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ABSTRACT

A statistical methodology for estimating dataset size requirements for classifying microarray
data using learning curves is introduced. The goal is to use existing classi� cation results to
estimate dataset size requirements for future classi� cation experiments and to evaluate the
gain in accuracy and signi� cance of classi� ers built with additional data. The method is
based on � tting inverse power-law models to construct empirical learning curves. It also
includes a permutation test procedure to assess the statistical signi� cance of classi� cation
performance for a given dataset size. This procedure is applied to several molecular classi-
� cation problems representing a broad spectrum of levels of complexity.

Key words: gene expression pro� ling, molecular pattern recognition, DNA microarrays, micro-
array analysis, sample size estimation.

1. INTRODUCTION

Over the last few years the routine use of DNA microarrays has made possible the creation
of large datasets of molecular information characterizing complex biological systems. Molecular

classi� cation approaches based on machine learning algorithms applied to DNA microarray data have
been shown to have statistical and clinical relevance for a variety of tumor types: leukemia (Golub et al.,
1999), lymphoma (Shipp et al., 2001), brain cancer (Pomeroy et al., 2002), lung cancer (Bhattacharjee
et al., 2001) and the classi� cation of multiple primary tumors (Ramaswamy et al., 2001, 2002; Yeang
et al., 2001). In this context, after having obtained initial or preliminary classi� cation results for a given
biological system, one is often left pondering the possibility of embarking on a larger and more systematic
study using additional samples. This is usually the case when one tries to improve the accuracy of the
original classi� er or to provide a more rigorous statistical validation of the existing prediction results. As
the process of obtaining additional biological samples is often expensive, involved, and time consuming,
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it is desirable to be able to estimate the performance of a classi� er for yet unseen larger dataset sizes. In
this situation, one has to address two sets of questions:

1. For a given number of samples, how signi� cant is the performance of a classi� er; i.e., are the results
better than what one would expect by chance?

2. If we know the answers to (1) for a range of dataset sizes, can we predict the performance of the classi� er
when trained with additional samples? Will the accuracy of the classi� er improve signi� cantly? Is the
effort to collect additional samples worthwhile?

These two questions arise in other classi� cation tasks with high dimensional data and few samples such as
classifying functional MRI images of patients with neural dysfunction (Golland et al., 2002). In this paper
we develop a methodology for assessing the signi� cance of a classi� er’s performance via a permutation
test. We then � t an inverse power law model to construct a learning curve with error rates estimated from
an existing dataset and use this learning curve to extrapolate error statistics for larger datasets. Power
calculations (Adcock, 1997) are a standard approach to estimate the number of data samples required.
However, these approaches do not address our data set size estimation problem for two reasons. First, the
assumptions that the underlying data comes from a Gaussian distribution and that variables are independent
do not hold. Second, the question addressed by power calculations is: given a particular data set size, how
con� dent are we of our empirical error estimate? This is very different from asking how the error rate
might decrease given more data.

A nontrivialclassi� er changes its structure as more trainingdata becomeavailableand therefore determining
how the error rate might decrease becomes a problem of function extrapolation rather than convergence esti-
mation. In this regard, it is important not to confuse this problem with the more standard problem of estimating
the con�dence of an error estimate as a functionof training set size; i.e., estimating the variance in an observed
quantity, the error estimate, as a function of the number of measurements. In general, this latter problem is
addressed using power calculations or deviation bounds (Adcock, 1997; Guyon et al., 1998). These methods
computeboundsor estimatesof a given quantity’s deviationfrom its expectedvalueas a functionof the number
of observations or, in this case, samples. Other methods study the variation produced by technical factors that
can be addressed by experimental design or by replicating sample preparation or array hybridization (Cheng
and Wong,2001;Tseng et al., 2001;Kerr and Churchill, 2001a,b).There are also methods to model differential
expression across experiments (Lee and Whitmore, 2002) that assess the effect of replication and sample size
in increasing the statisticalpower of ANOVA models. In the contextof our problem, these approaches can only
help to � nd boundson the deviationbetween the misclassi� cation error rate and its expectedvalueas a function
of the number of measurements, i.e., the realizations of the classi� er for a given � xed classi� cation dataset
size. These standard error estimation methods are therefore not particularly useful in estimating the future
performance of a classi� er as a function of increasing dataset size with yet unseen additionaldata. We test our
methodology on eight data sets which represent a range of dif� culty or complexity of classi� cation. In some
cases, the distinction is quite dramatic, while in others it is more subtle. The examples are drawn from existing
cancer classi� cation data sets where discriminatingthe morphologyof a sample (� ve sets) represents the “eas-
ier” end of the range, and predicting treatment outcome (three sets) lies at the other extreme. This hierarchy
of dif� culty will be re� ected by the increase in the data set size requirements we estimate for these prediction
problems.Our results give an indicationof the minimal number of samples that are needed to obtain signi� cant
performancedataand to extrapolatethe improvementonemightgetby buildingtheclassi� erona largerdataset.

In the next section, we will give some background on general approaches addressing the problem of
estimating classi� er performance and learning rates. In Section 3, we describe our methodology in more
detail. The results of applying our methodology to molecular classi� cation problems are contained in
Section 4. Section 5 summarizes the results of our tests. The proofs and technical details have been
collected in the appendices.

2. BACKGROUND AND GENERAL APPROACH

The problem of estimating performance of a classi� er for larger yet unseen sets of examples is a dif� cult
analytical problem. It amounts to developing a model to compute how fast a given classi� er “learns” or
improves its “� tting” to the data as a function of dataset size.
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In machine learning, a natural way to study classi� cation accuracy as a function of training set size is
by building empirical scaling models called learning curves (Cortes et al., 1994). Learning curves estimate
the empirical error rate as a function of training set size for a given classi� er and dataset. The advantage
of this approach is that one avoids making assumptions about the distribution generating the dataset or
the distribution of the classi� cation errors. These learning curves are usually well characterized by inverse
power-laws:

e.n/ D an¡® C b: (1)

The variables are the expected error rate e.n/ given n training samples, the learning rate a, the decay
rate ®, and the Bayes error b which is the minimum error rate achievable (Devroye et al., 1997; Duda
et al., 2000). Notice that the value of the constants a, b, and ® will change according to the classi� er and
dataset being studied. Based on this scaling model, as the size of the dataset increases the misclassi� cation
error of a classi� er will asymptotically approach b. This inverse-power-law “learning” behavior appears
to be universal and is observed for many classi� ers and types of datasets (Cortes et al., 1994; Shrager
et al., 1988). It is, in fact, observed not only in machine learning but also in human and animal learning
(Anderson et al., 1983). It is common to � nd empirical ® values around or less than 1. Besides its
empirical prevalence, the power-law model can be motivated analytically and in some cases derived within
the statistical mechanics approach to learning. The basic idea behind this approach is to formulate the
average error as a set of equations which are then solved via a statistical mechanics replica approach
(Hertz et al., 1991) involving integration over the parameters of the classi� er. This approach has been
applied to various classi� cation algorithms such as Support Vector Machines (Dietrich et al., 2000), Large
Margin Perceptrons (Opper et al., 1995), and Adaline and other classi� ers based upon Hebbian rules (Opper
et al., 1990). The resulting analysis of the classi� cation errors for all of the above algorithms results in
inverse power laws of the form (1).

Using this power-law scaling model as a basis, one can use the empirical error rates of a classi� er over
a range of training set sizes drawn from a dataset to � t an inverse-power-law model and then use this
model to extrapolate the error rate to larger datasets. In order to make this a practical approach, one also
needs a statistical test for classi� er signi� cance as a function of training set size. The reason for this is
that the inverse-power-law model usually breaks down for small training set sizes where the model lacks
enough data to give accurate predictions. In this case, the error rates are large and not signi� cant. If a
given classi� er’s results are not signi� cant, then it is better to exclude them when � tting the learning
curve. To directly address this problem, we have included a permutation test for the signi� cance of a
classi� er as part of our methodology. This test compares the performance of the actual classi� er with the
performance of random classi� ers trained to predict data whose target labels are permuted (randomized).
A classi� er that is able to “� nd” structure in the data and produce signi� cant results should outperform its
random counterparts most of the time. By � xing a signi� cance level (0.05), we can produce an effective
test to eliminate classi� ers that are not signi� cant from the � tting of the learning curve. Since the classi� er
performance usually improves with increasing training set size, this signi� cance test also allows us to � nd
the minimum number of samples that produced signi� cant classi� ers.

3. METHODOLOGY FOR ESTIMATING ERROR RATES AS A
FUNCTION OF DATASET SIZE

Given an arbitrary input dataset and classi� cation algorithm, the methodology we will describe provides
the following:

1) A measure of the statistical signi� cance of the classi� er built at each training set size. Using this, one
can � nd the minimum training set size for which the classi� cation performance of the classi� ers is
statistically signi� cant.

2) An analytic expression (power law) of the error rate as a function of the increasing dataset size as well
as similar expressions for the 25th and 75th error rate quantiles. These provide a means to extrapolate
the error bar “envelope” for the error rate for larger yet unseen data sets.
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As described in Section 2, a signi� cance test is needed to know at which training set size error rates
are reliable enough to accurately extrapolate the error rate as a function of dataset size. The 25th and 75th
quantiles are used to compute the analog of error bars for the estimated error rates as a function of dataset
size. Figure 1 shows a pictorial summary of the method. The procedure can be broken down into two main
computational tasks, the � rst involving random subsampling (train/test) and a signi� cance permutation test
to evaluate the classi� ers, and the second consisting of � tting learning curves to the error rates that passed
the signi� cance test.

We � rst describe the rationale behind � tting the learning curves. We want to � t the inverse power curves
to the true average error and the true 25th and 75th quantile error of a classi� er trained with various
training set sizes. Our � rst step is to estimate the true average error rate and 25th and 75th error quantiles
for a range of training set sizes. For a dataset of size ` with � xed training set size n and test set size ` ¡ n,
T1 train/test realizations were constructed by subsampling the dataset. For each of these T1 realizations, an
error rate en;i is computed, and the average of the sequence

©
en;1; : : : ; en;T1

ª
, en D 1

T1

PT1
iD1 en;i , is used

as an estimate of the true average error en. The average error rate is an unbiased estimator of the true error
rate of a classi� er trained with n samples,

ED`

1
T1

T1X

iD1

en;i D EDn
en;

where EDn
en is the probability of classifying a new sample incorrectly when the classi� er was trained

with n samples (see Appendix 1a for proof and details). The 25th and 75th percentile of the sequence©
en;1; : : : ; en;T1

ª
were also � tted to an inverse power law so that we could also estimate the variation in

error rates as a function of dataset size. The 25th and 75th percentile of the sequence
©
en;1; : : : ; en;T1

ª
are

good approximations of the 25th and 75th quantiles of error rates of classi� ers trained with n samples (see
Appendix 1c for proof and details). We did not use the variance of the error rates en;i because this statistic
is not an unbiased estimator of the variance of the error rate of classi� ers trained with n samples and
tested on a new sample. Indeed, one can prove that the variance of this statistic is in general optimistic:
the variance of the error rates en;i is less than the variance of classi� ers trained with n samples and tested
on a new sample (see Appendix 1b for proof and details).

As described in the introduction, theoretical justi� cations for the use of inverse power laws can be made
using analyses of classi� cation accuracy based upon techniques from statistical mechanics (Opper et al.,
1990, 1995) and approximation theory (Niyogi et al., 1996) as described in more detail in Appendix 2.

FIG. 1. The statistical signi� cance for the � ctitious dataset example with (a) 15 samples and (b) 45 samples. The
line is the empirical distribution function for the random classi� ers and the gray circle is the average error rate for the
classi� er with randomization of labels.
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Fitting the parameters of the learning curve by minimizing

min
®;a;b

MX

lD1

.an¡®
l C b ¡ enl

/2 subject to ®; a; b ¸ 0

is a convex optimization problem when b is � xed. For a � xed b, one can estimate ® and a by taking
logarithms and solving the following equivalent linear minimization problem

min
®;a;b

MX

lD1

.ln.a/ ¡ ®nl C ln.b ¡ enl
//2 subject to ®; a; b ¸ 0:

Solving this linear problem for various values of b followed by line search gives us our estimate of ®, a,
and b.

As described in Section 2, the � tted learning curve does not extrapolate accurately when error rates are
large and not statistically signi� cant. This motivates a procedure to determine at what training set size the
error rate is statistically signi� cant when compared to the null hypothesis of the error rate of a random
classi� er

H0 : p.y D 1jx; fx1; y1; : : : ; xn; yng/ D p.y D ¡1jx; fx1; y1; : : : ; xn; yng/I

the null hypothesis states that given a particular training set the conditional probability of a label being 1 or
¡1 is equal. A random classi� er is built from the same input data with the class labels of the data randomly
permuted. This addresses the question of how well the classi� er can learn the mapping f : x ! y when
the y values are random, y D f1; ¡1g. In essence, we ask how well a classi� er trained on randomly
labeled data can classify correctly labeled data. The permutation procedure outlined above helps to answer
this question. For each train/test realization for which an error rate en;i was computed, we construct T2

randomized realizations where the labels of the training set are randomly permuted. We build classi� ers
on these randomized training sets and test on the corresponding test set. This results in a set of error rates
en;i;j for training set size n. From these error rates, we construct an empirical distribution function for the
random classi� er,

P ran
n .x/ D 1

T1 £ T2

T1X

iD1

T2X

jD1

µ.x ¡ en;i;j /;

where µ.z/ D 1 if z ¸ 0 and 0 otherwise. The signi� cance of the classi� er is P ran
n .en/, which is the

percentage of random classi� ers with error rate smaller than en. The procedure is illustrated with the
following two examples for a � ctitious dataset:

Example 1: e15 D :37 (Error rate of the classi� er with 15 samples). e15;i;j D f:215; :260; :290; :320;

:366; :388; :395; :408; :420; :495g (Error rates of the random classi� ers with 15 samples.)
P ran

15 .e15/ D :50. Since the p-value is greater than .05, the error rate of the classi� er is
not statistically signi� cant (see Fig. 2a).

Example 2: e45 D :1 (Error rate of the classi� er with 45 samples). e45;i;j D f:205; :270; :333; :337;

:370; :392; :399; :406; :425; :499g (Error rates of the random classi� ers with 45 samples.)
P ran

45 .e45/ D 0. Since the p-value is less than .05, the error rate of the classi� er is statis-
tically signi� cant (see Fig. 2b).

The detailed description of the entire methodology for a two-class problem is as follows:

1) Subsampling and signi� cance permutation test
A. Subsampling procedure

i. Given `c1 samples from class 1 and `c2 samples from class 2, the total number of samples is
` D `c1 C `c2 , where 1 ¸ 10.

ii. Select 10 training set sizes n1; : : : ; nj ; : : : ; n10/ over the interval [10; ` ¡ 10].



124 MUKHERJEE ET AL.

FIG. 2. Dataset size estimation statistical methodology.

1. For each training set size nj run the following subsampling procedure T1 D 50 times, indexed
by i D 1; : : : ; T1.
a. Randomly split the dataset into a training set with nj samples and a test set with ` ¡ nj

samples subject to the requirement that
nc2
nc1

¼ `c2
`c1

where nc2 and nc1 are the number of

samples from class 1 and class 2 in the training set. Call the two datasets generated Sn;i .
b. Train a classi� er on each of the training sets and measure its error rate on its corresponding

test set; call each of these error rates en;i .
B. Permutation test

i. For each subsampled train/test split Sn;i , run the following permutation procedure T2 > 50
times, indexed by j D 1; : : : ; T2.
1. Randomly permute the labels of the samples in the training set (leave the test set alone); call

the dataset generated Sran
n;i;j .

2. Train a classi� er on the training set and measure its error on the test set, call this error rate eran
n;i;j .

C. Signi� cance calculation
1. For each training set size n, construct an empirical distribution function from the error rates of

the permuted datasets P ran
n .x/ D 1

T1£T2

PT1
iD1

PT2
jD1 µ.x ¡ eran

n;i;j /, where µ.z/ D 1 if z ¸ 0 and
0 otherwise.
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2. Given the above empirical distribution function, compute for each en the value tn D P ran
n .en/;

statistical signi� cance with respect to an ®-value of p is achieved for n0, the smallest n for
which tn < p.

2) Learning curves and training set size estimation
A. Assume the subsampling procedure was run for M different sample sizes n, indexed by l ¡1; : : : M ;

take the sequence of error rates and compute the following quantities for each training set size n > n0

for which the classi� er passed the signi� cance test .tn < p/: the mean error rate en D 1
T1

PT1
iD1 en;i ,

the 25th and 75th quantiles of the vector of error rates
©
en;1; : : : ; en;T1

ª
.

B. Use the above quantities to � t the following learning curves:
i. Given training set sizes nl and mean error rates enl , compute ®, a, b via the following mini-

mization procedure: min®;a;b

PM
lD1.an¡®

l Cb¡enl
/2 subject to ®, a, b ¸ 0; designate the values

as ®, a, b as ®m, am, bm. The resulting curve estimates the error rate as a function of training
set size

Lm : e.n/ D amn¡®m C bm:

ii. Repeat the above procedure for the 25th and 75th quantiles of the vector of error rates fen;1; : : : ;

en;T1 g.

4. METHODOLOGY APPLIED TO SEVERAL CANCER
CLASSIFICATION PROBLEMS

The procedure outlined in the previous section has been applied to eight binary DNA microarray cancer
classi� cation problems representing a broad range of level of complexity of classi� cation. The classi� -
cation problems are to discriminate between tumor morphologies (including disease versus normal and
submorphologies) or treatment outcome. A more detailed analysis of the methodology will be given for
the largest dataset (cancer versus normal tissue classi� cation). For the seven other datasets, we will present
only the � nal results.

The set of examples falls into two cases. The � rst case consists of classi� cation problems that are
relatively easy and where statistical signi� cance for the classi� ers is achieved at a low number of training
set samples (e.g., between 10–20 samples) and where the dataset is suf� ciently large (e.g., 40 samples) to
accurately � t a learning curve. The second case consists of classi� cation problems that are more dif� cult
and where statistical signi� cance is achieved at between 40–60 training samples while the total number of
samples in the dataset is barely larger (e.g., between 50–70). For these more dif� cult problems, we cannot
strictly follow the methodology since we do not have enough training set sizes at which signi� cance is
reached to make an accurate � t of the learning curve. However, we can still � t the curves and use the
results as indicative and exploratory. A possible third case is when signi� cance is never reached for any
available training set size for a dataset. In this case, it is dif� cult to draw any conclusion but it is possible
that either adding more samples will not help (e.g., because there is not suf� cient molecular information to
classify this dataset) or the problem is very hard and substantial numbers of samples are needed before one
sees a statistically signi� cant results. Our � rst � ve morphology datasets are examples of the � rst case. The
� nal three treatment outcome datasets are examples of the second case. Table 1 summarizes the learning
curve parameters and extrapolated error rate estimates at 400 training samples for all the data sets. Table 2
summarizes and comments on the results of running the methodology on the various datasets. General
conclusions and interpretation of the results will be presented in the next section.

Tumor versus normal tissue

This dataset consists of expression levels for 180 samples of a variety of different primary tumors
(breast, prostate, lung, etc.) and 100 normal samples from the corresponding tissue of origin (again, breast,
prostate, lung, etc.) (Ramaswamy et al., 2001b). The dimensionality of the dataset is 16,063 (throughout
this section, by dimensionality we mean the number of gene expression values recorded for a sample).
No preprocessing was performed. The classi� er used was a Support Vector Machine (Vapnik, 1998)
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with a linear kernel and no feature selection. Error rates were estimated for training set sizes of n D
.30; 40; 50; 60; 80; 90; 130; 170; 210/. A leave-one-out model built with all the available samples (280)
was used to validate the method and to compare the scaling model to the error rate achieved when using
almost the entire dataset, this corresponds to a training set size of n D 279.

Figure 3 illustrates the results of the signi� cance permutation test for this dataset, i.e., the statistical
signi� cance of classi� ers with training sets of 15 and 30 samples. As can be seen in Fig. 3b, with 30
samples most of the random classi� ers attain larger error rates than the actual classi� er. For the case using
15 samples, about one in 20 of the random classi� ers attain the same or better error rates, and therefore a
p-value of 5% is achieved. To � t the learning curves, we will use only data points obtained from training
sets of size greater than or equal to 15.

To study the improvement of the learning curve estimates as a function of the number of training set
sizes used to � t the learning curves, we constructed four learning curves using 1) the error rates for all
training set sizes (up to 210), 2) the error rates for the � rst 8 training set sizes, 3) the error rates for the
� rst 6 training set sizes, 4) the error rates for the � rst 4 training set sizes. The plots of these learning curves
along with the leave-one-out error for 280 samples is given in Fig. 4. As expected, the model improves
as more and larger training set sizes are used in the � t. The actual leave-one-out error rate achieved with
280 samples is only about 2% less than the error rate estimated for 279 training samples by extrapolating
the learning curve model. Figure 5 shows the curve for the power law that results from applying the
methodology to a) all training samples sizes stated above (up to 210) and b) using the � rst 6 training set
sizes (up to 90), along with the leave-one-out error for the entire dataset (280 samples). The expression
for the error rate as a function of n estimated using training sets sizes (up to 210) is

error.n/ D 1:42n¡0:52 C :0098:

The error rates for the 25th and 75th quantiles are

error25.n/ D 1:89n¡0:63 C :0032;

error75.n/ D 1:17n¡0:43 C :000:

Based on this model, one can see clearly how fast the error rate decreases with increasing dataset size.
The asymptotic Bayes error rate b is very small indicating that indeed very low errors can be achieved if a
large dataset were used to train the classi� er. The decay rate ® is about .5 indicating that, in scaling terms,
this is a rather dif� cult problem for the model to learn. The size of the 25th and 75th quantiles envelope

FIG. 3. The statistical signi� cance in the tumor versus nontumor classi� cation for (a) 15 samples and (b) 30 samples.
The line is the empirical distribution function for the random classi� ers and the gray circle is the average error rate
for the actual classi� er.
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FIG. 4. Error rate as a function of sample size. The diamond is the leave-one-out error using 279 samples. The top
curve is the learning curve using the � rst four sample sizes. The bottom curve is the learning curve using all sample
sizes. The middle two curves (which basically overlap) are the learning curves using the � rst six (top) and � rst eight
(bottom) sample sizes.

is about C=¡ 2% and it indicates that the model is relatively accurate. If we were going to collect 400
training samples, this model can be used to extrapolate the error rate as follows:

error.400/ D 1:42.400/¡0:52 C :0098 D 7:3%;

error25.400/ D 1:89.400/¡0:63 C :0032 D 4:7%;

error75.400/ D 1:17.400/¡0:43 C :000 D 8:9%:

The achievable error rate using 400 samples according to the model is 7.3 § 2.6% and perhaps as low as
4.7% (25th quantile envelope).

Leukemia morphology

The dataset consists of expression levels for 48 samples of acute lymphoblastic leukemia (ALL) and
25 samples of acute myeloid leukemia (AML) (Golub et al., 1999). The dimensionality of the dataset
is 7,129. No preprocessing was performed. The classi� er used was a Support Vector Machine (Vapnik,
1998) with a linear kernel and no feature selection. Error rates were estimated for training set sizes of
n D .10; 15; 20; 25; 30; 35/. In Fig. 6, a plot of the learning curve and its 25th and 75th quantiles is given
along with the leave-one-out error of the 73 samples. A p-value of 5% is achieved at about 5 samples. The
learning curve estimate of the error rate as a function of n is

error.n/ D :7706n¡:65 C :009:

In this case, the learning and decay rates are such that the model clearly learns more quickly than in the
previous example as a function of training set size. It achieves practically a zero error rate at 73 samples
(consistent with the 25th quantile envelope). The envelope is wider in this case because we � t the model
using a narrower range of dataset sizes over which the empirical error rates display more variation than
the previous dataset.
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FIG. 5. Learning curves in the tumor versus nontumor classi� cation constructed using (a) all sample sizes stated
above and (b) using the � rst six sample sizes stated above. The middle line is the learning curve for the mean error.
The bottom line is for the 25th quantile. The top line is for the 75th quantile. The diamond is the leave-one-out error
and the circles are the measured average error rates.
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FIG. 6. Learning curves in the AML versus ALL classi� cation constructed using sample sizes stated above. The
middle line is the learning curve for the mean error. The bottom line is for the 25th quantile. The top line is for the
75th quantile. The diamond is the leave-one-out error and the circles are the measured average error rates.

Colon cancer

The dataset consists of expression levels for 22 samples of normal colon tissue and 40 samples of malig-
nant tissue (Noterman et al., 2001). The dimensionality of the dataset is 2,000. The data was preprocessed
by taking the natural logarithm of all input values and then applying a hyperbolic-tangent function. The
classi� er used was a Support Vector Machine (Vapnik, 1998) with a linear kernel and no feature selection.
Error rates were estimated for training set sizes of n D .10; 15; 20; 25; 30; 35; 40; 45; 50/. In Fig. 7, a plot
of the learning curve and its 25th and 75th quantiles is given along with the leave-one-out error of the
62 samples.

A p-value of 5% is achieved at about 10 samples. The learning curve estimate of the error rate as a
function of n is

error.n/ D :4798n¡0:2797 :

Ovarian cancer

The dataset consists expression levels for 24 samples of normal ovarian tissue and 30 samples of
malignant tissue (Schummer et al., 1999). The dimensionality of the dataset is 1,536. The data was
preprocessed by adding 1 and taking the natural logarithm of all input values. The classi� er used was a
Support Vector Machine (Vapnik, 1998) with a linear kernel and no feature selection. Error rates were
estimated for training set sizes of n D .10; 15; 20; 25; 30; 35; 40/. In Fig. 8, a plot of the learning curve
and its 25th and 75th quantiles is given along with the leave-one-out error of the 54 samples. A p-value
of 5% is achieved at about 10 samples. The learning curve estimate of the error rate as a function of n is

error.n/ D :7362n¡0:6864 :

Lymphoma morphology

The dataset consists of expression levels for 24 samples of diffuse large B-cell lymphoma and 12 samples
of follicular lymphoma and chronic lymphocyptic (Alizadeh et al., 2000). The dimensionality of the dataset
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FIG. 7. Learning curves in the malignant versus normal colon tissue classi� cation constructed using sample sizes
stated above. The middle line is the learning curve for the mean error. The bottom line is for the 25th quantile. The
top line is for the 75th quantile. The diamond is the leave-one-out error and the circles are the measured average
error rates.

FIG. 8. Learning curves in the cancerous versus normal ovarian tissue classi� cation constructed using sample sizes
stated above. The middle line is the learning curve for the mean error. The bottom line is for the 25th quantile. The
top line is for the 75th quantile. The diamond is the leave-one-out error and the circles are the measured average
error rates.
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was 18,432. The data was preprocessed by taking the base 2 logarithm of all input values. The classi� er
used was a Support Vector Machine (Vapnik, 1998) with a linear kernel and no feature selection. Error
rates were estimated for training sizes of n D .5; 10; 15; 20; 25; 30; 35; 40/. In Fig. 9, a plot of the learning
curve and its 25th and 75th quantiles is given along with the leave-one-out error of the 36 samples. A
p-value of 5% is achieved at about 5 samples. The learning curve estimate of the error rate as a function
of n is

error.n/ D :57n¡0:7073 C :0006:

Brain cancer treatment outcome

The dataset was obtained from 39 samples of patients that had successful treatment outcome (alive two
years after treatment) and 21 samples of patients with poor treatment outcome. All patients had childhood
medulloblastomas (Pomeroy et al., 2002). The dimensionality of the dataset is 7,129. No preprocessing
was performed. The classi� er used was a Support Vector Machine (Vapnik, 1998) with a linear kernel
selecting 150 features using the radius-margin criteria (Chapelle et al., 2001). Error rates were estimated
for training set sizes of n D .20; 25; 30; 35; 40/.

Statistical signi� cance on this dataset (a p-value of 5%) is achieved at about 45 samples, which is larger
than any of the training set sizes for which error rates were estimated, so strictly speaking we cannot apply
the methodology.

However, we can examine how accurately a learning curve � t to the error rates for the above training
set sizes can extrapolate. In Fig. 10, a plot of the learning curve and its 25th and 75th quantiles is given
along with the leave-one-out error of the 60 samples. As expected, this model is not very accurate and
overestimates the error rate at 59 samples by more than 7%. The learning curve estimate of the error rate
as a function of n is

error.n/ D 1:115n¡:3295 C :006:

FIG. 9. Learning curves in the diffuse large B-cell versus follicular morphology classi� cation constructed using
sample sizes stated above. The middle line is the learning curve for the mean error. The bottom line is for the 25th
quantile. The top line is for the 75th quantile. The diamond is the leave-one-out error and the circles are the measured
average error rates.
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FIG. 10. Learning curves in the brain tumor treatment outcome classi� cation constructed using sample sizes stated
above. The middle line is the learning curve for the mean error. The bottom line is for the 25th quantile. The top
line is for the 75th quantile. The diamond is the leave-one-out error and the circles are the measured average error
rates.

Lymphoma treatment outcome

The dataset was obtained from 32 samples of patients that had successful treatment outcome (alive two
years after treatment) and 26 samples of patients with poor treatment outcome. All patients had diffuse large
cell lymphoma (DLCL) (Shipp et al., 2001). The dimensionality of the dataset is 7,129. No preprocessing
was performed. The classi� er used was a Support Vector Machine (Vapnik, 1998) with a linear kernel
selecting 150 features using the radius-margin criteria (Chapelle et al., 2001). Error rates were estimated
for training set sizes of n D .20; 25; 30; 35; 40/. Statistical signi� cance on this dataset (a p-value of 5%)
is achieved at about 50 samples. In Fig. 11, a plot of the learning curve and its 25th and 75th quantiles is
given along with the leave-one-out error of the 58 samples. As expected, this model is not very accurate
and overestimates the error rate at 57 samples by more than 9%. The learning curve estimate of the error
rate as a function of n is

error.n/ D :9431n¡:2957 C :01:

Breast cancer treatment outcome

The dataset consists expression levels of 34 samples from patients with breast tumors that metastasized
within � ve years of disease onset and 44 samples from patients that were disease free for at least � ve years
(Van’t Veer et al., 2002). The dimensionality of the dataset was 24,624. No preprocessing was performed.
The classi� er used was a Support Vector Machine (Vapnik, 1998) with a linear kernel without feature
selection. Error rates were estimated for training set sizes of n D .10; 20; 30; 40; 50; 60; 70/. Statistical
signi� cance on this dataset (a p-value of 5%) is achieved at about 65 samples. In Fig. 12, a plot of the
learning curve and its 25th and 75th quantiles is given along with the leave-one-out error of the 78. As
expected, this model is not very accurate and overestimates the error rate at 77 samples by more than 6%.
The learning curve estimate of the error rate as a function of n is

error.n/ D :4852n¡:0733 C :01:
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FIG. 11. Learning curves in the lymphoma treatment outcome classi� cation constructed using sample sizes stated
above. The middle line is the learning curve for the mean error. The bottom line is for the 25th quantile. The top
line is for the 75th quantile. The diamond is the leave-one-out error and the circles are the measured average error
rates.

FIG. 12. Learning curves in the breast cancer treatment outcome classi� cation constructed using sample sizes stated
above. The middle line is the learning curve for the mean error. The bottom line is for the 25th quantile. The top
line is for the 75th quantile. The diamond is the leave-one-out error and the circles are the measured average error
rates.
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5. CONCLUSIONS

We have described a methodology for assessing the signi� cance of a classi� er’s performance via a
permutation test and constructing a learning curve to extrapolate error statistics for larger data sets that
include yet unseen samples. We applied the method to eight cancer classi� cation problems of varying
levels of dif� culty. Based on the results of the previous section, one can see that the inverse power-law
scaling model proposed � ts the empirical error rates reasonably well. The classi� er we used was an SVM
but the methodology is applicable to other algorithms (e.g., weighted voting, k-nearest neighbors, logistic
regression, etc.). For the morphology classi� cation problems, the extrapolation is quite accurate. For the
treatment outcome classi� cation problems, the combination of the increased complexity of the problems
and the limited dataset sizes yield a less accurate, but still indicative extrapolation. As expected, the model
improves as larger training samples sizes are used in the learning curve � t (see Figs. 4 and 5). The learning
curves bear out the empirical observation that morphological distinctions are more dramatic and thus,
in general, “simpler” problems than the more subtle distinctions that must be determined for treatment
outcome prediction. Signi� cance on morphology problems is achieved with 10–20 training samples, and
“reasonably accurate” extrapolation requires 30–40 training samples. In contrast, for treatment outcome,
signi� cance is achieved with 45–60 training samples, and “reasonably accurate” extrapolation requires
on the order of 75–100 training samples. For morphological distinctions, the learning curve prediction is
reasonably close to the actual leave-one-out error measured at a larger size. The 25th and 75th quantile
models provide useful error bar envelopes that enclose the observed error rates for those problems. For
treatment outcome prediction, due to the large training set size required to achieve signi� cance and small
available dataset sizes, we do not have enough signi� cant classi� ers with which to construct an accurate
learning curve. Consequently, we get less accurate estimates of the leave-one-error on the entire dataset
for the outcome treatment examples with differences of 7% for brain tumor outcome, 9% for lymphoma
treatment outcome, and 8% for breast tumor metastasis.

The estimations of the asymptotic Bayes error b, the learning rate a, and decay rate ® can also be used
directly to characterize the dif� culty of a problem and the complexity of a model. They can provide a
basis for comparing and contrasting models and problems. To illustrate, we show in Fig. 13 the values of
these parameters for the examples discussed in the paper. The morphology and treatment outcome datasets
cluster with respect to ® and b. We have not elaborated on this aspect of the analysis but it is certainly an
interesting direction to pursue in the future.

In summary, our methodology produces reasonable, nontrivial dataset size estimates when applied to a
fairly general set of molecular cancer classi� cation problems. In this context, it can serve as a valuable

FIG. 13. A plot of 1=® versus ¯ for the eight datasets. The diamonds correspond to treatment outcome problems
and the squares correspond to morphology prediction problems.
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tool when designing future experiments, either for evaluating whether it is worthwhile to collect additional
samples, or for obtaining a deeper insight into the complexity of a given classi� cation problem based
on preliminary data. Table 1 shows a summary of the results for the examples described in this paper.
The results of applying this method to those examples suggest that minimum dataset size requirements
for morphological classi� cations are typically in the 10–20 samples range and upwards of 50 samples for
treatment outcome classi� cation. These results can be used to provide general rule-of-thumb guidelines,
but the exact numbers for a given problem are dataset and classi� er dependent. This method can also be
applied to other domains where a prospective estimation of the number of samples is relevant as is the
case in many problems using molecular features to classify biological samples, e.g., classi� cation based
on proteomic mass spectroscopy data, chemosensitivity prediction, survival analysis, and putative class
discovery using clustering.

APPENDIX 1. BIAS PROPERTIES OF THE MEAN, VARIANCE, AND
QUANTILES OF LEAVE-P-OUT ESTIMATORS

1a. The mean of the leave-p-out estimator is unbiased

Statement 1. The procedure of excluding p samples from a dataset of size `, constructing a classi� er,
and then testing on the p samples left out is designated as follows:

Lp.z1; : : : ; z`/ D 1
p

X

p

Q.zp; f .z`¡p//

where z D .x; y/, f .z`¡p/ is the classi� er constructed with p samples left out and Q.zp; f .z`¡p// is the
error of this classi� er on the p samples left out. This procedure is unbiased:

ELp.z1; : : : ; z`/ D EQ.z; f .z`¡p//;

which means that the expected error when the classi� er is trained with ` ¡ p samples is the same as the
expected error of procedure Lp.

Proof. The proof is a straightforward extension of the leave-one-out case which was derived by Luntz
and Brailovsky (Luntz and Brailovsky, 1969) by the following series of transformations:

EL1.z1; : : : ; z`/ D 1
`

Z X̀

iD1

Q.zi ; f .z`¡1//dP.z1/ : : : dP.z`/

D 1
`

Z X̀

iD1

.Q.zi; f .z`¡1//dP.zi//dP.z1/ : : : dP.zi¡1/dP.ziC1/ : : : dP.z`/

D 1
`

X̀

iD1

EQ.zi; f .z`¡1//

D EQ.z; f .z`¡1//:

The implication of this statement is that the subsampling procedure proposed is unbiased and in expectation
gives us more accurate estimates of the true error of a classi� er trained with ` ¡ p samples as the number
of subsamples increases.

1b. The variance of the leave-p-out estimator is biased and optimistic

Statement 2. The variance of the leave-p-out estimator is less than or equal to the variance of a
classi� er trained with `¡p samples and tested on an independent sample, so the variance of the leave-p-out
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procedure is not necessarily unbiased. This procedure is not necessarily unbiased and in general will be
optimistic:

V Lp.z1; : : : ; z`/ · VQ.z; f .z`¡p//;

which means that the expected variance when the classi� er is trained with ` ¡ p samples is greater than
or equal to the variance of the procedure Lp.

Proof. Again, we will prove the leave-one-out case and the leave-p-out case is a straightforward
extension.

The variance of training sets of size ` ¡ 1 is

VQ.z; f .z`¡1// D EbQ.z; f .z`¡1//2 ¡ [EQ.z; f .z`¡1//]2c:

The variance of the estimator

V
1
`

L1.z1; : : : ; z`/ D V

"
1
`

X̀

iD1

ti

#

where ti is whether an error is made or not when the ith point is left out,

Q.zi ; f .x1; : : : ; xi¡1; xiC1; : : : ; x`//:

We can rewrite this as

V

"
1
`

X̀

iD1

ti

#

D E

Á
1
`

X̀

iD1

ti

!2

¡

Á

E
1
`

X̀

iD1

ti

!2

From statement 1, we know

E
1
`

X̀

iD1

ti D EQ.z; f .z`¡1//:

So

V

"
1
`

X̀

iD1

ti

#

D E

Á
1
`

X̀

iD1

ti

!2

¡ [EQ.z; f .z`¡1//]2:

One can show that

E

Á
1
`

X̀

iD1

ti

!2

· E[Q.z; f .z`¡1//2]:

One can write

E

Á
1
`

X̀

iD1

ti

!2

D E

0

@ 1
`2

X̀

iD1

t2
i C 1

`2

X̀

i 6Dj

ti tj

1

A :

If the random variables ti , tj are identical and independent then the above equation can be rewritten

E

0

@ 1
`2

X̀

iD1

t2
i C 1

`2

X̀

i 6Dj

ti tj

1

A D E

³
t2

`
C

`2 ¡ `

`2
t2

´
D E[Q.z; f .z`¡1//]2:
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However, t1; : : : ; t` are not independent and are correlated so

E

0

@
X̀

i 6Dj

ti tj

1

A · E

³
`2 ¡ `

`2
t2

´
:

The implication of this statement is that the variance of the subsampling procedure proposed is biased and
does not give an accurate estimate of the variance of a classi� er trained with ` ¡ p samples and in general
the variance of the subsampling procedure will be smaller.

1c. Quantiles of the leave-p-out estimator are unbiased

Statement 3. Quantiles of the leave-p-out estimator estimated give an accurate estimate of quantiles
of a classi� er trained with ` ¡ p samples and tested on an independent sample.

Proof. Again, we will prove the leave-one-out case and the leave-p-out case is a straightforward
extension.

The cumulative distribution function of the random variable is t D Q.z; f .z`¡1// is PD`¡1 ft < »g. The
cumulative distribution function of the random variable r D 1

`
L`¡1.z1; : : : ; z`/ is PD`

fr < »g. If we show
that these distribution functions are equal, then the quantiles of the leave-p-out estimator are unbiased. The
distribution function of the random variable t is

P .t < »/ D
Z »

¡1
tp.t/dt D

Z 1

¡1
tµ.» ¡ t/p.t/dt:

The distribution function for the random variable r D 1
`

P`
iD1 ri can be written as follows by a similar

sequence of transformations as used in the proof of statement 1:

P .r < » / D 1
`

X̀

iD1

Z 1

¡1
riµ.» ¡ ri/p.ri/dri ;

which is the same as P .t < » /.
We have now shown that the cumulative distribution function of the error measured of the leave-p-out

procedure is equivalent to the cumulative distribution of a classi� er trained on ` ¡ p samples.
However, we do not have this distribution when we run the leave-p-out procedure. We have a sequence of

p error rates and we take the 25th and 75th quantiles of the empirical distribution function constructed from
the sequence. We can use the Kolmogorov–Smirnov or Smirnov distributions to show that the empirical
quantiles values are close to those for the true underlying distribution. For ` large enough .` > 20/, the
Kolmogorov–Smirnov distribution gives us

P f
p

` sup
x

jF .x/ ¡ F`.x/j < "g ¼ 1 ¡ 2
1X

kD1

.¡1/k¡1e¡2k2"2

where F .x/ is the distribution function of the error rates, and F`.x/ is the empirical distribution function
constructed from a sequence of ` error rates. We can use this result to state that with probability 1 ¡ ±

the difference between the estimate of a quantile and the true quantile value will be bounded. For the case
where ` · 20, instead of using the Kolmogorov–Smirnov distribution, one can use tabulated values of the
Smirnov distribution.

The implication of this statement is that the subsampling procedure proposed gives us more accurate
estimates of the quantiles of the true error of a classi� er trained with ` ¡ p samples as the number of
subsamples increases.
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APPENDIX 2. MOTIVATION OF THE INVERSE POWER LAW FOR THE
ERROR RATE AS A FUNCTION OF TRAINING SET SIZE

2a. A motivation from the statistical mechanics approach to learning

In this appendix, we will describe results derived within the statistical mechanics (SM) approach to
generalization (Engel, 2001; Watkin, 1993) which strongly motivates the use of Equation (1). In this
approach, the average generalization error can be calculated as a function of n. In order to derive analytic
expressions, the data is assumed to consist of randomly constructed and uncorrelated input patterns. This
assumption is unrealistic for practical datasets, of course, but we can assume that the functional relation
derived between e.n/ and n largely holds for real-life data. In the SM approach, a teacher (the rule to be
discovered) and student (the learner) are used, with the extent of correlation between teacher and student
quantifying generalization ability. To be more speci� c, let us consider a simple perceptron (Rosenblatt,
1962) rule with a decision function

y D sign.w ¢ z/

where z is an input vector, w is the weight vector for the perceptron (which weights the relevance of
particular inputs or attributes), and y D §1 is the output. Suppose the weight vector for the teacher
perceptron is t and the weight vector for the student perceptron is w. Then the number of generalization
errors made by the student perceptron on a set of p new samples will be

pX

iD1

µ[¡.t ¢ zi/.w ¢ zi/]

where µ.x/ D 0 if x < 0 and 1 otherwise. This general approach leads to a set of equations for determining
the generalization error via a replica approach (Hertz, 1991) involving integrations in the weight space w.
The generalization error is given as a function of the ratio ¯ D n=m (where m is the number of attributes).
However, with m � xed, we can assume the same functional dependence on n as for ¯ . From this analysis,
we � nd that the generalization error depends on the algorithm used and generally assumes a power law.

It can be argued (Dietrich et al., 1999) that a Support Vector Machine with linear kernel, used in our
numerical simulations, has the same generalization error dependence as the optimal perceptron (Opper
et al., 1990). We have solved the system of equations (Opper et al., 1990) in the low ¯ limit and � nd a
very close � t to Equation (1). With few samples and a large number of measured attributes, the low ¯ limit
is most appropriate when considering microarray data. However, some further insights can also be gained
by considering the high ¯ limit where the dependence of generalization error on ¯ (or equivalently n) can
be extracted explicitly. Thus, for the optimal perceptron, the generalization error scales as :50n¡1 (Opper
et al., 1995). Similarly, for other rules this scaling can be extracted explicitly (Engel, 2001). For example,
for the Bayes optimal classi� er (derived from the Bayes point or center of mass of version space—the
space of all hypotheses consistent with the data) the generalization error scales as :44n¡1 (Opper et al.,
1991). For the Adaline learning rule, the error scales as :24n¡1=2, and for the Hebb rule as :40n¡1=2

(see Watkin [1993] for a review). The dependence on n is thus approximately n¡® with ® near 1 for
the more ef� cient rules such as the optimal perceptron and Bayes optimal classi� er. The SM approach to
generalization has also been used to quantify the effects of input noise, output noise, and noise affecting
the parameters in the model (e.g., the weights w). Thus, for example, white noise added to examples in
the training set appears as an additive constant term to the generalization error (justifying the b term in
Equation (1)). In summary, then, this approach strongly motivates use of e.n/ D an¡® C b for modeling
the generalization error.

2b. A motivation from an approximation theory point of view

Another justi� cation for a power law for regression or classi� cation comes from approximation theory
(Niyogi et al., 1996). In the approximation theory framework, the classi� cation functions come from some
restricted function class f 2 H , and the optimal classi� cation function fT is a more complicated function
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that is not included in the function class H . For a wide variety of algorithms, the distance between the
optimal function in the function class fo 2 H and fT is characterized as

d.fo; fT / D O.n¡®/;

where ® > 0. Worst case analyses measure the distance between the two functions as the value of the
point of greatest deviation between these functions.

For function classes used in most algorithms, the worst case analysis yields ® D :5. In general, an
empirical result should have quicker convergence since the worst case assumptions need not be made.
When the loss function V .¢; ¢/ is smooth, then the difference in error measured using the loss function
between the functions fo and fT is V .fo.x/; y/ ¡ V .fT .x/; y/ D O.n¡®/ for all x 2 X, and y 2 Y . By a
smooth loss function, we mean loss functions that are `P with p ¸ 1 or Lipschitz over a bounded domain.
Note that the classi� cation loss, V .f .x/; y/ D µ.¡yf .x//, is not Lipschitz, and when the classi� er outputs
f .x/ D §1 the loss function is `0 . However, for most algorithms, the loss function optimized to set the
parameters of the classi� er is Lipschitz (for computational reasons, the `0 loss is not used). For example,
in Support Vector Machines for classi� cation, the loss function is Lipschitz. For this reason this analysis
is still appropriate.
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