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Abstract11

Seismogenic models have been recently proposed to explain precursors before earthquakes12

occurrences. Those models refer to physical processes linking the lithosphere, the atmo-13

sphere and the ionosphere. We analyze in this work the curl-free current model describing14

the current flow from the lithosphere to the ionosphere through the atmosphere. We use15

a numerical simulation based on the finite element method to derive the current between16

the ground and the ionosphere. We shown that the curl-free approximation of the atmo-17

spheric current density leads to significant and unpredictable distortions of the solutions of18

the electrical conductivity. Hence it incorrectly expands the ionospheric disturbed region19

associated to lithospheric currents. It is shown that vertical underground external currents20

can not create currents from ground to the atmosphere.21

1 Introduction22

Before and after earthquakes some perturbation of the ionospheric electric field23

are observed. A review of these satellite-based observations is presented by Zolotov24

[2015]. The Lithosphere-Atmosphere-Ionosphere Coupling is a chain of physical processes25

proposed to explain the ionospheric disturbances recorded before the earthquakes occur-26

rence. Those disturbances are mainly associated to the earthquake preparation zone in the27

lithosphere.28

Until now proposed models can not quantitatively explain the relations between29

the processes in the lithosphere and in the ionosphere. A review of current state is pre-30

sented in the paper by Pulinets et al [2015] that describes the lithosphere-atmosphere-31

ionosphere-magnetosphere coupling as a complex dissipative open system. Many re-32

searchers try to construct physical and mathematical models, which should explain the33

perturbation of the ionospheric electric field due to certain physical processes. Proposed34

models are based on: (a) the radon emanation from the lithosphere affecting the lower35

atmospheric conductivity Harrison et al [2010], (b) the generation of an electric field in36

the lithosphere due to some physical and chemical processes Freund [2013], and (c) at-37

mospheric processes produce acoustic and/or gravitational waves linked to the preseismic38

preparation region Molchanov et al [2001]. Main references to the previous models are re-39

ported and detailed in Pulinets and Boyarchuk [2004], Molchanov and Hayakawa [2008],40

and Hayakawa [2015].41
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The most developed models regard the lithosphere as a generator that creates a42

quasi-stationary electric current or an electric field in the atmosphere near the surface43

of the Earth. The appearance of such models is due to the observations of perturba-44

tions of the vertical component of the atmospheric electric field before and after earth-45

quakes. In accordance with these observations the strength of such fields reaches 100046

V/m for very strong earthquakes Choudhury et al [2013].47

In this paper we are concentrated on the models which explain the lithosphere-48

ionosphere coupling by quasi-stationary electric currents through the atmosphere.49

Some models suggest the presence in the lower atmosphere of external currents which50

are continued by the conductivity currents and enter the ionosphere through the upper51

atmosphere Sorokin et al [2007].52

Because of difficulties in simulation of the penetration of the electric field and cur-53

rent through the atmosphere some models omit this step and take as a given input pa-54

rameter the electric field in the ionosphere Namgaladze et al [2009] or the current from55

the atmosphere to the ionosphere Namgaladze et al [2013] to explain the observed varia-56

tions of the total electron content associated with earthquakes.57

In modeling the currents through the atmosphere, some researchers Kim et al58

[1994], Sorokin et al [2007], and Kuo et al [2014] explain the electric fields and currents59

in the ionosphere, corresponding to the observations described in Zolotov [2015]. Our60

analysis Denisenko et al [2013], Denisenko [2015] of these models showed that excessive61

simplifications, fundamentally distorting the results, are present in all of them. Other62

models Grimalsky et al [2003], Hegai [2015] and Denisenko et al [2013] show that the63

field penetrating the ionosphere is several orders of magnitude smaller than required64

to explain the satellite-based observations of the ionospheric variations associated with65

earthquakes.66

Recently, a model Kuo et al [2014] was developed. The authors derived the current67

density j in the atmosphere using the continuity equation div j = 0, and showed how68

the atmospheric electric currents j and electric fields E disturbed the ionosphere above69

the earthquake preparation zone. Prokhorov and Zolotov [2017] criticized the model pro-70

posed by Kuo et al [2014] and pointed out that the used formula to derive the current71

j = − grad Ψ can’t reasonably describe the ground-to-ionosphere current of presum-72

ably seismic origin. Kuo and Lee [2017] replied by considering two approaches to solve73
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the equation div j = 0. The authors also insisted that the existence of a battery/dynamo74

current source in the lithosphere leads to the presence of current and electric field in the75

atmosphere and disturbing the ionosphere.76

In the work of Kuo and Lee [2017] are given arguments in favor to represent the77

density of atmospheric electric current j as gradient of a function Ψ:78

j = −gradΨ, (1)

and also to consider the presence of an atmospheric electric field due to an underground79

vertical external current. A model of underground external current Freund [2013] is80

used. We study such a generator in section 5.81

The main purpose of this paper is to analyze the model Kuo et al [2014] and its82

discussion Kuo and Lee [2017]. In section 2 we reproduce the differential equations83

and the boundary conditions of the model Kuo et al [2014] and show that the unex-84

plained boundary condition means existence of an ideal conductor above some height85

in the ionosphere. In accordance with Kuo et al [2014] the new boundary value prob-86

lem is set in section 3 using (1) to substitute the original electrical conductivity problem.87

The solutions of these problems are compared in Section 4 to demonstrate their differ-88

ences. Section 5 is more general. It is devoted to the discussion of atmospheric electric89

fields which can or can not be created by underground generators. The analysis is more90

complicated in comparison with Denisenko [2015] since the construction of the under-91

ground generator proposed in Kuo and Lee [2017] is more complicated than that in the92

model Kuo et al [2014]. Nevertheless we obtain the universal result for all 1-D prob-93

lems: vertical external current does not create electric field and current outside the do-94

main where this external current exists. By this analysis we show that the charge layer95

model proposed by Freund [2013], and used in Kuo et al [2014] and Kuo and Lee [2017]96

can’t explain an electric field above the ground.97

2 The electrical conductivity boundary value problem98

In our atmospheric model, the air is considered as an isotropic conductor with a99

conductivity σ depending only on the height z above ground. The coordinate axes x, y are100

in the horizontal plane. In our models (Denisenko et al [2013] and Denisenko [2015]) we101

consider scalar conductivity only below 50 km because the geomagnetic field introduces102

gyrotropy above this height; so the conductivity becomes a tensor. Since the main pur-103
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pose of this paper is to analyze the model Kuo and Lee [2017] where scalar conductivity104

is used we do the same unrealistic simplification. By the way it is shown in Denisenko105

et al [2013] that for the electric fields and currents below 50 km the only feature of the106

ionospheric conductivity are important; the integral conductance of the ionosphere is107

much larger than the atmospheric one.108

The basic equations for the steady state electric field E and the current density j are109

Faraday’s, charge conservation and Ohm laws,110

curl E = 0, (2)

div j = 0, (3)

j = σE. (4)

Because of the equation (2) the electric potential Φ can be introduced as111

E = −gradΦ. (5)

Then, the equation system (2-4) is reduced to the electrical conductivity equation112

− div (σ gradΦ) = 0. (6)

The boundary condition at ground means the existence of a vertical current density distri-

bution

jz(x, y, 0) = jsur f (x, y)

that for potential Φ means113

−σ(z)
∂Φ

∂z

�

�

�

�

z=0

= jsur f (x, y). (7)

Some boundary condition in the models of Kuo et al [2011] and Kuo et al [2014] is set at114

the upper boundary115

∂ jz

∂z

�

�

�

�

z=z0

= 0. (8)

Combining to (3) this condition is equivalent to116

(

∂ jx

∂x
+

∂ jy

∂y

)�

�

�

�

z=z0

= 0. (9)

In view of (5) and σ = σ(z) we obtain117

−σ(z)

(

∂2
Φ

∂x2
+

∂2
Φ

∂y2

)�

�

�

�

z=z0

= 0, (10)

–5–



Confidential manuscript submitted to JGR-Space Physics

that means zero Laplassian of the function Φ at the plane z = z0. Only the constant118

Φ = Φ0 has such a property among boundered functions. From physical point of view119

it is obvious since this equation simulates conducting film with zero current source. We120

can take state that Φ0 = 0 since such constant is of no value for E because gradΦ (5) does121

not vary when a constant is added to Φ. Therefore the boundary condition (8), sometimes122

used without justification, is equivalent to123

Φ(x, y, z0) = 0, (11)

describing an ideal conductor at z > z0. It is valid for an arbitrary function σ(x, y, z).124

The equivalence of (11) to (8) can also be shown for tensor conductivity with vertical125

magnetic field. We stress that there must be infinite conductivity in horizontal direc-126

tions above this boundary to set the condition (11). Of cause there is no conductor of127

this kind in the real ionosphere. Such an approach was used in Grimalsky et al [2003]128

and the introduced error was analysed in Denisenko et al [2013].129

We are interested in the solution that decreases far of the domain |x | < a, |y | < b130

where jsur f (x, y) , 0. We can approximately solve the equation (6) not in the infinite flat131

layer 0 < z < z0 , but in a parallelepiped |x | < x0, |y | < y0, 0 < z < z0 with additional132

conditions applied at the four sides (i.e. x = ±x0 and y = ±y0) of the parallelepiped:133

Φ(±x0, y, z) = 0, Φ(x,±y0, z) = 0, (12)

where x0 and y0 are large enough. These conditions are not considered in Kuo and Lee134

[2017] and also in previous papers (i.e. Kuo et al [2011] and Kuo et al [2014]), but we135

suppose that they also used some method to reduce the infinite domain to a finite one.136

The elliptical boundary value problem (6, 7, 11, 12) has a unique solution that is numeri-137

cally resolved and reported in Kuo et al [2011]. We refer it as Φ−problem.138

3 The model of curl-free current139

A new approach has been developed in the model of Kuo et al [2014]. The use of140

the equation (1) lead to re-write (3) and boundary conditions (7, 8) as141

−∆Ψ = 0, −
∂Ψ

∂z

�

�

�

�

z=0

= jsur f (x, y), Ψ(x, y, z0) = 0. (13)

The last condition is derived from (8) in the same way as (11). We already mentioned that142

such a boundary condition would be valid if conductivity in horizontal directions above143
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this boundary is infinite. However that is not valid for the real ionosphere. We reduce the144

infinite domain to a finite one by similar conditions like in (12):145

Ψ(±x0, y, z) = 0, Ψ(x,±y0, z) = 0. (14)

The elliptical boundary value problem (13, 14) has also a unique solution. We refer it as146

Ψ− problem. The original equation (2) can be satisfied only occasionally in some spe-147

cific cases described in the next section since it was not taken into account while the148

equations (13, 14) were derived.149

4 Numerical example150

It is important to note that the solutions for the Φ− and Ψ− problems are valu-151

ably different, as discussed in Denisenko et al [2016] as well as in Prokhorov and Zolotov152

[2017]. However this statement is contested in Kuo and Lee [2017] by the analysis of one153

example. Of course similarity of the solutions for one case does not prove the equivalency154

of the equations. Such equivalency exists when the conductivity σ is constant (Prokhorov155

and Zolotov [2017]) and in some specific cases (Denisenko [2015]). There are 1-D prob-156

lems among them for example σ = σ(z) and vertical E supposed to be independent of x, y157

coordinates. Nevertheless let us analyze the case Kuo and Lee [2017].158

We construct numerical solutions for the Φ− and Ψ− problems in the 2 − D ap-159

proximation where functions are independent of y coordinate. Since the solution in Kuo160

and Lee [2017] is elongated in the y− direction, our solutions do not differ much from161

them at the plane y = 0 as we show hereafter. It is not difficult to get rather precise so-162

lutions in such a case. We use finite element method based on minimization of the en-163

ergy functional. More about this method and its accuracy is detailed in Denisenko [1998].164

Following Kuo and Lee [2017], we use the exponential conductivity height distribution165

σ(z) = σ0 exp(−z/h), where σ0 = 2 · 10−14 S/m, h = 6 km, and a 1-D current distribution166

in the fault region with a = 200 km:167

jsur f (x) = jmax(1 + cos (πx/a))/2. (15)

Thin lines in Fig. 1 show the solution for the Ψ−problem with z0 equal to 200km. Also168

we only display half-plane x > 0 because of symmetry. Current between neighbor lines169

is equal to δI = I0/10 where the total current I0 is defined as the integral of jsur f (x). In170

view of charge conservation law (3) it can only decrease with height because of partial171
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closer in the atmosphere. So the 3% increase in Fig. 1(d) in Kuo and Lee [2017] is due to172

an error in their numerical method. It can be mentioned that both Φ− and Ψ− problems173

can be solved in a simple manner by using the Fourier Series since conductivity depends174

only on the height. This method was applied for a 2-D problem Ampferer et al [2010]175

and for a 3-D problem with tensor conductivity Denisenko et al [2013]. In 3− D case the176

current lines show the direction of current, but the current between neighbor current lines177

is not constant, contrary to 2 − D case. May be this is the reason why Kuo and Lee [2017]178

started the lines with an equal δx distance at z = 0. Dark dots in Fig. 1 show few points179

of two current lines which start at x = 80 km and x = 120 km, similar to those in Fig.180

3(a) of Kuo and Lee [2017]. As we see the lines in our 2 − D approach are rather similar181

to 3 − D ones at y = 0 plane for x < a. The difference between 3-D and 2-D solutions is182

increasing for x > a.183

Dashed lines in Fig. 1 displays current lines of our solution for the Ψ−problem with184

z0 = 130 km. Since our solution looks like one in Kuo and Lee [2017] when z0 = 200 km,185

this leads to suppose that the solutions are similar when z0 = 130 km, and also similarity186

of these dashed lines with the current lines in Fig. 2(a) of Kuo and Lee [2017]. It does187

not happen. We think that by mistake Fig. 2(a) is just a copy to Fig. 1(a), at least one can188

not find any difference. It is also the case Fig. 2(b) and Fig. 1(b).189

Thick lines in Fig. 1 show current lines for the Φ−problem with z0 = 200 km. Al-196

most the same lines for z0 = 130 km. They are close to verticals and are similar to ones197

in Fig. 1(a) Kuo and Lee [2017]. To demonstrate the similarity we put one light circle that198

corresponds to the line which starts from x = 80 km, z = 0 km as shown in Fig. 1(a).199

Another line which begins from x = 120 km, z = 0 km in Fig. 1(a) differs more from our200

one which starts from the same point. The last line started from x = 200 km, z = 0 km201

must be horizontal because no current goes through the ground surface to the atmosphere202

at the points x > 200 km.203

This line in Fig. 1(a) demonstrates error of the numerical method by going up. We204

agree with the authors of Kuo and Lee [2017] that the numerical method used in Kuo et al205

[2011] was not convenient. Nevertheless we see that the solutions of Kuo and Lee [2017]206

for Φ−problem are in some agreement with our ones. Analysis of Fig. 1 shows valuable207

difference between currents obtained in Φ− and Ψ−problems. For example current from208

ground at the interval 0 < x < 80 km enter the ionosphere at the chosen height z = 85209
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Figure 1. Thin and thick lines displays the current lines for j derived, respectively, from the Ψ− and Φ−

problems where z0 is equal to 200 km. The interval between neighbor lines is equal to I0/10 where I0 is the

total current. Black circle points are associated to two current lines which start at 80 km and 120 km for Ψ−

problem presented in Fig. 3(a) of Kuo and Lee [2017]. Dashed lines displays the current j derived from the

Ψ− problem with z0 equal to 130 km. Light circle corresponds to the line started from x = 80 km, z = 0 km

for Φ− problem presented in Fig. 1(a) of Kuo and Lee [2017].
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191

192
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195

km through the region 0 < x < 86 km in Φ−problem Kuo and Lee [2017] and 0 < x <210

155 km or 0 < x < 135 km in dependence of the chosen height z0 = 200 km or z0 =211

130 km in Ψ−problem. This is 70% of the total current. The increase of the interval 1.8212

or 1.6 times, and its dependence on an arbitrary selected parameter means just valuable213

difference and contradicts the conclusion of Kuo and Lee [2017] about similarity of the214

solutions for Φ− and Ψ−problems.215

The decision to solve another problem instead of using a not convenient numerical216

method for the original problem has given even worse result and the conclusion of Kuo217

and Lee [2017]: "the result of Ψ Method can provide a good approximation for upward218

currents that flow into the ionosphere obtained from the Φ Method" contradicts the obvi-219

ous difference of the results.220
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5 Underground external currents221

Here we analyze the reply of Kuo and Lee [2017] to our critics (see Denisenko [2015])222

of the model of current flow from ground to atmosphere (Kuo et al [2011]; Kuo et al [2014]).223

Fig. 4 of Kuo and Lee [2017] is reproduced in Fig. 2 with additional objects which were224

initially not shown but definitely exist. In Fig. 2(a) we plot only sum electric field E, des-225

ignate charge densities at the planes as ±Σ, and add external current J0 which is necessary226

for steady state existence of such a electrical construction. As it was mentioned in Kuo227

and Lee [2017] without J0 the charges would decrease because of conductivity current228

j = σE with relaxation time τ of about 10−9 s (there is a misprint 10−10 in Kuo and Lee229

[2017] for σl = 0.01 S/m).230

The current J0 = σlE is necessary for stationarity state, where σl is the conductiv-236

ity in the layer 3, .i.e. in the interval −z2 < z < −z1. Nothing is wrote in Kuo and Lee237

[2017] about this layer despite the existence of the current JD . They call it the dynamo238

current JD inside the battery. We suppose the same conductivity as σl in this layer, but239

any other value instead of this σl can also be considered. Let us consider the process of240

transition to a stationary state after the starting of an external current J0 at the time t = 0.241

The equations (2, 3, 4) become more complicated. If the process is slow enough to ne-242

glect electromagnetic induction, they are243

curl E = 0, div E = ρ/ε0,
∂ρ

∂t
+ div j = 0, j = σE + J0, (16)

where ρ is the charge density and ε0 is the dielectric permeability of vacuum. If charged244

surfaces exist the volume density ρ is substituted by the surface density Σ, and the second245

and the third equations (16) can be written as246

E+ − E− = Σ/ε0,
∂Σ

∂t
= − j+ + j−, (17)

where indexes ± indicate the values of the normal component of a vector at opposite sides247

of the surface. Let J0 = 0 for t < 0 and for t > 0 the vector J0 has only the z−component248

J0 in the interval −z2 < z < −z1, where J0 is a given constant. It is simple to check that249

the following functions give the solution for the equations (16, 17) with zero electric field250

and charge density at t = 0:251

Σ = Σ0(1 − exp (−t/τ)), E = −E0(1 − exp (−t/τ)), j = J0 exp (−t/τ) (18)

inside the domain −z2 < z < −z1 and equal to zero outside. Here E0 = J0/σl , Σ0 = ε0E0,252

τ = ε0/σl . The relaxation time τ ≃ 10−9 s is the same as mentioned above when ±Σ de-253
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Figure 2. Lithospheric charge layers. E and J indicate, respectively, the electric field and the current.

Positive and negative charge densities at the surfaces are designated by +Σ and −Σ. Crosshatching re-

gion corresponds to the lithosphere layer. Panel (a) and framed part of panel (b) reproduce Fig. 4 (a)

and (b) in Kuo and Lee [2017]. The electric field and current system (c) is the difference between the

systems (b) and (a).

231

232

233

234

235

crease when J0 = 0. For t >> τ the solution becomes a stationary one with the values254

Σ0, E0 and zero total current j = J0 − σlE0 = 0. As it is shown in Fig. 2(a). It ought255

be stressed that the charge density ρ is not used in the steady state equations of electrical256

conductivity (6) or magnetohydrodynamics, but it can be calculated after solving a prob-257

lem as ε0div E. Framed part of Fig. 2(b) reproduces Fig. 4(b) of Kuo and Lee [2017]258

in similar manner. Here we add designations for the layer 3. An arbitrarily direction of259

E3 is chosen, may be E3 < 0. Outside the frame we add a layer with charge density −Σa260

that is somewhere above the atmosphere, and a layer with charge density +Σl that is be-261

–11–



Confidential manuscript submitted to JGR-Space Physics

low the shown part of the lithosphere. From a mathematical point of view these layers can262

be at ±∞. These charged layers are necessary for existence of the electric fields Ea and263

E2. Also the current J is added. Without it the charges −Σa and +Σl would disappear as264

well as ±Σ in Fig. 2(a) while much slower, since the atmospheric conductivity σa is much265

smaller than the lithospheric one σl . The charge conservation law (3) for this construction266

means that the total current is independent of height:267

σaEa = σlE1 = JD + σlE3 = σlE2 = J. (19)

The solution for this system is268

E1 = E2 = J/σl, Ea = J/σa, E3 = (J − JD)/σl . (20)

It is simple to find all surface charge densities by these electric fields, if they are of inter-269

est. For example, Σs = ε0(Ea − E1) = ε0J(1/σa − 1/σl). It looks similar to the equation270

(12) in Kuo and Lee [2017] but here must be just J instead of JD . As we see the current271

JD has only an effect on the electric field in the layer 3. We can present the construction272

shown in Fig. 2(b) as the composition of the constructions shown in Fig. 2(a) and Fig.273

2(c). If the current J is absent, Ea = El = 0 or in detailed form Ea = E1 = E2 = 0274

and E3 is the same as in Fig. 2(a) with J0 = JD . The construction presented in Fig. 4(b)275

Kuo and Lee [2017] is more complicated than one in Fig. 1 in Kuo et al [2011]. So our276

actual analysis is longer than it was in Denisenko [2015]. Nevertheless we obtain the same277

result. It is universal for all 1-D problems: vertical external current can not create electric278

field and current outside the domain where this external current exists. Here for simplicity279

we use constant values of atmospheric and lithospheric conductivities σa, σl , but similar280

analysis with the same conclusion can be done for any height distributions σa(z), σl(z).281

There must be a current like J which moves charges from the ionosphere to ground.282

Since the current J moves charges upstream electric field it can not be a conductivity cur-283

rent. There is no such a current in the models Kuo et al [2011], Kuo et al [2014], Kuo284

and Lee [2017], but the absence of J means no atmospheric electric field. Charged layer285

−Σa must be somewhere above the atmosphere. Figuratively speaking, a field line starts286

at a positive charge and finishes at negative one. Some current must bring back positive287

charges from the ionosphere to the lithosphere to keep −Σa not variable.288

There is a simple way to create such a current by underground generator. Such a289

generator must flow charges of different signs to different parts of the ground surface, as290

–12–



Confidential manuscript submitted to JGR-Space Physics

it is in our model Denisenko et al [2013]. There is no explanation of such generator, but291

other kinds in the lithosphere can not generate the atmospheric electric field. Our models292

do not prove its existence. We only show, that if such a generator provides current from293

ground to the atmosphere with density of a few pA/m2, the vertical electric field near294

ground has strength of about hundred V/m before earthquakes occurrence, as reported295

in the literature. However only negligible electric field and current appear in the iono-296

sphere in frame of our models. In contrast with Prokhorov and Zolotov [2017], we think297

that additional external atmospheric current created by moving of charged aerosols does298

not help. Critical analysis of this kind of models (e.g. Sorokin et al [2007]) is discussed in299

Denisenko et al [2013] and Denisenko [2015] . We believe that such ionospheric models300

(e.g. Kuo et al [2011] and Namgaladze et al [2013]) have no atmospheric origin.301

It ought be mentioned that the lithosphere can vary atmospheric electric field with-302

out underground electric generators. For example radon emanation increases atmospheric303

conductivity near ground, that locally varies the electric field of the Global electric circuit304

as reported by Harrison et al [2010].305

Conclusions306

The curl-free presentation of the atmospheric electric current of Kuo et al [2014]307

gives solutions which valuably differ from the solutions of the electrical conductivity308

problems. The explanations and additional proofs of the curl-free presentation in the model309

Kuo et al [2014] which are re-considered in the paper of Kuo and Lee [2017] are not accu-310

rate since such a key parameter as the size of the ionospheric region where current enters311

ionosphere is distorted up to twice, and there is no proof that it can not be worse in other312

cases.313

The model of appearance of the atmospheric electric field due to vertical under-314

ground generator (Kuo et al [2011] and Kuo et al [2014]) contains inaccuracy. Precise315

analysis of the proposed construction shows zero field above ground. The lithospheric316

and atmospheric parts of the models of Kuo et al [2011] and Kuo et al [2014] yield zero317

current to the ionosphere after the correct consideration.318

Basing on the results of this paper, also the conclusions of Hegai [2015] and our319

previous analysis of many models (Denisenko et al [2013] and Denisenko [2015]) it is320

hard to imagine a valuable electric current in the ionosphere penetrating through the321
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atmosphere and generated by lithospheric physical processes. It is necessary to study322

other atmospheric physical processes to explain the lithospheric influence on the iono-323

sphere; may be gravity waves as was proposed in Molchanov and Hayakawa [2008].324
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