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1 Introduction

Perception of and reasoning about dynamic environments is pertinent for mo-
bile robotics and still constitutes one of the major challenges. To work in
these environments, the mobile robot must perceive the environment with
sensors; measurements are uncertain and normally treated within the esti-
mation framework. Such an approach enables the mobile robot to model the
dynamic environment and follow the evolution of its environment. With an
internal representation of the environment, the robot is thus able to perform
reasoning and make predictions to accomplish its tasks successfully. Systems
for tracking the evolution of the environment have traditionally been a major
component in robotics. Industries are now beginning to express interest in
such technologies. One particular example is the application within the au-
tomotive industry for adaptive cruise control [Coué et al., 2002], where the
challenge is to reduce road accidents by using better collision detection sys-
tems. The major requirement of such a system is a robust tracking system.
Most of the existing target-tracking algorithms use an object-based represen-
tation of the environment. However, these existing techniques must explicitly
consider data association and occlusion. In view of these problems, a grid-
based framework, the Bayesian occupancy filter (BOF) [Coué et al., 2002,
2003], has been proposed.

1.1 Motivation

In classical tracking methodology [Bar-Shalom and Fortman, 1988], the prob-
lem of data association and state estimation are major problems to be ad-
dressed. The two problems are highly coupled, and an error in either com-
ponent leads to erroneous outputs. The BOF makes it possible to decompose
this highly coupled relationship by avoiding the data association problem, in
the sense that the data association is handled at a higher level of abstraction.
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In the BOF model, concepts such as objects or tracks do not exist; they
are replaced by more useful properties such as occupancy or risk, which are
directly estimated for each cell of the grid using both sensor observations and
some prior knowledge.

It might seem strange to have no object representations when objects obvi-
ously exist in real life environments. However, an object-based representation
is not required for all applications. Where object-based representations are
not pertinent, we argue that it is more useful to work with a more descriptive,
richer sensory representation rather than constructing object-based represen-
tations with their complications in data association. For example, to calculate
the risk of collision for a mobile robot, the only properties required are the
probability distribution on occupancy and velocities for each cell in the grid.
Variables such as the number of objects are inconsequential in this respect.

This model is especially useful when there is a need to fuse information
from several sensors. In standard methods for sensor fusion in tracking ap-
plications, the problem of track-to-track association arises where each sensor
contains its own local information. Under the standard tracking framework
with multiple sensors, the problem of data association will be further compli-
cated: as well as the data association between two consecutive time instances
from the same sensor, the association of tracks (or targets) between the dif-
ferent sensors must be taken into account as well.

In contrast, the grid-based BOF will not encounter such a problem. A grid-
based representation provides a conducive framework for performing sensor
fusion [Moravec, 1988]. Different sensor models can be specified to match the
different characteristics of the different sensors, facilitating efficient fusion in
the grids. The absence of an object-based representation allows easier fusing
of low-level descriptive sensory information onto the grids without requiring
data association.

Uncertainty characteristics of the different sensors are specified in the sen-
sor models. This uncertainty is explicitly represented in the BOF grids in
the form of occupancy probabilities. Various approaches using the probabilis-
tic reasoning paradigm, which is becoming a key paradigm in robotics, have
already been successfully used to address several robotic problems, such as
CAD modelling [Mekhnacha et al., 2001] and simultaneous map building and
localization (SLAM) [Thrun, 1998, Kaelbling et al., 1998, Arras et al., 2001].

In modelling the environment with BOF grids, the object model problem is
nonexistent because there are only cells representing the state of the environ-
ment at a certain position and time, and each sensor measurement changes
the state of each cell. Different kinds of objects produce different kinds of
measures, but this is handled naturally by the cell space discretization.

Another advantage of BOF grids is their rich representation of dynamic
environments. This information includes the description of occupied and hid-
den areas (i.e. areas of the environment that are temporarily hidden to the
sensors by an obstacle). The dynamics of the environment and its robustness
relative to object occlusions are addressed using a novel two-step mechanism
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that permits taking the sensor observation history and the temporal consis-
tency of the scene into account. This mechanism estimates, at each time step,
the state of the occupancy grid by combining a prediction step (history) and
an estimation step (incorporating new measurements). This approach is de-
rived from the Bayesian filter approach [Jazwinsky, 1970], which explains why
the filter is called the Bayesian occupancy filter (BOF).

The five main motivations in the proposed BOF approach are as follows.

• Taking uncertainty into account explicitly, which is inherent in any model
of a real phenomenon. The uncertainty is represented explicitly in the
occupancy grids.

• Avoiding the “data association problem” in the sense that data association
is to be handled at a higher level of abstraction. The data association
problem is to associate an object ot at time t with ot+1 at time t+1. Current
methods for resolving this problem often do not perform satisfactorily
under complex scenarios, i.e. scenarios involving numerous appearances,
disappearances and occlusions of several rapidly manoeuvring targets. The
concept of objects is nonexistent in the BOF and hence avoids the problem
of data association from the classical tracking point of view.

• Avoiding the object model problem, that is, avoiding the need to make
assumptions about the shape or size of the object. It is complex to define
what the sensor could measure without a good representation of the object.
In particular, a big object may give multiple detections whereas a small
object may give just one. In both cases, there is only one object, and that
lack of coherence causes multiple-target tracking systems, in most cases,
to work properly with only one kind of target.

• An Increased robustness of the system relative to object occlusions, appear-
ances and disappearances by exploiting at any instant all relevant informa-
tion on the environment perceived by the mobile robot. This information
includes the description of occupied and hidden areas (i.e. areas of the
environment that are temporarily hidden to the sensors by an obstacle).

• A method that could be implemented later on dedicated hardware, to obtain
both high performance and decreased cost of the final system.

1.2 Objectives of the BOF

We claim that in the BOF approach, the five previous objectives are met as
follows.

• Uncertainty is taken into account explicitly, thanks to the probabilistic
reasoning paradigm, which is becoming a key paradigm in robotics.

• The data association problem is postponed by reasoning on a probabilistic
grid representation of the dynamic environment. In such a model, concepts
such as objects or tracks are not needed.

• The object model problem is nonexistent because there are only cells in the
environment state, and each sensor measurement changes the state of each
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cell. The different kinds of measures produced by different kinds of object
are handled naturally by the cell space discretization.

• The dynamics of the environment and its robustness relative to object oc-
clusions are addressed using a novel two-step mechanism that permits
taking the sensor observation history and the temporal consistency of the
scene into account.

• The Bayesian occupancy filter has been designed to be highly parallelized. A
hardware implementation on a dedicated chip is possible, which will lead
to an efficient representation of the environment of a mobile robot.

This chapter presents the concepts behind BOF and its mathematical for-
mulation, and shows some of its applications.

• Section 2 introduces the basic concepts behind the BOF.
• Section 2.1 introduces Bayesian filtering in the 4D occupancy grid frame-

work [Coué et al., 2006].
• Section 2.2 describes an alternative formulation for filtering in the 2D

occupancy grid framework [Tay et al., 2007].
• Section 3 shows several applications of the BOF.
• Section 4 concludes this chapter.

2 Bayesian occupation filtering

The consideration of sensor observation history enables robust estimations in
changing environments (i.e. it allows processing of temporary objects, occlu-
sions and detection problems). Our approach for solving this problem is to
make use of an appropriate Bayesian filtering technique called the Bayesian
occupancy filter (BOF).

Bayesian filters Jazwinsky [1970] address the general problem of estimating
the state sequence xk, k ∈ N of a system given by:

xk = fk(xk−1, uk−1, wk), (1)

where fk is a possibly nonlinear transition function, uk−1 is a “control” vari-
able (e.g. speed or acceleration) for the sensor that allows it to estimate its
own movement between time k − 1 and time k, and wk is the process noise.
This equation describes a Markov process of order one.

Let zk be the sensor observation of the system at time k. The objective of
the filtering is to estimate recursively xk from the sensor measurements:

zk = hk(xk, vk) (2)

where hk is a possibly nonlinear function and vk is the measurement noise.
This function models the uncertainty of the measurement zk of the system’s
state xk.
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In other words, the goal of the filtering is to estimate recursively the proba-
bility distribution P (Xk | Zk), known as the posterior distribution. In general,
this estimation is done in two stages: prediction and estimation. The goal of
the prediction stage is to compute an a priori estimate of the target’s state
known as the prior distribution. The goal of the estimation stage is to com-
pute the posterior distribution, using this a priori estimate and the current
measurement of the sensor.

Exact solutions to this recursive propagation of the posterior density do
exist in a restrictive set of cases. In particular, the Kalman filter [Kalman,
1960, Welch and Bishop] is an optimal solution when the functions fk and hk

are linear and the noise values wk and vk are Gaussian. In general, however, so-
lutions cannot be determined analytically, and an approximate solution must
be computed.

Prediction

Estimation

6 ? ?

Z

Fig. 1. Bayesian occupancy filter as a recursive loop.

In this case, the state of the system is given by the occupancy state of each
cell of the grid, and the required conditions for being able to apply an exact
solution such as the Kalman filter are not always verified. Moreover, the par-
ticular structure of the model (occupancy grid) and the real-time constraint
imposed on most robotic applications lead to the development of the concept
of the Bayesian occupancy filter. This filter estimates the occupancy state in
two steps, as depicted in Fig. 1.

In this section, two different formulations of the BOF will be introduced.
The first represents the state space by a 4-dimensional grid, in which the oc-
cupancy of each cell represents the joint space of 2D position and 2D velocity.
The estimation of occupancy and velocity in this 4D space are described in
Section 2.1.

The second formulation of the BOF represents the state space by a 2-
dimensional occupancy grid. Each cell of the grid is associated with a prob-
ability distribution on the velocity of the occupancy associated with the cell.
The differences between the two formulations are subtle. Essentially, the 4D
formulation permits overlapping objects with different velocities whereas the



84 M.K Tay , K. Mekhnacha, M. Yguel, C. Coué, C. Pradalier, et al.

2D formulation does not allow for overlapping objects. The estimation on
velocity and occupancy in this 2D grid are described in Section 2.2.

2.1 The 4D Bayesian occupation filter

The 4-dimensional BOF takes the form of a gridded histogram with two di-
mensions representing positions in 2D Cartesian coordinates and the other
two dimensions representing the orthogonal components of the 2-dimensional
velocities of the cells. As explained previously in Section 2, the BOF consists
of a prediction step and an estimation step in the spirit of Bayesian filtering.

Based on this approach, the evolution of the BOF at time k occurs in two
steps:

1. the prediction step makes use of both the result of the estimation step at
time k−1 and a dynamic model to compute an a priori estimate of the
grid; and

2. the estimation step makes use of both this prediction result and the sensor
observations at time k to compute the grid values.

The next two subsections will explain the prediction and estimation steps
of the 4D BOF respectively.

Estimation in the 4D BOF

The estimation step consists of estimating the occupancy probability of each
cell of the grid, using the last set of sensor observations. These observations
represent preprocessed information given by a sensor. At each time step, the
sensor is able to return a list of detected objects, along with their associated
positions and velocities in the sensor reference frame. In practice, this set of
observations could also contain two types of false measurements: false alarms
(i.e. when the sensor detects a nonexistent object) and missed detections (i.e.
when the sensor does not detect an existing object).

Solving the static estimation problem can be done by building a Bayesian
program. The relevant variables and decomposition are as follows.

• Ck: The cell itself at time k; this variable is 4-dimensional and represents
a position and a speed relative to the vehicle.

• Ek
C : The state of the cell C at time k; whether it is occupied.

• Z: The sensor observation set; one observation is denoted by Zs, and the
number of observation is denoted by S; each variable Zs is 4-dimensional.

• M : The “matching” variable; it specifies which observation of the sensor is
currently used to estimate the state of a cell.

The decomposition of the joint distribution of these variables can be expressed
as:
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P (Ck Ek
C Z M) = P (Ck)P (Ek

C | Ck)P (M) ×
S∏

s=1

P (Zs | Ck Ek
C M)

Parametric forms can be assigned to each term of the joint probability
decomposition.

• P (Ck) represents the information on the cell itself. As we always know the
cell for which we are currently estimating the state, this distribution may
be left unspecified.

• P (Ek
C | C) represents the a priori information on the occupancy of the

cell. The prior distribution may be obtained from the estimation of the
previous time step.

• P (M) is chosen uniformly. It specifies which observation of the sensor is
used to estimate the state of a cell.

• The shape of P (Zs |Ck Ek
C M) depends on the value of the matching vari-

able.
– If M 6= s, the observation is not taken from the cell C. Consequently,

we cannot say anything about this observation. P (Zs |Ck Ek
C M) is

defined by a uniform distribution.
– If M = s, the form of P (Zs |Ck Ek

C M) is given by the sensor model.
Its goal is to model the sensor response knowing the cell state. Details
on this model can be found in Elfes [1989].

It is now possible to ask the Bayesian question corresponding to the
searched solution. Because the problem to solve consists of finding a good
estimate of the cell occupancy, the question can be stated as the probability
distribution on the state of cell occupancy, conditioned on the observations
and the cell itself:

P (Ek
C | Z Ck) (3)

The result of the inference can be written as:

P (Ek
C | Z Ck) ∝

S∑

M=1

(
S∏

s=1

P (Zs | Ek
C Ck M)

)
. (4)

During inference, the sum on these variables allows every sensor observation
to be taken into account during the update of the state of a cell. It should be
noted that the estimation step is performed without any explicit association
between cells and observations; this problematic operation is replaced by the
integration on all the possible values of M .

Figure 2 shows the estimation step expressed as a Bayesian program.

Prediction in the 4D BOF

The goal of this processing step is to estimate an a priori model of the
occupancy probability at time k of a cell using the latest estimation of the
occupancy grid, i.e. the estimation at time k − 1.
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Relevant Variables:
Ck T he cell itself at time k; this variable is 4-dimensional and

represents a position and a speed relative to the vehicle.
Ek

C The state of the cell C, occupied or not.
Z The sensor observation set: one observation is denoted Zs;

the number of observation is denoted S;
each variable Zs is 4-dimensional.

M The “matching” variable; its goal is to specify which
observation of the sensor is currently used to estimate the
state of a cell.

Decomposition:
P (Ck Ek

C Z M) =

P (Ck)P (Ek
C | Ck)P (M) ×

SQ

s=1

P (Zs | Ck Ek
C M)

Parametric Forms:
P (Ck): uniform;
P (ECk | Ck): from the prediction;
P (M): uniform;
P (Zs | Ck Ek

C M): sensor model;
Identification:
None

Question:
P (Ek

C | Z C‖)

Fig. 2. Occupancy Probability Static Estimation

Similarly, the prediction step can be expressed as a Bayesian program.
The relevant variable specifications are the same as those of the estimation
stage except for the variable Uk−1, which represents the “control” input of
the CyCab at time k − 1. For example, it could be a measurement of its
instantaneous velocity at time k − 1.

The decomposition of the joint distribution can therefore be expressed as
follows.

P (Ck Ek
CCk−1 Ek−1

C Uk−1)

= P (Ck−1) × P (Uk−1) × P (Ek−1
C | Ck−1)

×P (Ck | Ck−1 Uk−1) × P (Ek
C | Ek−1

C Ck−1 Ck)

The parametric forms for each of the decomposition terms are as follows.

• P (Ck−1) and P (Uk−1) are chosen as uniform distributions.
• P (Ek−1

C |Ck−1) is given by the result of the estimation step at time k− 1.
• P (Ck | Ck−1 Uk−1) is given by the dynamic model. It represents the

probability that an object has moved from cell Ck−1 to cell Ck. This
movement is because of the object itself and the robot’s movement between
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times k − 1 and k. To define this model, we suppose a constant velocity
model subject to zero-mean Gaussian errors for the moving objects.

• P (Ek
C |Ek−1

C Ck−1 Ck) represents the probability that an existing object
at time k − 1 (i.e. [Ek−1

C = 1] still exists at time k (i.e. [Ek
C = 1]). As

we consider that objects cannot disappear, Dirac functions are chosen for
these distributions.

The problem to be solved is to find an estimate of the occupancy prob-
ability for each cell of the grid. This problem can be solved by posing the
following question.

P (Ek
C | Ck Uk−1) (5)

This question (eq. 5) can be expressed as follows.

P (Ek
C | Ck Uk−1)∝

∑

Ck−1

E
k−1
C

(
P (Ck | Ck−1 Uk−1)

×P (Ek−1
C | Ck−1)

)
. (6)

Unfortunately, for most cases, this expression cannot be expressed analyt-
ically, and so it cannot be computed in real time. This is why an approximate
solution of the integral term must be computed. Our approach to this com-
putation assumes that only a few points are required to approximate the
integral. Thus, for each cell of the grid at time k − 1, we can compute the
probability distribution P (Ck |Ck−1 Uk−1); then a cell ck is drawn according
to this probability distribution; finally, cell Ck−1 is used to update the pre-
dicted state of cell ck. It should be noted that the complexity of this algorithm
increases linearly with the number of cells in our grid and ensures that the
most informative points are used to compute the sum appearing in (6).

The prediction step can hence be expressed as the Bayesian program in
Fig. 3.

An illustration of the BOF can be found in Fig. 4. The figures represent
a dynamic scene containing two moving obstacles along with the results from
the prediction and estimation stages. It also demonstrates the robustness of
the BOF in occlusion.

The first row describes the experimental conditions: the sensor (a Sick laser
rangefinder) is immobile, and it observes two objects O1 and O2 moving in
opposite directions. In the situation depicted by Fig. 4-c1, O1 is temporarily
hidden by O2 (and thus O1 is not detected by the sensor).

The second and the third rows show the results of the prediction step and
the estimation step respectively. Only the cells of the grid corresponding to
a relative speed equal to (ẋ = 0.0m/s, ẏ = 1.0m/s), which is close to the
speed of O1, are shown. The occupancy probabilities of the related cells are
represented by the grey levels.

In this example, an area of “high occupancy probability”, which corre-
sponds to the moving objects, is well characterized in Figs. 4-a2 and 4-a3.
One can also notice that the areas hidden by the moving objects have occu-
pancy probability values equal to 0.5. Similar results can be found from Figs.
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Relevant Variables:
Ck Cell C considered at time K

Ek
C State of cell C at time K

Ck−1 Cell C at time k − 1

Ek−1
C State of cell C at time k − 1

Uk−1 “control” input of the CyCab at time k − 1. For
example, it could be a measurement of its instantaneous
velocity at time k − 1.

Decomposition:
P (Ck Ek

C Ck−1 Ek−1
C Uk−1) =

P (Ck−1) × P (Uk−1) × P (Ek−1
C | Ck−1)

×P (Ck | Ck−1 Uk−1) × P (Ek
C | Ek−1

C Ck−1 Ck)
Parametric Forms:
P (Ck−1): uniform;
P (Uk−1): uniform;
P (Ek−1

C | Ck−1): estimation at time k-1;
P (Ck | Ck−1 Uk−1): dynamic model;
P (Ek

C | Ek−1
C Ck−1 Ck): dirac;

Identification:
None

Question:
P (Ek

C | Ck Uk−1)

Fig. 3. Prediction Step at time k

4-b2 and 4-b3. Figure 4-c2 shows the result of the prediction step, based on
the grid of Fig. 4-b3 and on the dynamic model used. This prediction shows
that an object is probably located in the area hidden by O2 (i.e. an area of
high occupancy probability is found in Fig. 4-c3). Of course, the confidence in
the presence of a hidden object (i.e. the values of the occupancy probability
in the grid) progressively decreases when this object is not observed by the
sensor during the following time steps. In the example depicted by Fig. 4-d3,
the object is no longer hidden by O2; it is detected by the laser, and the
related occupancy probability values increase.

2.2 The 2D Bayesian occupancy filter

An alternative formulation presents the BOF as 2D grids instead of the pre-
vious formulation of 4D grids. This model of the dynamic grid is different
from the approach adopted in the original BOF formulation by Coué et al.
[2006]. Their grid model is in 4-dimensional space whereas the 2D BOF [Tay
et al., 2007] models the grid in 2-dimensional space. A subtle difference is that
the 4D BOF allows the representation of overlapping objects but the 2D BOF
does not. A more obvious difference is the ability to infer velocity distributions
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Fig. 4. A short sequence of a dynamic scene. The first row describes the situation:
a moving object is temporarily hidden by a second object. The second row shows
the predicted occupancy grids, and the third row shows the result of the estimation
step. The grids show P ([Ek

C = 1] | x y [ẋ = 0.0] [ẏ = 1.0])

in the 2D BOF model, which is absent in the 4D BOF model as it requires
the specification of the dynamics of the cells.

The 2D BOF can also be expressed as a Bayesian program. In the spirit
of Bayesian programming, we start by defining the relevant variables.

• C is an index that identifies each 2D cell of the grid.
• A is an index that identifies each possible antecedent of the cell c over all

the cells in the 2D grid.
• Zt ∈ Z where Zt is the random variable of the sensor measurement relative

to the cell c.
• V ∈ V = {v1, . . . , vn} where V is the random variable of the velocities for

the cell c and its possible values are discretized into n cases.
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• O, O−1 ∈ O ≡ {occ, emp} where O represents the random variable of the
state of c being either “occupied” or “empty”. O−1 represents the random
variable of the state of an antecedent cell of c through the possible motion
through c. For a given velocity vk = (vx, vy) and a given time step δt, it is
possible to define an antecedent for c = (x, y) as c−k = (x−vxδt, y−vyδt).

The following expression gives the decomposition of the joint distribution
of the relevant variables according to Bayes’ rule and dependency assumptions.

P (C, A, Z, O, O−1, V )

= P (A)P (V |A)P (C|V, A)P (O−1|A)P (O|O−1)P (Z|O, V, C) (7)

The parametric form and semantics of each component of the joint decom-
position are as follows.

• P (A) is the distribution over all the possible antecedents of the cell c. It
is chosen to be uniform because the cell is considered reachable from all
the antecedents with equal probability.

• P (V |A) is the distribution over all the possible velocities of a certain an-
tecedent of the cell c; its parametric form is a histogram.

• P (C|V, A) is a distribution that explains whether c is reachable from [A =
a] with the velocity [V = v]. In discrete spaces, this distribution is a Dirac
with value equal to one if and only if cx = ax + vxδt and cy = ay + vyδt,
which follows a dynamic model of constant velocity.

• P (O−1|A) is the conditional distribution over the occupancy of the an-
tecedents. It gives the probability of the possible previous step of the cur-
rent cell.

• P (O|O−1) is the conditional distribution over the occupancy of the current
cell, which depends on the occupancy state of the previous cell. It is defined

as a transition matrix: T =

[
1 − ǫ ǫ

ǫ 1 − ǫ

]
, which allows the system to use

the null acceleration hypothesis as an approximation; in this matrix, ǫ is a
parameter representing the probability that the object in c does not follow
the null acceleration model.

• P (Z|O, V, C) is the conditional distribution over the sensor measurement
values. It depends of the state of the cell, the velocity of the cell and
obviously the position of the cell.

In the 2D BOF, the Bayesian question will be the probability distribution
on the occupation and velocity for each cell of the grid.

P (O | Z C)

P (V | Z C)

The 2D BOF can be formulated as the Bayesian program in Figure 5.
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Relevant Variables:
C An index that identifies each 2D cell of the grid.
A An index that identifies each possible antecedent of the cell

c over all the cells in the 2D grid.
Zt The sensor measurement relative to the cell c.
V The set of velocities for the cell c where

V is discretized into n values; V ∈ V = {v1, . . . , vn}.
O, O−1 Takes values from the set O ≡ {occ, emp},

indicating whether the cell c is ‘occupied’ or ‘empty’.
O−1 represents the random variable of the state of an
antecedent cell of c through the possible motion through c.

Decomposition:
P (C A Z O O−1 V ) =

P (A)P (V |A)P (C|V, A)P (O−1|A)P (O|O−1)P (Z|O, V, C)
Parametric Forms:
P (A): uniform;
P (V | A): conditional velocity distribution of antecedent cell;
P (C | V A): Dirac representing reachability;
P (O−1 | A): conditional occupancy distribution of the antecedent cell;
P (O | O−1): occupancy transitional matrix;
P (Z | O V C): observation model;

Identification:
None

Question:
P (O | Z C)
P (V | Z C)

Fig. 5. BOF with Velocity Inference

Filtering computation and representation for the 2D BOF

The aim of filtering in the BOF grid is to estimate the occupancy and grid
velocity distributions for each cell of the grid, P (O, V |Z, C).

Figure 6 shows how Bayesian filtering is performed in the 2D BOF grids.
The two stages of prediction and estimation are performed for each iteration.
In the context of the BOF, prediction propagates cell occupation probabilities
for each velocity and cell in the BOF grid (P (O, V |C)). During estimation,
P (O, V |C) is updated by taking into account its observation P (Z|O, V, C) to
obtain its final Bayesian filter estimation P (O, V |Z, C). The result from the
Bayesian filter estimation is then used for prediction in the next iteration.

From Fig. 6, the difference between the 2D BOF and the 4D BOF is clearly
illustrated. First, the 2D BOF defines the velocity of the cell occupation as a
variable in the Bayesian program. The velocity is not expressed as a variable
in the Bayesian program in the 4D BOF, but it is rather defined as a prior
dynamic model to be given P (Ck | Ck−1 Uk−1) (Fig. 3). The 2D BOF is thus
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Estimation

P(O,V|Z,C)

P(Z|O,V,C)
Observation

Prediction

  P(O,V|C)

Fig. 6. Bayesian filtering in the estimation of occupancy and velocity distribution
in the BOF grids.

capable of performing inference on both the occupation and the velocity of
the cell’s occupation. Second, the 2D BOF inherently expresses the constraint
of a single occupation and velocity for each cellular decomposition of the 2D
Cartesian space. However, in the 4D BOF, there is the possibility of expressing
occupation of a cell in 2D Cartesian space with different velocities. The re-
duction in complexity from four dimensions to two reduces the computational
complexity.

When implementing the 2D BOF, the set of possible velocities is dis-
cretized. One way of implementing the computation of the probability distri-
bution is in the form of histograms. The following equations are based on the
discrete case. Therefore, the global filtering equation can be obtained by:

P (V, O|Z, C) =

∑
A,O−1 P (C, A, Z, O, O−1, V )

∑
A,O,O−1,V P (C, A, Z, O, O−1, V )

, (8)

which can be equivalently represented as:

P (V, O, Z, C) = P (Z|O, V, C)


 ∑

A,O−1

P (A)P (V |A)P (C|V, A)P (O−1|A)P (O|O−1)


 .

The summation in the above expression represents the prediction; its multipli-
cation with the first term, P (Z|O, V, C), gives the Bayesian filter estimation.

The global filtering equation (eqn. 8) can actually be separated into three
stages. The first stage computes the prediction of the probability measure for
each occupancy and velocity:
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α(occ, vk) =
∑

A,O−1

P (A)P (vk|A)P (C|V, A)P (O−1|A)P (occ|O−1),

α(emp, vk) =
∑

A,O−1

P (A)P (vk|A)P (C|V, A)P (O−1|A)P (emp|O−1).

(9)

Equation 9 is performed for each cell in the grid and for each velocity.
Prediction for each cell is calculated by taking into account the velocity prob-
ability and occupation probability of the set of antecedent cells, which are the
cells with a velocity that will propagate itself in a certain time step to the
current cell.

With the prediction of the grid occupancy and its velocities, the second
stage consists of multiplying by the observation sensor model, which gives the
unnormalized Bayesian filter estimation on occupation and velocity distribu-
tion:

β(occ, vk) = P (Z|occ, vk)α(occ, vk),

β(emp, vk) = P (Z|emp, vk)α(emp, vk).

Similarly to the prediction stage, these equations are performed for each
cell occupancy and each velocity. The marginalization over the occupancy
values gives the likelihood of a certain velocity:

l(vk) = β(occ, vk) + β(emp, vk).

Finally, the normalized Bayesian filter estimation on the probability of
occupancy for a cell C with a velocity vk is obtained by:

P (occ, vk|Z, C) =
β(occ, vk)∑

vk
l(vk)

. (10)

The occupancy distribution in a cell can be obtained by the marginaliza-
tion over the velocities and the velocity distribution by the marginalization
over the occupancy values:

P (O|Z, C) =
∑

V

P (V, O|Z, C), (11)

P (V |Z, C) =
∑

O

P (V, O|Z, C). (12)

3 Applications

The goal of this section is to show some examples of applications using BOF5.
Two different experiments are shown. The first is on estimating collision dan-
5 Different videos of these applications may be found at the follow-

ing URLs: http://www.bayesian-programming.org/spip.php?article143,
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ger, which is in turn used for collision avoidance. The 4D BOF was used for
the first experiment. The second is on object-level human tracking using a
camera and was based on the 2D BOF.

3.1 Estimating danger

The experiments on danger estimation and collision avoidance were conducted
using the robotic platform CyCab. CyCab is an autonomous robot fashioned
from a golf cab. The aim of this experiment is to calculate the danger of
collision with dynamic objects estimated by the BOF, followed by a collision
avoidance manoeuvre.

The cell state can be used to encode some relevant properties of the robot
environment (e.g. occupancy, observability and reachability). In the previous
sections, only the occupancy characteristic was stored; in this application, the
danger property is encoded as well. This will lead to vehicle control by taking
occupancy and danger into account.

 0

 2

 4

 6

 8

 10

-4-2 0 2 4

Fig. 7. Cells with high danger probabilities. For each position, arrows model the
speed.

For each cell of the grid, the probability that this cell is hazardous is
estimated; this estimation is done independently of the occupancy probability.
Let P (Dk

C |Ck) be the probability distribution associated with the cell Ck

http://www.bayesian-programming.org/spip.php?article144 and
http://www.bayesian-programming.org/spip.php?article145
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Cycab

pedestrian

parked car

Fig. 8. Scenario description: the pedestrian is temporarily hidden by a parked car.

of the vehicle environment, where Dk
X is a boolean variable that indicates

whether this cell is hazardous or not.

Fig. 9. Snapshots of the experimental pedestrian avoidance scenario (see Exten-
sion 1 for the video).

Basically, both “time to collision” and “safe travelling distance” may be
seen as two complementary relevant criteria to be used for estimating the
danger to associate with a given cell. In our current implementation, we are
using the following related criteria, which can easily be computed: (1) the
closest point of approach (CPA), which defines the relative positions of the
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pair (vehicle, obstacle) corresponding to the “closest admissible distance” (i.e.
safe distance); (2) the time to the closest point of approach (TCPA), which is
the time required to reach the CPA; and (3) the distance at the closest point
of approach (DCPA), which is the distance separating the vehicle and the
obstacle when the CPA has been reached. In some sense, these criteria give
an assessment of the future relative trajectories of any pair of environment
components of the types (vehicle, potential obstacle).

These criteria are evaluated for each cell at each time step k, by taking
into account the dynamic characteristics of both the vehicle and the poten-
tial obstacles. In practice, both TCPA and DCPA are estimated under the
hypothesis that the related velocities at time k remain constant; this compu-
tation can easily be done using some classical geometrical algorithms (see for
instance: http://softsurfer.com/algorithms.htm).

The goal is to estimate the “danger probability” associated with each cell
of the grid (or in other terms, the probability for each cell Ck that a collision
will occur in the near future between the CyCab and a potential obstacle in
Ck). Because each cell Ck represents a pair (position, velocity) defined relative
to the CyCab, it is easy to compute the TCPA and DCPA factors, and in a
second step to estimate the associated danger probability using given intuitive
user knowledge. In the current implementation, this knowledge roughly states
that when the DCPA and the TCPA decrease, the related probability of
collision increases. In future versions of the system, such knowledge can be
acquired with a learning phase.

Figure 7 shows the cells for which the danger probability is greater than
0.7 in our CyCab application; in the figure, each cell is represented by an
arrow: its tail indicates the position, and its length and direction indicate
the associated relative speed. This figure exhibits quite reasonable data: cells
located near the front of the CyCab are considered as having a high danger
probability for any relative velocity (the arrows are pointing in all directions);
the other cells having a high “oriented” danger probability are those having a
relative speed vector oriented towards the CyCab. Because we only consider
relative speeds when constructing the danger grid, the content of this grid
does not depend on the actual CyCab velocity.

3.2 Collision avoidance behaviours

This section describes the control of the longitudinal speed of the autonomous
vehicle (the CyCab), for avoiding partially observed moving obstacles having
a high probability of collision with the vehicle. The implemented behaviour
consists of braking or accelerating to adapt the velocity of the vehicle to the
level of risk estimated by the system.

As mentioned earlier, this behaviour derives from the combination of two
criteria defined on the grid: the danger probability associated with each cell
Ck of the grid (characterized by the distribution P (Dk

C |Ck)), and the oc-
cupancy probability of this cell (characterized by the posterior distribution
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P (Ek
C | Zk Ck)). In practice, the most hazardous cell that is considered as

probably occupied is searched for; this can be done using the following equa-
tion:

max
Ck

{P (Dk
C | Ck), with P (Ek

C | Ck) > 0.5}.

Then the longitudinal acceleration/deceleration to apply to the CyCab con-
troller can be decided according to the estimated level of danger and to the
actual velocity of the CyCab.

Figure 8 depicts the scenario used for experimentally validating the previ-
ous collision avoidance behaviour on the CyCab. In this scenario, the CyCab
is moving forward, the pedestrian is moving from right to left, and for a small
period of time, the pedestrian is temporarily hidden by a parked car.

Figure 9 shows some snapshots of the experiment (see also Extension 1,
which shows the entire video): the CyCab brakes to avoid the pedestrian, then
it accelerates as soon as the pedestrian has crossed the road.
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Fig. 10. Velocity of the CyCab during the experiment involving a pedestrian
occlusion.

Figure 10 shows the velocity of the CyCab during this experiment. From
t = 0 s to t = 7 s, the CyCab accelerates, up to 2 m/s. At t = 7 s, the
pedestrian is detected; as a collision could possibly occur, the CyCab deceler-
ates. From t = 8.2 s to t = 9.4 s, the pedestrian is hidden by the parked car;
thanks to the BOF results, the hazardous cells of the grid are still consid-
ered as probably occupied; in consequence the CyCab still brakes. When the
pedestrian reappears at t = 9.4 s, there is no longer a risk of collision, and
the CyCab can accelerate.

3.3 Object-level tracking

Experiments were conducted based on video sequence data from the European
project CAVIAR. The selected video sequence presented in this paper is taken
from the interior of a shopping centre in Portugal. An example is shown in
the first column of Fig. 11. The data sequence from CAVIAR, which is freely
available from the Web6, gives annotated ground truths for the detection of

6 http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
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the pedestrians. Another data set is also available, taken from the entry hall
of INRIA Rhône Alpes.

Based on the given data, the uncertainties, false positives and occlusions
have been simulated. The simulated data are then used as observations for
the BOF. The BOF is a representation of the planar ground of the shopping
centre within the field of view of the camera. With the noise and occlusion
by simulated bounding boxes that represent human detections, a Gaussian
sensor model is used, which gives a Gaussian occupation uncertainty (in the
BOF grids) of the lower edge of the image bounding box after being projected
onto the ground plane.

Recalling that there is no notion of objects in the BOF, object hypotheses
are obtained from clustering, and these object hypotheses are used as obser-
vations on a standard tracking module based on the joint probabilistic data
association (JPDA).

Previous experiments based on the 4D BOF technique (Section 3.1) relied
on the assumption of a given constant velocity, as the problem of velocity es-
timation in this context has not been addressed. In particular, the assumption
that there could only be one object with one velocity in each cell was not part
of the previous model. In this current experiment, experiments were conducted
based on the 2D BOF model, which gives both the probability distribution
on the occupation and the probability distribution on the velocity.

The tracker is implemented in the C++ programming language without
optimizations. Experiments were performed on a laptop computer with an
Intel Centrino processor with a clock speed of 1.6 GHz. It currently tracks
with an average frame rate of 9.27 frames/s. The computation time required
for the BOF, with a grid resolution of 80 cells by 80 cells, takes an average
of 0.05 s. The BOF represents the ground plane of the image sequence taken
from a stationary camera and represents a dimension of 30 m by 20 m.

The results in Fig. 11 are shown in time sequence. The first column of
the figures shows the input image with the bounding boxes, each indicating
the detection of a human after the simulation of uncertainties and occlusions.
The second column shows the corresponding visualization of the Bayesian
occupancy filter. The colour intensity of the cells represents the occupation
probability of the cell. The little arrows in each cell give the average velocity
calculated from the velocity distribution of the cell. The third column gives
the tracker output given by a JPDA tracker. The numbers in the diagrams
indicate the track numbers. The sensor model used is a 2D planar Gaussian
model projected onto the ground. The mean is given by the centre of the lower
edge of the bounding box.

The characteristics of the BOF can be seen from Fig. 11. The diminished
occupancy of a person further away from the camera is seen from the data in
Figs. 11(b) and 11(e). This is caused by the occasional instability in human
detection. The occupancy in the BOF grids for the missed detection dimin-
ishes gradually over time rather than disappearing immediately as it does
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 11. Data sequence from project CAVIAR with simulated inputs. The first
column displays camera image input with human detection, the second column dis-
plays the BOF grid output, and the third column displays tracking output. Numbers
indicate track numbers.
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with classical occupation grids. This mechanism provides a form of temporal
smoothing to handle unstable detection.

A more challenging occlusion sequence is shown in the last three rows
of Fig. 11. Because of a relatively longer period of occlusion, the occupancy
probability of the occluded person becomes weak. However, with an appro-
priately designed tracker, such problems can be handled at the object tracker
level. The tracker manages to track the occlusion at the object tracker level
as shown in Fig. 11(i)(l)(o).

4 Conclusion

In this chapter, we introduced the Bayesian occupation filter, its different
formulations and several applications.

• The BOF is based on a gridded decomposition of the environment. Two
variants were described, a 4D BOF in which each grid cell represents the
occupation probability distribution at a certain position with a certain
velocity, and a 2D BOF in which the grid represents the occupation prob-
ability distribution and each grid is associated with a velocity probability
distribution of the cell occupancy.

• The estimation of cell occupancy and velocity values is based on the
Bayesian filtering framework. Bayesian filtering consists of two main steps,
the prediction step and the estimation step.

• The 4D BOF allows representation of several “objects”, each with a distinct
velocity. There is also no inference on the velocity for the 4D BOF. In
contrast, the 2D BOF implicitly imposes constraints in having only a single
“object” occupying a cell, and there is inference on velocities for the 2D
BOF framework. Another advantage of the 2D BOF framework over the
4D BOF is the reduction in computational complexity as a consequence
of the reduction in dimension.

• There is no concept of objects in the BOF. A key advantage of this is
“avoiding” the data association problem by resolving it as late as possible
in the pipeline. Furthermore, the concept of objects is not obligatory in
all applications.

• However, in applications that require object-based representation, object
hypotheses can be extracted from the BOF grids using methods such as
clustering.

• A grid-based representation of the environment imposes no model on the
objects found in the environment, and sensor fusion in the grid framework
can be conveniently and easily performed.

We would like to acknowledge the European project carsense: IST-1999-
12224 “Sensing of Car Environment at Low Speed Driving”, Carsense [January
2000–December 2002] for the work on the 4D BOF [Coué et al., 2006].
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