Jump to content

Anthraquinones: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
 
(43 intermediate revisions by 24 users not shown)
Line 1: Line 1:
{{Short description|Type of compounds}}
''For the parent molecule '''9,10-antraquinone''', see [[anthraquinone|here]]''
''For the parent molecule '''9,10-anthraquinone''', see [[anthraquinone]]''
[[File:Aloe emodin.svg|thumb|right|Chemical structure of [[Aloe emodin]].]]
[[File:Carmine.svg|thumb|right|Structure proposed for the pigment carmine.]]
'''Anthraquinones''' (also known as '''anthraquinonoids''') are a class of naturally occurring phenolic compounds based on the [[9,10-anthraquinone]] skeleton.
'''Anthraquinones''' (also known as '''anthraquinonoids''') are a class of naturally occurring phenolic compounds based on the [[9,10-anthraquinone]] skeleton. They are widely used industrially and occur naturally.


The name "anthraquinone" was first used by German chemists [[Carl Graebe]] and [[Carl Theodore Liebermann]] in a 1868 publication describing the [[chemical synthesis]] of the red dye [[alizarin]] from [[anthracene]], a component of [[coal tar]]. This discovery led to the [[chemical industry|industrial]] production of alizarin and the impetus for further research on anthraquinone chemistry.<ref name="Phillips 1929">{{cite journal |last=Phillips |first=Max |title=The chemistry of anthraquinone |journal=Chemical Reviews |volume=6 |issue=1 |year=1929 |doi=10.1021/cr60021a007 |pages=157–174}}</ref>
== Biosynthesis ==
A [[type II polyketide synthase]] is responsible for anthraquinone biosynthesis in the bacterium ''[[Photorhabdus luminescens]]''.<ref>{{Cite journal|pmid=17722122|year=2007|last1=Brachmann|first1=AO|last2=Joyce|first2=SA|last3=Jenke-Kodama|first3=H|last4=Schwär|first4=G|last5=Clarke|first5=DJ|last6=Bode|first6=HB|title=A type II polyketide synthase is responsible for anthraquinone biosynthesis in Photorhabdus luminescens|volume=8|issue=14|pages=1721–8|doi=10.1002/cbic.200700300|journal=Chembiochem : a European journal of chemical biology}}</ref> [[Chorismate]], formed by [[isochorismate synthase]] in the shikimate pathway, is an important precursor of anthraquinones in ''[[Morinda citrifolia]]''. <ref>{{Cite journal|pmid=12872482|year=2003|last1=Stalman|first1=M|last2=Koskamp|first2=AM|last3=Luderer|first3=R|last4=Vernooy|first4=JH|last5=Wind|first5=JC|last6=Wullems|first6=GJ|last7=Croes|first7=AF|title=Regulation of anthraquinone biosynthesis in cell cultures of Morinda citrifolia|volume=160|issue=6|pages=607–14|doi=10.1078/0176-1617-00773|journal=Journal of plant physiology}}</ref>


== Test for anthraquinones in natural extracts ==
== Occurrence in plants ==
:[[Image:Caloplaca thallincola.jpg|thumb|left|The yellow color of certain lichens, particularly in the family [[Teloschistaceae]] (here ''[[Variospora thallincola]]''), is due to the presence of anthraquinones.<ref name="Llewellyn et al. 2023">{{cite journal |last1=Llewellyn |first1=Theo |last2=Nowell |first2=Reuben W. |last3=Aptroot |first3=Andre | last4=Temina |first4=Marina |last5=Prescott |first5=Thomas A.K. |last6=Barraclough |first6=Timothy G. |last7=Gaya |first7=Ester |title=Metagenomics shines light on the evolution of "sunscreen" pigment metabolism in the Teloschistales (lichen-forming Ascomycota) |journal=Genome Biology and Evolution |volume=15 |issue=2 |year=2023 |doi=10.1093/gbe/evad002 |page=evad002 |pmid=36634008 |pmc=9907504}}</ref>]]
0.5g of plant extract is shaken with 10 ml of benzene and filtered. 5ml of 10% ammonia is added to the filtrate. The mixture is shaken and the presence of pink, red or violet colour indicates the presence of anthraquinones.<ref>{{Cite journal|title=Antibacterial activity of leave extracts of Nymphaea lotus (Nymphaeaceae) on Methicillin resistant Staphylococcus aureus (MRSA) and Vancomycin resistant Staphylococcus aureus (VRSA) isolated from clinical samples|author= Akinjogunla OJ, Yah CS, Eghafona NO and Ogbemudia FO|journal= Annals of Biological Research|year= 2010|volume= 1 |issue=2| pages= 174–184}}</ref>
Natural [[pigment]]s that are derivatives of anthraquinone are found, inter alia, in aloe latex, [[senna (plant)|senna]], [[rhubarb]], and [[rhamnus purshiana|cascara buckthorn]], [[fungi]], [[lichen]]s, and some [[insect]]s. A [[type II polyketide synthase]] is responsible for anthraquinone biosynthesis in the bacterium ''[[Photorhabdus luminescens]]''.<ref>{{Cite journal|pmid=17722122|year=2007|last1=Brachmann|first1=AO|last2=Joyce|first2=SA|last3=Jenke-Kodama|first3=H|last4=Schwär|first4=G|last5=Clarke|first5=DJ|last6=Bode|first6=HB|title=A type II polyketide synthase is responsible for anthraquinone biosynthesis in ''Photorhabdus luminescens''|volume=8|issue=14|pages=1721–8|doi=10.1002/cbic.200700300|journal=ChemBioChem}}</ref> [[Chorismate]], formed by [[isochorismate synthase]] in the shikimate pathway, is a precursor of anthraquinones in ''[[Morinda citrifolia]]''.<ref>{{Cite journal|pmid=12872482|year=2003|last1=Stalman|first1=M|last2=Koskamp|first2=AM|last3=Luderer|first3=R|last4=Vernooy|first4=JH|last5=Wind|first5=JC|last6=Wullems|first6=GJ|last7=Croes|first7=AF|title=Regulation of anthraquinone biosynthesis in cell cultures of ''Morinda citrifolia''|volume=160|issue=6|pages=607–14|doi=10.1078/0176-1617-00773|journal=Journal of Plant Physiology}}</ref>
Tests for anthraquinones in natural extracts have been established.<ref>{{Cite journal|title=Antibacterial activity of leave extracts of ''Nymphaea lotus'' (Nymphaeaceae) on Methicillin resistant ''Staphylococcus aureus'' (MRSA) and Vancomycin resistant ''Staphylococcus aureus'' (VRSA) isolated from clinical samples|vauthors=Akinjogunla OJ, Yah CS, Eghafona NO, Ogbemudia FO |journal= Annals of Biological Research|year= 2010|volume= 1 |issue=2| pages= 174–184}}</ref>
*[[Senna glycoside]]s from the [[Senna (plant)|senna]].
*Frangulin in [[Frangula alnus]].
*[[Aloe-emodin]] in [[aloe]] resin.
*[[Carmine]], a bright-red pigment derived from insects.<ref name=Dapson2007>{{cite journal |last1=Dapson |first1=R. W. |last2=Frank |first2=M. |last3=Penney |first3=D. P. |last4=Kiernan |first4=J. A. |title=Revised procedures for the certification of carmine (C.I. 75470, Natural red 4) as a biological stain |journal=Biotechnic & Histochemistry |volume=82 |issue=1 |pages=13–15 |year=2007 |pmid=17510809 |doi=10.1080/10520290701207364 }}</ref>
*[[Hypericin]] and [[fagopyrin]] are naphthodianthrones, anthraquinone-derivatives.


== Derivatives ==
== Applications ==
===In the production of hydrogen peroxide===
[[Hypericin]] and [[fagopyrin]] are naphthodianthrones, anthraquinone-derivatives.
{{Main|Anthraquinone process}}
A large industrial application of anthraquinones is for the production of [[hydrogen peroxide]]. [[2-Ethyl-9,10-anthraquinone]] or a related alkyl derivative is used, rather than anthraquinone itself.<ref>{{ cite encyclopedia |author1= Goor, G. |author2=Glenneberg, J. |author3=Jacobi, S. | chapter = Hydrogen Peroxide | encyclopedia = Ullmann's Encyclopedia of Industrial Chemistry | year = 2007 | publisher = Wiley-VCH | location = Weinheim | doi = 10.1002/14356007.a13_443.pub2 |isbn=978-3527306732 }}</ref>
[[File:Riedl-Pfleiderer process.svg|350px|right|thumb|[[Catalytic cycle]] for the [[anthraquinone process]] to produce hydrogen peroxide.]]
Millions of tons of hydrogen peroxide are manufactured by the [[anthraquinone process]].<ref name="Antra">{{cite journal
| last1=Campos-Martin |first1=Jose M. |last2=Blanco-Brieva |first2=Gema |last3=Fierro |first3=Jose L. G.
| date= 2006
| title = Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process
| journal = Angewandte Chemie International Edition
| doi =10.1002/anie.200503779
| pmid = 17039551
| volume = 45
| issue =42
| pages = 6962–6984
}}</ref>

===Pulping===
[[Sodium 2-anthraquinonesulfonate]] (AMS) is a water-soluble anthraquinone derivative that was the first anthraquinone derivative discovered to have a catalytic effect in the alkaline pulping processes.<ref>{{ cite web | url = http://smartech.gatech.edu/bitstream/1853/673/1/3370_001_071978.pdf | title = Anthraquinone / Alkali Pulping - A Literature Review | volume = Report 1 | work = Project 3370 | date = 1978-07-05 | publisher = The Institute of Paper Chemistry | location = Appleton, Wisconsin }}</ref>

===Dyestuff precursor===
{{Main|Anthraquinone dyes}}
The 9,10-anthraquinone skeleton occurs in many dyes, such as [[alizarin]].<ref name=UllmannDye>{{ Ullmann | last1= Bien|first1=H.-S.| last2=Stawitz |first2=J.| last3= Wunderlich|first3=K. | title = Anthraquinone Dyes and Intermediates | doi = 10.1002/14356007.a02_355|year=2005 }}</ref> Important derivatives of 9,10-anthraquinone are 1-nitroanthraquinone, anthraquinone-1-sulfonic acid, and the dinitroanthraquinone.<ref name=Ullmann>{{ Ullmann | author = Vogel, A. | title = Anthraquinone | doi = 10.1002/14356007.a02_347 }}</ref>
[[Image:AnthDyes.png|thumb|center|750px|Selection of [[anthraquinone dyes]]. From the left: C.I.Acid Blue 43
an "acid dye" for wool (also called "Acilan Saphirol SE"), C.I. Vat Violet 1, which is applied by transfer printing using sublimation, a blue colorant commonly used in gasoline, and C.I. [[Disperse Red 60]].]]

===Medicine===

Derivatives of 9,10-anthraquinone include drugs such as the anthracenediones and the [[anthracycline]] family of [[chemotherapy]] drugs. The latter drugs are derived from the bacterium ''[[Streptomyces peucetius]]'', discovered in a soil sample near the [[Adriatic Sea]]. Drugs in the anthraquinone family include the prototypical [[daunorubicin]], [[doxorubicin]], [[mitoxantrone]], [[losoxantrone]], and [[pixantrone]]. Most of these drugs, with the notable exception of pixantrone, are extremely cardiotoxic, causing irreversible [[cardiomyopathy]], which can limit their practical usefulness in [[cancer]] treatment.<ref name=Ullmann/>

The anthracenediones also include
*[[Antimalarial]]s such as [[rufigallol]]
*DNA dyes / nuclear counterstains such as DRAQ5, DRAQ7 and CyTRAK Orange for [[flow cytometry]] and [[Fluorescence microscope|fluorescence microscopy]].
*Anthraquinone derivatives: [[Rhein (molecule)|rhein]], emodin, aloe emodin, [[parietin]] (physcion), and [[chrysophanol]] extracted from ''[[Cassia occidentalis]]'' are toxic and known to cause [[Acute HME syndrome|hepatomyoencephalopathy]] in children.<ref>{{ cite journal |author1= Panigrahi, G.K. |author2=Suthar, M.K. |author3=Verma, N. |author4=Asthana, S. |author5=Tripathi, A. |author6=Gupta, S.K. |author7=Saxena, J. K. |author8=Raisuddin, S. |author9=Das, M. | title = Investigation of the interaction of anthraquinones of ''Cassia occidentalis'' seeds with bovine serum albumin by molecular docking and spectroscopic analysis: Correlation to their in vitro cytotoxic potential | journal = Food Research International |volume=77 |pages=368–377 | year = 2015 | doi = 10.1016/j.foodres.2015.08.022 }}</ref>

{{col-begin|width=auto}}
{{col-break}}
[[File:Aloe emodin.svg|150px|thumb|Aloe emodin]]
{{col-break}}
:[[file:Daunorubicin2DACS.svg|thumb|[[Daunorubicin]]]]
{{col-break}}
[[File:Mitoxantrone skeletal.svg|180px|thumb|Mitoxantrone]]
{{col-break}}
[[File:Pixantrone.svg|180px|thumb|Pixantrone]]
{{col-end}}

[[Dantron]], [[emodin]], and [[aloe emodin]], and some of the [[senna glycosides]] have [[laxative]] effects. Prolonged use and [[substance abuse|abuse]] leads to [[melanosis coli]].<ref>{{ cite journal | author = Müller-Lissner, S. A. | title = Adverse Effects of Laxatives: Fact and Fiction | journal = Pharmacology | volume = 47 | issue = Suppl 1 | pages = 138–145 | year = 1993 | pmid = 8234421 | doi = 10.1159/000139853 }}</ref><ref name="pmid3280173">{{ cite journal |author1= Moriarty, K. J. |author2=Silk, D. B. | title = Laxative Abuse | journal = Digestive Diseases | volume = 6 | issue = 1 | pages = 15–29 | year= 1988 | pmid = 3280173 | doi = 10.1159/000171181 }}</ref>

===Flow batteries===
Soluble anthraquinones such as 9,10-anthraquinone-2,7-disulfonic acid are used as reactants in [[Flow battery|redox flow batteries]], which provide electrical energy storage.<ref>{{cite journal | last=Fontmorin | first=Jean-Marie | last2=Guiheneuf | first2=Solène | last3=Godet-Bar | first3=Thibault | last4=Floner | first4=Didier | last5=Geneste | first5=Florence | title=How anthraquinones can enable aqueous organic redox flow batteries to meet the needs of industrialization | journal=Current Opinion in Colloid & Interface Science | volume=61 | date=2022 | doi=10.1016/j.cocis.2022.101624 | page=101624}}</ref>


== References ==
== References ==
{{Reflist|2}}
{{Reflist|30em}}


{{Natural phenol}}
{{Natural phenol}}
{{Anthraquinone}}
{{Anthraquinone}}
{{Authority control}}


[[Category:Anthraquinones]]
[[Category:Anthraquinones| ]]

{{natural phenol-stub}}


[[it:Antrachinoni]]
[[it:Antrachinoni]]

Latest revision as of 08:06, 9 October 2024

For the parent molecule 9,10-anthraquinone, see anthraquinone

Structure proposed for the pigment carmine.

Anthraquinones (also known as anthraquinonoids) are a class of naturally occurring phenolic compounds based on the 9,10-anthraquinone skeleton. They are widely used industrially and occur naturally.

The name "anthraquinone" was first used by German chemists Carl Graebe and Carl Theodore Liebermann in a 1868 publication describing the chemical synthesis of the red dye alizarin from anthracene, a component of coal tar. This discovery led to the industrial production of alizarin and the impetus for further research on anthraquinone chemistry.[1]

Occurrence in plants

[edit]
The yellow color of certain lichens, particularly in the family Teloschistaceae (here Variospora thallincola), is due to the presence of anthraquinones.[2]

Natural pigments that are derivatives of anthraquinone are found, inter alia, in aloe latex, senna, rhubarb, and cascara buckthorn, fungi, lichens, and some insects. A type II polyketide synthase is responsible for anthraquinone biosynthesis in the bacterium Photorhabdus luminescens.[3] Chorismate, formed by isochorismate synthase in the shikimate pathway, is a precursor of anthraquinones in Morinda citrifolia.[4] Tests for anthraquinones in natural extracts have been established.[5]

Applications

[edit]

In the production of hydrogen peroxide

[edit]

A large industrial application of anthraquinones is for the production of hydrogen peroxide. 2-Ethyl-9,10-anthraquinone or a related alkyl derivative is used, rather than anthraquinone itself.[7]

Catalytic cycle for the anthraquinone process to produce hydrogen peroxide.

Millions of tons of hydrogen peroxide are manufactured by the anthraquinone process.[8]

Pulping

[edit]

Sodium 2-anthraquinonesulfonate (AMS) is a water-soluble anthraquinone derivative that was the first anthraquinone derivative discovered to have a catalytic effect in the alkaline pulping processes.[9]

Dyestuff precursor

[edit]

The 9,10-anthraquinone skeleton occurs in many dyes, such as alizarin.[10] Important derivatives of 9,10-anthraquinone are 1-nitroanthraquinone, anthraquinone-1-sulfonic acid, and the dinitroanthraquinone.[11]

Selection of anthraquinone dyes. From the left: C.I.Acid Blue 43 an "acid dye" for wool (also called "Acilan Saphirol SE"), C.I. Vat Violet 1, which is applied by transfer printing using sublimation, a blue colorant commonly used in gasoline, and C.I. Disperse Red 60.

Medicine

[edit]

Derivatives of 9,10-anthraquinone include drugs such as the anthracenediones and the anthracycline family of chemotherapy drugs. The latter drugs are derived from the bacterium Streptomyces peucetius, discovered in a soil sample near the Adriatic Sea. Drugs in the anthraquinone family include the prototypical daunorubicin, doxorubicin, mitoxantrone, losoxantrone, and pixantrone. Most of these drugs, with the notable exception of pixantrone, are extremely cardiotoxic, causing irreversible cardiomyopathy, which can limit their practical usefulness in cancer treatment.[11]

The anthracenediones also include

Dantron, emodin, and aloe emodin, and some of the senna glycosides have laxative effects. Prolonged use and abuse leads to melanosis coli.[13][14]

Flow batteries

[edit]

Soluble anthraquinones such as 9,10-anthraquinone-2,7-disulfonic acid are used as reactants in redox flow batteries, which provide electrical energy storage.[15]

References

[edit]
  1. ^ Phillips, Max (1929). "The chemistry of anthraquinone". Chemical Reviews. 6 (1): 157–174. doi:10.1021/cr60021a007.
  2. ^ Llewellyn, Theo; Nowell, Reuben W.; Aptroot, Andre; Temina, Marina; Prescott, Thomas A.K.; Barraclough, Timothy G.; Gaya, Ester (2023). "Metagenomics shines light on the evolution of "sunscreen" pigment metabolism in the Teloschistales (lichen-forming Ascomycota)". Genome Biology and Evolution. 15 (2): evad002. doi:10.1093/gbe/evad002. PMC 9907504. PMID 36634008.
  3. ^ Brachmann, AO; Joyce, SA; Jenke-Kodama, H; Schwär, G; Clarke, DJ; Bode, HB (2007). "A type II polyketide synthase is responsible for anthraquinone biosynthesis in Photorhabdus luminescens". ChemBioChem. 8 (14): 1721–8. doi:10.1002/cbic.200700300. PMID 17722122.
  4. ^ Stalman, M; Koskamp, AM; Luderer, R; Vernooy, JH; Wind, JC; Wullems, GJ; Croes, AF (2003). "Regulation of anthraquinone biosynthesis in cell cultures of Morinda citrifolia". Journal of Plant Physiology. 160 (6): 607–14. doi:10.1078/0176-1617-00773. PMID 12872482.
  5. ^ Akinjogunla OJ, Yah CS, Eghafona NO, Ogbemudia FO (2010). "Antibacterial activity of leave extracts of Nymphaea lotus (Nymphaeaceae) on Methicillin resistant Staphylococcus aureus (MRSA) and Vancomycin resistant Staphylococcus aureus (VRSA) isolated from clinical samples". Annals of Biological Research. 1 (2): 174–184.
  6. ^ Dapson, R. W.; Frank, M.; Penney, D. P.; Kiernan, J. A. (2007). "Revised procedures for the certification of carmine (C.I. 75470, Natural red 4) as a biological stain". Biotechnic & Histochemistry. 82 (1): 13–15. doi:10.1080/10520290701207364. PMID 17510809.
  7. ^ Goor, G.; Glenneberg, J.; Jacobi, S. (2007). "Hydrogen Peroxide". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a13_443.pub2. ISBN 978-3527306732.
  8. ^ Campos-Martin, Jose M.; Blanco-Brieva, Gema; Fierro, Jose L. G. (2006). "Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process". Angewandte Chemie International Edition. 45 (42): 6962–6984. doi:10.1002/anie.200503779. PMID 17039551.
  9. ^ "Anthraquinone / Alkali Pulping - A Literature Review" (PDF). Project 3370. Appleton, Wisconsin: The Institute of Paper Chemistry. 1978-07-05.
  10. ^ Bien, H.-S.; Stawitz, J.; Wunderlich, K. (2005). "Anthraquinone Dyes and Intermediates". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a02_355. ISBN 978-3527306732.
  11. ^ a b Vogel, A. "Anthraquinone". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a02_347. ISBN 978-3527306732.
  12. ^ Panigrahi, G.K.; Suthar, M.K.; Verma, N.; Asthana, S.; Tripathi, A.; Gupta, S.K.; Saxena, J. K.; Raisuddin, S.; Das, M. (2015). "Investigation of the interaction of anthraquinones of Cassia occidentalis seeds with bovine serum albumin by molecular docking and spectroscopic analysis: Correlation to their in vitro cytotoxic potential". Food Research International. 77: 368–377. doi:10.1016/j.foodres.2015.08.022.
  13. ^ Müller-Lissner, S. A. (1993). "Adverse Effects of Laxatives: Fact and Fiction". Pharmacology. 47 (Suppl 1): 138–145. doi:10.1159/000139853. PMID 8234421.
  14. ^ Moriarty, K. J.; Silk, D. B. (1988). "Laxative Abuse". Digestive Diseases. 6 (1): 15–29. doi:10.1159/000171181. PMID 3280173.
  15. ^ Fontmorin, Jean-Marie; Guiheneuf, Solène; Godet-Bar, Thibault; Floner, Didier; Geneste, Florence (2022). "How anthraquinones can enable aqueous organic redox flow batteries to meet the needs of industrialization". Current Opinion in Colloid & Interface Science. 61: 101624. doi:10.1016/j.cocis.2022.101624.