9-simplex: Difference between revisions
m →References: fix author's name, replaced: Goodman-Strass → Goodman-Strauss |
|||
(43 intermediate revisions by 18 users not shown) | |||
Line 1: | Line 1: | ||
{| class="wikitable" align="right" style="margin-left:10px" width="250" |
{| class="wikitable" align="right" style="margin-left:10px" width="250" |
||
!bgcolor=#e7dcc3 colspan=2|Regular decayotton<BR>9- |
!bgcolor=#e7dcc3 colspan=2|Regular decayotton<BR>(9-simplex) |
||
|- |
|- |
||
|bgcolor=#ffffff align=center colspan=2|[[Image: |
|bgcolor=#ffffff align=center colspan=2|[[Image:9-simplex_t0.svg|280px]]<BR>[[Orthogonal projection]]<BR>inside [[Petrie polygon]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|Type||Regular [[9-polytope]] |
|bgcolor=#e7dcc3|Type||Regular [[9-polytope]] |
||
Line 8: | Line 8: | ||
|bgcolor=#e7dcc3|Family||[[simplex]] |
|bgcolor=#e7dcc3|Family||[[simplex]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3| |
|bgcolor=#e7dcc3|[[Schläfli symbol]]|| {3,3,3,3,3,3,3,3} |
||
|- |
|- |
||
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]||{{CDD|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}} |
|||
⚫ | |||
|- |
|- |
||
|bgcolor=#e7dcc3| |
|bgcolor=#e7dcc3|8-faces||10 [[8-simplex]][[Image:8-simplex_t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3| |
|bgcolor=#e7dcc3|7-faces||45 [[7-simplex]][[Image:7-simplex_t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3| |
|bgcolor=#e7dcc3|6-faces||120 [[6-simplex]][[Image:6-simplex_t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3| |
|bgcolor=#e7dcc3|5-faces||210 [[5-simplex]][[Image:5-simplex_t0.svg|25px]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3| |
|bgcolor=#e7dcc3|4-faces||252 [[5-cell]][[Image:4-simplex_t0.svg|25px]] |
||
⚫ | |||
|bgcolor=#e7dcc3|Cells||210 [[tetrahedron]][[Image:3-simplex_t0.svg|25px]] |
|||
⚫ | |||
⚫ | |||
|- |
|- |
||
|bgcolor=#e7dcc3|Edges||45 |
|bgcolor=#e7dcc3|Edges||45 |
||
Line 29: | Line 33: | ||
|- |
|- |
||
|bgcolor=#e7dcc3|[[Petrie polygon]]||[[decagon]] |
|bgcolor=#e7dcc3|[[Petrie polygon]]||[[decagon]] |
||
⚫ | |||
|bgcolor=#e7dcc3|[[Schläfli symbol]]|| {3,3,3,3,3,3,3,3} |
|||
⚫ | |||
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]||[[Image:CDW_ring.png]][[Image:CDW_3b.png]][[Image:CDW_dot.png]][[Image:CDW_3b.png]][[Image:CDW_dot.png]][[Image:CDW_3b.png]][[Image:CDW_dot.png]][[Image:CDW_3b.png]][[Image:CDW_dot.png]][[Image:CDW_3b.png]][[Image:CDW_dot.png]][[Image:CDW_3b.png]][[Image:CDW_dot.png]][[Image:CDW_3b.png]][[Image:CDW_dot.png]][[Image:CDW_3b.png]][[Image:CDW_dot.png]] |
|||
|- |
|- |
||
|bgcolor=#e7dcc3|[[Coxeter group]]|| A<sub>9</sub> [3,3,3,3,3,3,3,3] |
|bgcolor=#e7dcc3|[[Coxeter group]]|| A<sub>9</sub> [3,3,3,3,3,3,3,3] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|Dual||Self-dual |
|bgcolor=#e7dcc3|Dual||[[Self-dual polytope|Self-dual]] |
||
|- |
|- |
||
|bgcolor=#e7dcc3|Properties||[[ |
|bgcolor=#e7dcc3|Properties||[[Convex polytope|convex]] |
||
|} |
|} |
||
In [[geometry]], a 9-[[simplex]] is a self-dual [[Regular polytope|regular]] [[9-polytope]]. It has 10 [[vertex (geometry)|vertices]], 45 [[Edge (geometry)|edge]]s, 120 triangle [[Face (geometry)|faces]], 210 tetrahedral [[Cell (mathematics)|cells]], 252 [[5-cell]] 4-faces, 210 [[5-simplex]] 5-faces, 120 [[6-simplex]] 6-faces, 45 [[7-simplex]] 7-faces, and 10 [[8-simplex]] 8-faces. Its [[dihedral angle]] is cos<sup>−1</sup>(1/9), or approximately 83.62°. |
|||
The [[5-polytope#A note on generality of terms for n-polytopes and elements|name]] ''decayotton'' is derived from ''deca'' for ten [[Facet (mathematics)|facets]] in [[Greek language|Greek]] and [[ |
It can also be called a '''decayotton''', or '''deca-9-tope''', as a 10-[[facet (geometry)|facetted]] polytope in 9-dimensions.. The [[5-polytope#A note on generality of terms for n-polytopes and elements|name]] ''decayotton'' is derived from ''deca'' for ten [[Facet (mathematics)|facets]] in [[Greek language|Greek]] and [[yotta]] (a variation of "oct" for eight), having 8-dimensional facets, and ''-on''. |
||
== |
== Coordinates == |
||
* Other regular [[9-polytope]]s: |
|||
The [[Cartesian coordinate]]s of the vertices of an origin-centered regular decayotton having edge length 2 are: |
|||
** [[Enneract]] - {4,3,3,3,3,3,3,3} |
|||
** [[Enneacross]] - {3,3,3,3,3,3,3,4} |
|||
:<math>\left(\sqrt{1/45},\ 1/6,\ \sqrt{1/28},\ \sqrt{1/21},\ \sqrt{1/15},\ \sqrt{1/10},\ \sqrt{1/6},\ \sqrt{1/3},\ \pm1\right)</math> |
|||
* Others in the [[simplex]] family |
|||
:<math>\left(\sqrt{1/45},\ 1/6,\ \sqrt{1/28},\ \sqrt{1/21},\ \sqrt{1/15},\ \sqrt{1/10},\ \sqrt{1/6},\ -2\sqrt{1/3},\ 0\right)</math> |
|||
** [[Tetrahedron]] - {3,3} |
|||
:<math>\left(\sqrt{1/45},\ 1/6,\ \sqrt{1/28},\ \sqrt{1/21},\ \sqrt{1/15},\ \sqrt{1/10},\ -\sqrt{3/2},\ 0,\ 0\right)</math> |
|||
** [[5-cell]] - {3,3,3} |
|||
:<math>\left(\sqrt{1/45},\ 1/6,\ \sqrt{1/28},\ \sqrt{1/21},\ \sqrt{1/15},\ -2\sqrt{2/5},\ 0,\ 0,\ 0\right)</math> |
|||
** [[5-simplex]] - {3,3,3,3} |
|||
:<math>\left(\sqrt{1/45},\ 1/6,\ \sqrt{1/28},\ \sqrt{1/21},\ -\sqrt{5/3},\ 0,\ 0,\ 0,\ 0\right)</math> |
|||
** [[6-simplex]] - {3,3,3,3,3} |
|||
:<math>\left(\sqrt{1/45},\ 1/6,\ \sqrt{1/28},\ -\sqrt{12/7},\ 0,\ 0,\ 0,\ 0,\ 0\right)</math> |
|||
** [[7-simplex]] - {3,3,3,3,3,3} |
|||
:<math>\left(\sqrt{1/45},\ 1/6,\ -\sqrt{7/4},\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)</math> |
|||
** [[8-simplex]] - {3,3,3,3,3,3,3} |
|||
:<math>\left(\sqrt{1/45},\ -4/3,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)</math> |
|||
** ''9-simplex'' - {3,3,3,3,3,3,3,3} |
|||
:<math>\left(-3\sqrt{1/5},\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)</math> |
|||
** [[10-simplex]] - {3,3,3,3,3,3,3,3,3} |
|||
More simply, the vertices of the ''9-simplex'' can be positioned in 10-space as permutations of (0,0,0,0,0,0,0,0,0,1). These are the vertices of one [[Facet (geometry)|Facet]] of the [[10-orthoplex]]. |
|||
== Images == |
|||
{{A9 Coxeter plane graphs|t0|100}} |
|||
== References== |
|||
* [[Harold Scott MacDonald Coxeter|Coxeter, H.S.M.]]: |
|||
** {{cite book |title-link=Regular Polytopes (book) |author-mask=1 |first=H.S.M. |last=Coxeter |chapter=Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5) |title=Regular Polytopes |publisher=Dover |edition=3rd |year=1973 |isbn=0-486-61480-8 |pages=296 }} |
|||
** {{cite book |editor-first=F. Arthur |editor-last=Sherk |editor2-first=Peter |editor2-last=McMullen |editor3-first=Anthony C. |editor3-last=Thompson |editor4-first=Asia Ivic |editor4-last=Weiss |title=Kaleidoscopes: Selected Writings of H.S.M. Coxeter |publisher=Wiley |year=1995 |isbn=978-0-471-01003-6 |url=https://books.google.com/books?id=fUm5Mwfx8rAC&pg=PP1}} |
|||
*** (Paper 22) {{cite journal |author-mask=1 |first=H.S.M. |last=Coxeter |title=Regular and Semi Regular Polytopes I |journal=Math. Zeit. |volume=46 |pages=380–407 |year=1940 |doi=10.1007/BF01181449 |s2cid=186237114 |url=https://books.google.com/books?id=fUm5Mwfx8rAC&pg=PA251 }} |
|||
*** (Paper 23) {{cite journal |author-mask=1 |first=H.S.M. |last=Coxeter |title=Regular and Semi-Regular Polytopes II |journal=Math. Zeit. |volume=188 |pages=559–591 |year=1985 |issue=4 |doi=10.1007/BF01161657 |s2cid=120429557 |url=https://books.google.com/books?id=fUm5Mwfx8rAC&pg=PA279}} |
|||
*** (Paper 24) {{cite journal |author-mask=1 |first=H.S.M. |last=Coxeter |title=Regular and Semi-Regular Polytopes III |journal=Math. Zeit. |volume=200 |pages=3–45 |year=1988 |doi=10.1007/BF01161745 |s2cid=186237142 |url=https://books.google.com/books?id=fUm5Mwfx8rAC&pg=PA313}} |
|||
* {{cite book |author-link=John Horton Conway |first1=John H. |last1=Conway |first2=Heidi |last2=Burgiel |first3=Chaim |last3=Goodman-Strauss |chapter=26. Hemicubes: 1<sub>n1</sub> |title=The Symmetries of Things |year=2008 |isbn=978-1-56881-220-5 |pages=409 }} |
|||
* {{citation |author-link=Norman Johnson (mathematician) |first=Norman |last=Johnson |title=Uniform Polytopes |date=1991 |type=Manuscript }} |
|||
** {{cite thesis |first=N.W. |last=Johnson |title=The Theory of Uniform Polytopes and Honeycombs |date=1966 |type=PhD |publisher=University of Toronto |url=https://search.library.utoronto.ca/details?402790 |oclc=258527038}} |
|||
* {{KlitzingPolytopes|polyyotta.htm|9D uniform polytopes (polyyotta)|x3o3o3o3o3o3o3o3o — day}} |
|||
== External links == |
== External links == |
||
* |
* {{PolyCell | urlname = glossary.html| title = Glossary for hyperspace}} |
||
* [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions] |
* [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions] |
||
* [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary] |
* [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary] |
||
[[Category:9-polytopes]] |
[[Category:9-polytopes]] |
||
{{Polytopes}} |
|||
{{Geometry-stub}} |
Latest revision as of 22:07, 12 December 2023
Regular decayotton (9-simplex) | |
---|---|
Orthogonal projection inside Petrie polygon | |
Type | Regular 9-polytope |
Family | simplex |
Schläfli symbol | {3,3,3,3,3,3,3,3} |
Coxeter-Dynkin diagram | |
8-faces | 10 8-simplex |
7-faces | 45 7-simplex |
6-faces | 120 6-simplex |
5-faces | 210 5-simplex |
4-faces | 252 5-cell |
Cells | 210 tetrahedron |
Faces | 120 triangle |
Edges | 45 |
Vertices | 10 |
Vertex figure | 8-simplex |
Petrie polygon | decagon |
Coxeter group | A9 [3,3,3,3,3,3,3,3] |
Dual | Self-dual |
Properties | convex |
In geometry, a 9-simplex is a self-dual regular 9-polytope. It has 10 vertices, 45 edges, 120 triangle faces, 210 tetrahedral cells, 252 5-cell 4-faces, 210 5-simplex 5-faces, 120 6-simplex 6-faces, 45 7-simplex 7-faces, and 10 8-simplex 8-faces. Its dihedral angle is cos−1(1/9), or approximately 83.62°.
It can also be called a decayotton, or deca-9-tope, as a 10-facetted polytope in 9-dimensions.. The name decayotton is derived from deca for ten facets in Greek and yotta (a variation of "oct" for eight), having 8-dimensional facets, and -on.
Coordinates
[edit]The Cartesian coordinates of the vertices of an origin-centered regular decayotton having edge length 2 are:
More simply, the vertices of the 9-simplex can be positioned in 10-space as permutations of (0,0,0,0,0,0,0,0,0,1). These are the vertices of one Facet of the 10-orthoplex.
Images
[edit]Ak Coxeter plane | A9 | A8 | A7 | A6 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | [10] | [9] | [8] | [7] |
Ak Coxeter plane | A5 | A4 | A3 | A2 |
Graph | ||||
Dihedral symmetry | [6] | [5] | [4] | [3] |
References
[edit]- Coxeter, H.S.M.:
- — (1973). "Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)". Regular Polytopes (3rd ed.). Dover. p. 296. ISBN 0-486-61480-8.
- Sherk, F. Arthur; McMullen, Peter; Thompson, Anthony C.; Weiss, Asia Ivic, eds. (1995). Kaleidoscopes: Selected Writings of H.S.M. Coxeter. Wiley. ISBN 978-0-471-01003-6.
- (Paper 22) — (1940). "Regular and Semi Regular Polytopes I". Math. Zeit. 46: 380–407. doi:10.1007/BF01181449. S2CID 186237114.
- (Paper 23) — (1985). "Regular and Semi-Regular Polytopes II". Math. Zeit. 188 (4): 559–591. doi:10.1007/BF01161657. S2CID 120429557.
- (Paper 24) — (1988). "Regular and Semi-Regular Polytopes III". Math. Zeit. 200: 3–45. doi:10.1007/BF01161745. S2CID 186237142.
- Conway, John H.; Burgiel, Heidi; Goodman-Strauss, Chaim (2008). "26. Hemicubes: 1n1". The Symmetries of Things. p. 409. ISBN 978-1-56881-220-5.
- Johnson, Norman (1991), Uniform Polytopes (Manuscript)
- Johnson, N.W. (1966). The Theory of Uniform Polytopes and Honeycombs (PhD). University of Toronto. OCLC 258527038.
- Klitzing, Richard. "9D uniform polytopes (polyyotta) x3o3o3o3o3o3o3o3o — day".
External links
[edit]- Glossary for hyperspace, George Olshevsky.
- Polytopes of Various Dimensions
- Multi-dimensional Glossary