRSA 28 33 51 — 100 673
md2WithRSA 23 82 101 - 1000 463
1001 — 10000 16

> 10000 4

(c¢) Deployed Key Sizes (d) Validity Periods of Certificates

Key Size Certificates Affected Apps Validity Period Affected Certificates
16384 3 3 < 25 years 3,839
8192 35 65 25 years 101,691

4096 599 1,289 26 — 50 years 164,763

2048 196,305 398,322 51 — 100 years 61,065

1024 183,126 506,477 101 — 1000 years 46,954

512 277 743 > 1000 years 2,033

Table 8.1: App Signing Practices

these certificates was issued in August 2013. Hence, Google Play’s enforcement of
its own guidelines seems to be rather laissez-faire.

Table 8.0(b) illustrates the distribution of signing keys and the number of apps
signed by a specific key. 92.28% of all keys are used to sign one unique app. How-
ever, we found 483 signing keys in our app corpus that signed up to 25,190 apps.
Interestingly, 0.1% of the keys we analyzed signed 113,842 (11.5%) of the apps in
our corpus.

Certificate Apps
L=Seattle/O=Qbiki Networks/OU=iOS/Android Development/CN=Andrew Vasiliu 25,190
C=CA/ST=MB/O=Andromo.com L=Winnipeg/OU=Development/CN=Andromo App 10,803
C=RU/ST=NSO/L=Novosibirsk/O=BestToolbars/OU=Desktopify/CN=Anton 15,269
C=US/ST=California/L=Chico/O=Bizness Apps/OU=Bizness Apps/CN=Andrew Gazdecki 13,439

Table 8.2: Certificates that were used to sign more than 10,000 apps

Pathological Cases Four of the extracted keys signed 64,701 apps in our corpus
(cf. Table 8.3). Hence, about 7% of all apps in Google Play are signed by these four
widely employed keys. While this alone is suboptimal for app security, the fact that
the current Android ecosystem has no mechanism to revoke signing keys and their
corresponding apps makes things even worse.

These four signing keys belong to service providers that allow their customers
to create mobile apps without much coding effort, like e.g. the Qbiki Networks
key, which signs apps for the Seattle Clouds® service provider. Their customers can

Shttp://seattleclouds.com/ — last access 13.04.2016

145

http://seattleclouds.com/

download templates for apps, modify these templates according to their needs and
then let the service provider build and publish their apps to app markets such as
Google Play or Apple’s App Store. During the build-process, all apps are signed
with the same private key. The app publishing procedure creates two serious issues
for both app owners and their users: (1) The app-building provider has access to all
apps’ source codes and (2) the signing and publishing process is in its control. Hence,
app-building providers can modify apps and push these modifications to official app
markets under the radar of the actual developers and users. Given the install counts
provided by Google Play, up to 125 million devices have apps installed that were
signed by this single signing key.

Alternative Markets

Many apps are not published exclusively via Goole Play, but can also be found in
alternative Markets such as Amazon’s Appstore or the F-Droid market. Overall,
there are more than 30 “official” alternative markets available?. In the following, we
evaluate app signing and packaging strategies for 45 popular Android apps®.

Results In our sample set, we could not find a single app of which the same version
was available across all the markets we surveyed. In all cases, the Google Play version
was the most current (but not necessarily as new as to be the most current version
according to official developer announcements), which underpins the assumption
that Google Play is the most important app distributor for most developers. 19 of
the 45 apps we analyzed were signed with the same key across all markets offering
the app. However, although the same signing keys were used, all apps distributed
APK files with different SHA-256 values. In 26 cases, at least two different signing
keys were employed. An interesting case is the Amazon market that is supposed
to be a benign alternative market and offers 24 of the 45 popular Play apps we
tested. 15 of those apps were signed with different keys than their counterparts
in Google Play. A popular example is WhatsApp. The officially announced most
current version® is 2.11.169. Google Play offers version 2.11.152 and we found 6
different “most current” versions of the app in 12 alternative markets.

Discussion

Analyzing the current app signing practices for 97% of Google Play’s free Android
apps and evaluating the update and packaging strategies employed by popular An-
droid app providers unveils an unnecessary intransparency and inaccountability for
app users. The fact that single app signing keys are entrusted with more than 25,000
Android apps constitutes a serious problem with verifying the authenticity of An-
droid apps. While Google intended to create a path of authenticity between app

4Cf. http://www.onepf.org/appstores/ — last access 13.04.2016

5We chose the 45 most popular Android apps across Google Play and 33 alternative markets, as
listed by https://play.google.com/store/apps — last access 13.04.2016

5As of February 20th, 2014

146

http://www.onepf.org/appstores/
https://play.google.com/store/apps

developers and their apps by enforcing (self-signed) certificates to sign apps, the
current trend towards outsourcing app signing and distribution to a few big players
in the market undermines this intention. The fact that these service providers use
one single key to sign thousands of apps without an effective revocation mechanism
at hand jeopardizes both app developers — since one stolen private key may result
in harmful updates for thousands of apps — as well as app users, since one successful
attacker could plant malicious apps into hundreds of millions of devices. In addition
to the app signing bug uncovered in 2013 that still affects a huge portion of Android
devices, the fact that Google accepts signing keys with 512 bits for apps and that
such apps are actually deployed to Google Play shows that Google’s line of defense
is fragmentary.

Additionally, we found that even the most popular apps are signed with different
keys for the same version across multiple markets, making it hard for their users to
reliably determine the authenticity of apps. Not having a straightforward tool at
hand for verifying apps’ authenticity becomes even more serious in the light of the
fact that some alternative markets turn huge portions of their apps into malware
and then act as super-distribution points for malicious Android apps [209]. Hence,
users of alternative markets have no chance to differentiate between harmless and
harmful apps — even if they compare apps’ checksums or certificates.

8.4 Threat Model

In the following, we present and discuss our threat model we call “targeted-and-
stealthy”. Here we assume that reputable app markets are not interested in dis-
tributing malware to all of their customers, but might be interested or coerced to
attacking specific target users. Secondly we assume that the app market attacker
does not want these attacks to become public knowledge. Currently, users who
search, download and install apps from centralized app markets and repositories
need to more or less blindly trust these distributors. The power to deploy (targeted)
attacks held by software distributors in the app market ecosystem is comparable
to Certificate Authorities in the world of TLS certificates [195]. Due to their cen-
tral and trusted position in the software ecosystem, coerced, hacked or malicious
app markets have the ability to easily deploy targeted and stealthy attacks against
specific users or groups of users. Since apps are signed with developer keys, mass-
distribution of tampered (malicious) apps cannot be considered a stealthy attack.
App developers could simply verify the authenticity of their own apps and unveil the
rogue market’s malicious behavior. However, if tampered apps are only distributed
to specific targets, it is easily possible to run “targeted-and-stealthy” attacks, es-
pecially in the light of current app signing and packaging strategies employed by
developers (cf. Section 8.3).

In our threat model we distinguish between app markets and app market clients
installed on users’ devices. While app markets maintain repositories, app market
clients send install requests to markets and perform the actual installation. In our
threat model, app markets as technical and legal entities can be compromised or

147

coerced and thus are our threat actor. In contrast, app market clients are installed
on the users’ devices and for this work we consider them to work correctly. The
current status quo for app market clients is that the installation of new apps must
be triggered by users, but updates to installed apps are installed silently without user
interaction. This type of silent (update) install can be triggered by the app market
by offering a newer version of an already installed app. Hence, app markets cannot
conduct silent installs but may trigger silent updates. In this work we do not list kill
switches as a threat since these are an OS feature and not an app market feature
and thus are out of scope of this work. In general, malicious code in the OS or the
app market client is not considered in this work”. In summary, our threat model
covers the following attacks app markets can mount with a low risk of discovery:

Tampered/Malicious Apps: App markets can offer tampered (malicious) apps to
specific users or groups of users.

Tampered/Malicious Updates: App markets can offer tampered (malicious) up-
dates to specific users or groups of users.

Withheld Apps: App markets can withhold applications from specific users or groups
of users, for instance to prevent the installation of security software or to per-
form censorship.

Withheld Updates: App markets can withhold updates of apps (e. g. security patches)
from specific users or groups of users, for instance to keep them vulnerable to
security issues discovered in older app versions.

Removed Apps: In case that malware is discovered and actually removed from app
markets for the masses, the markets can still offer the malware to specific users
or groups of users.

The above attack vectors are serious security issues for app market customers.
While no targeted-and-stealthy attacks mount by app markets — either voluntarily
or under the pressure of a nation state adversary — have become public knowledge,
similar attacks in similar ecosystems have been seen in the past [195, 101]. Thus
we suggest preemptive action to prevent such attacks from becoming reality.

8.5 Application Transparency

To counter the lack of transparency in current app market installation processes, we
propose a new framework called Application Transparency (AT). While Certificate
Transparency focuses on TLS certificates, we propose to transfer the core idea of
transparency to the world of software binaries in general and provide a proof-of-
concept implementation and evaluation for Android applications. We build on the
data structures and algorithms proposed by CT [135] and LT [170] and leverage the

"This is a similar assumption to stating that web browsers are considered to work correctly when
performing TLS certificate validation.

148

unique properties of app markets to improve previous work and solve the outstanding
deployment issues.

The AT framework addresses the security issues presented in the threat model
(cf. Section 8.4). For this, AT provides three different kinds of cryptographic proofs
that allows users to verify the authenticity of apps provided by app markets. The
Proof-of-Presence (PoP) is a cryptographic proof that provides information about
the presence of an app in a market. This proof allows users to make sure that a
provided app is publicly available and not a targeted-and-stealthy attack by the
app market. Hence, app markets cannot (be coerced to) send targeted (malicious)
apps to specific users, without these being easily detectable by checking the public
logs. Proofs-of-Presence also cover the prevention of silent installations of targeted-
and-stealthy malicious updates. The Proof-of-Currency (PoC) is an extended PoP
version and provides cryptographic information that allows users to verify the cur-
rentness of an app’s version. Hence, app markets cannot (be coerced to) withhold
certain apps’ updates from specific users. PoCs can be utilized as a revocation mech-
anism. Whenever an app’s version should be removed from the log, a new (can be
null) hash value is added to the log. The Proof-of-Absence (PoA) provides cryp-
tographic information that allows users to verify app absence messages presented
by app markets. Hence, app markets cannot (be coerced to) withhold certain apps
from specific users.

AT involves multiple actors as illustrated in Figure 8.1:

App Developers App developers create Android apps and submit them to markets
— either to Google Play or one of the many alternatives. In case the app market(s)
support AT, the app release procedure for developers does not change. However,
if AT is not supported by the respective market, developers have to take one extra
step, namely push their app to an AT log. More information on the two cases can
be found in Section 8.5.

App Markets App markets accept apps from developers and distribute them to
mobile users. App markets supporting our AT framework will additionally distribute
corresponding AT proofs (cf. Section 8.5) to their users.

Mobile Users Mobile users install apps from app markets utilizing app market
clients such as the Google Play app on Android. Along with the apps, AT proofs
are sent to the users’ devices. In case AT proof validation is supported by the
integrated app market client, users do not have to take any extra steps. In case AT
proof validation is not handled by the integrated app market client, users who want
to benefit from AT can use the standalone AT app.

Log Providers Log providers operate a pair of two logs that constitute the AT
log: A ChronTree and a FixTree (cf. Section 8.5). There are two interfaces, one
for accepting new apps from app markets or developers and a second to provide
AT proofs. The AT log is rebuilt every MMD to be able to provide the most

149

audjts

App Market Log Server

1.

submits 2b. 4b.
to submits Proof
market to log 3. APK
Legend: SAM NSAM
& : Scenario Only Scenario Only

Figure 8.1: All Parties involved in Application Transparency

current proofs. Candidates for log providers are app markets, anti-virus companies
or organizations such as the EFF.

By cryptographically verifying Proofs-of-Consistency over time and from different
locations, the correct behavior of an AT log provider can be ensured. Hence, users
do not have to blindly trust the provider to work correctly — even a nation state
adversary could run an AT log without compromising any of AT’s security properties.
Should a nation state adversary such as the NSA submit an app to their own log,
a Proof-of-Currency would be available immediately. Due to the log’s append only
structure, the app could not be removed again. Even if the NSA revoked the app, it
would remain in the log and while a Proof-of-Currency would no longer be available,
the corresponding Proof-of-Presence would remain. Hence, the fact that the app had
been submitted at one point could not be expunged again.

Auditors AT auditors monitor the correct behavior of log providers and inform
the public in case a log provider turns malicious. auditors monitor AT logs by
consistently verifying Proofs-of-Consistency. AT log providers cannot be their own
auditors, but can audit other AT log providers. Anti-virus companies could act as
auditors, as well as for example the EFF. Moreover, app development companies/app
generators as well as Android users can act as auditors. Table 8.5 illustrates the
different actors and how they benefit from participating in the AT ecosystem.

150

Actor Benefits

Targeted Attack Prevention - can be sure that they are treated equally
to all other users.
App Developer Protect their apps against manipulations by app markets.

Mobile User

App Market Are able to provide cryptographic proofs for their correct behavior.
Log Provider Provide transparency for the app market ecosystem.

. Monitor correct behavior of log providers and help to establish a foun-
Auditor

dation of trust in the AT ecosystem.

Table 8.3: Application Transparency Actors and Their Benefits

Log Structure

The AT log consists of a tuple of two interdependent Merkle trees (ChronTree and
FixTree).

As proposed by LT [170], we use the ChronTree which is an append-only and
therefore chronologically ordered Merkle Tree. It is extended by appending leaves
from left to right, creating a balanced tree. After appending an app to the tree,
which is done in constant time, the root hash needs to be re-built. Hence, insertion
is O(log(n)). The tree provides Proofs-of-Presence (PoPs) for inserted apps and
Proofs-of-Consistency (PoCos) which are able to show that any two versions of the
tree are consistent. This is given if one tree is a subset of any later version of that
tree. PoC and PoCo checks can be done in O(log(n)). Unfortunately, in a ChronTree
PoCs and PoAs demand O(n) since the tree has to show that an app is outdated or
revoked.

To make PoCs O(log(n)) and to enable PoAs, we utilize a second lexicographically
ordered Merkle Tree [170, 128]. The FixTree® is organized as a binary search tree
that stores nodes in a way that an in-order traversal yields the certificates stored in
the tree in lexicographic order of the certificates’ subjects. Insertion, PoC and PoA
are O(log(n)) in the average case.

In contrast to the ChronTree, the FixTree alone is not able to provide consis-
tency proofs in O(log(n)) since it does not have the necessary append-only property.
Therefore we use a ChronTree/FixTree pair utilizing the advantages of both trees to
finally achieve PoPs, PoCs, PoAs and PoCos in O(log(n)). This is done by inserting
an app into the FixTree first, and subsequently adding a tuple consisting of the app
and the freshly built root hash of the FixTree to the ChronTree. One drawback of
using a binary search tree as the underlying data structure of the LexTree is that
insertions can unbalance and degrade the tree. We therefore employ a Merkle Tree
built up on a 2-3 tree as the underlying data structure. We call this tree FixTree
since it guarantees a balanced tree for inserts in O(log(n)) and equally sized proofs
of O(log(n)) for all data in the tree. In contrast to the LexTree proposal, the data
(i.e. the package information) is contained only in the leaf nodes. Each leaf node for
an app has the form (packageeyt>, (hyi, hy2, ...)) where package is the unique pack-
agename (e.g. com.google.android.gm) of an app and < ext > identifies a device-,

8The FixTree is an extension of the LexTree [170] concept.

151

language- and region-based app version” — e. g. some apps are only available on cer-

tain device types, in certain languages and are limited to specific geographic regions
such as the U.S.. The values (hy1, hyo, ...) are lists of SHA-256 checksums for the
corresponding package <.+~ identifier consisting of different chronological versions
of an app. Hence, the checksum lists store all app versions that are available for
different devices, languages and regions. Whenever an app is outdated — since a
newer version is available — an updated hash for the app’s package <.t~ identifier is
appended to the corresponding checksum list. The size of the list of chronological
versions of an app the FixTree keeps is bound by a constant N. In other words,
the FixTree keeps only N — 1 chronological versions of an app. The chronologically
ordered list of SHA-256 hashes for an app’s packagee,i~ identifier is utilized as a
revocation mechanism. Whenever an app’s version should be revoked, a new (maybe
null) checksum value for the package<c,t~ identifier is added to the log. Hence, the
revoked version of an app is not totally removed from the log, but marked as not be-
ing the most current version any longer. In order to still be able to search efficiently
in O(log(n)), the non-leaf nodes hold the (lexicographic) minimum of the leftmost
subtree and the maximum of the rightmost subtree.

Both the ChronTree and the FixTree are re-built every MMD, which we propose
to be around 30 minutes. An MMD of 30 minutes provides a buffer for capturing
the app publication state of the Play Market. Based on the apps we crawled from
Google Play, we found that around 12,000 new apps or app updates are published in
Google Play every day. Updating the trees every 30 minutes results in 48 updates of
the tree every day. Every log update has to append an average of 250 new apps to
the current trees. We measured the time our implementation requires to append new
apps to the trees. Our tests showed that 48 updates a day are easily feasible from
both a computing performance point of view and with respect to the app publishing
parameters Google Play offers.

Construction of PoC Each rebuild of the FixTree potentially changes all PoCs for
apps in the FixTree. In order to make retrieving PoCs as efficient as possible, the
Merkle audit paths for each leaf are built after every merge and kept in a key-value
store to make sure the FixTree does not need to be traversed for every request.

Construction of PoA Given a hash h that is not included in the FixTree, a PoA
is constructed as follows (cf. Figure 8.2):

1. Search for h in the FixTree to find the closest leaf [smaller than h.

2. Execute an in-order traversal starting from [to the next leaf r to find the
closest leaf greater than h (solid path in Figure 8.2).

3. Supply Merkle audit paths for [and r.

Given the Merkle audit paths for [and r, a verifier can then validate that h is absent
in the FixTree as follows:

9If required, more information can be added to a package name’s extension.

152

to root

’
’
’
’
’
’

common parent

~
~
~
~
~
~
~
~
~

h(nq||n2||l) h(r|ln3) other subtree

’ l r 3

\
\
\
\
\
n

h

Figure 8.2: Generating a Proof of Absence for h with the adjacent nodes [and r

1. Check that I < h < r.

2. For the audit path for [, check that each node in the path is either a right child
or the parent is also included in r’s audit path.

3. For r’s audit path: check that each node is a left child, respectively.

One specific case is constructing the proofs for an element that is smaller or greater
than every element in the FixTree. In those cases, the PoA consist of only one audit
path of the leftmost or rightmost node respectively.

Deployment

We propose to operate multiple logs — ideally every app market should operate its
own log to avoid a single point of failure but still provide transparency for mobile
users.

In this section, we show the applicability of AT for Android apps by analyzing
various deployment aspects. The deployment is viable without any changes to the
app market. However, we also discuss a second deployment option in which the app
market participates in the transparency process. We classify these two deployment
approaches as (1) the Supportive App Market (SAM) scenario, where the market
actively submits its apps to (its own) AT log(s), and (2) the Non-Supportive App
Market (NSAM) scenario where apps are submitted to AT log(s) by developers or
others. We apply the AT framework to the installation of new apps and to the
process of updating installed Android apps.

Adding Apps to the Log

Adding an app to one or multiple AT log providers is essential to benefit from AT’s
properties. Immediately after receiving an app, the log provider issues a Signed

153

Application Timestamp (SAT) acting as a promise to add the app to the next
snapshot of the AT log and as a proof of the point in time when the app was sent
to the log provider. After the MMD passed, all apps that received a SAT in the
last MMD interval are included into the next snapshot of the log and all types of
proofs for the apps can be requested from the log. The FixTree’s leaf node structure
(cf. Section 8.5) allows for the inclusion of multiple versions of an app in a single
AT log. Chronological updates of app versions can simply be appended to the app
version’s corresponding list of SHA-256 values. Every (non)-developer is allowed
to submit apps to an AT log. While this does not prevent fake submissions, the
log’s properties make those submissions transparent and public knowledge. Hence,
(malicious) fake submissions are publicly detectable and AT’s revocation mechanism
(cf. Section 8.5) allows for the transparent removal of unwanted apps from the log.

SAM Scenario: In case an app market is supportive and submits all its apps
to one or multiple log servers, the inclusion of new apps or updates of existing
apps is straightforward: Google Play, for example, runs malware detection and
other administrative tasks before a submitted app is made available. Currently, this
process usually takes between 60 minutes and two hours. Hence, Google Play could
easily submit apps to one or multiple logs without noticeably extending the existing
publishing period of an app.

NSAM Scenario: In case an app market is not supportive, there are two al-
ternative mechanisms to make apps available to one or multiple AT log providers.
Developers who intend to make their app available in an AT log submit their apps to
the log(s) before making them publicly available. To make pushing an app to the AT
logs as easy-as-possible for app developers, we propose to include this step into the
app building process. Therefore, we extended the Manifest.xml file of Android
apps ' and now allow developers to configure one or multiple AT log providers to
which the app should be pushed. Based on this configuration, we implemented app
pushing into the conventional app building process to make app publishing trans-
parent and easy to use for developers. After packaging the app’s APK file with
all its compiled code and required resources, the app file’s checksum is submitted
to the configured AT log(s). The logs then generate a SAT for the app and queue
the app for inclusion into the log’s next snapshot!!. The SAT is sent back to the
developer. Next, the SAT is inserted into the app’s APK file and finally signed
with the developer’s signing key. This procedure is transparent to developers and
does not unnecessarily draw out the conventional app building process. To support
developers and to provide a starting point for the Application Transparency system
for Android apps, crawling app markets is a pragmatic approach.

Proof-Verification

The verification of cryptographic proofs is a vital part of Application Transparency.
In AT, a PoP and PoC or a PoA is a set of two auditpaths that both have the length
log(n) with n being the number of apps in the log. The auditpath length in our

10As long as the Manifest.xml file only contains valid XML, Android will not reject apps.
1No longer than the log’s MMD

154

current log is 21 and the set of required proofs consist of 2 % 21 x 32 = 1344 bytes of
auditpath data. The average size of an Android app in our sample set is 4,936,800
bytes. This gives an average Proof-To-Payload ratio of 1344/4936800 = 0.027%.
Proofs are verified during app installations or update requests. Hence, we suggest
synchronous security checks. Subsequently, proof-delivery for the SAM and NSAM
scenarios are discussed.

SAM Scenario In case app markets support Application Transparency, delivering
proofs synchronously is straightforward. On every MMD, app markets need to fetch
current proofs for their apps, cache them for the MMD period and deliver them to
their users for every app installation or update. Proofs are then sent directly with
the APK file. There are no privacy issues or out-of-band connections which could
slow down the app installation process.

NSAM Scenario In case app markets do not support Application Transparency,
users need to fetch proofs directly from their preferred log(s). As illustrated above,
the Proof-To-Payload ratio is rather small. Hence, synchronously fetching the proof
does not noticeably slow down the installation/updating process. To speed things
up, our implementation triggers proof-fetching as soon the packagename and ver-
sion code of an app are available, which happens before the download is complete.
Additionally, the proof verification process can be split into two more scenarios:

Android OS Integration In case proof verification is integrated into the Android
08, it is straightforward. As soon as the proof is available (either delivered from
Google Play or fetched directly from an AT log provider), proof verification can
be performed within Android’s default app installation/update routine. We imple-
mented proof verification into Android’s “Verify Apps” routine that is executed on
installation and update. Our implementation verifies a given set of AT proofs for
an app and communicates the verification result to the user.

Standalone App In case proof verification is not integrated into the Android OS, a
standalone app can perform proof verification. Similarly to conventional anti-virus
apps on Android, our app is triggered whenever a new app or an update for an
existing app is installed. Our app then fetches the proof for the given app (update),
verifies the proof and communicates the verification result to the user. To protect
the users’ privacy, we added a TOR opt-in feature to our proof-verification app that
allows users to hide their identity from AT log providers.

Benefits over CT While CT is used for the transparency of issued certificates,
in AT we offer binary protection of the distributed software packages. Due to the
different attack models, AT introduces new requirements resulting in the proposed
modification of the proof concepts, but also an easier proof deployment. Our pro-
posed system takes advantage of the AT requirements and offers following additional
properties in contrast to CT:

155

Easier Deployment Certificate Transparency relies on the certificate issuer or
owner to push a certificate to the CT log. This list encompasses multiple hundred
CAs. As of today, only a few CAs have committed to pushing future certificates
to the CT log [53]. However, the long term success of Certificate Transparency
crucially depends on the participation of all important CAs which comprises a list
of more than 100 companies. In AT, app markets can decide whether they wish to
provide transparency and do not require the participation of additional app markets.
The participation of GooglePlay, providing more than 90% of all installed apps'?,
would cover most app installations in the wild. However, even if no app market
participated in the AT ecosystem, app developers could start a bottom up approach
and register their apps with an AT log to protect their customers. As long as an
app is not present in any AT log, a PoA would be spread, while as soon as the
app is present in a log, the PoA would be replaced with a PoP, thus giving users
transparency on a per app basis. In CT, as long as no PoP is spread for a website,
users need to trust the log provider. Hence, CT’s security features take full effect
only when all TLS certificates are pushed to one or multiple logs, while AT also
offers benefits to early adopters.

Synchronous Proof Validation While AT offers synchronous proof verification,
the CT project decided against it. Synchronous validations either requires every
web-server administrator to always provide the current version of the proof for their
website and deliver it in-band during an TLS handshake, or it requires users to fetch
the proof out-of-band. Both options have enormous disadvantages that discouraged
the CT project from performing synchronous proof verification. App installation,
on the other hand, is a relatively rare event and one which takes more time, so
the additional overhead of synchronously verifying the proofs does not extend the
installation process notably for the users.

Additional Proof Features In addition to the Proof-of-Presence (similar to CT’
certificate proof) that enables app markets to cryptographically prove that a pre-
sented app has actually been submitted to a log, our system introduces new crucial
features to prevent the following attacks:

Withholding Apps Every query to an app market'® which does not return a posi-
tive result and the corresponding PoP has to return a PoA — either provided
by the app market (SAM) or the AT log provider (NSAM) — showing that
the requested app has indeed never been submitted to that market and the
corresponding log. In case of the targeted withholding of an app, a PoA can
not be provided, since the app is actually present in the log (and the market)
— i.e. a PoP exists — but was withheld only from the attacked user. The
non-existence of a PoA and the withholding of the corresponding PoP makes
the attack immediately detectable.

2The number is based on the meta information we gathered with Zoner’s telemetry program.
13A query is considered to be the full package name of an app plus its extension value (cf. Section
8.5 for the AT log structure).

156

Withholding Updates Every update query requires a PoC — either provided by the
app market (SAM) or from the AT log provider (NSAM) — guaranteeing that
the offered application is the most current version and is also issued to all
other app market users.

Evaluation

To evaluate AT, we implemented both the ChronTree and FixTree, a standalone
Android app that can verify AT proofs for new apps and updates and an integration
into Android’s OS-level “Verify Apps” feature. We also deployed the system in the
NSAM scenario by integrating AT into the telemetry feature of Zoner’s anti-virus
app for Android.

Gathered Telemetry Data

Over a period of four months from January 2014 to April 2014, we gathered the
following meta information from 253,819 devices that participated in the teleme-
try program and who gave their consent to anonymously analyze the data for our
research:

Pseudonym We assigned a 256-bit random pseudonym to each device to protect
the users’ privacy. The pseudonym did not reveal any private information.

Devicelnfo We collected manufacturer- and device model information as well as
the installed Android version.

DeviceFlags We gathered three different flags for every device: (1) Whether
developer options were enabled, (2) whether app installs from untrusted sources
were allowed and (3) whether USB debugging was enabled.

PackagelInfo For every (pre-)installed app we gathered the package name and
version code.

PackageHashes For every (pre-)installed app we gathered SHA-256 checksums
of the packages and their corresponding signing keys.

AV-Result For every (pre-)installed app we collected the AV detection result.

Results

The telemetry program gathered the above meta information. Whenever we found
only one checksum value for a <packagename, version> tuple across all devices, we
treated these findings as harmless, since everybody had the same binary installed and
thus no tampered binaries were installed for specific targets. However, when mul-
tiple checksums were present across devices, we treated these findings as checksum
conflicts. A checksum conflict can have different root causes: (1) App developers
compile different versions of an app for different app markets (cf. Section 8.3), (2)
apps got repackaged to (benignly) add or remove certain features from the original
app or (3) apps are turned into malware to mount (targeted) attacks. In all three
cases, users would benefit from AT’s transparency features. While most checksum
conflicts we found fall into categories (1) and (2), in combination with anti-virus

157

software AT can help to assign apps to categories (1) and (2) and to distinguish
apps that fall into category (3).

App-Type Amount
System Apps 8,632
Pre-install Vendor Apps 15,999
Third-party Apps (Google Play) 46,481

Third-party Apps (only other Markets) 17,078

Table 8.4: App Checksum Conflicts across all Devices

Signature Keys Result Amount
Trojan.AndroidOS.Stealer.A 2

Same Key No Information 21,623
Permission Remover Service 2
Adware 4,657

. Rootkits 788

Various Keys Negative 5,241

No Information 4,265

Table 8.5: Google Play Apps with Checksum Conflicts

We collected information for 912,393 different Android apps'4. While 824,203 apps
had no checksum conflicts, we found 88,190 apps (10.7%) with checksum conflicts as
shown in Table 8.5. Here we distinguish between three different types of apps: (1)
System apps signed with the same key as the Android SDK, (2) vendor apps which
were pre-installed by the vendors and (3) third-party apps installed by the user.

Since Google Play is the most important and most widely used app market for
Android, we chose this market as our transparency baseline, i.e. we compared the
apps’ checksums with the values we found in Google Play. Although Google Play
could theoretically have provided us with some tampered apps when we crawled the
market, for our further analysis we assumed that Google Play played fair with us.
Table 8.5 shows the anti-virus results for the conflicts for apps distributed by the
Google Play store.

The checksum conflicts result from the usage of different keys for different mar-
kets, app customization, or in the open source case, different distributors. Another
explanation for conflicting checksums for apps signed by the original signing key
would be targeted attacks deployed by the original app developer. Although this is
highly unlikely in most cases and we could not find supporting evidence, this circum-
stance reveals the lack of intransparency of current mobile app distribution: Many
of these cases cannot be fully assessed without costly analysis of every suspicious
application for malicious behavior on a per app basis.

For the 5,445 apps for which we found conflicting checksums signed by multiple
keys, our AV app yielded (partly) positive malware detection results, i.e. for either
all versions or only some versions, the AV app tagged apps as either adware or other

Fach <packagename, version> tuple was treated as a single entity.

158

malware. 4,657 of these apps were tagged as adware — for 760 apps the official Google
Play store version was tagged as adware and the non-official versions were detected
as non-adware. These apps pointed to tools that remove ad libraries from existing
apps and recompile the original apps. 3,897 apps were detected as non-adware in
the original version, but were found to be adware whenever signed by a different key.
Hence, in these cases installing apps from alternative markets or off-site resulted in
catching adware on a device instead of installing the original app version. 788 apps
were detected as rootkits. In all cases, the official Google Play store app versions
were detected as non-malware while off-site installs were malicious. These results
confirm previous findings [197]. In these cases AT would have protected the users
from accidentally installing malware on their devices by informing them that they
were dealing with non-publicly known versions of an app.

Discussion

Analyzing AV telemetry meta-data of 253,819 real world Android devices shed light
on the current status of apps’ intransparency in the wild, demonstrated the need for
an effective tool that allows to verify apps’ authenticity and confirmed the smooth
deployability of AT. For 89.3% of the apps we analyzed in the wild, we did not find
suspicious patterns. Hence, most of the installs in the wild are already transparent
although no “everything’s-logged” cryptographic proof such as provided by AT is
available. These installations directly benefit from an AT deployment and give users
and developers the certainty that they were not subject to a targeted-and-stealthy
attack by the app market.

However, also the remaining 10.7% installations for which we found conflicting
checksums would benefit from widespread AT deployment. A huge portion of apps
with conflicting checksums resulted from the signing and packaging strategies em-
ployed by many app developers (cf. Section 8.3). In theses cases, having AT at hand
would allow users to rely on the authenticity of apps, as well as allowing developers
to make sure that users of AT do not accidentally install tampered versions of their
apps. A rather small fraction of apps we found in the wild were tagged as malware
by our AV app. These cases would benefit from a widespread AT deployment as
well: We assume malware apps would not be submitted to publicly available AT
logs and hence would not be valid installation candidates for users. If malware were
submitted to a log, in contrast to current malware detection, tagging a malicious
app as malware once and then (transparently) removing the app from the AT logs
by using AT’s revocation mechanism (cf. Section 8.5) would immediately protect all
users of the AT infrastructure. Finally, we found very few conflicting checksums for
which we currently cannot be certain whether our findings are harmless or actually
malicious. While this is a limitation of our evaluation, it urgently illustrates the
problem of current app deployment: There are cases in the wild that cannot be reli-
ably assessed with current tools. On the one hand these checksums look suspicious,
but on the other hand the limited capabilities of current malware detection mech-
anisms make a final decision whether malicious apps were found or not a gambling
game. A widespread AT deployment would effectively disclose attackers that try

159

to invisibly smuggle malicious apps into markets. Consequently AV providers could
focus their malware detection efforts on the apps present in public AT logs which
eases the development of new, more effective off-device detection mechanisms.

8.6 Summary

The installation of software is a security critical task and the current centralized app
market paradigm present in the appified world is boon and bane together and offers
powerful attackers a lot of very convenient ways to plant malicious software on users’
devices. We illustrated parallels between app markets and similar ecosystems that
have already been exploited by nation state adversaries and revealed the urgency to
equip app markets and other software repositories with an effective countermeasure.
By analyzing signing and packaging strategies of 97% of the Android apps in Google
Play, we illustrate that current signing practices directly threaten mobile security
and indirectly make it almost impossible for app users to verify apps’ authenticity
with current tools. We found evidence that a handful of signing keys, used to
sign more than 7% of all apps, are not under control of the actual developers and
enable a handful of app distribution providers to stealthily create malicious updates.
Additionally, we found that pushing different app versions, signed by different signing
keys — which leads to different checksums across multiple markets — is a common
practice and makes apps’ authenticity verification even more difficult.

We then presented the AT framework: an effective mechanism to protect users
and app developers against “targeted-and-stealthy” app market attacks. We show
that the central software distribution paradigm makes the deployment of AT easier
compared to other transparency approaches such as Certificate Transparency (CT).
We discuss two deployment paths and show that AT is easier to deploy than CT
even if app markets do not support AT. However, AT also provides better security
compared to CT due to synchronous proof validation and the availability of proofs
of currency and absence.

In an extensive field study we analyzed app metadata from 253,819 real world An-
droid devices that participated in Zoner’ anti-virus telemetry program. We found
that 90% of all apps would directly benefit from AT by being able to present
“everything’s-logged” cryptographic proofs. However, also the remaining less trans-
parent cases would benefit significantly from AT. A huge fraction of the currently
conflicting cases could be clarified by applying AT: The harmless conflicting apps
would become apparent by submitting them to AT logservers. Notably, we also
found cases when AT would have prevented users from (unwittingly) installing ma-
licious apps.

The previous chapters on usable security and privacy for end users, administra-
tors, developers and system designers provided novel and in-depth insights into im-

160

portant and ongoing challenges in our research. The investigations and user studies
tnvolving the different actors of IT ecosystems forcefully illustrate the importance
of considering end users, administrators, developers and system designers in usable
security and privacy research. The interdependencies between the different actors
emphasize that collecting valid results from each class of actor poses challenges for
usable security and privacy researchers. While conducting user studies with end
users, administrators and developers, I learned that the process of data collection
is very different when the desired participants are administrators and developers in
contrast to end users. Platforms such as Amazon Mechanical Turk allow for the
straightforward rollout of userstudies to end users. However, comparable platforms
for userstudies with administrators or developers do not exist. Therefore, recruiting
a large number of participants for a userstudy is straightforward for end users but
a lot more challenging for administrators and developers. Independently from the
class of users we wish to study, coming up with a study design that allows to collect
information in an ecologically valid way is challenging for researchers.

Across a broad range of related research, many researchers were concerned with
the ecological validity of their study designs. Important open questions in that con-
text for example include in which way self-reporting questions influence the results
of a usable security and privacy study, if it is valid to use computer science students
as participants in studies that involve programming or software configuration tasks
or if collecting security and privacy sensitive information such as passwords produce
reliable and applicable results. Open foundational challenges are not limited to the
above questions, but received limited attention in the usable security and privacy re-
search community. However, conducting more foundational research that allows for
a more reliable application of study results is of crucial importance for our commu-
nity. Therefore, the last chapter of this dissertation discusses an exemplary user
study that focuses on the ecological validity of a common class of end user studies.
This study is intended to provide first insights in how to investigate questions of
ecological validity for usable security and privacy research.

161

9 Closing the lvory Gap:

Ecological Validity

162

Disclaimer: The contents of this chapter were previously published as part of the
paper “On The Ecological Validity of a Password Study” presented at 9" Symposium
On Usable Privacy and Security (SOUPS) in 2013 [75] together with co-authors
Yasemin Acar, Marian Harbach and Matthew Smith. As this work was conducted
with my co-authors as a team, this chapter will use the academic “we” to mirror
this fact. Matthew Smith and I developed the idea and initial concept for this work.
The design of both the online and laboratory study was joint work with Matthew
Smith; I conducted both studies myself. Analyzing the real world password corpus
we accessed for our research was joint work with Marian Harbach. As described in
the paper, analyzing the passwords that were collected during the study was done
by Marian Harbach, Matthew Smith and myself. Conducting the statistical analyses
was joint work with Yasemin Acar and Marian Harbach before we compiled the paper
for publication.

9.1 Motivation

Passwords are the most common, widespread and possibly the most debated au-
thentication mechanism in use. The inherent conflict of creating usable (e.g. user
memorable) but secure passwords has kept security researchers busy ever since the
introduction of passwords to computer systems in the 1960s (cf. Section 2.3.1). A
lot of password policy and password advice is based on anecdotal evidence and the-
oretical security measures. However, particularly the last few years have seen an in-
creasing number of academic studies into password security and usability. Password
studies can be divided into two major categories: studies of real world passwords
(usually based on leaked/stolen password lists such as the RockYou and MySpace
password databases) and user studies.

The obvious advantage of the first type of study is that the passwords in question
are real and thus any results obtained from the study are based on accurate real-
world data. However, these studies of course only shed light on the system the
passwords were created in and do not allow researchers to experiment with different
settings. As Kelley et al. [124] point out, there is also an ethical conundrum, since
these password lists were obtained through criminal activity.

User studies offer the advantage of being directed by the researchers so different
conditions can be used to study the effects of certain aspects of the password system,
thus giving researchers the flexibility to study different security or usability aspects
in a controlled situation. However, one great concern about user studies is the
ecological validity of the study, i.e., do the study participants behave the way users
would in real life and consequently, to what extent are the study results relevant
and transferable to the real world?

Komanduri et al. [130] summarize this problem nicely:

“It is difficult to demonstrate ecological validity in any password study where
participants are aware they are creating a password for a study, rather than for
an account they value and expect to access repeatedly over time. Ideally, pass-
word studies would be conducted by collecting data on real passwords created

163

by real users of a deployed system. However, due to the sensitivity of password
data and the difficulty of partitioning real users into experimental conditions
[...] it is difficult to collect the data [...] from a deployed system.”

To counter potential problems with ecological validity, researchers have developed
different opinions on which form of user study offers the best ecological validity
for a given research goal. Many researchers opt for online surveys to increase the
sample size and diversity of their survey population. MTurk in particular has gained
popularity.

“Using MTurk allows us to study a larger volume of participants in a controlled
setting than would otherwise be possible” (cf. Kelley et al. [124]).

Buhrmeister et al. also state that the MTurk population is significantly more diverse
than samples used in typical lab-based studies that heavily favor college-student
participants [32]. Similarly, Bravo-Lillo et al. conducted a MTurk study for diversity
reasons [24].

However, there are also online studies conducted using a more local population
such as presented by Just et al. [118]. On the other side, Haque et al. chose a lab
study over an online study because of results they obtained during a pretest [107]:

“We conducted a laboratory experiment with 80 UTA students. Although a
larger number of participants could have been drawn from an online study, we
preferred a laboratory study because our pilot study (N=12) showed that a
laboratory study would produce more consistent responses”.

While there have been many user studies on a variety of aspects of password
systems taking different measures to improve ecological validity, to the best of our
knowledge there has been no study to examine the impact user study setups ac-
tually have on the ecological validity of these studies. In this work we present a
study evaluating several user studies in combination with real world data from our
university. We conducted several user studies with students of our university who
we asked to create passwords for services similar to their university services. With
their consent, we then compared the study results to their real-world passwords for
the same services using a number of different metrics.

Our results show that less than one third of our study participants created pass-
words that did not mirror their real-world behavior at all. Additionally, more than
25% of participants actually used their real passwords during the study. We also
find that the ecological validity of password studies can be improved by filtering par-
ticipants using self-reported data and make recommendations for studies focusing
on specific aspects of password usage.

9.2 Background

Ecological validity has been a concern for a great number of research projects. To
the best of our knowledge, this is the first study concerning the ecological validity

164

of password creation in user studies with the type of the study as the independent
variable and with a within-subjects comparison with real world password data. How-
ever, ecological validity has been discussed in many password research papers. In
the following, we present a brief literature overview of a selection of password and
password system user studies with respect to the form of the study and the authors’
thoughts on ecological validity. The list is far from complete, however, it gives the
reader an overview of the vast spectrum of possible ways of running password user
studies. We categorize the studies by the following attributes:

Description

It is believed that the description of a study can influence user behavior from the
beginning. Some studies try to disguise their interest in passwords, hoping to not
create a bias in their subjects: Haque et al. state:

“We did not want to give the participants any clue about our experimental
motive because we expected the participants to spontaneously construct new
passwords, exactly in the same way as they do in real life” [107].

This sentiment is found in many studies. Another example is the work of Shay et
al. [176]:

“Ecological validity in many password studies is limited by the fact that partic-
ipants are aware they are using passwords for a study, rather than for accounts
they value or expect to use long-term”.

A common approach is to ask participants to role-play a situation where password
creation is just one step among others.

However, some studies openly state their interest in passwords or aspects of a
password system [88, 95, 118, 178]:

“Before beginning the experiment, participants were asked to pretend the pass-
words they create during the session were going to protect their online bank
accounts, and they should create passwords that would be easy to remember
but hard for other people to guess” [88].

Another paper added an interesting twist to this issue: Kelley et al. [124] had users
set up one password for the study website, i.e., a real password, and subsequently
had users role-play the creation of several further higher value passwords.

Study Type

Another aspect where different choices have been made is the type of study used.
There are many options: The two most common choices are online and laboratory
studies. However, there are also a few pen & paper based studies, as well as field
and interview studies. Again, authors have different opinions on why they chose a
particular type of study.

165

Many researchers opt for online studies [2, 124, 130, 176, 193]. Common reasons
for this choice are the possibility of increasing the sample size and the diversity of
the study population in comparison to laboratory studies conducted with students.
However, there are cases where a paper-based survey was chosen instead of an online
survey, for instance in the paper by Shay et al.:

“While collecting and managing the data would have been easier online, we were
concerned that more security-savvy users would be reluctant to provide truthful
information if they thought we could link their responses to their usernames”
[178].

They also reported: “While pilot testing the survey, we received feedback that our
password composition questions made respondents uncomfortable. Pilot testers ex-
pressed concern that we were gathering so much specific data about their passwords
that we might be able to determine them. We feared that these concerns would pre-
vent users from taking our survey or cause them to answer untruthfully” [178].

The study by Just et al. used a combination of online and paper survey [118].
Just et al. intended to study the security and usability properties of the security
questions that are commonly used when users forget their password. While the
major part of the study was conducted online, the answers to the security questions
were written on paper, since the authors were worried that having the participants
enter the security-critical answers online would prevent them from selecting realistic
questions. They state:

“Our experimental method presents an interesting option for obtaining more
realistic authentication information in an ethical way. Though while the use of
pen-and-paper aids us in this effort, the same practice introduces some factors
that are difficult to control. For example, the self-assessment of memorability
places a significant amount of trust in the participant” [118].

This problem is very closely related to studies requiring users to divulge realistic
passwords.

A large number of studies use a laboratory setup to study password systems and
password behavior (cf. [40, 88, 95, 107]). Laboratory studies have a number of well
known issues that can potentially lead to ecological validity problems, such as the
fact that users are not in their natural environment and are particularly aware that
they are being studied. Some researchers have used this source of potential bias to
try and err on the conservative side of their evaluation such as Haque et al. [107]:

“Finally, we note that the presence of an observer may, if anything, motivate
users to create stronger passwords than they might otherwise.”

However, they could not capture and discuss whether or not this effect actually
took place. Furthermore, if this effect does occur, it is not desirable for all types of
studies.

Several researchers studying usability aspects of password systems avoid the prob-
lem of users potentially choosing unrealistic passwords by specifying the passwords
themselves. This is often done in case the password itself is not the main focus of

166

the study and the effect of password behaviors is limited for the sake of the study.
Examples of this kind of study were done by Shay et al.[176] and Ur et al.[193].
However, even these studies must take ecological validity into account, since the
usability of password systems is often effected by the strength of the passwords.
For instance, Zakaria et al. preassigned passwords to the participants, but tried to
match what users would choose:

“In order to maintain ecological validity of this experiment, the passwords tested
must be memorable; otherwise they would be less likely to be chosen in the real
world” [206].

Researchers also attempt to analyze their data in a way that allows the detection
of problems concerning ecological validity. Komanduri et al. state:

“Two indicators that participants may have answered honestly are that their
self- reported password reuse was higher in the basic survey condition than
in the four other conditions, and that the computed entropy of passwords in
these four conditions was significantly higher than the entropy of passwords
in the basic survey condition. Both findings are consistent with users picking
better passwords to protect a hypothetical email account than to protect a real
survey account. Despite this, we cannot conclude that our results completely
approximate real-world behavior; because the hypothetical scenario was the
same across the four conditions, [...]".[130]

Non-Password Studies

Schechter et al. [173] conducted a study on the ecological validity impact of personal
risk and security priming in a phishing study. They conducted a between-subjects
study with three groups. Two groups were asked to role-play a banking task. One
of these was primed to pay attention to security while the other was not. The third
group used their own personal data. Schechter et al. discovered that priming had
no significant effect on the security behavior between the two role playing groups.
However, there was a significant improvement in security behavior between the group
using their personal data and the union of the role-playing groups. We found the
same lack of effect of priming in our study and can offer additional insights into
behavioral differences between using real and study data for the domain of password
studies, as well as offering the new view of a within subjects design with ground truth
data.

9.3 A Study of Studying Passwords

Preamble

For this project, we were in the fortunate situation of being asked for consultation
by the Identity Management (IDM) team of our University’s IT Services concerning
their password policy system. In the course of this work, we discovered a unique

167

opportunity: The IDM system stored up to five unique passwords per user using
asymmetric cryptography, so it would be possible to decrypt the passwords to do a
security analysis.! The passwords belonged to five university-wide services, compris-
ing the identity management itself, eMail, Wi-Fi, campus login, and Web-Single Sign
On (SSO). Under the mandate to improve the security of our university’s password
system, we were provided with an anonymized dump of the decrypted passwords to
help find policies that would prevent weak passwords without putting undue strain
on the users.

However, in addition to this security analysis we were thus in the fortunate position
to — in theory — be able to design a study that would mirror the enrollment process
at our university and then be able to compare the passwords our study participants
created to the passwords that they actually created for their real services. We
therefore approached the Privacy Officer with a suggestion for such a study. The
study’s goal would be to allow us to study the ecological validity of password studies
based on this data. It would be prepared and run just like a regular password study
in which we would ask the students to role-play the enrollment in an university’s IDM
system. As with all studies we would require informed consent from the participants
at the beginning of the study to cover the study itself. However, the final question
in the study would ask for an additional informed consent to allow us to compare
the passwords our participants just provided with the passwords from their real
accounts. Consenting to this comparison was optional and opt-in. We designed the
study in such a way that we would never see the account information belonging to
any real or study passwords. The analysis of the real and study passwords would
be conducted offline and without any demographic data. Only the results of the
password behavior analysis would then be linked to the demographic information
collected in the study. All results were to be checked with the Privacy Officer before
publication. We discussed this study design and its legal and ethical ramifications
in detail with the Privacy Officer and the IDM team. Since the study was based on
informed consent and the comparison with the participants’ real life passwords was
covered by a second, separate and opt-in informed consent agreement, our study
protocol was approved.

Study Design

Given the wealth of different questions about ecological validity we could try and
answer, we had to pick a manageable number to fit into our study. The main
question we wanted to answer was: Do passwords generated by participants asked
to role-play a scenario in which they have to create a password for fictitious accounts
resemble their real passwords? Or do participants behave so differently because of
the study that the results of the study should not be used to make inferences about
their real behavior? Based on our literature review the two prevalent forms of user
studies for passwords are online and laboratory studies, so we decided to study these

"While this is non-standard behaviour, this design choice was well-founded and is implemented
securely.

168

two forms of experiments.?

Since the password system of our university has password policies in place that
force users to create fairly strong passwords, we were concerned that the effect
size might be fairly small since the policies rule out simple passwords. Thus we
decided to add only one more independent variable to the mix and examine whether
openly mentioning that the study is also about passwords has an effect compared
to obfuscating the study’s purpose. We selected this variable since many papers
chose to invest a fair amount of effort to obfuscate their study, specifically stating
a wish to avoid priming the subjects in the hopes of getting more realistic results.
However, to the best of our knowledge, there is no evidence to suggest that this is a
good approach. In fact, it may even be counterproductive.

Altogether, in addition to the two within-subjects conditions of real vs. study
passwords, our study covered four between-subjects conditions in two variables (lab
vs. online study; password priming vs. no password priming). In all conditions,
we asked students to role-play that they had just enrolled in a new university and
needed to register for the different services offered by the university. We used the
same type of services as offered by our real university.

In both studies, we applied the same password creation policies that are currently
enforced for IT service accounts at our university:

e A password’s minimal length is 8 characters; its maximal length is 16 charac-
ters.

e Password characters are split into four different groups: Upper and lower case
alphabetical characters, special characters , . :; ! 2\#\3\$Q@+—/_><=() []{} *
and digits. Passwords that are shorter than 12 characters must include char-
acters from three of the four described character groups. Passwords that are
12 characters or longer only need to include characters from two of the four
described character groups.

e Neither the student’s first /last name nor the student’s ID number may be part
of a password.

e Users must use different passwords for all accounts.

Online Study

We invited 16,500 university students via email to participate in our online study,
announcing a two-part online study on the creation of online accounts for university
services. Participants were told that each part consisted of a simulated online sce-
nario combined with an online questionnaire, taking between 15 to 20 minutes and
5 to 10 minutes respectively. As incentive, we offered our participants the option to
enter a raffle for three 100 Euro Amazon vouchers. The email also stated that the
second part of the study would follow two days after the first and that they would
be able to enter the raffle only after completion of part two.

2We did not use MTurk like many other studies have, since we would have lacked ground truth
data to compare the behavior for those participants.

169

To cover the second independent variable, we varied the introductory text. The
invitation email was the same for all conditions, inviting students to participate in
a study about online account enrollment at a university. After students clicked on
the link to enter the study, two different introductory texts were shown. For the
non-priming condition, the text just stated that participants should pretend they
were enrolling in a new university and should behave as they would in real life. The
word “password” was not used at all. For the priming condition, we mentioned that
it was important to keep the passwords for the accounts available. We asked the
participants to take exactly the same steps they normally take when creating and
managing new passwords. We also asked the participants to act as if the passwords
for the fictitious study scenario were real passwords. This is the same information
about passwords that was used in Kelley et al’s work [124].

In both conditions, participants were told to imagine that they just enrolled in a
new university and intended to use different I'T services. Therefore, accounts for the
Identity Management System, Email, Wi-Fi and the Campus login service had to
be created. The description for both conditions stated that to complete the second
part of the study two days later, it would be necessary to log into those accounts
again. We included this condition since it is a common approach for researchers to
try to urge participants to use passwords they would be able to remember /keep for
a while, as opposed to single-use throw-away strings.

After setting up the accounts for the four services, participants for both condi-
tions were redirected to an online survey. The online survey collected demographic
information and information about the participants’ Internet usage. We also asked
the users how they usually manage their passwords. They were also asked how many
different passwords they use for all their online accounts to self-report the quality of
the passwords they created in the study they just completed compared to their real
passwords and if their password creation behavior in the study was different from
their behavior in everyday Internet usage.

After two days, our participants received a personalized email requesting their
participation in the previously announced second part of the study. After clicking
a link contained in the email, each participant was asked to log into the same four
services as before, using the password they had created two days ago. After three
tries, participants could choose to continue to the next service without successfully
logging in, in order to not unnecessarily frustrate our subjects. The system recorded
whether or not participants succeeded and how many tries each participant failed.
Finally, participants completed a second questionnaire asking how they had managed
the study passwords.

Lab Study

We also invited 740 university students to a lab study from our study mailing list.
We excluded them from the invitation to the online study, so they did not receive
two invitations to this study. Our goal was to conduct a lab study with roughly
70 participants so we invited 740 students, since we usually have a response rate
of 10%. We arranged appointments with 75 students of which 68 actually attended

170

the lab study. The study was set up the same way as the online study, the only
difference being that the students had to complete the password creation for the
study in an unfamiliar lab environment, with a lab computer and under the super-
vision of the experimenter. After a brief welcome speech, the lead experimenter
read an introductory description of the study aloud equivalent to the online study’s
description.

While the first part of the study was conducted in our usability lab, the second
part could be completed two days later at home. Again, we sent out personalized
invitation links for each participant. The participants were told that they would
receive 20 Euros each after they completed both parts of the study. Before the first
part started, participants had the chance to ask questions or make comments. They
were also told that they could request assistance if they had technical difficulties
with the lab computer.

Password Analysis

Analyzing passwords is a hotly debated topic. Since our main interest was not in a
particular measure of password strength but in researching user behavior, we decided
to begin with a manual scoring of different password metrics/patterns.

Expert Scoring

The goal of our manual scoring was to categorize participants based on how sim-
ilar the metrics of their study passwords were compared to their real passwords.
We decided to use this type of review instead of a more algorithmic approach to
be able to accommodate the nuanced differences in user behavior that are difficult
to capture using formalized rules. We therefore favored a manual approach to ex-
plore this aspect. For instance, using metrics alone, it would have been difficult to
catch the different behavior for the following fictitious example passwords: Study:
“PwdIDM11.”, “PwdMailll.”, “PwdWifill.”, “PwdPC11.” and Real: ‘BOru$$ia09”,
“16.Januar”, “(australien)”, “314159Pi”. As can easily be seen, the study passwords
follow a clear system while the real passwords don’t. However, the bit-strength of
the password (as calculated according to an approximation of Shannon® and NIST*#,
respectively) and the crackability (as calculated according to John) is fairly similar.
While it would of course be possible to create custom metrics to try and factor in
similarity between the password groups, the options would have been endless and
unverified. We would also not have been able to capture behavioral anomalies en-
coded in the passwords such as these real examples from one participant in the study:
“studiesSuck123” and “lamSoBored!!!”. Since the participant’s real passwords did
not use such references, this is a case where the attitude in the study differs from
the behavior in real life.

3¢f. Mathematics of Information and Coding, Chapter 2
4¢f. http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf —
last access 13.04.2016

171

http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf

To capture password behavior, we define the following metrics and guidelines
aiming to capture a general idea of user behavior instead of pure password strength in
an expert scoring process. We break down a password into the following components:

Names Any kind of name, i.e. persons, nicknames, pets, places, etc.
Dictionary Word Any word contained in a dictionary.

Dates Any kinds of date, no matter the form or length, e.g. 1999, 02/03/13,
78, Feb.2., 09081978.°

Simple Numbers Single numbers, counters such as 1,2, 3, 4 or simple sequences
such as 123,456 or 111, 222 etc.

Complex Numbers Any combination of numbers that are not dates or simple num-
bers.

Lower Case String String containing only lower case characters.
Upper Case String String containing only upper case characters.
Mixed Case String String containing mixed case characters.
Special Characters Any combination of special characters.

L33T Speak The use of leet speak.

Keyboard Pattern A combination of characters arising from using adjoining keys
on common keyboards, e.g. QWERTY, sdcx, 7895123 etc.

Random String A random string containing letters, numbers and special characters
that could not be sensibly broken down into the categories above, e.g. a string
generated by a password generator. We might have misinterpreted strings as
random although they followed a structure such as the first letters of words in
a sentence.

We considered the following transformation rules to judge the similarity of one
password to another:

Ordering and Reordering of Components The order in which components are used

Exchange of Content Any exchange of an instance of a component by different
instance of the same component.

Incrementation Any form of systematic incrementation, e.g. 3,4,5or !, !!,
(BN

Changing of Case Any changes between upper and lower case for a component or
parts of components.

5In some cases it was hard to differentiate between numbers and the year in the yy form. In these
cases we used the context of other passwords of that participant to try and score correctly.

172

Insertion An insertion of one component into another, e.g. password and 1234
to palss2wo3rd4 or password and ... to pa.ss.wo.rd.

Using these guidelines, each of the researchers scored all participants that had
given us permission to compare their study passwords with their real passwords. To
assist the manual scoring, we preprocessed the passwords and appended a “ [kb]” to
passwords which contained a keyboard pattern.

Each subject’s password set was assigned to one of the following categories:

Null No apparent similarity between the real passwords and the study passwords

Single There is one study password that is similar to a real password, however, the
sets are not similar to each other

Full There are several study passwords that are very similar to real passwords and
there is a similarity between the sets as well

System There is a system within each set and the systems are similar, but the
composition of the passwords between the sets is not the same

Derogatory Obvious and derogatory reference to the study indicating that the
participant did not show normal behavior

The difference between categories Full and System is fairly small. One additional
criterion for category System is: If shown eight passwords in random order, is it
possible to distinguish two sets of four passwords? If all eight passwords are so
similar that it is impossible to distinguish between the sets, the subject is scored
as category Full. This scoring system is not designed to measure password strength
but likeness/provenance. To put it differently: How useful and accurate are the
passwords given in the experiment to study the real life behavior of our participants?
This scoring (on its own) does not take strength into account, i.e., rosel23 would
match Elisabeth9876. We combine this metric with password strength at a later
stage.

Table 9.3 shows some examples of our scoring system. The passwords shown there
are inspired by real cases, but have been altered so as to not endanger any real user
accounts. We discuss each example in the following:

1. In this example, the passwords explicitly reference the study. Since the real
passwords are not similar we score this as Derogatory.

2. The real passwords contain a single letter plus a date and a long upper case
string with some numbers. Three of the study passwords contain several dic-
tionary words. There is no similarity of pattern at all, so we score this as
Null.

3. Two of the real passwords are dates and two are manglings of the same name.
The study passwords are dictionary words with numbers and some special
characters thrown in, so this is also scored as Null.

173

IDM Mail Wi-Fi Campus PC Score

1 notsecurel2 ihatesurveys77 2moreforyou Tknowwhatthisis4 Derogatory
TreePeter$1 woJIJTui TreePeter$2

2 EifkLegs CornFlakes YeaYeaYo Mineralwater Null
KDOSKDO2EWKFD2 U03.03.12

3 Saver3451 Lions.Denb54 Plantsl.go Soon,me.1 Null
9thFeb90 Feb9th90 Peteeerl Peteeeer2

4 Roses220 Roses221 Roses222 Roses223 Single
Mary0908 Physics2010 Maths2010

5 Intovgaad! Sydney12 Spainl3 Hello123 Single
Intovgaad! Intovgaad!! Intovgaad Intovgaad?

6 Fryingpanl23 Fryingpan456 Fryingpan789 Fryingpan99999 Full
Fryingpan123 Fryingpan456 Fryingpan789

7 9;6BUTMG3h#y d<8k@L3430ju s$jWT7Q639C)H KcL4.,8b7T4A Full
#M24kJB 38333DI(*DL33T B[L72:7L7cvA

8 Unlockthis1122655 Unlockthis2233766 ~ Unlockthis3344877 Unlockthis4455988 System
Secret99499 Secret994 Secret99499!

9 Jumpman35 5JumpmanThree FiveJumpman3 5Jumpman System
3kefdUed Threebfun three5Fun

Table 9.1: Examples of the expert scoring process for passwords. The first line in

each row are passwords provided in the study while the second shows
corresponding real passwords.

4. Both sets of passwords are based on a name plus a number. However the real

174

set is based on name plus date and the name is varied between the passwords.
In the study passwords, the name is the same and instead of a date a simple
number is used that is incremented over the password. The study passwords
are more homogeneous than the real passwords. Thus a singular password is
similar but the overall behavior between study and real life is visible and thus
this set is scored as Single.

. This set is the reverse of the above. The study passwords are more hetero-

geneous but there are singular passwords similar to singular passwords in the
real set.

. In these sets all passwords are very similar. They all use a base word and a

sequence of numbers. Thus the set is scored as Full.

The same goes for this set. All passwords are of the same nature, i.e. a random
string, so this the set is scored as Full.

. These two sets are generated using the same principle. Both are based on a

word plus a number. There are slight differences though. The real passwords
are based around variations of the number 99499 while the study passwords
use a number pattern with an increment. Thus while no two passwords are
the same, it is plausible that the same user created them and it would easily
be possible to sort the four correct passwords into the two sets. Thus this set
is scored as System.

9. The system in these passwords is also clearly visible. The participant uses
the numbers 3 and 5 and a base word and alters spelling and order between
passwords. While the similarity is not as high as in the last example it still
seems plausible behavior for the user and thus is scored as System.

Scoring Conflicts

Each of the researchers scored the entire dataset separately and in a different order.
The scores of all three raters agreed entirely in 47.2% and disagreed entirely in 9.3%
of cases. The remaining 43.5% of conflicts had two scores agreeing and could have
been solved using majority votes. However, we decided to discuss each participant
we did not fully agree on individually. These discussions were conflict free and were
usually resolved by the majority explaining the pattern or lack thereof. The final
count of the categories is presented in Section 9.4.

Interpretation of Scores

The usefulness of participants for a password study will depend on the research focus
of the actual study. If password behavior needs to be studied over several services
or passwords, participants in categories Full and System are useful. Our feeling
was that participants in categories Full and System both behaved realistically with
participants from category Full having more similar passwords in general. While
category Single participants can still add value, they can also introduce unrealistic
behavior: For instance, they show heterogeneous behavior in the study but have
homogeneous passwords in real life or vice versa.

If only a single password is to be studied, our feeling is that participants from
category Single are probably acceptable to study. However, it should be noted that
the matching password was not always the first participants entered. There were
cases where it seemed that the participants used up throw-away passwords until they
ran out and then used a real password. However we could not measure this in any
meaningful way and thus this feeling should be taken with due caution. Participants
in categories Null and Derogatory did not behave consistently and could skew the
results of a study in a damaging way.

Apart from our manual scoring, we also applied some traditional password metrics
for further analysis and to support our scoring.

Password Composition

Above, we analyzed the structure of the passwords manually and with a fairly coarse
granularity. Another measure of similarity for passwords is their composition with
respect to single characters. Therefore, we calculated the following composition
metrics for every password from both the real accounts and the online and lab study
accounts:

e The length of a password.

e The number of upper case characters.

175

e The number of lower case character.

The number of digits in the password.

The number of special characters as defined in the deployed password policies
(cf. Section 9.3).

e An approximation of the Shannon entropy for the password.

The NIST entropy for the password.

In addition to the above metrics we also analyzed our password corpus for the same
patterns as described in Section 9.3 algorithmically. For the dictionary check, we
compiled a dictionary based on multiple wordlists. These wordlists include Burnett’s
top 10,000 passwords,’ lists of first and surnames taken from Wiktionary,” an English
and a German dictionary, the top 10,000 German words,® a list of 85 common
emoticons and the following list of study specific words we compiled based on service
names and other prominent words. Our algorithm then checked if a password or
parts of a password could be matched against the dictionary. Additionally, our
algorithm analyzed passwords for the occurrence of leet speak. Leet characters were
translated into non-leet speak, then we checked if the translated version could be
found in the dictionary. Example: W@11c0102 is first translated to Wallcolor and
then both wall and color could successfully be matched against the dictionary.

Password Strength

Password strength has been measured in many different ways: From simple 0 en-
tropy, to more elaborate bit strength metrics, guessability and resistance against
cracking attacks [21, 124]. There is a fair amount of discussion going on about
which metric gives the most realistic measure of password strength for a given type
of attacker. In this study, the password strength aspect plays a secondary role since
we are mainly interested in the relative comparison between the sets of passwords
generated by the same user. We therefore chose the following measures:

Entropy

To compare the relative strength of participants’ real and study passwords, we chose
two well-known entropy measures. We used an approximation of plain Shannon
entropy, i.e., H = logoN™ where N is the number of symbols in the alphabet the
password is based on and L is the password’s length. This approximation of plain
Shannon entropy has been repeatedly criticized [21, 124] to not accurately represent
a password’s strength against an attacker. However, in our case, we were interested
in comparing the relative information content of several passwords created by the

Scf. http://xato.net/pass-words/more-top-worst-pass—words — last access 13.04.2016

“ef. http://en.wiktionary.org/wiki/Appendix:Names — last access 13.04.2016

8cf. http://wortschatz.uni-leipzig.de/Papers/topl0000de.txt — last access
13.04.2016

176

http://xato.net/pass-words/more-top-worst-pass-words
http://en.wiktionary.org/wiki/Appendix:Names
http://wortschatz.uni-leipzig.de/Papers/top10000de.txt

same user. To this end, the approximation of Shannon’s entropy represents an upper
bound of the potential information content of passwords. Furthermore, we also
applied the NIST entropy [199] for passwords to get a more conservative estimate of
a password’s information content. The NIST entropy estimate limits the influence of
password length and the use of different character classes while providing an easy to
compute set of rules. In both cases, we do not suggest that these measures represent
a good measure of absolute strength of a password. We merely wish to compare the
values between the study and real datasets.

Crackability

We also compared password strength by subjecting each set of passwords to dic-
tionary attacks using the well-known password cracker “John The Ripper”. For
all sets, we used three dictionaries: the dic-0947 dictionary that has shown good
password cracking performance in related work [199, 198], a list of 220,000 German
words from LibreOffice’s spell checker, and the over 14 million stolen passwords from
the RockYou set which has also been often used [21, 124, 193, 199]. In a second
run, we also used the study passwords as a wordlist against the participants’ real
passwords. Each wordlist was additionally mangled using 1,080 rules from John’s
“Single” ruleset [199]. For the subsequent analyses, we compared how many pass-
words per subject were crackable using these attacks.

0.4 Results

Participants

Overall, 765 participants participated in our online study and 68 in our lab study.
The first 500 respondents in the online study and the first 35 in the lab study were
assigned to the priming conditions. Altogether, 75.7% (579) of all online participants
and 95.6% (65) of all lab participants completed part two of the study.

We removed the following participants from our evaluation: 85 online and 3 lab
participants who did not give their consent that we may compare their real passwords
with their study passwords, 8 online and 2 lab participants who did not supply a
valid student ID and thus we could not obtain their real passwords and 53 online and
1 lab participant(s) that had only one real password with the IT services department
to base our scores on. Since some participants matched criteria in multiple exclusion
categories, this left us with a total of 645 records (583 online and 63 lab). Of the
583 participants in the online study, 66% were exposed to the priming condition and
of the 63 participants of the lab study 53% were exposed to the priming condition.

Across all conditions, participants were aged between 17 and 55 (23.72 years on av-
erage, sd = 4.31, median=23), 35.8% were female, 16.3% studied an IT-related sub-
ject. Participants self-reported medium IT expertise (average score 3.42, sd = 1.0,
median=3 on a five point scale anchored at 1=high IT expertise and 5=low IT
expertise). The majority of respondents stated that they use the Internet repeat-
edly throughout the day (90.7%). They reported an average of 18.1 online accounts

177

(sd = 21.0, median=14). 17.4% had account credentials abused at least once be-
fore, only 42 (6.5%) had never forgotten a password before. The majority (79.6%)
had forgotten a password at least twice. 63.2% respondents used between 2 and 5
passwords for most of their online accounts and 14.9% used different passwords for
all accounts. Participants’ passwords in the university IT services database had an
average age of 534 days (sd = 391.7 days, median=481). 26.5% used at least one of
their real passwords in our study.

Due to a technical problem in condition assignment, participants were not assigned
to conditions in a round robin process but sequentially. This had two undesirable
effects: first, the non-priming condition in the online study had fewer participants
than the priming condition and, second, the average age of the real passwords is lower
in the lab study than in the online study (551.2 days online vs. 370.4 days for the
lab, medians: 502 online vs 246 for the lab; Kolmogorov-Smirnov-Test for equality,
one-tail, alternative=less: p = 0.0001817). We tested if removing older passwords
would have an effect on any of our tests, but did not find a significant difference.
We did not find any demographical differences across our four between-subjects
conditions. While the smaller N for the prime-online condition may diminish the
sensitivity of our statistical tests, the overall number of participants in the online
conditions is large enough to compensate for this. We did not find any significant
effects of password age on the password metrics introduced above and could not find
any other indication that this confound effected our results.

Scoring Evaluation

The first step in our evaluation was to check whether our categorization described
the relationship between the real and the study passwords correctly. We had sev-
eral hypotheses concerning the correlations we would find in the different categories:
category Full participants would have the highest correlation of password composi-
tion values between their two password sets of all categories. We expected a weaker
correlation for category Single and category System participants and no correlation
for category Null and Derogatory participants.

To evaluate our scorings and the hypotheses above, we conducted Kendall’s Rank
Correlation Tests for all password composition values presented in Section 9.3, the
entropy measures introduced in the previous section between the study and real
password set as well as the crackability of the passwords. As expected we found
highly significant and strong correlations for participants in score category Full and
mostly significant correlations in categories Single and Systemas can be seen in Table
9.4. However, it needs to be noted that while we found significant correlations for
those three categories, we found no correlation when the entire set of study passwords
was analyzed as a whole.

We found no correlation for the categories Null and Derogatory.

To simplify the further evaluation, we conducted tests to see whether we can le-
gitimately speak of Single, Full and System participants, regardless of the condition
(online or lab, priming or non-priming) they were in. For this we conducted 2-
tailed Kolmogorov-Smirnov tests which are documented in Tables D.2 and D.2 in

178

Derogatory Null Single Full System

T p T p T p T p T p
Length 5352 0464 —.0439 3994 2157 0008 5141 < 0581 6492
Shannon 6111 .0247 —.0368 .4609 .2006 .0012 .4768 < 0038 .9753
approx.

NIST 1538 5854 0778 1311 .0022 9731 .2884 < —.1413 2564
Digits ~1492 5923 0762 1523 .3686 < 6528 < 2577 0541
Upper Chars 4620 1030 L1830 0009 .2584 < 5779 < 1451 .2908
Lower Chars 1714 5272 —.0133 7954 3100 < 6095 < 1200 3413
Special Chars 6365 0301 .3853 .0005 .5376 < 6482 < 3733 .0095
Crackability 7324 0250 1066 1126 .3352 < 5514 < 0755 .6465

‘We conducted a correlation test within the categories, comparing study password sets with the respective real password
sets. We applied the Bonferroni correction that gave us an alpha value of 0.0063. As expected, we found highly significant
correlations in category Full some significant correlations in categories Single and System and rather random correlation
behavior in categories Derogatory and Null. This strongly supports our scoring procedure, while also pointing to the limits
of assuming the correlation of the above metrics to be very strong between studies and real passwords.

Table 9.2: Password Metrics Real vs. Study (Kendall’s 7).

the Appendix D, Page 202. The results show that there was no difference between
those conditions with respect to our categorization and thus it is possible to compare
the differences in password behavior solely on the category irrespective of the con-
dition. This shows that our scoring was consistent: Participants classified to behave
consistently between real and study passwords by our scoring system did compose
their passwords consistently, while those deemed to behave inconsistently according
to our classification indeed produced independent sets of passwords. This leads us
to assume that category Single, Full and System participants behave more realisti-
cally in our study than category Null and Derogatory participants, with category
Full participants showing the strongest correlation. 26.5% of our participants even
used at least one of their real passwords in the study. In the following we refer to
the combination of categories Single, Full and System as helpful passwords and the
combination of categories Derogatory and Null as unhelpful passwords - in the sense
of helpful or not helpful to study realistic user behaviour.

Evaluation

Across all conditions, we found that we had scored most password sets - 46.2%
(298) - into category Full i.e., as being very useful for studying password behavior.
We assigned 18.8% (121) password sets to categories Single and 5.1% (33) to cat-
egory System respectively, both in our opinion still representing partially valuable
password samples. 28.5% (184) password sets were assigned to categories Null and
Derogatory (1.4%), respectively, i.e., passwords that showed abnormal and deroga-
tory behavior. In the following, we will compare how the different conditions affect
the results based on this categorization.

Online vs Lab Study

Separating our scoring results by the type of study reveals a trend towards more
realistic results in our lab study: More participants fell into the helpful categories
Single, Full and System compared to our online study (cf. Table 9.4), the trend

179

being significant according to Fisher’s Exact Test (p = 0.0296 cf. Table D.9). These
results add weight to Haque et al’s 12 participants pilot-study’s observation that a
laboratory study would produce more consistent responses [107]. While these results
are statistically significant for our study, this should not be generalized without care.
Please check the limitations discussed in Section 9.5 for more information on this.

Score Total Online Lab Priming Non-Priming

Derogatory 9 (1.4%) 9 (1.5%) 0 (0%) 4 (0.9%) 5 (2.5%)
Null 184 (28.5%) 172 (29.5%) 12 (17.9%) 118 (28.0%) 66 (29.4%)
Single 121 (18.8%) 108 (18.7%) 13 (20.6%) 80 (19.0%) 41 (18.4%)
Full 298 (46.2%) 267 (45.8%) 31 (49.2%) 199 (47.1%) 99 (44.3%)
System 33 (5.1%) 26 (4.5%) 7 (11.1%) 21 (5.0%) 12 (5.4%)

Table 9.3: Scoring Results Online vs. Lab, Priming vs. Non-Priming

Priming

Separating our scoring results by the priming and non-priming condition did not
show a meaningful difference (c.f. Table 9.4). We verified this by performing Fisher’s
Exact Test on the 122 primed vs 71 non-primed unhelpful password sets and the 300
primed vs 152 non-primed helpful passwords sets. The null hypothesis that there was
no difference in behavior could not be rejected with p = 0.4698 (alternative=two-
tailed).

Self-Reported Values

We went on to evaluate which self-reported metrics of participants may serve to
predict inconsistent study behavior. First of all, we directly asked participants
if they behaved differently during the study. Participants that reported different
behavior showed significantly fewer counts in categories Full, Single and System and
higher counts in category Null and Derogatory as seen in Table D.5. Whether or
not a participant failed to remember their password after two days did not have a
significant impact on the scores distribution as seen in Table D.8 and neither did
participating in the second part of the study as seen in Table D.6.

Overall, participants who changed their usual behavior for the study obtained
significantly fewer ratings in categories Full, System and Single and more in Null
and Derogatory than participants who did not self-report this, as can be seen in
Table D.5. Finally, participants who said that they use individual passwords for each
account also scored significantly more frequently in categories Null and Derogatory
when participating online (cf. Table D.T7).

We also manually analyzed the reasons participants gave for deviating from their
normal behavior. We found the following categories:

Disclosure Participants stated that they did not trust us or did not trust others
with their real passwords in general.

Memorability Participants stated that they chose simpler passwords because other-
wise they would have problems remembering them.

180

Value Participants stated that they chose simpler passwords because the passwords
were unimportant. There was often a reference to it being “only a study”.

Overburdened Participants stated they were overburdened by having to choose four
passwords in short succession.

Policy Participants stated that they chose stronger passwords than normal because
the password policy forced them to.

Lazy Participants stated that they were too lazy to choose proper passwords, or
that they just wanted to get through the survey as quickly as possible.

New Behavior Participants stated that they adopted a new way of creating pass-
words in general and thus their old passwords were different.

None of the specific reasons for changing password behavior listed above had a
significant influence on the participants’ categorization as compared to the total of
participants who admitted to having changed their behavior for the study.

Consenters vs. Non-Consenters

Altogether, 88.6% of all online participants and 95.6% of all lab participants gave
their consent to compare their real passwords with the study passwords. We ana-
lyzed if participants who did not consent to the comparison with their real passwords
showed any demographic deviations from the ones who did consent. We only found
that those participants reported to have different passwords strategies: They stated
that they use individual passwords per account more frequently, as shown in Table
D.7. We performed two-tailed Kolmogorov-Smirnov tests to see if study passwords

P-Value
Length p = 0.6183
Shannon approx. p = 0.5852
NIST p = 0.9408
Digits p = 0.6352
Upper Chars p = 0.0648
Lower Chars p =0.3119
Special Chars p = 0.9803
Crackability p = 0.9895

Table 9.4: (Study) Password metrics for Consenters vs. Non-Consenters (2-tailed
Kolmogorov-Smirnov).

supplied by participants who consented to our comparison with their real passwords
have similar metrics as the study passwords of non-consenters. The above p-values
suggest that there are no statistically significant differences between the two samples
for the measured metrics.

181

Participants vs. Non-Participants

Due to the nature of our password ground truth data, we can also estimate how
well our study participants represent the entire population of students to a certain
extent. Since our university’s IT services provided us with an anonymized set of
passwords for all students enrolled for I'T service accounts. We calculated average
password length, entropy measures, the number of upper, lower and special chars
and digits for this set and the set of students that participated in our study. We
then conducted 2-tailed Kolmogorov-Smirnov tests for all metrics (cf. Table 9.4).

P-Value
Length p=0.1329
Shannon approx. p = 0.5005
NIST p = 0.7400
Digits p=0.1623
Upper Chars p=0.7928
Lower Chars p = 0.3494
Special Chars p = 0.6344
Crackability p = 0.4181

Table 9.5: (Real) Password Metrics for Participants vs. Non-Participants (2-tailed
Kolmogorov-Smirnov).

These results suggest that there is no statistically significant difference between
both participants and non-participants and hence we believe that our study sample
adequately represents our university’s population. Summaries of entropy and crack-
ability for both participants and non-participants can be found in Table D.3 and
D.4.

0.5 Limitations

This study is limited in several ways.

Population:

Since the ground truth data was drawn from the student population of the univer-
sity, the study also focused solely on this population. While this offers a certain
amount of transferability to similar studies, the results should be used with care
when evaluating the behavior of a more diverse population.

Password policies:

Due to the policies in place a certain minimum password quality was enforced. Thus,
the range across which participants could behave differently was restricted. Hence,
it is possible that different behavior would be more pronounced in unconstrained
password creation scenarios. However, since many password systems have policies
in place, we believe this to be only a minor limitation in practice.

182

Self-selection bias:

All participants were self-selected. While this would constitute an ecological validity
problem if these results were to be transferred to the general population, we believe
in this study it is not a problem, since the matter we are studying (i.e. password
studies) usually have the same self-selection procedure and thus results should be
accurate in this respect. Additionally, we were able to show that in this case the
measured metrics of the passwords of participants and non-participants did not differ
significantly (c.f. Table 9.4).

Number of real services:

Not all students were registered for all real services. Consequently we might have
missed behavioral patterns that would have become visible if we had been able to
analyze more of their passwords. Potentially this could have upgraded a category
Single participant to a Full or System.

Study enrollment vs real enrollment:

We expected the participants to enroll in all four services in short succession. While
this is not unrealistic per se, the enrollment process at our university does allow
students to add services at a later date. There were no logs available to indicate how
many students enrolled for all their services when they first signed up and how many
added services over time. If students changed the way they choose their passwords
between the enrollment for different services, we might have falsely classified a real
category Full or System participant as a Single. Four participants also stated that
they had felt overburdened by having to choose four passwords in a row.

Changing behavior over time:

The quality of this study could be negatively influenced by a varying amount of time
between the last time a participant changed their real password and participation
in the study. If a participant genuinely changed the way they create passwords, e. g.
adopted the use of a password manager or opted for a different method of designing
multiple passwords, we might have misclassified a category Single, Full or System
participant as a Null. However, we did not find any significant differences in our
ratings based on the age of the user’s real passwords. Five participants stated that
the reason their study password differed from the real university passwords was due
to the fact that they had changed the way the create password in general.

Different Incentives:

We offered online study participants to enter a raflle for three 100 Euro Amazon
vouchers, while each lab study participant received 20 Euros immediately. This
might have influenced their motivation to put effort into thinking up sensible pass-
words, which might have contributed to differences in our findings between the two

183

groups. However, since this mirrors our behavior when conducting real studies, this
is an effect we would also encounter in future real studies.

Priming

Due to a technical problem in condition assignment, participants of the online study
were not assigned to the priming/non-priming condition in a round robin process
but sequentially. We checked for both demographical and study result differences (as
discussed in section 9.4) but we did not find any indication that this issue affected our
results. A further possible confound is that students assigned to different conditions
might have communicated about the study before participating and thus affected
the non-priming condition.

Overall, although our dataset is not ideal, we contend that our findings do provide
significant insight into the ecological validity of password studies. Since very little
is known about this important topic, even imperfect information offers valuable
insights at this stage.

9.6 Summary

In this study we presented an empirical analysis on the ecological validity of a
password study. We manually compared 645 sets of passwords collected in an online
and a laboratory study with real passwords belonging to the same participants for
the same kind of services. We classified participants into five categories depending on
how closely their study behavior matched their real behavior. We showed that our
classification was a good predictor of positive correlation between a number of other
password composition metrics as well as a password cracking count produced by
John the Ripper. Based on these metrics, we estimate that 29.9% of our participants
did not behave as they normally do, while 46.1% percent offered comparable data
and 24.0% offered somewhat comparable data. This improves to 19.6%, 57.3% and
23.1% respectively after removing the participants who self-reported that they did
not behave normally. To the best of our knowledge, these are the first empirical
results on how people’s password behavior changes due to the fact that they are
participating in a password study.

Take-Aways

e A noteworthy number of study participants (26.5%) used one of their real pass-
words in the study. Beyond these direct matches, there were many study pass-
words that were very similar to participants’ real passwords. Consequently,
passwords gathered during a study should be treated with the same level of
protection as real passwords. Normally, we analyze data collected during our
studies on our laptops. For this study, we opted to work in encrypted volumes
on computers disconnected from the network and all study related data has
now been put in an encrypted drive which is stored in a university safe. We will

184

adopt this procedure for all future password studies, due to the considerable
number of participants who used their real passwords during the study.

While there are participants who do not behave realistically during password
studies on the whole, we argue that password studies create useful data to
study. However, since real password studies do not know which participants
are behaving normally and which are not, more research is needed to find out
how to best interpret the results. Great care should be taken when comparing
a whole set of study passwords using standard metrics such as password length
or NIST since the results can be noticeably skewed by the unrealistic behavior
of the Null and Derogatory participants.

More participants fell into the helpful Single, Full and System categories in our
lab condition compared to our online condition. This difference is statistically
significant.

The difference between the priming conditions was minimal. There was no
significant difference in our scoring. The slight differences in the NIST entropy
were not conclusive.

In our study, there was a relation between those participants we ranked as
Null or Deregatory and those who self-reported they did not behave realisti-
cally. While this phenomenon needs to be studied in more detail and with
different populations, it seems that adding this kind of self-reporting question
to password studies can improve the quality of the data to a certain extent.

Studies wishing to examine the memorability of passwords need to pay the
most attention to ecological validity, since we saw a significant variation be-
tween users’ normal behavior and their study behavior in respect to writing
down passwords and selecting passwords to be memorable only for the dura-
tion of the study. Using online studies, participants are able to use all their
normal means, i.e. writing passwords down, password managers etc. Con-
versely, however, a significant number of participants wrote down passwords
although they stated they normally don’t. The lab condition on the other
hand hindered participants who normally wrote down their passwords from
doing so. The lab condition also had a significantly higher login failure rate
for part two of the study. If brain powered memorability is to be studied, we
would recommend a laboratory study over an online study.

This study represents a first step to understanding the effect ecological validity
issues have on password studies. There are several important and interesting open
questions. One of the most relevant questions for future work is whether MTurkers
behave in a similar way to the student population studied in this work. Since
we have no ground truth data for MTurkers, other methods for establishing this
will have to be found. Another interesting question is how participants behave
when not constrained by password policies. While many password systems do use
policies, it would nonetheless be interesting to know if there is an additional risk

185

to the ecological validity of studies that do not use password policy enforcement.
Our evaluation of the self-reporting data suggests this is likely to be true. Further
progress in terms of ecological validity can be made by optimizing the removal of
unsuitable participants using self-reporting data.

186

Conclusions

187

Throughout this thesis, I demonstrated the importance of usable security and
privacy research for four important actors in IT security ecosystems: End users,
administrators, developers and system designers are all impacted by the usability
of security and privacy mechanisms they use. Additionally I motivated the need
for more foundational work on ecologically validity of usable security and privacy
research methods.

First, as an important example of end user usable security research, I presented
a study on the impact of user interface usability and workflow integration on the
acceptance of a message encryption mechanism. My results imply that automat-
ing encryption and decryption of messages and not forcing users to interact with
the security measure more than strictly necessary — e.g. not having to exchange
encryption keys or pressing additional buttons — increases adoption intention. Fur-
thermore, I found that not entirely making the security of the mechanism invisible
helped to increase participants’ trust in the mechanism. Both results underline
the need of reassurance and transparency of security features for users. Impor-
tantly, many participants stated that having some sort of a key recovery solution
was strictly necessary for an encryption mechanism. This chapter showed that an
end user oriented security measure must not impact users’ known workflows more
than strictly necessary but should also not be entirely invisible to increase users’
trust in the security mechanism.

Second, I discussed a study with administrators of HT'TPS enabled webservers
that deploy a mis-configured TLS certificate. Mis-configured TLS certificates trig-
ger TLS warning messages in browsers, lead to interruptions of users’ workflows
when surfing the web and force users to unnecessarily interact with a security mea-
sure the choices and implications of which they rarely understand. After analyzing
certificate configurations gathered by the Google crawler, I conducted interviews
with administrators of affected sites to learn the root causes of mis-configurations
and to derive possible countermeasures. This chapter has two major contributions:
It helps to understand usability issues of the current way administrators have to
consider TLS certificate configuration and it helps to estimate the validity of pre-
vious research that measured TLS certificate mis-configurations in the wild. While
many administrators stated that they had problems to securely configure their TLS
certificates due to complexity reasons, other important factors were that not all ad-
ministrators were aware of the fact that TLS certificates can be obtained for free
and that many of the sites that operate mis-configured certificates do not receive
much user traffic.

Third, the evaluation of usability issues for developers of password manager apps
on Android serves as my introduction to the field of usable security and privacy re-
search targeting information workers. My results and experience from the two previ-
ous chapters motivated the idea and design of this study: Based on the assumption
that Android app developers’” workflows do not leave much room for focusing on
security mechanisms (as end users do not think of encryption when they exchange
messages online), I designed the study in which I back up self-reported information
with real world data. I developed a proof-of-concept exploit to attack all password
manager apps in Google Play and found that many apps were vulnerable to my

188

password sniffing attack that could be prevented by a developer invested in security.
I conducted interviews with app developers to learn their motives not to protect
their users from this attack vector. The results imply that many app developers
were not even aware of a possible security issue and when confronted with a secure
solution were overwhelmed by its complexity.

Fourth, I presented an evaluation of the customized implementation of TLS certifi-
cate validation in Android apps. Following a similar design as the previous chapter,
I used real world Android apps as a motivation and backup for a subsequent de-
veloper study in the next chapter. Focusing on the usage of TLS in Android apps
instead of password manager apps allowed me to investigate a much larger set of
Android apps and to conduct a developer study with more participants to gain
more valuable insights. After implementing a static code analysis tool called Mallo-
Droid, I analyzed the top 13,500 Android apps in Google Play and found that 8%
of the apps included insecure certificate validation implementations, leaving them
vulnerable to Man-In-The-Middle attacks. If found that most insecure solutions im-
plemented a very similar pattern that could be found on developer websites such as
stackoverflow.com. However, I also found that apps with secure certificate val-
idation oftentimes showed their users confusing or misleading warning messages in
the presence of a Man-In-The-Middle attack. Those results are in line with results
of the previous chapter: Developers seem to be overwhelmed by security related
aspects and prefer quick-and-dirty solutions over implementing secure code.

Fifth, a continuation of Chapter 6 discusses a redesign of how app developers
should interact with TLS implementations in apps. Motivated by the static code
analysis results for Android, I conducted a similar investigation for the iOS ecosys-
tem to see of Apple’s walled garden approach produces more secure solutions. How-
ever, my findings imply that as soon as developer have the opportunity to circumvent
security mechanisms to quickly produce functional code iOS is not more secure than
Android. To learn the root causes for implementing insecure solutions, I conducted
interviews with developers of the affected apps. Most developers showed a very
limited understanding of the concepts of TLS and mostly were not aware of the
implications of their insecure implementations or failed to understand that they
undermined the security guarantees offered by TLS. Instead of following a similar
approach as in Chapter 5 and encouraging developers to implement a secure solu-
tion based on the current API, I developed a different path to make TLS coding
in apps more secure and easy to use. I utilized the interview results as input and
redesigned the way app developers interact with TLS. In summary, my redesign
enforces secure defaults, covers all exceptions I found in real apps and during my
developer study and favors configuration over writing code for exotic use-cases such
as pinning or self-signed certificates during development. A final evaluation with
previous interview candidates proves the efficacy of my solution in terms of security
and usability.

Sixth, I presented and discussed Application Transparency, a novel and easy to
use mechanism that enables providers of central software repositories to offer crypto-
graphic proofs of software distributions’ authenticity and integrity. Central software
repositories yield great power and may (be forced to) mount targeted attacks against

189

specific users of their system. Such targeted attacks may consists of installing mal-
ware, withholding important (security) updates or hiding specific software from
users. Application Transparency is the first security mechanism, that allows real-
time verification of the authentic and integer behaviour of such a repository provider.
End users do not have to verify any proofs manually (in contrast to checking hash
values). If integrity is given, users are not even aware of the protection mechanism.
In an alarming situation, users are made aware of the targeted attack.

Last, I motivated more foundational usable security and privacy research and pre-
sented an empirical study on the ecological validity of a password study. I collected
645 sets of passwords in an online and a laboratory study and compared them to
sets of real passwords of the same participants. This allowed me to draw conclu-
sions about the participants’ behaviour in laboratory and online study setups com-
pared to their real world behaviour. Based on manual analyses and cracking counts
produced by John the Ripper, I found that a third of the participants behaved
completely different, while less than a half of them provided comparable passwords
and another quarter of them provided somewhat comparable data. Removing the
participants who self-reported that their study behaviour differed from their real
world behaviour, improved those numbers significantly. This work illustrated the
importance of basing usable security and privacy research results on ecologically
valid study methodologies. Overall, I found that using self-reporting data has to be
treated with caution. While most participants reported usable data, a fifth of all
participants produced entirely useless results — even after filtering out honest liars.
Since a conventional study setup does not easily allow to identify the problematic
20%, this work is a strong indicator that underpins the fact that all usable secu-
rity and privacy researchers have to review their data collection methodologies very
carefully and should ideally back them up with real world information.

10.1 Future Work

Having worked on usable security and privacy topics for end users, administrators,
developers and system designers for several years, I can definitely confirm the main
hypothesis that motivated my thesis: To improve IT security and privacy measures,
most end user facing security mechanisms can benefit from more easy to use tools,
APIs and processes for administrators, developers and system designers. Interlock-
ing more usable mechanisms for administrators, developers and system designers
significantly increases the potential to result in more usable I'T security mechanisms
for end users.

My work showed that addressing the underlying security technologies and pro-
tocols administrators, developers and system designers work with is a promising
direction. In Chapter 3, I demonstrated that although the sensible inclusion of user
interface elements can help users when dealing with the encryption of messages,
automating key management tasks is a crucial part of improving the usability of a
message encryption mechanism. Providing developers an easy to use protocol or API
to support them during the implementation of sensible user interfaces with usable

190

security mechanisms seems to be an important step to help the adoption of message
encryption mechanisms. Key management mechanisms based on Google’s certificate
transparency such as the work by Ryan et al. [170] are promising candidates to be
used as building blocks for usable message encryption services.

My extensive work on usability aspects of TLS implementations and configura-
tions for mobile app developers and administrators of HT'TPS enabled webservers
improved the understanding and assessment of the tremendous usability challenges
for end users (cf. Chapters 6, 7, 4). I showed that many developers and adminis-
trators lack a profound understanding of TLS and therefore make security decisions
— intentionally or accidentally — that result in insecure or unnecessarily complex
software for end users. Based on results of my developer study, I was able to ad-
dress mobile app developers’ challenges of TLS implementations that provide both
secure defaults — increasing security for end users — and easy to use concepts to work
around those defaults in a secure and usable way. Interesting applications for future
work are the usability of cryptographic APIs as addressed by libsodium [139] or TLS
certificate deployment mechanisms as provided by letsencrypt [102]. Furthermore,
helping the adoption of research results by the IT industry is an interesting aspect
of future work in this area.

Working on Application Transparency allowed me to gain insights into the com-
plex process of distributing software and its threats for end users. Figuring out
that verifying the authenticity and integrity of software is an almost insurmount-
able challenge for end users makes it very important to continue working in this
field. Solutions based on Application Transparency or similar mechanisms seem
promising candidates to solve this problem. Providing strong cryptographic proofs
that are easily verifiable during the installation process can be building blocks for
usable mechanisms for end users, information workers and market providers.

Finally, I evaluated the ecological validity of two specific laboratory and online
study designs to investigate passwords in Chapter 9 and derived important insights
abouts the practice of collecting passwords in a user study. This study is intended
to be an example of how more foundational usable security and privacy research
should look like and motivate the need for more ecological validity studies to deduce
generally applicable rules for user studies. Interesting areas of research are warning
message and permission studies, which are typically based on online studies and
the self-reporting of participants. A better understanding of whether those study
designs produce ecologically valid results may significantly help to improve future
research. Fcological validity studies in the context of administrators, developers and
system designers can offer valuable input for future research.

191

Appendix: Message
Encryption Study

Note: The following questions use colloquial language on purpose to create a com-
fortable atmosphere. It was also translated from German for inclusion in this thesis.

A.1 Questionnaire ltems

Pre-Test

For how long have you been using Facebook?
Choose one answer: For 1 month, For 6 months, For 1 year, For 2 years, Longer, 1
don’t know, n/a.

How often have you forgotten your Facebook password in the last 12
months?

Choose one answer: Never, Once, Twice, Three times, More than three times, n/a,
I don’t know, Other.

How important is it to you that only you and the recipient can read pri-
vate messages?

Rate from 1 (unimportant) to 5 (important).

How often do you use Facebook on average?

Choose one answer: Less than an hour per day, 1 to 2 hours per day, 2 to 4 hours per
day, More than 4 hours per day, More than once per week, Once per week, Monthly,
Less frequently than once per month, n/a.

How many friends do you approximately have on Facebook?

How many Facebook messages do you send per week on average?

How many of these messages have more than one recipient?

192

How many of these messages do you consider worthy of protection?

How often do you use the chat feature on Facebook?
Choose one answer: More than once per day, On a daily basis, On a weekly basis,
Less than once per week, Never, n/a.

How easy do you think it is for the following persons or organisations to
read your private messages on Facebook?

Rate from 1 (very easy) to 5 (very hard) for the following: Friends, Hackers, Face-
book employees, Advertising Companies, US government, German government.

How high do you think is the motivation for the following persons or
organisations to read your private messages on Facebook?

Rate from 1 (very low) to 5 (very high) for the following: Friends, Hackers, Face-
book employees, Advertising Companies, US government, German government.

How much would it concern you if the following persons or organisations
were able to read your private messages on Facebook?

Rate from 1 (very little) to 5 (very much) for the following: Friends, Hackers, Face-
book employees, Advertising Companies, US government, German government.

How well do you feel you and your privacy are protected when commu-
nicating through Facebook messages?
Choose from 1 (not at all) to 5 (very well).

How well do you feel you and your privacy are protected when commu-
nicating through Facebook chat?
Choose from 1 (not at all) to 5 (very well).

Post-Task

Please rate the following questions regarding the mechanism you just
used.
Choose from 1 (strongly disagree) to 5 (strongly agree) for the following:

1. I think that I would like to use this system frequently;
2. I found the system unnecessarily complex;
3. I thought the system was easy to use;

4. I think I would need the support of a technical person to be able to use the
system;

5. I found the various functions in this system well integrated;

6. I thought this system was too inconsistent;

193

7. I would imagine that most people could learn to use this system very quickly;

8. I found the system very cumbersome to use; I felt very confident using the
system;

9. I needed to learn a lot of things before I could get going with this system.

Please rate the following questions regarding the mechanism you just
used.
Choose from 1 (strongly disagree) to 5 (strongly agree) for the following:

1. I would send private messages using this mechanism in the future;
2. I would send all my messages using this mechanism in the future;

3. I feel that my messages are now well protected.

Final

Please enter your age.
Please specify your gender.
Please enter your major subject.

A password is needed to use an encryption mechanism. If losing or forget-
ting the password led to the loss of all previous private messages, would
you use such an encryption mechanism?

Choose yes or no.

Please rate the following statements with regard to the previous question
about password recovery.

Choose from 1 (strongly agree) to 5 (strongly disagree) for the following: 1 am wor-
ried about forgetting my password; I am worried about the potential loss of all my
previous messages.

Would you prefer a mechanism that is able to recover your password like
it is possible on the Facebook website?
Choose yes or no.

Do you use software to encrypt your data?
Choose one or more answers: Yes, for Facebook; Yes, for email; Yes, for my hard

disk; I don’t know; No; Yes, for: ...

When friends have computer problems, they often ask me for help.
Choose from 1 (strongly disagree) to 5 (strongly agree).

194

When I have computer problems, I often ask my friends for help.
Choose from 1 (strongly disagree) to 5 (strongly agree).

What is AES?
Choose one or more answers: A browser extension; A Facebook application to store
images; An encryption mechanism; I don’t know; Something else: ...

Do you have any comments on this study, the procedure, the technologies
used or anything else? Free Text

A.2 Interview Guideline

The following gives a brief overview of the questions I asked in the semi-structured
interview in the final study.

FBMCrypt Account

Please rate the effort for creating a FBMCrypt account.

With respect to the application, please rate the appropriateness of cre-
ating an extra account for encrypting Facebook messages.

Please compare the account creation process with the creation of a new
Facebook and webmail account.

Please comment on the fact that your FBMCrypt password had to be
different from your Facebook password.

How likely would it be that you forget your FBMCrypt password?
Have you ever forgotten a password? Your Facebook password?

Please attribute the FBMCrypt-to-Facebook account binding process.
Please comment on the plugin installation procedure.

Facebook Messaging

How many private Facebook messages do you send per week?

In your opinion, do these comprise sensitive information? If not, what
channel do you use to transport sensitive information? If yes, what is the
amount of sensible messages?

Do you have reservations that an unauthorised third party could access
your private Facebook messages? If yes, who do you think is able to do
so? If not, why do you think your messages are secure?

FBMCrypt Workflow

Please comment on the process of sending a FBMCrypt-protected private
Facebook message.

195

Please describe the message composer you used to send a FBMCrypt-
protected private Facebook message.

Please describe the message composer you used to send a private Face-
book message that was not encrypted.

Please describe reading a FBMCrypt-protected private Facebook mes-
sage.

Please describe the presentation of a FBMCrypt-protected private Face-
book message when reading it.

Satisfaction/Perceived Security

Would you send all your private Facebook messages using the FBMCrypt
service? If not, why and which messages would you not send using FBM-
Crypt?

Please compare your perceived feeling of security sending a private Face-
book message the normal way to sending a message with FBMCrypt.
Would you recommend FBMCrypt to your friends?

Would you pay for the FBMCrypt service? If yes, how much would you
be willing to pay?

Key Recovery

Would you use FBMCrypt if losing or forgetting the password would
result in losing access to your private Facebook messages? If yes/no,
why?

‘Would you prefer a mechanism that allows for recovery of the encryption
password?

196

Appendix:
Webmaster Study

B.1 Contact Email

Dear Webmaster,

we are an 1T security research group at Leibniz University Hannover, Germany
conducting a study on the use of X.509 certificates on websites.

We are contacting you since we found that your website https://www.example.com
is operating an X.509 certificate which triggers an TLS warning message for users
visiting your website.

Since this is a common issue, we are attempting to identify the causes and see
what needs to be done to improve the usability of TLS and certificate configuration
for administrators.

We would very much appreciate if you could give us 5-7 minutes of your time
and answer a short survey either by replying to this email or via an online survey
(https://www.our-uni.com/survey) - which ever you prefer, although the online sur-
vey is easier. We will not ask any privacy related questions and all answers will be
evaluated anonymously and in such a way that no link to you or your website can
be made.

If you have any questions or comments related to our study please do not hesitate
to contact Sascha Fahl <fahl@dcsec.uni-hannover.de> or visit https://www.dcsec.uni-
hannover.de/ssl-study.

We would appreciate your participation and contribution to our study very much.

As explained in the email, the survey could either be answered by replying to our
email or clicking a link to an online survey we hosted.

197

Appendix: Studying
Android’s TLS
Warning Message

C.1 Online Survey

We based the questions of our online survey on previous surveys [184, 183, 160],
adapting them to our scenario and optimizing the survey for mobile delivery. For this
purpose, we removed most of the free text answers and replaced them by multiple
choice or radio button answers to make the online survey easier to handle on an
Android smartphone.

After clicking a link on the landing page to begin the study, participants were
redirected to a non-university domain with a page designed to look like Android’s
default browser warning message. The warning message was interactive, hence users
could click on "Certificate Details" for more information. The page thus replicated
the user experience of a real TLS warning message in Android’s default browser.

We presented two different TLS warnings, although, just as with the real Android
TLS warnings, the difference only became visible if the user clicked on "Certificate
Details". One warning stated that the certificate was signed by an untrusted CA and
the other warning stated that the hostname did not match the certificate’s common
name.

We tracked whether the participants clicked "Continue" or "Cancel". In both cases,
participants were directed to the first page of the questionnaire that explained that
the message just shown was part of the study. For half of the participants, the
study was served via HT'TPS, and for the other half, it was served via plain HTTP.
Hence, we had four different groups: untrustedCA+HTTP, untrustedCA+HTTPS,
wronghostname+HTTP and wronghostname+HTTPS. The survey was also hosted
on a domain that did not obviously belong to our universities, in order to avoid the
implicit trust often associated with university servers. Unlike previous studies ([184],
[183] and [84]), we did not refer to the TLS warning message as a warning message
during the online survey. Instead, we called it a popup message to use a neutral
term avoiding a bias in the users’ perceptions. Subsequently, questions contained in

198

the online survey are listed. In addition to TLS warning message comprehension,
HTTPS indicator comprehension, Android usage and online security awareness, we
asked the participants about their self-reported technical expertise and demographic
information. Due to space constraints, questions from the last two categories are
not listed below.

TLS Warning Message Comprehension

e The popup message you just saw is part of this survey. Have you previously
seen this kind of message while surfing the Internet with your Android phone?

— (Yes, No, I'm not sure)

e Did you read the entire text of the popup message?
— (Yes, Only partially, No)
e Please rate the following statements (all statements were rated on a 5-point
Likert scale, ranging from "Don’t agree" to "Totally agree"):
— I always read these kind of popup messages entirely.
— I understood the popup message.
— I am not interested in such popup messages.
— T already knew this popup message.

— I am only interested in winning the voucher.

e When you saw the popup message, what was your first reaction?
— I was thankful for the message.
— I was annoyed by the popup.
— I didn’t care.

— Other: (text field)

e Please rate the amount of risk you feel you were warned against.

— 5-point Likert scale ranging from "Very low risk" to "Very high risk"

e What action, if any, did the popup message want you to take?
— To not continue to the website.
— To be careful while continuing to the website.

To continue to the website.

I did not feel it wanted me to take any action.
Other: (text field)

e How much did the following factors influence your decision to heed or ignore
the popup message? (all factors were rated on a 5-point Likert scale, ranging
from "Very little influence" to "Very high influence")

199

The text of the message.

The colors of the message.

The choices that the message presented.
— The destination URL.

— The chance to win a voucher.

The fact that this is an online survey.

Other factors: (text field)

e Which factor had the most influence on your decision?
— The text of the message.
— The colors of the message.
— The choices that the message presented.

The destination URL.

The chance to win a voucher.

The fact that this is an online survey.

— Other factors: (text field)

HTTPS Indicator Comprehension

e Is the Internet connection to this online survey secure?

— (Yes, No, I'm not sure)

e Please explain your decision:
if answered with "yes"

I trust my service provider.

I trust my smartphone.
— The URL starts with https://.

— All Internet communication is secure.

A lock symbol is visible in the browser bar.

Other: (text field)

if answered "no"

— I do not trust my service provider.

I do not trust my smartphone.

The URL starts with http://

— Communicating over the Internet is always insecure.

— There is no lock symbol in the browser bar.

The address bar is not green.

200

https://
http://

— Other: (text field)
if answered "don’t know"
— I don’t know how to determine this.
— I don’t care.
— I don’t trust the visual indicators.

— I don’t trust IT in general.
— Other: (text field)

Android Usage

e For how long have you been using an Android smartphone?

— 1 month or less

— 2 - 6 months
— 7 - 11 months
— 1- 2 years

— more than 2 years
e Did you turn off browser warning messages?

e How many apps have you installed on your phone?

Online Security Awareness

e Have you ever had any online account information stolen? (Yes, No)
e Have you ever found fraudulent transactions on a bank statement? (Yes, No)

e Have you ever been notified that your personal information has been stolen or
compromised? (Yes, No)

e Have you ever lost your smartphone? (Yes, No)

201

Appendix:
Ecological Validity
of a Password Study

Note: The following questions use colloquial language on purpose to create a com-
fortable atmosphere. It was translated from German for inclusion in this thesis.

D.1 Question Plan

We asked our participants to self-report several aspects of their password usage be-
havior using the following questions (translated from German):

Which usage behavior concerning passwords for Internet services best
mirrors your behavior?

Please select one of the following answers: 1 use the same password for all of my
accounts.; I use between 2 and 5 different passwords for all my accounts.; I use be-
tween 6 and 10 different passwords for all my accounts.; Each of my accounts has a
unique password.; Other

Please specify how you keep track of your passwords.

Please select all appropriate answers. I memorize all my passwords.; I came up with
a scheme that allows me to deduce the password for the respective service whenever
needed.; I wrote my passwords onto a piece of paper stored in a safe place that
I consult when needed.; I use a password manager that stores my usernames and
passwords for me.

Please select the appropriate answer for each statement.

Rate your agreement from “I agree completely” (1) to “I disagree completely” with
the following statements: The passwords I created are similar to my real passwords.;
I chose a completely different type of password than I normally would.; The pass-
words I created are less secure than my real passwords.; The passwords I created

202

are more secure than my real passwords.

D.2 Contingency Tables

Derogatory Null Single Full System
real study real study real study real study real study
Length 0.2857 0.9883 0.6353 0.9145 0.1373 0.0854 0.4663 0.4859 0.6160 0.9132
Shannon 0.7460 0.9683 0.2639 0.4083 0.1072 0.1521 0.5290 0.7270 0.9445 0.7264
NIST 0.1641 0.9483 0.8775 0.9934 0.0117 0.5886 0.8292 0.6100 0.9445 0.9445
Digits 0.9483 0.9483 0.4571 0.7415 0.1394 0.9529 0.7030 0.4342 0.2177 1.0000

Upper Chars 0.4005 0.9883 0.7442 0.9993 0.7683 0.4521 0.9996 0.7453 0.9680 0.9445
Lower Chars 0.5121 1.0000 0.9163 0.9091 0.3403 0.1865 0.1329 0.6774 0.6714 0.9838
Special Chars 0.5121 0.9991 0.1412 0.9988 0.1587 0.3093 0.3598 0.7514 0.1892 0.5081
Crackability 1.0000 0.9991 0.6663 0.9999 1.0000 0.9371 1.0000 0.9848 1.0000 0.9838

Table D.1: Priming vs. Non-Priming (2-tailed Kolmogorov-Smirnov; P-Values).

We conducted a two-tailed Kolmogorov-Smirnov Test, the null hypothesis being
that the priming and non-priming password sets were from the same population
concerning the metrics above. Since we could not find statistically significant differ-
ences between the priming and non-priming groups, we concluded that priming did
not have significant effects on our subjects within the respective categories. This en-
abled us to evaluate the effect of the type of study solely on the number of password
sets we scored into the respective categories.

Null Single Full System
real study real study real study real study
Length 0.6878 0.7523 0.8868 0.5431 0.3741 0.4377 0.9972 0.9039
Shannon 0.4551 0.7204 0.4890 0.6154 0.4624 0.3556 0.8727 0.8727
NIST 0.3550 0.9942 0.4304 0.4519 0.1509 0.8704 0.6734 0.6734
Digits 0.5154 0.9718 0.9996 0.4234 0.3458 0.4092 0.2770 0.9906

Upper Chars 0.9930 0.6332 0.6931 0.1710 0.8282 0.8236 0.5441 1.0000
Lower Chars 0.8680 0.4649 0.9444 0.2381 0.0435 0.2871 0.9972 0.8888
Special Chars 0.9598 0.9275 0.9119 0.9997 0.8645 1.0000 0.4435 0.4435
Crackability 0.6769 0.8034 0.9999 0.9315 0.9950 0.9863 0.7994 0.7994

Table D.2: Lab vs. Online (2-tailed Kolmogorov-Smirnov; P-Values).

We conducted a two-tailed Kolmogorov-Smirnov Test, the null hypothesis being
that the password sets from the lab and the online participants in each category were
from the same population concerning the metrics above. Since we could not find
statistically significant differences between lab and online participants, we believe
that our manual scoring was consistent irrespective of the type of study. This enabled
us to evaluate the effect of the type of study solely on the number of password sets
we scored into the respective categories.

203

Table D.3: Entropy and Crackability Summaries for all Passwords of Participants

Real
. 1st Me- 3rd Shapiro-
Min. Qu. dian Mean Qu. Max. Wilk
Shannon 47.26 55.57 62.52 63.64 69.79 99.79 p < 0.0005
NIST 18.00 25.50 30.75 29.77 33.50 42.00 p < 0.0005
- o
Crackability 0.00% 0.0% 0.0% 16.82% 25.00% 100.00% p < 0.0005
Study
. 1st Me- 3rd Shapiro-
Min. Qu. dian Mean Qu. Max. Wilk
Shannon 47.26 56.02 63.88 64.87 71.45 102.80 p < 0.0005
NIST 24.00 30.75 32.63 32.86 34.50 42.00 p < 0.0005
Crackability 0.00% 0.0% 0.0% 15.47% 25.00% 100.00% P < 0.0005

Table D.4: Entropy and

Crackability Summaries for all Passwords of Non-

Participants
. 1st Me- 3rd
Min. Qu. dian Mean Qu. Max.
Shannon 47.45 56.56 63.51 64.43 71.28 103.10
NIST 24.00 30.75 32.50 32.64 34.50 42.00
Crackability 0.00% 0.00% 0.00% 17.87% 33.00%

100.00%

Table D.5: Contingency - Table Self-Reported Different Password Behavior

Self-Reporting (FET (alt. = greater) p<0.0005)

Category Different Non-Different Total
Unbhelpful 109 84 193
Helpful 148 304 452
Total by Self-Reporting 257 388 645

Table D.6: Contingency Table - Study Completion by Scoring

Study Completion (FET (alt. = two-tailed) p=0.9166)

Category Completed Did-Not-Complete Total
Unbhelpful 151 42 193
Helpful 356 96 452
Total by Completeness 507 138 645

Table D.7: Contingency Table - Password Strategy by Scoring

Password Strategy (FET (alt. = greater) p=0.01253)

Category Individual- No-Individual- Total
Passwords Passwords

Unbhelpful 39 154 193

Helpful 57 395 452

Total by Strategy 96 549 645

204

Table D.8: Contingency Table - Re-Login Rate by Scoring

Re-Login (FET (alt. = two-tailed) p=0.6063)

Category Login-Success Login-Failure Total
Unbhelpful 165 28 193
Helpful 81 371 452
Total by Login Success 246 399 645

Table D.9: Contingency Table - Scoring Results Online/Lab

Scoring Results (FET (alternative=greater) p=0.0296)

Category Online Lab Total
Unbhelpful 181 12 193
Helpful 401 51 452
Total by Study Type 582 63 645
Study-Real
Min. 1st Qu. Median Mean 3rd Qu. Max.
Length 0.00 0.25 0.50 0.13 0.25 0.00
Digits 0.00 —0.50 —0.17 -0.29 0.00 —0.25
Upper Chars 0.00 0.33 0.00 0.17 0.33 2.50
Lower Chars 0.00 0.00 0.00 0.20 0.42 0.75
Special Chars 0.00 0.00 —0.08 0.03 0.00 0.50
Shannon 0.00 0.45 1.40 1.23 1.66 3.01
NIST 6.00 5.25 1.90 3.09 1.00 0.00

Table D.10: Metric-Delta Summaries for all Passwords

205

Bibliography

(1]

[10]

[11]

[12]

[13]

[14]

[15]

206

Yasemin Acar, Michael Backes, Sven Bugiel, Sascha Fahl, Patrick McDaniel, and Matthew
Smith. Sok: Lessons learned from android security research for appified software platforms.
In IEEE Symposium on Security and Privacy. IEEE Computer Society, 2016.

Anne Adams and Martina Angela Sasse. Users are not the enemy. Communications of the
ACM, 1999.

Devdatta Akhawe, Bernhard Amann, Matthias Vallentin, and Robin Sommer. Here’s my
cert, so trust me, maybe?: Understanding tls errors on the web. In ACM WWW, 2013.

Devdatta Akhawe and Adrienne Porter Felt. Alice in warningland: A large-scale field study
of browser security warning effectiveness. In Proceedings of the 22nd USENIX Security Sym-
posium, 2013.

Deena Alghamdi, Ivan Flechais, and Marina Jirotka. Security Practices for Households Bank
Customers in the Kingdom of Saudi Arabia. FEleventh Symposium On Usable Privacy and
Security (SOUPS 2015), 2015.

Jonathan Anderson, Claudia Diaz, Joseph Bonneau, and Frank Stajano. Privacy-enabling
social networking over untrusted networks. In Proceedings of the 2nd ACM Workshop on
Online Social Networks, pages 1-6, 2009.

Sarah J Andrabi, Michael K Reiter, and Cynthia Sturton. Usability of Augmented Reality
for Revealing Secret Messages to Users but Not Their Devices. 2015 Symposium on Usable
Privacy and Security, USENIX, 2015.

Android. Android dashboard. http://developer.android.com/about/dashboards/
index.html, January 2014.

Erinn Atwater, Cecylia Bocovich, Urs Hengartner, Ed Lank, and Ian Goldberg. Leading
Johnny to Water: Designing for Usability and Trust. Eleventh Symposium On Usable Privacy
and Security (SOUPS 2015), 2015.

Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout: analyzing the
android permission specification. In CCS12. ACM, 2012.

Randy Baden, Adam Bender, Neil Spring, Bobby Bhattacharjee, and Daniel Starin. Persona:
An online social network with user-defined privacy. In Proceedings of the ACM SIGCOMM
2009 Conference on Data Communication, pages 135-146, 2009.

David Barrera, Jeremy Clark, Daniel McCarney, and Paul C. van Oorschot. Understanding
and improving app installation security mechanisms through empirical analysis of android.
In Proc. 2nd Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM
’12). ACM, 2012.

Adam Bates, Joe Pletcher, Tyler Nichols, Braden Hollembaek, Dave Tian, Kevin R.B. Butler,
and Abdulrahman Alkhelaifi. Securing ssl certificate verification through dynamic linking.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, CCS 14, pages 394-405, New York, NY, USA, 2014. ACM.

Filipe Beato, Markulf Kohlweiss, and Karel Wouters. Scramble! your social network data. In
Proceedings of the 11th International Conference on Privacy Enhancing Technologies, pages
211-225. Springer, 2011.

Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,
Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue. A
messy state of the union: Taming the composite state machines of tls. In IEEE Symposium
on Security and Privacy, pages 535-552. IEEE Computer Society, 2015.

http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html

[16]
[17]

18]

19]
[20]

21]

27]

31]

32]

[33]

Robert Biddle, Sonia Chiasson, and P.C. Van Oorschot. Graphical passwords: Learning from
the first twelve years. ACM Comput. Surv., 44(4):19:1-19:41, September 2012.

M Bishop and D V Klein. Improving system security via proactive password checking. Com-
puters & Security, 14(3), 1995.

Bluebox BlackHat. Android master key - bluebox black hat talk. https://media.
blackhat.com/us-13/US-13-Forristal-Android-One-Root-to-Own-Them/
-All-Slides.pdf, January 2014.

Simon Blake-Wilson, Magnus Nystrom, David Hopwood, Jan Mikkelsen, and Tim Wright.
Transport Layer Security (TLS) Extensions. Internet RFC 3546, June 2003.

Bluebox. Android master key - bluebox. http://bluebox.com/corporate-blog/
bluebox-uncovers—-android-master-key/, January 2014.

Joseph Bonneau. The science of guessing: Analyzing an anonymized corpus of 70 million
passwords. Security and Privacy (SP), 2012 IEEE Symposium on, 2012.

Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano. Passwords and
the evolution of imperfect authentication. Commun. ACM, 58(7):78-87, June 2015.

Joseph Bonneau, Cormarc Herley, Paul C. van Oorschot, and Frank Stajano. The quest to
replace passwords: A framework for comparative evaluation of web authentication schemes.
In Proc. IEEE S&P, 2012.

Cristian Bravo-Lillo, Lorrie Cranor, Julie Downs, Saranga Komanduri, Stuart Schechter, and
Manya Sleeper. Operating system framed in case of mistaken identity: Measuring the success
of web-based spoofing attacks on os password-entry dialogs. In Proc. ACM CCS, 2012.

Cristian Bravo-Lillo, Lorrie Faith Cranor, Julie Downs, and Saranga Komanduri. Bridging the
gap in computer security warnings: A mental model approach. IEEE Security and Privacy,
9(2):18-26, March 2011.

Cristian Bravo-Lillo, Lorrie Faith Cranor, Julie S. Downs, Saranga Komanduri, and Manya
Sleeper. Improving computer security dialogs. In Human-Computer Interaction - INTERACT
2011 - 18th IFIP TC 18 International Conference, Lisbon, Portugal, September 5-9, 2011,
Proceedings, Part 1V, pages 18-35, 2011.

Cristian Bravo-Lillo, Saranga Komanduri, Lorrie Faith Cranor, Robert W. Reeder, Manya
Sleeper, Julie Downs, and Stuart Schechter. Your attention please: Designing security-decision
uis to make genuine risks harder to ignore. In Proceedings of the Ninth Symposium on Usable
Privacy and Security, SOUPS ’13, pages 6:1-6:12, New York, NY, USA, 2013. ACM.

J. Brooke. SUS: A quick and dirty usability scale. In P. W. Jordan, B. Weerdmeester,
A. Thomas, and I. L. Mclelland, editors, Usability evaluation in industry. Taylor and Francis,
London, 1996.

John Brooke. Sus: A ”quick and dirty” usability scale. In P.W. Jordan, B. Thomas, B.A.
Weerdmeester, and A.L. McClelland, editors, Usability Evaluation in Industry. Taylor and
Francis, 1996.

Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and Vitaly Shmatikov. Using
frankencerts for automated adversarial testing of certificate validation in ssl/tls implementa-
tions. In Proceedings of the 2014 IEEE Symposium on Security and Privacy, SP ’14, pages
114-129, Washington, DC, USA, 2014. IEEE Computer Society.

Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza Sadeghi, and
Bhargava Shastry. Towards taming privilege-escalation attacks on android. In Proceedings of
the 19th Network and Distributed System Security Symposium, 2012.

Michael Buhrmester, Tracy Kwang, and Samuel D. Gosling. Amazon’s mechanical turk: A
new source of inexpensive, yet high-quality, data? Perspectives on Psychological Science,
6(1):3-5, feb 2011.

Chris Callison-Burch. Fast, cheap, and creative: Evaluating translation quality using ama-
zon’s mechanical turk. In Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing: Volume 1 - Volume 1, EMNLP ’09, pages 286-295, Stroudsburg, PA,
USA, 2009. Association for Computational Linguistics.

207

https://media.blackhat.com/us-13/US-13-Forristal-Android-One-Root-to-Own-Them/-All-Slides.pdf
https://media.blackhat.com/us-13/US-13-Forristal-Android-One-Root-to-Own-Them/-All-Slides.pdf
https://media.blackhat.com/us-13/US-13-Forristal-Android-One-Root-to-Own-Them/-All-Slides.pdf
http://bluebox.com/corporate-blog/bluebox-uncovers-android-master-key/
http://bluebox.com/corporate-blog/bluebox-uncovers-android-master-key/

[34]

[35]

[36]

37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

208

Patrick P.F. Chan, Lucas C.K. Hui, and S.M. Yiu. Droidchecker: Analyzing android appli-
cations for capability leaks. In WISEC ’12: Proceedings of the Fifth ACM Conference on
Security and Privacy in Wireless and Mobile Networks. ACM Press, April 2012.

Farah Chanchary and Sonia Chiasson. User Perceptions of Sharing, Advertising, and Tracking.
Symposium on Usable Privacy and Security (SOUPS) 2015, July 22-24, 2015.

Stephen Checkoway, Ruben Niederhagen, Adam Everspaugh, Matthew Green, Tanja Lange,
Thomas Ristenpart, Daniel J. Bernstein, Jake Maskiewicz, Hovav Shacham, and Matthew
Fredrikson. On the practical exploitability of dual ec in tls implementations. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 319-335, San Diego, CA, August 2014.
USENIX Association.

Ivan Cherapau, Ildar Muslukhov, Nalin Asanka, and Konstantin Beznosov. On the Impact
of Touch ID on iPhone Passcodes. FEleventh Symposium On Usable Privacy and Security
(SOUPS 2015), pages 257276, 2015.

William Cheswick. Rethinking passwords. Commun. ACM, 56(2):40-44, February 2013.

Pern Hui Chia, Yusuke Yamamoto, and N. Asokan. Is this app safe?: A large scale study
on application permissions and risk signals. In Proceedings of the 2012 Conference on World
Wide Web, WWW 12, 2012.

Sonia Chiasson, Robert Biddle, and P C Van Oorschot. A second look at the usability of
click-based graphical passwords. In Proceedings of the 3rd Symposium on Usable Privacy and
Security. ACM, jul 2007.

Sonia Chiasson, Paul C. van Oorschot, and Robert Biddle. A usability study and critique of
two password managers. In Proceedings of the 15th Conference on USENIX Security Sympo-
stum - Volume 15, USENIX-SS’06, Berkeley, CA, USA, 2006. USENIX Association.

Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing inter-
application communication in Android. In Proceedings of the 9th international conference on
Mobile systems, applications, and services. ACM, 2011.

Erika Chin, Adrienne Porter Felt, Vyas Sekar, and David Wagner. Measuring user confidence
in smartphone security and privacy. In Proceedings of the Eighth Symposium on Usable Privacy
and Security. ACM, 2012.

Jeremy Clark and Paul C. van Oorschot. Sok: SSL and HTTPS: revisiting past challenges
and evaluating certificate trust model enhancements. In 2013 IEEE Symposium on Security
and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 511-525, 2013.

D. Crocker. Mailbox names for common services, roles and functions. RFC 2142 (Proposed
Standard), May 1997.

Alexei Czeskis, Michael Dietz, Tadayoshi Kohno, Dan Wallach, and Dirk Balfanz. Strength-
ening user authentication through opportunistic cryptographic identity assertions. In Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security, CCS ’12,
pages 404-414, New York, NY, USA, 2012. ACM.

et al. D. Cooper. Internet X.509 Public Key Infrastructure Certificate and Certificate Revo-
cation List (CRL) Profile. http://tools.ietf.org/html/rfc5280, May 2008.

Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and XiaoFeng Wang. The
tangled web of password reuse. In 21st Annual Network and Distributed System Security
Symposium, NDSS 2014, San Diego, California, USA, February 23-26, 2014, 2014.

Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy. Privilege
escalation attacks on android. In Proceedings of the 13th International Conference on Infor-
mation Security, pages 346—-360. Springer, 2010.

Mattea Dell’Amico, Pietro Michiardi, and Yves Roudier. Password strength: An empirical
analysis. In INFOCOM, 2010 Proceedings IEEE, 2010.

Nico d’'Heureuse, Felipe Huici, Mayutan Arumaithurai, Mohamed Ahmed, Konstantina Pa-
pagiannaki, and Saverio Niccolini. What’s app?: A wide-scale measurement study of smart
phone markets. SIGMOBILE Mob. Comput. Commun. Rev., nov 2012.

http://tools.ietf.org/html/rfc5280

[52]
[53]

[54]

[55]

[56]

[63]

[64]

[65]

[66]

[67]

(68]

[69]

Thomas Dierks and Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878, 6176.

DigiCert. Digicert - certificate transparency. http://www.digicert.com/news/
2013-09-24-certificate-transparency.htm, September 2013.

Ben Dodson, Ian Vo, T. J. Purtell, Aemon Cannon, and Monica S. Lam. Musubi: Disinter-
mediated interactive social feeds for mobile devices. In Proceedings of the 21st International
Conference on World Wide Web, pages 211 — 220, 2012.

Stewart I. Donaldson and Elisa J. Grant-Vallone. Understanding self-report bias in organi-
zational behavior research. Journal of Business and Psychology, 17(2):245-260, December
2002.

Bryan Dosono, Jordan Hayes, and Yang Wang. “ I'm Stuck !”: A Contextual Inquiry of
People with Visual Impairments in Authentication. Proceedings of the eleventh Symposium
On Usable Privacy and Security, pages 151-168, 2015.

Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. ZMap: Fast Internet-wide scanning
and its security applications. In 22nd USENIX Security Symposium, August 2013.

Peter Eckersley. Sovereign key cryptography for internet domains. https://git.eff.org/
?p=sovereign-keys.git;a=blob; f=sovereign-key-design.txt; hb=HEAD, 2011.

Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. An empirical
study of cryptographic misuse in android applications. In Proceedings of the 2018 ACM
SIGSAC conference on Computer & Communications Security. ACM, 2013.

S. Egelman, L.F. Cranor, and J. Hong. You’ve Been Warned: An Empirical Study of the
Effectiveness of Web Browser Phishing Warnings. In Proceedings of the 26th Annual SIGCHI
Conference on Human Factors in Computing Systems, pages 1065-1074, 2008.

Serge Egelman, Andreas Sotirakopoulos, Ildar Muslukhov, Konstantin Beznosov, and Cormac
Herley. Does my password go up to eleven?: The impact of password meters on password
selection. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’13, pages 23792388, New York, NY, USA, 2013. ACM.

Serge Egelman, Janice Tsai, Lorrie Faith Cranor, and Alessandro Acquisti. Timing is every-
thing?: The effects of timing and placement of online privacy indicators. In Proceedings of
the 27th International Conference on Human Factors in Computing Systems, pages 319-328.
ACM, 2009.

André Egners, Bjorn Marschollek, and Ulrike Meyer. Messing with android’s permission
model. In Proceedings of the IEEE TrustCom, pages 1-22, apr 2012.

Andre Egners, Ulrike Meyer, and Bjorn Marschollek. Messing with Android’s Permission
Model. In TRUSTCOM ’12: Proceedings of the 2012 IEEE 11th International Conference
on Trust, Security and Privacy in Computing and Communications. IEEE Computer Society,
June 2012.

Eldad Eilam and Elliot J. Chikofsky. Reversing : secrets of reverse engineering. Wiley,
Indianapolis (Ind.), 2005.

William Enck, Peter Gilbert, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick Mc-
Daniel, and Anmol N Sheth. Taintdroid: An information-flow tracking system for realtime
privacy monitoring on smartphones. In Proceedings of the 9th USENIX Conference on Oper-
ating Systems Design and Implementation. USENIX Association, oct 2010.

William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A study of android
application security. In Proceedings of the 20th USENIX Conference on Security. USENIX,
aug 2011.

William Enck, M Ongtang, and P McDaniel. Understanding android security. In Proceedings
of the IEEFE International Conference on Security € Privacy, pages 50-57, 2009.

William Enck, Machigar Ongtang, and Patrick McDaniel. On lightweight mobile phone ap-

plication certification. In Proceedings of the 16th ACM Conference on Computer and Com-
munications Security, nov 2009.

209

http://www.digicert.com/news/2013-09-24-certificate-transparency.htm
http://www.digicert.com/news/2013-09-24-certificate-transparency.htm
https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=HEAD
https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=HEAD

[70]
[71]

[72]

73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

[81]

[82]

[83]

[84]

[85]

210

M. Myers et al. X.509 Internet Public Key Infrastructure, Online Certificate Status Protocol
- OCSP. http://tools.ietf.org/html/rfc2560, June 1999.

C Evans, C Palmer, and R Sleevi. Public Key Pinning Extension for HT'TP. https:
//tools.ietf.org/html/rfc7469, April 2015.

Facebook. The current state of smtp starttls deploy-
ment. https://www.facebook.com/notes/protect-the-graph/
the-current-state-of-smtp-starttls—deployment/1453015901605223/.

Sascha Fahl, Yasemin Acar, Henning Perl, and Matthew Smith. Why eve and mallory (also)
love webmasters: A study on the root causes of ssl misconfigurations. In Proceedings of the
9th ACM Symposium on Information, Computer and Communications Security, ASTA CCS
’14, pages 507-512, New York, NY, USA, 2014. ACM.

Sascha Fahl, Sergej Dechand, Henning Perl, Felix Fischer, Jaromir Smrcek, and Matthew
Smith. Hey, nsa: Stay away from my market! future proofing app markets against powerful
attackers. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 14, pages 1143-1155, New York, NY, USA, 2014. ACM.

Sascha Fahl, Marian Harbach, Yasemin Acar, and Matthew Smith. On the ecological validity
of a password study. In Proceedings of the Ninth Symposium on Usable Privacy and Security,
SOUPS ’13, pages 13:1-13:13, New York, NY, USA, 2013. ACM.

Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgéartner, Bernd Freisleben, and
Matthew Smith. Why eve and mallory love android: an analysis of android ssl (in)security.
In Proceedings of the 2012 ACM conference on Computer and communications security, CCS
’12, pages 5061, New York, NY, USA, 2012. ACM.

Sascha Fahl, Marian Harbach, Thomas Muders, and Matthew Smith. Confidentiality as a
service - usable security for the cloud. In Proceedings of the IEEE International Conference
on Trust, Security and Privacy in Computing and Communications, 2012.

Sascha Fahl, Marian Harbach, Thomas Muders, and Matthew Smith. Trustsplit: Usable con-
fidentiality for social network messaging. In Proceedings of the ACM Conference on Hypertext
and Hypermedia, 2012.

Sascha Fahl, Marian Harbach, Thomas Muders, Matthew Smith, and Uwe Sander. Helping
johnny 2.0 to encrypt his facebook conversations. In Proceedings of the Fighth Symposium
on Usable Privacy and Security, SOUPS ’12, pages 11:1-11:17, New York, NY, USA, 2012.
ACM.

Sascha Fahl, Marian Harbach, Marten Oltrogge, Thomas Muders, and Matthew Smith. Hey,
you, get off of my clipboard - on how usability trumps security in android password managers.
In Financial Cryptography, Lecture Notes in Computer Science. Springer, 2013.

Sascha Fahl, Marian Harbach, Henning Perl, Markus Koetter, and Matthew Smith. Rethink-
ing ssl development in an appified world. In Proceedings of the 2018 ACM SIGSAC conference
on Computer €& Communications Security, CCS ’13. ACM, 2013.

Adrienne Porter Felt, Alex Ainslie, Robert W. Reeder, Sunny Consolvo, Somas Thyagaraja,
Alan Bettes, Helen Harris, and Jeff Grimes. Improving ssl warnings: Comprehension and ad-
herence. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems, CHI 15, pages 2893-2902, New York, NY, USA, 2015. ACM.

Adrienne Porter Felt, Serge Egelman, Matthew Finifter, Devdatta Akhawe, and David Wag-
ner. How to ask for permission. In Proceedings of the 7th USENIX conference on Hot Topics
in Security, 2012.

Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and David
Wagner. Android permissions: User attention, comprehension, and behavior. In Proceedings
of the Eighth Symposium on Usable Privacy and Security, SOUPS ’12, 2012.

Andy Field, Jeremy Miles, and Zoe Field. Discovering Statistics Using R. SAGE Publications,
2012.

http://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc7469
https://tools.ietf.org/html/rfc7469
https://www.facebook.com/notes/protect-the-graph/the-current-state-of-smtp-starttls-deployment/1453015901605223/
https://www.facebook.com/notes/protect-the-graph/the-current-state-of-smtp-starttls-deployment/1453015901605223/

[97]

[100]

[101]

[102]
[103]

[104]

[105)

R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and
Routing. http://tools.ietf.org/html/rfc7230, June 2014.

D Florencio and C Herley. A large-scale study of web password habits. Proceedings of the
16th international conference on World Wide Web, 2007.

Alain Forget, Sonia Chiasson, P C Van Oorschot, and Robert Biddle. Improving text pass-
words through persuasion. In Proceedings of the 4th Symposium on Usable Privacy and Se-
curity. ACM, jul 2008.

S. Frankel and S. Krishnan. IP Security (IPsec) and Internet Key Exchange (IKE) Document
Roadmap. IETF RFC 6071, February 2011.

A Freier, P Karlton, and P Kocher. The Secure Sockets Layer (SSL) Protocol Version 3.0.
https://www.iletf.org/rfc/rfc6101.txt, August 2011.

Simson Garfinkel and Heather Richter Lipford. Usable Security: History, Themes, and Chal-
lenges. Synthesis Lectures on Information Security, Privacy, and Trust. Morgan & Claypool
Publishers, 2014.

Simson L Garfinkel and Robert C Miller. Johnny 2: A user test of key continuity management
with s/mime and outlook express. In Proceedings of the First Symposium on Usable Privacy
and Security. ACM, jul 2005.

S.L. Garfinkel. Email-based identification and authentication: An alternative to pki? IEEE
Security & Privacy, 1(6):20-26, nov 2003.

Paolo Gasti and Kasper B. Rasmussen. Computer Security — ESORICS 2012: 17th Euro-
pean Symposium on Research in Computer Security, Pisa, Italy, September 10-12, 2012. Pro-
ceedings, chapter On the Security of Password Manager Database Formats, pages 770-787.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

Shirley Gaw and Edward W Felten. Password management strategies for online accounts. In
Proceedings of the Second Symposium on Usable Privacy and Security. ACM, jul 2006.

Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and Vitaly
Shmatikov. The most dangerous code in the world: Validating ssl certificates in non-browser
software. In Proceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS ’12, pages 38-49, New York, NY, USA, 2012. ACM.

Clint Gibler, Ryan Stevens, Jonathan Crussell, Hao Chen, Hui Zang, and Heesook Choi.
Adrob: Examining the landscape and impact of android application plagiarism. In Proceedings

of the 11th international conference on Mobile systems, applications, and services, MobiSys
’13. ACM, 2013.

Google. Android and security. http://googlemobile.blogspot.de/2012/02/
android-and-security.html, February 2012.

Google. Android app signing. http://developer.android.com/tools/publishing/
app-signing.html, May 2014.

Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang. RiskRanker:
Scalable and Accurate Zero-day Android Malware Detection. In Proceedings of the 10th
international conference on Mobile systems, applications, and services, MobiSys '12. ACM,
2012.

G. Greenwald. No Place to Hide: Edward Snowden, the NSA and the Surveillance State.
Penguin UK, 2014.

Internet Security Research Group. Let’s encrypt. https://letsencrypt.org/.

The Guardian. The nsa files. http://www.theguardian.com/us—-news/
the-nsa-files.

Saikat Guha, Kevin Tang, and Paul Francis. Noyb: Privacy in online social networks. In
Proceedings of the First Workshop on Online Social Networks, pages 49-54. ACM, 2008.

Stuart Haber and W. Scott Stornetta. How to time-stamp a digital document. In Advances
in Cryptology - CRYPTO 90, CRYPTO ’90, 1991.

211

http://tools.ietf.org/html/rfc7230
https://www.ietf.org/rfc/rfc6101.txt
http://googlemobile.blogspot.de/2012/02/android-and-security.html
http://googlemobile.blogspot.de/2012/02/android-and-security.html
http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html
https://letsencrypt.org/
http://www.theguardian.com/us-news/the-nsa-files
http://www.theguardian.com/us-news/the-nsa-files

[106]

[107]
[108]

[109]

[110]

[111]
[112]

[113]

[114]

[115]

[116]
[117]
[118]
[119]
[120]

[121]

[122]

[123]

[124]

212

Alina Hang, Alexander De Luca, Matthew Smith, and Michael Richter. Where Have You
Been ? Using Location-Based Security Questions for Fallback Authentication. Symposioum
on Usable Privacy and Security, pages 169-183, 2015.

S M Taiabul Haque, Matthew Wright, and Shannon Scielzo. A study of user password strategy
for multiple accounts. In Proc. CODASPY. ACM, 2013.

Marian Harbach, Sascha Fahl, and Matthew Smith. Who’s Afraid of Which Bad Wolf? A
Survey of IT Security Risk Awareness. In Proc. CSF, 2014.

Marian Harbach, Markus Hettig, Susanne Weber, and Matthew Smith. Using personal ex-
amples to improve risk communication for security and privacy decisions. In CHI ’1j - Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2014.

Boyuan He, Vaibhav Rastogi, Yinzi Cao, Yan Chen, V.N. Venkatakrishnan, Runqing Yang,
and Zhenrui Zhang. Vetting ssl usage in applications with sslint. In Proceedings of the 36th
IEEE Symposium on Security and Privacy (Oakland), 2015.

C Herley and P Van Oorschot. A research agenda acknowledging the persistence of passwords.
IEEE Security € Privacy, 10(1):28-36, 2012.

J Hodges, C Jackson, and A Barth. HTTP Strict Transport Security (HSTS). https:
//tools.ietf.org/html/rfc6797, November 2012.

Ralph Holz, Lothar Braun, Nils Kammenhuber, and Georg Carle. The SSL Landscape: A
Thorough Analysis of the x.509 PKI Using Active and Passive Measurements. In Proceedings
of the 2011 ACM SIGCOMM conference on Internet measurement conference, IMC 11, 2011.

Philip G Inglesant and M Angela Sasse. The true cost of unusable password policies: password
use in the wild. In Proc. CHI. ACM, apr 2010.

Family Health International, N. Mack, C. Woodsong, and United States. Agency for Inter-
national Development. Qualitative Research Methods: A Data Collector’s Field Guide. FLI,
2005.

C. Jackson and A. Barth. Forcehttps: Protecting high-security web sites from network attacks.
In Proceeding of the 17th International Conference on World Wide Web, pages 525-534, 2008.

S Jana and V Shmatikov. Memento: Learning Secrets from Process Footprints. Security and
Privacy (SP), 2012 IEEE Symposium on, pages 143-157, 2012.

M. Just and D. Aspinall. Personal choice and challenge questions: a security and usability
assessment. Proceedings of the 5th Symposium on Usable Privacy and Security, page 8, 2009.

B. Kaliski. PKCS #5: Password-Based cryptography specification version 2.0, September
2000.

Poul-Henning Kamp. Linkedin password leak: Salt their hide. Queue, 10(6):20:20-20:22,
June 2012.

Ruogu Kang, Laura Dabbish, Nathaniel Fruchter, and Sara Kiesler. "My data just goes
everywhere": User mental models of the internet and implications for privacy and security.
Symposium on Usable Privacy and Security (SOUPS) 2015, pages 39-52, 2015.

Ambarish Karole, Nitesh Saxena, and Nicolas Christin. A comparative usability evaluation
of traditional password managers. In Proceedings of the 13th International Conference on
Information Security and Cryptology, ICISC’10, pages 233-251, Berlin, Heidelberg, 2011.
Springer-Verlag.

Patrick Gage Kelley, Lorrie Faith Cranor, and Norman Sadeh. Privacy as part of the app
decision-making process. In CHI ’13 - Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2013.

Patrick Gage Kelley, Saranga Komanduri, Michelle L. Mazurek, Rich Shay, Timothy Vidas,
Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Julio Lopez. Guess again (and again
and again): Measuring password strength by simulating password-cracking algorithms. In
Proc. IEEE S&P, pages 523-537, 2012.

https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]
[135]
[136]

[137]

[138]

[139]

[140]

[141]

[142]
[143]
[144]

Hassan Khan, Urs Hengartner, and Daniel Vogel. Usability and Security Perceptions of
Implicit Authentication : Convenient , Secure , Sometimes Annoying. Eleventh Symposium
On Usable Privacy and Security (SOUPS 2015), pages 225-239, 2015.

Hyoungschick Kim and Rakesh B Bobba. On the Memorability of System-generated PINs
: Can Chunking Help 7 In Proceedings of the Eleventh Symposium On Usable Privacy and
Security (SOUPS 2015), pages 197-209, 2015.

Soo Hyeon Kim, Daewan Han, and Dong Hoon Lee. Predictability of android openssl’s pseudo
random number generator. In Proceedings of the 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS '13, pages 659668, New York, NY, USA, 2013. ACM.

Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perring, Collin Jackson, and Virgil Gligor.
Accountable Key Infrastructure (AKI): A Proposal for a Public-key Validation Infrastructure.
In Proceedings of the 2018 Conference on World Wide Web, WWW ’13, 2013.

Saranga Komanduri, Richard Shay, Lorrie Faith Cranor, Cormac Herley, and Stuart
Schechter. Telepathwords: Preventing weak passwords by reading users’ minds. In 23rd
USENIX Security Symposium (USENIX Security 14), pages 591-606, San Diego, CA, August
2014. USENIX Association.

Saranga Komanduri, Richard Shay, Patrick Gage Kelley, Michelle L. Mazurek, Lujo Bauer,
Nicolas Christin, Lorrie Faith Cranor, and Serge Egelman. Of passwords and people: mea-
suring the effect of password-composition policies. In Proc. CHI. ACM, 2011.

Georgios Kontaxis, Elias Athanasopoulos, Georgios Portokalidis, and Angelos D. Keromytis.
Sauth: Protecting user accounts from password database leaks. In Proceedings of the 2013

ACM SIGSAC Conference on Computer E& Communications Security, CCS ’13, pages
187-198, New York, NY, USA, 2013. ACM.

Michael Kranch and Joseph Bonneau. Upgrading HTTPS in mid-air: An empirical study of
strict transport security and key pinning. In 22nd Annual Network and Distributed System
Security Symposium, NDSS 2015, San Diego, California, USA, February 8-11, 2014, 2015.

Alex P Lambert, Stephen M Bezek, and Karrie G Karahalios. Waterhouse: Enabling secure
e-mail with social networking. In Proceedings of the International Conference On Human
Factors In Computing Systems. ACM, April 2009.

B. Laurie and E. Kasper. Revocation transparency, 2013.
B. Laurie, A. Langley, and E. Kasper. Certificate transparency, June 2013.

Ben Laurie, Adam Langley, and Emilia Kasper. Certificate transparency. network working
group internet-draft, v12, work in progress, April 2013.

Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. Resarch Methods in Human-
Computer Interaction. Wiley, 2010.

Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn Song. The emperor’s new password
manager: Security analysis of web-based password managers. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 465-479, San Diego, CA, August 2014. USENIX
Association.

libsodium. The sodium crypto library (libsodium). https://download.libsodium.org/
doc/.

Matthew M. Lucas and Nikita Borisov. Flybynight: Mitigating the privacy risks of social
networking. In Proceedings of the 7th ACM Workshop on Privacy in the Electronic Society,
pages 1-8, 2008.

David Malone and Kevin Maher. Investigating the distribution of password choices. In
Proceedings of the 21st international conference on World Wide Web, WWW 12, pages 301—
310, New York, NY, USA, 2012. ACM.

M. Marlinspike. More tricks for defeating ssl in practice. In Black Hat USA, 2009.
M. Marlinspike. New Tricks for Defeating SSL in Practice. In Black Hat Europe, 2009.

Moxie Marlinspike. Convergence. http://convergence.io/.

213

https://download.libsodium.org/doc/
https://download.libsodium.org/doc/
http://convergence.io/

[145]
[146]
[147]

[148)

[149]

[150]

[151]
[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

214

Moxie Marlinspike. Tack: Trust assertion for certificate keys. http://tack.io/.
Moxie Marlinspike. Ssl and the future of authenticity. In BlackHat USA 2011, 2011.

Vitaly Shmatikov Martin Georgiev, Suman Jana. Breaking and fixing origin-based access
control in hybrid web/mobile application frameworks. In NDSS 201: 21st Network & Dis-
tributed System Security Symposium. Internet Society, 2014.

Max-Emanuel Maurer, Alexander De Luca, and Sylvia Kempe. Using data type based security
alert dialogs to raise online security awareness. In Proceedings of the Seventh Symposium on
Usable Privacy and Security. ACM, 2011.

Michelle L. Mazurek, Saranga Komanduri, Timothy Vidas, Lujo Bauer, Nicolas Christin,
Lorrie Faith Cranor, Patrick Gage Kelley, Richard Shay, and Blase Ur. Measuring password
guessability for an entire university. In Proceedings of the 2013 ACM SIGSAC Conference on
Computer E#38; Communications Security, CCS ’13, pages 173-186, New York, NY, USA,
2013. ACM.

David McCandless. World’s biggest data breaches. http:
//www.informationisbeautiful.net/visualizations/
worlds-biggest-data-breaches-hacks/.

P McDaniel and William Enck. Not So Great Expectations: Why Application Markets
Haven’t Failed Security. IEEE Security € Privacy, 8(5):76-78, September 2010.

Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied
Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1996.

Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: Extending android permission
model and enforcement with user-defined runtime constraints. In Proceedings of the 5th ACM
Symposium on Information, Computer and Communications Security, 2010.

National Institute of Standards and Technology (NIST). Advanced encryption standard (aes)
(fips pub 197), October 2001.

Marten Oltrogge, Yasemin Acar, Sergej Dechand, Matthew Smith, and Sascha Fahl. To pin
or not to pin—helping app developers bullet proof their tls connections. In Proceedings of the
24th USENIX Security Symposium. USENIX, 2015.

R Pandita, X Xiao, W Yang, W Enck, and T Xie. WHYPER: towards automating risk
assessment of mobile applications. In Proceedings of the 22nd USENIX Security Symposium,
2013.

Thanasis Petsas, Antonis Papadogiannakis, Michalis Polychronakis, Evangelos P. Markatos,
and Thomas Karagiannis. Rise of the planet of the apps: A systematic study of the mobile app
ecosystem. In Proceedings of the 2018 ACM SIGCOMM conference on Internet measurement
conference, IMC ’13, 2013.

Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel, and Giovanni
Vigna. Execute this! analyzing unsafe and malicious dynamic code loading in android ap-
plications. In NDSS 201/: 21st Network & Distributed System Security Symposium. Internet
Society, 2014.

Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. Android
permissions demystified. In Proceedings of the 18th ACM Conference on Computer and Com-
munications Security. ACM Press, oct 2011.

Adrienne Porter Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner. Android
Permissions: User Attention, Comprehension, and Behavior. Technical report, UC Berkeley,
2012.

Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steve Hanna, and Erika Chin.
Permission re-delegation: Attacks and defenses. In Proceedings of the 20th USENIX Security
Symposium. USENIX, 2011.

Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Herbert Bos. Paranoid
android: Versatile protection for smartphones. In Proceedings of the 26th Annual Computer
Security Applications Conference, dec 2010.

http://tack.io/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

[163]

[164]

[165]

[166)]
[167]

[168]

169

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

Hootan Rashtian, Yazan Boshmaf, Pooya Jaferian, and Konstantin Beznosov. To Befriend
Or Not? A Model of Friend Request Acceptance on Facebook. SOUPS ’1j: Proceedings of
the Tenth Symposium On Usable Privacy and Security, pages 285—-300, 2014.

Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. DroidChameleon: evaluating Android anti-
malware against transformation attacks. In Proceedings of the 8th ACM SIGSAC symposium
on Information, computer and communications security, ASTA CCS ’13. ACM, 2013.

Rob Reeder and Sunny Consolvo. “.. no one can hack my mind”: Comparing Expert and

Non-Expert Security Practices. Symposium on Usable Privacy and Security, pages 327-346,
2015.

E. Rescorla. HTTP Over TLS. RFC 2818, May 2000.

Phillip Rogaway and David Wagner. Comments to nist concerning aes modes of operations:
Ctr-mode encryption. National Institute of Standards and Technologies, 2000.

Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh, and John C. Mitchell. Stronger pass-
word authentication using browser extensions. In Proceedings of the 14th Conference on
USENIX Security Symposium - Volume 14, SSYM’05, pages 2—-2, Berkeley, CA, USA, 2005.
USENIX Association.

Scott Ruoti, Nathan Kim, Ben Burgon, Timothy van der Horst, and Kent Seamons. Confused
johnny: When automatic encryption leads to confusion and mistakes. In Proceedings of the
Ninth Symposium on Usable Privacy and Security, SOUPS ’13, pages 5:1-5:12, New York,
NY, USA, 2013. ACM.

Mark D. Ryan. Enhanced certificate transparency and end-to-end encrypted mail. In NDSS
2014: 21st Network & Distributed System Security Symposium, NDSS 2014, 2014.

P. Saint-Andre and J. Hodges. Representation and Verification of Domain-Based Application
Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates
in the Context of Transport Layer Security (TLS), mar 2011.

Stuart Schechter and Joseph Bonneau. Learning Assigned Secrets for Unlocking Mobile De-
vices. In Proceedings of the Eleventh Symposium On Usable Privacy and Security (SOUPS
2015), pages 277-295, 2015.

Stuart E. Schechter, Rachna Dhamija, Andy Ozment, and Ian Fischer. The emperor’s new
security indicators. In Proceedings of the 2007 IEEE Symposium on Security and Privacy, SP
07, pages 51-65, Washington, DC, USA, 2007. IEEE Computer Society.

R Schlegel, K Zhang, X Zhou, M Intwala, and et al. Soundcomber: A stealthy and context-
aware sound trojan for smartphones. Proceedings of the Network and Distributed System
Security Symposium, 2011.

A Shabtai, Y Fledel, U Kanonov, Y Elovici, S Dolev, and C Glezer. Google android: A
comprehensive security assessment. Security € Privacy, IEEE, 8(2):35-44, 2010.

Richard Shay, Patrick Gage Kelley, Saranga Komanduri, Michelle L. Mazurek, Blase Ur,
Timothy Vidas, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. Correct horse battery
staple: exploring the usability of system-assigned passphrases. In Proceedings of the Eighth
Symposium on Usable Privacy and Security, SOUPS ’12, pages 7:1-7:20, New York, NY, USA,
2012. ACM.

Richard Shay, Saranga Komanduri, Adam L. Durity, Phillip (Seyoung) Huh, Michelle L.
Mazurek, Sean M. Segreti, Blase Ur, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor.
Can long passwords be secure and usable? In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’14, pages 2927-2936, New York, NY, USA,
2014. ACM.

Richard Shay, Saranga Komanduri, Patrick Gage Kelley, Pedro Giovanni Leon, Michelle L.
Mazurek, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. Encountering stronger
password requirements: user attitudes and behaviors. In Proceedings of the Sixth Symposium
on Usable Privacy and Security, SOUPS 10, pages 2:1-2:20, New York, NY, USA, 2010.
ACM.

215

179

[180]

[181]

[182]

[183]

[184]

[185)

[186]

[187]

[188]

[189]

[190]

[191]

[192]

193]

[194]

216

Steve Sheng, Colleen Koranda, Jeremy Hyland, and Levi Broderick. Why Johnny Still Can’t
Encrypt: Evaluating the Usability of Email Encryption Software. In Proceedings of the Second
Symposium on Usable Privacy and Security, Poster, 2006.

D. Shin and R. Lopes. An empirical study of visual security cues to prevent the sslstripping
attack. In Proceedings of the 27th Annual Computer Security Applications Conference, pages
287-296, 2011.

David Silver, Suman Jana, Dan Boneh, Eric Chen, and Collin Jackson. Password managers:
Attacks and defenses. In 28rd USENIX Security Symposium (USENIX Security 14), pages
449-464, San Diego, CA, August 2014. USENIX Association.

Yimin Song, Chao Yang, and Guofei Gu. Who is peeping at your passwords at starbucks?
— to catch an evil twin access point. In IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 323-332, 2010.

A Sotirakopoulos and K Hawkey. ”i did it because i trusted you”: Challenges with the study
environment biasing participant behaviours. In Proceedings of the 6th Symposium on Usable
Privacy and Security, 2010.

Andreas Sotirakopoulos, Kirstie Hawkey, and Konstantin Beznosov. On the challenges in
usable security lab studies: Lessons learned from replicating a study on ssl warnings. In
Proceedings of the Tth Symposium on Usable Privacy and Security, jul 2011.

David Sounthiraraj, Justin Sahs, Garrett Greenwood, Zhigiang Lin, and Latifur Khan. Smv-
hunter: Large scale, automated detection of ssl/tls man-in-the-middle vulnerabilities in an-
droid apps. In NDSS 2014: 21st Network & Distributed System Security Symposium. Internet
Society, 2014.

Elizabeth Stobert and Robert Biddle. The password life cycle: User behaviour in managing
passwords. In Proceedings of the Tenth Symposium on Usable Privacy and Security, pages
243-255, Menlo Park, CA, July 2014. USENIX Association.

Ben Stock and Martin Johns. Protecting users against xss-based password manager abuse.
In Proceedings of the 9th ACM Symposium on Information, Computer and Communications
Security, ASIA CCS '14, pages 183-194, New York, NY, USA, 2014. ACM.

Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri, and Lorrie Faith Cranor.
Crying wolf: An empirical study of ssl warning effectiveness. In Proceedings of the 18th
Conference on USENIX Security Symposium, SSYM’09, pages 399-416, Berkeley, CA, USA,
2009. USENIX Association.

Xijaoyuan Suo, Ying Zhu, and G. Scott. Owen. Graphical passwords: A survey. In Proceedings
of the 21st Annual Computer Security Applications Conference, ACSAC ’05, pages 463-472,
Washington, DC, USA, 2005. IEEE Computer Society.

Julie Thorpe, Brent MacRae, and Amirali Salehi-Abari. Usability and security evaluation
of geopass: A geographic location-password scheme. In Proceedings of the Ninth Symposium
on Usable Privacy and Security, SOUPS ’13, pages 14:1-14:14, New York, NY, USA, 2013.
ACM.

Sean Turner and Blake C. Ramsdell. Secure/Multipurpose Internet Mail Extensions
(S/MIME) Version 3.2 Message Specification. IETF RFC 5751, January 2010.

Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian Goldberg, and
Matthew Smith. Sok: Secure messaging. In IEEE Symposium on Security and Privacy, pages
232-249. IEEE Computer Society, May 2015.

Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael Maass, Michelle L.
Mazurek, Timothy Passaro, Richard Shay, Timothy Vidas, Lujo Bauer, Nicolas Christin, and
Lorrie Faith Cranor. How does your password measure up? the effect of strength meters on
password creation. In Proceedings of the 21st USENIX conference on Security symposium,
Security’12, pages 55, Berkeley, CA, USA, 2012. USENIX Association.

Blase Ur, Fumiko Noma, Jonathan Bees, Sean M. Segreti, Richard Shay, Lujo Bauer, Nicolas
Christin, and Lorrie Faith Cranor. 'l added '’ at the end to make it secure": Observing

[195]

[196]

[197]

[198]

[199]

200]

[201]

[202]

203]

[204]

[205]

[206]

207]

208

209]

[210]

[211]

password creation in the lab. In Proceedings of the Eleventh Symposium On Usable Privacy
and Security (SOUPS 2015). USENIX, July 2015.

Vasco.com. http://www.vasco.com/company/about_vasco/press_room/news_
archive/2011/news_diginotar_reports_security_incident.aspx, September

2011.

T. Vidas, D. Votipka, and N. Christin. All your droid are belong to us: A survey of current
android attacks. In Proceedings of the 5th USENIX conference on Offensive technologies,
pages 10-10, 2011.

Timothy Vidas and Nicolas Christin. Sweetening android lemon markets: Measuring and
combating malware in application marketplaces. In CODASPY 13: Proceedings of the Third
ACM Conference on Data and Application Security and Privacy, CODASPY ’13, 2013.

M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek. Password cracking using probabilistic
context-free grammars. In Proc. IEEE S&P, pages 391-405, 2009.

Matt Weir, Sudhir Aggarwal, Michael Collins, and Henry Stern. Testing metrics for password
creation policies by attacking large sets of revealed passwords. In Proc. ACM CCS, pages
162-175, 2010.

Dan Wendlandt, David G. Andersen, and Adrian Perrig. Perspectives: improving SSH-style
host authentication with multi-path probing. In USENIX 2008 Annual Technical Conference
on Annual Technical Conference, ATC’08, pages 321-334, Berkeley, CA, USA, 2008. USENIX
Association.

A. Whitten and J.D. Tygar. Why johnny can’t encrypt: A usability evaluation of pgp 5.0.
In Proceedings of the 8th USENIX Security Symposium, 1999.

Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. The impact of vendor
customizations on android security. In Proceedings of the 2013 ACM SIGSAC conference on
Computer € Communications Security, CCS ’13, 2013.

T Wu. The SRP Authentication and Key Exchange System. https://www.ietf.org/
rfc/rfc2945.txt, September 2000.

Lok Kwong Yan and Heng Yin. Droidscope: Seamlessly reconstructing the os and dalvik
semantic views for dynamic android malware analysis. In Proceedings of the 21st USENIX
Security Symposium, USENIX Security’12, 2012.

Y Ylonen. The Secure Shell (SSH) Transport Layer Protocol. https://www.ietf.org/
rfc/rfcd253.txt, January 2006.

Nur Haryani Zakaria, David Griffiths, Sacha Brostoff, and Jeff Yan. Shoulder surfing defence
for recall-based graphical passwords. In Proceedings of the Seventh Symposium on Usable
Privacy and Security, page 6. ACM, 2011.

Wu Zhou, Xinwen Zhang, and Xuxian Jiang. Applnk: Watermarking Android Apps for
Repackaging Deterrence. In ASIA CCS ’18: Proceedings of the 8th ACM SIGSAC symposium
on Information, computer and communications security, ASTA CCS '13. ACM, 2013.

Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting repackaged smartphone ap-
plications in third-party android marketplaces. In Proceedings of the second ACM conference
on Data and Application Security and Privacy. ACM, 2012.

Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my market: Detecting
malicious apps in official and alternative android markets. In Proceedings of the 19th Annual
Network and Distributed System Security Symposium, 2012.

Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization and evolution.
In Security and Privacy (SP), 2012 IEEE Symposium on, pages 95-109. IEEE, 2012.

Philip R. Zimmermann. The Official PGP User’s Guide. MIT Press, Cambridge, MA, USA,
1995.

217

http://www.vasco.com/company/about_vasco/press_room/news_archive/2011/news_diginotar_reports_security_incident.aspx
http://www.vasco.com/company/about_vasco/press_room/news_archive/2011/news_diginotar_reports_security_incident.aspx
https://www.ietf.org/rfc/rfc2945.txt
https://www.ietf.org/rfc/rfc2945.txt
https://www.ietf.org/rfc/rfc4253.txt
https://www.ietf.org/rfc/rfc4253.txt

Curriculum Vitae

218

CURRICULUM VITAE: Sascha Fahl

Personal Information

Name Sascha Fahl

Date of birth 23.03.1985

City of birth Eschwege, Germany
Education

since 02/2011 PhD Computer Science

Leibniz University Hannover, Germany. Distributed Computing
and Security Group. Areas of research: Human Factors in IT
Security and Privacy for End Users, Administrators, Software
Developers and System Designers, Android Security, Transport
Layer Security, Transparency Systems.

10/2005 — 01/2011 Diplom Informatik
University of Marburg, Germany. Topic of thesis: ”Identity Based
Encryption for Cloud Computing”

08/2001 — 06/2004 Abitur (A-levels)
Berufliches Gymnasium, Eschwege, Germany (high school with
professional specialization). Specialization in Economics.

Experience

PC Member at: SOUPS 2016, TRUST 2015, ACM WWW 2015, Usable Security Workshop 2014
co-located with NDSS, TRUST 2014, IEEE DEST 2012, CALS 2011. Reviewer for: IEEE Security
and Privacy 2015, ACM CHI 2015, ACM CCS 2015, SOUPS 2015, SOUPS 2014, ACM CCS 2014,
IEEE Security and Privacy 2014 and Financial Crypto 2013. Subreviewer for: CHI 2014.

CISPA, Saarland University, Germany (Oct. 2015 - now): Researcher working in the field of Usable
Security and Privacy; Teaching Seminars on Usable Security and Privacy; Advising three PhD
students; Advising 4 students on Bachelor and Master theses.

Leibniz University Hannover, Germany (Feb. 2011 - Sep. 2015): Teaching assistant on IT security
and Usable Security and Privacy courses; Seminars on Security and Privacy in Society (interdisci-
plinary course in conjunction with the School of Sociology and the School of Law) and introductory
seminars on IT Security; Supervising students in Security and Usable Security project work; Ad-
vising 18 students on Bachelor and Master theses.

FKIE Fraunhofer, Bonn (Jan. 2014 - Feb. 2016): Working on multiple usable security projects as
part-time research assistant.

Interned with the Google Chrome Usable Security Team, Mountain View, California (Spring 2015):
Big Data Analysis and Designing and Implementing a new TLS interstitial for Chrome.

Peer-reviewed Papers (selected)

Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, M. Smith: SoK: Lessons Learned From Android
Security Research For Appified Software Platforms, IEEE Security and Privacy 2016

Y. Acar, M. Backes, S. Fahl, D. Kim, M. Mazurek, C. Stransky: You Get Where You're Looking
For - The Impact of Information Sources on Code Security, IEEE Security and Privacy 2016

H. Perl, D. Arp, S. Dechand, S. Fahl, Y. Acar, F. Yamaguchi, K. Rieck, M. Smith: VCCFinder:
Finding Potential Vulnerabilities in Open-Source Projects to Assist Code Audits, ACM CCS 2015

M. Oltrogge, Y. Acar, S. Dechand, M. Smith, S. Fahl: To Pin or Not to Pin - Helping App Developers
To Bulletproof Their TLS Connections, USENIX Security 2015

N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg, M. Smith: SoK: Secure Messaging,
IEEE Security and Privacy 2015

S. Fahl, Y. Acar, H. Perl, M. Smith: Why Eve and Mallory (Also) Love Webmasters: A Study on
the Root Causes of SSL Misconfigurations, ACM AsiaCCS 2014

S. Fahl, S. Dechand, H. Perl, F. Fischer, J. Smrceck, M. Smith: Hey, NSA: Stay Away from my
Market! Future Proofing App Markets against Powerful Attackers, ACM CCS 2014

S. Fahl, M. Harbach, H. Perl, M. Koetter, M. Smith: Rethinking SSL. Development in an Appified
World, ACM CCS 2013

S. Fahl, M. Harbach, Y. Acar, M. Smith: On the Ecological Validity of a Password Study, Sympo-
sium on Usable Privacy and Security, SOUPS 2013

S. Fahl, M. Harbach, T. Muders, L. Baumgértner, B. Freisleben, M. Smith: Why Eve and Mallory
Love Android: An Analysis of Android SSL (In)Security, ACM CCS 2012

S. Fahl, M. Harbach, T. Muders, M. Smith, U. Sander: Helping Johnny 2.0 to Encrypt his Facebook
Conversations, Symposium on Usable Privacy and Security, SOUPS 2012

	Introduction
	Contributions
	About this Thesis

	Background
	Usable Security and Privacy Research
	Research Methods
	Background and Related Work
	Passwords
	Email Encryption
	Transport Layer Security
	Appified Platforms

	Summary

	End Users: Encrypting Facebook Messages
	Motivation
	Background
	Exploratory Phase
	Usable Facebook Message Encryption
	Evaluation
	Limitations
	Summary

	Administrators: Configuring HTTPS Webservers
	Motivation
	Background
	Administrator Study
	Discussion
	Limitations
	Summary

	Developers: Implementing Password Managers
	Motivation
	Background
	Password Sniffing on Android
	Security Analysis
	Developer Study
	Countermeasures
	USecPassBoard User Interface
	Summary

	Developers: Customizing Certificate Validation
	Motivation
	Background
	Evaluating Android TLS Usage
	Userstudy: TLS Warning Messages
	Summary

	System Designers: Rethinking TLS Development
	Motivation
	Background
	TLS on iOS
	Developer Study
	TLS Development Re-thought
	Limitations
	Summary

	System Designers: Distributing Software in a Bullet-Proof Way
	Motivation
	Background
	App Signing Practices
	Threat Model
	Application Transparency
	Summary

	Closing the Ivory Gap: Ecological Validity
	Motivation
	Background
	A Study of Studying Passwords
	Results
	Limitations
	Summary

	Conclusions
	Future Work

	Appendix: Message Encryption Study
	Questionnaire Items
	Interview Guideline

	Appendix: Webmaster Study
	Contact Email

	Appendix: Studying Android's TLS Warning Message
	Online Survey

	Appendix: Ecological Validity of a Password Study
	Question Plan
	Contingency Tables

	Bibliography
	Curriculum Vitae

