Sedenion: Difference between revisions
m →Applications: punct. |
→Applications: order; respectively |
||
Line 434: | Line 434: | ||
{{harvtxt|Moreno|1998}} showed that the space of pairs of norm-one sedenions that multiply to zero is [[homeomorphism|homeomorphic]] to the compact form of the exceptional [[Lie group]] [[G2 (mathematics)|G<sub>2</sub>]]. (Note that in his paper, a "zero divisor" means a ''pair'' of elements that multiply to zero.) |
{{harvtxt|Moreno|1998}} showed that the space of pairs of norm-one sedenions that multiply to zero is [[homeomorphism|homeomorphic]] to the compact form of the exceptional [[Lie group]] [[G2 (mathematics)|G<sub>2</sub>]]. (Note that in his paper, a "zero divisor" means a ''pair'' of elements that multiply to zero.) |
||
{{harvtxt|Guillard|Gresnigt|2019}} demonstrated that the three generations of [[lepton]]s and [[quark]]s that are associated with unbroken [[gauge symmetry]] <math>\mathrm {SU(3)_{c} \times U(1)_{em}}</math> can be represented using the algebra of the complexified sedenions <math>\mathbb {C \otimes S}</math>. Their reasoning follows that a primitive [[Idempotent|idempotent]] [[Projection (linear algebra)|projector]] <math>\rho_{+} = 1/2(1+ie_{15})</math> — where <math>e_{15}</math> is chosen as an [[imaginary unit]] akin to <math>e_{7}</math> for <math>\mathbb {O}</math> in the [[Fano plane]] — that [[Group action|acts]] on the [[standard basis]] of the sedenions uniquely divides the algebra into three sets of [[Split-complex number|split basis]] elements for <math>\mathbb {C \otimes O}</math>. In turn, adjoint [[Group action#Left group action|left actions]] of these complex eight-dimensional <math>\mathbb {C \otimes O}</math> subalgebras ''on themselves'' generate three copies of the [[Clifford algebra]] <math>\mathrm Cl(6)</math>, whose [[Ideal (ring theory)#Types of ideals|minimal left ideals]] describe a single generation of [[fermion]]s with unbroken <math>\mathrm {SU(3)_{c} \times U(1)_{em}}</math> gauge symmetry. In particular, they note that [[tensor product]]s between normed division algebras generate non-zero divisors akin to those inside <math>\mathbb {S}</math>, where for <math>\mathbb {C \otimes S}</math> the lack of alternativity and associativity does not affect the construction of minimal left ideals since their underlying split basis requires only two basis elements to be multiplied together, in-which associativity or alternativity are uninvolved. Still, these ideals constructed from an adjoint algebra of left actions of the algebra on itself remain associative, alternative, and [[isomorphic]] to a Clifford algebra. Altogether, this is permits three copies of <math>(\mathbb {C \otimes O})_{L} \cong \mathrm {Cl(6)}</math> to exist inside <math>\mathbb {C \otimes S}_{L}</math>. Furthermore, these three complexified octonion subalgebras are not independent; they share a common <math>\mathrm Cl(2)</math> subalgebra, which the authors note could form a theoretical basis for [[Cabibbo–Kobayashi–Maskawa matrix|CKM]] and [[Pontecorvo–Maki–Nakagawa–Sakata matrix|PMNS]] matrices that describe [[ |
{{harvtxt|Guillard|Gresnigt|2019}} demonstrated that the three generations of [[lepton]]s and [[quark]]s that are associated with unbroken [[gauge symmetry]] <math>\mathrm {SU(3)_{c} \times U(1)_{em}}</math> can be represented using the algebra of the complexified sedenions <math>\mathbb {C \otimes S}</math>. Their reasoning follows that a primitive [[Idempotent|idempotent]] [[Projection (linear algebra)|projector]] <math>\rho_{+} = 1/2(1+ie_{15})</math> — where <math>e_{15}</math> is chosen as an [[imaginary unit]] akin to <math>e_{7}</math> for <math>\mathbb {O}</math> in the [[Fano plane]] — that [[Group action|acts]] on the [[standard basis]] of the sedenions uniquely divides the algebra into three sets of [[Split-complex number|split basis]] elements for <math>\mathbb {C \otimes O}</math>. In turn, adjoint [[Group action#Left group action|left actions]] of these complex eight-dimensional <math>\mathbb {C \otimes O}</math> subalgebras ''on themselves'' generate three copies of the [[Clifford algebra]] <math>\mathrm Cl(6)</math>, whose [[Ideal (ring theory)#Types of ideals|minimal left ideals]] describe a single generation of [[fermion]]s with unbroken <math>\mathrm {SU(3)_{c} \times U(1)_{em}}</math> gauge symmetry. In particular, they note that [[tensor product]]s between normed division algebras generate non-zero divisors akin to those inside <math>\mathbb {S}</math>, where for <math>\mathbb {C \otimes S}</math> the lack of alternativity and associativity does not affect the construction of minimal left ideals since their underlying split basis requires only two basis elements to be multiplied together, in-which associativity or alternativity are uninvolved. Still, these ideals constructed from an adjoint algebra of left actions of the algebra on itself remain associative, alternative, and [[isomorphic]] to a Clifford algebra. Altogether, this is permits three copies of <math>(\mathbb {C \otimes O})_{L} \cong \mathrm {Cl(6)}</math> to exist inside <math>\mathbb {C \otimes S}_{L}</math>. Furthermore, these three complexified octonion subalgebras are not independent; they share a common <math>\mathrm Cl(2)</math> subalgebra, which the authors note could form a theoretical basis for [[Cabibbo–Kobayashi–Maskawa matrix|CKM]] and [[Pontecorvo–Maki–Nakagawa–Sakata matrix|PMNS]] matrices that, respectively, describe [[quark mixing]] and [[neutrino oscillation]]s. |
||
Sedenion neural networks provide {{Explain|date=August 2022}} a means of efficient and compact expression in machine learning applications and have been used in solving multiple time-series and traffic forecasting problems.<ref>{{Cite journal|last1=Saoud|first1=Lyes Saad|last2=Al-Marzouqi|first2=Hasan|date=2020|title=Metacognitive Sedenion-Valued Neural Network and its Learning Algorithm|journal=IEEE Access|volume=8|pages=144823–144838|doi=10.1109/ACCESS.2020.3014690|issn=2169-3536|doi-access=free}}</ref><ref>{{Cite journal |last1=Kopp |first1=Michael |last2=Kreil |first2=David |last3=Neun |first3=Moritz |last4=Jonietz |first4=David |last5=Martin |first5=Henry |last6=Herruzo |first6=Pedro |last7=Gruca |first7=Aleksandra |last8=Soleymani |first8=Ali |last9=Wu |first9=Fanyou |last10=Liu |first10=Yang |last11=Xu |first11=Jingwei |date=2021-08-07 |title=Traffic4cast at NeurIPS 2020 – yet more on the unreasonable effectiveness of gridded geo-spatial processes |url=https://proceedings.mlr.press/v133/kopp21a.html |journal=NeurIPS 2020 Competition and Demonstration Track |language=en |publisher=PMLR |pages=325–343}}</ref> |
Sedenion neural networks provide {{Explain|date=August 2022}} a means of efficient and compact expression in machine learning applications and have been used in solving multiple time-series and traffic forecasting problems.<ref>{{Cite journal|last1=Saoud|first1=Lyes Saad|last2=Al-Marzouqi|first2=Hasan|date=2020|title=Metacognitive Sedenion-Valued Neural Network and its Learning Algorithm|journal=IEEE Access|volume=8|pages=144823–144838|doi=10.1109/ACCESS.2020.3014690|issn=2169-3536|doi-access=free}}</ref><ref>{{Cite journal |last1=Kopp |first1=Michael |last2=Kreil |first2=David |last3=Neun |first3=Moritz |last4=Jonietz |first4=David |last5=Martin |first5=Henry |last6=Herruzo |first6=Pedro |last7=Gruca |first7=Aleksandra |last8=Soleymani |first8=Ali |last9=Wu |first9=Fanyou |last10=Liu |first10=Yang |last11=Xu |first11=Jingwei |date=2021-08-07 |title=Traffic4cast at NeurIPS 2020 – yet more on the unreasonable effectiveness of gridded geo-spatial processes |url=https://proceedings.mlr.press/v133/kopp21a.html |journal=NeurIPS 2020 Competition and Demonstration Track |language=en |publisher=PMLR |pages=325–343}}</ref> |
Revision as of 06:44, 1 March 2023
Sedenions | |
---|---|
Symbol | |
Type | nonassociative algebra |
Units | e0, ..., e15 |
Multiplicative identity | e0 |
Main properties | power associativity distributivity |
Common systems | |
Less common systems |
In abstract algebra, the sedenions form a 16-dimensional noncommutative and nonassociative algebra over the real numbers; they are obtained by applying the Cayley–Dickson construction to the octonions, and as such the octonions are isomorphic to a subalgebra of the sedenions. Unlike the octonions, the sedenions are not an alternative algebra. Applying the Cayley–Dickson construction to the sedenions yields a 32-dimensional algebra, sometimes called the 32-ions or trigintaduonions.[1] It is possible to continue applying the Cayley–Dickson construction arbitrarily many times.
The term sedenion is also used for other 16-dimensional algebraic structures, such as a tensor product of two copies of the biquaternions, or the algebra of 4 × 4 matrices over the real numbers, or that studied by Smith (1995).
Arithmetic
Like octonions, multiplication of sedenions is neither commutative nor associative. But in contrast to the octonions, the sedenions do not even have the property of being alternative. They do, however, have the property of power associativity, which can be stated as that, for any element x of , the power is well defined. They are also flexible.
Every sedenion is a linear combination of the unit sedenions , , , , ..., , which form a basis of the vector space of sedenions. Every sedenion can be represented in the form
Addition and subtraction are defined by the addition and subtraction of corresponding coefficients and multiplication is distributive over addition.
Like other algebras based on the Cayley–Dickson construction, the sedenions contain the algebra they were constructed from. So, they contain the octonions (generated by to in the table below), and therefore also the quaternions (generated by to ), complex numbers (generated by and ) and real numbers (generated by ).
The sedenions have a multiplicative identity element and multiplicative inverses, but they are not a division algebra because they have zero divisors. This means that two non-zero sedenions can be multiplied to obtain zero: an example is . All hypercomplex number systems after sedenions that are based on the Cayley–Dickson construction also contain zero divisors.
A sedenion multiplication table is shown below:
Sedenion properties
From the above table, we can see that:
- and
Anti-associative
The sedenions are not fully anti-associative. Choose any four generators, and . The following 5-cycle shows that these five relations cannot all be anti-associative.
In particular, in the table above, using and the last expression associates.
Quaternionic subalgebras
The 35 triads that make up this specific sedenion multiplication table with the 7 triads of the octonions used in creating the sedenion through the Cayley–Dickson construction shown in bold:
The binary representations of the indices of these triples bitwise XOR to 0.
{ {1, 2, 3}, {1, 4, 5}, {1, 7, 6}, {1, 8, 9}, {1, 11, 10}, {1, 13, 12}, {1, 14, 15},
{2, 4, 6}, {2, 5, 7}, {2, 8, 10}, {2, 9, 11}, {2, 14, 12}, {2, 15, 13}, {3, 4, 7},
{3, 6, 5}, {3, 8, 11}, {3, 10, 9}, {3, 13, 14}, {3, 15, 12}, {4, 8, 12}, {4, 9, 13},
{4, 10, 14}, {4, 11, 15}, {5, 8, 13}, {5, 10, 15}, {5, 12, 9}, {5, 14, 11}, {6, 8, 14},
{6, 11, 13}, {6, 12, 10}, {6, 15, 9}, {7, 8, 15}, {7, 9, 14}, {7, 12, 11}, {7, 13, 10} }
The list of 84 sets of zero divisors , where :
Applications
Moreno (1998) showed that the space of pairs of norm-one sedenions that multiply to zero is homeomorphic to the compact form of the exceptional Lie group G2. (Note that in his paper, a "zero divisor" means a pair of elements that multiply to zero.)
Guillard & Gresnigt (2019) demonstrated that the three generations of leptons and quarks that are associated with unbroken gauge symmetry can be represented using the algebra of the complexified sedenions . Their reasoning follows that a primitive idempotent projector — where is chosen as an imaginary unit akin to for in the Fano plane — that acts on the standard basis of the sedenions uniquely divides the algebra into three sets of split basis elements for . In turn, adjoint left actions of these complex eight-dimensional subalgebras on themselves generate three copies of the Clifford algebra , whose minimal left ideals describe a single generation of fermions with unbroken gauge symmetry. In particular, they note that tensor products between normed division algebras generate non-zero divisors akin to those inside , where for the lack of alternativity and associativity does not affect the construction of minimal left ideals since their underlying split basis requires only two basis elements to be multiplied together, in-which associativity or alternativity are uninvolved. Still, these ideals constructed from an adjoint algebra of left actions of the algebra on itself remain associative, alternative, and isomorphic to a Clifford algebra. Altogether, this is permits three copies of to exist inside . Furthermore, these three complexified octonion subalgebras are not independent; they share a common subalgebra, which the authors note could form a theoretical basis for CKM and PMNS matrices that, respectively, describe quark mixing and neutrino oscillations.
Sedenion neural networks provide [further explanation needed] a means of efficient and compact expression in machine learning applications and have been used in solving multiple time-series and traffic forecasting problems.[3][4]
See also
Notes
- ^ Raoul E. Cawagas, et al. (2009). "THE BASIC SUBALGEBRA STRUCTURE OF THE CAYLEY-DICKSON ALGEBRA OF DIMENSION 32 (TRIGINTADUONIONS)".
- ^ (Baez 2002, p. 6)
- ^ Saoud, Lyes Saad; Al-Marzouqi, Hasan (2020). "Metacognitive Sedenion-Valued Neural Network and its Learning Algorithm". IEEE Access. 8: 144823–144838. doi:10.1109/ACCESS.2020.3014690. ISSN 2169-3536.
- ^ Kopp, Michael; Kreil, David; Neun, Moritz; Jonietz, David; Martin, Henry; Herruzo, Pedro; Gruca, Aleksandra; Soleymani, Ali; Wu, Fanyou; Liu, Yang; Xu, Jingwei (2021-08-07). "Traffic4cast at NeurIPS 2020 – yet more on the unreasonable effectiveness of gridded geo-spatial processes". NeurIPS 2020 Competition and Demonstration Track. PMLR: 325–343.
References
- Imaeda, K.; Imaeda, M. (2000), "Sedenions: algebra and analysis", Applied Mathematics and Computation, 115 (2): 77–88, doi:10.1016/S0096-3003(99)00140-X, MR 1786945
- Baez, John C. (2002). "The Octonions". Bulletin of the American Mathematical Society. New Series. 39 (2): 145–205. arXiv:math/0105155. doi:10.1090/S0273-0979-01-00934-X. MR 1886087. S2CID 586512.
- Biss, Daniel K.; Christensen, J. Daniel; Dugger, Daniel; Isaksen, Daniel C. (2007). "Large annihilators in Cayley-Dickson algebras II". Boletin de la Sociedad Matematica Mexicana. 3: 269–292. arXiv:math/0702075. Bibcode:2007math......2075B.
- Guillard, Adam B.; Gresnigt, Niels G. (2019). "Three fermion generations with two unbroken gauge symmetries from the complex sedenions". The European Physical Journal C. 79 (5): 1–11 (Article 446). Bibcode:2019EPJC...79..446G. doi:10.1140/epjc/s10052-019-6967-1. S2CID 102351250.
- Kinyon, M.K.; Phillips, J.D.; Vojtěchovský, P. (2007). "C-loops: Extensions and constructions". Journal of Algebra and Its Applications. 6 (1): 1–20. arXiv:math/0412390. CiteSeerX 10.1.1.240.6208. doi:10.1142/S0219498807001990. S2CID 48162304.
- Kivunge, Benard M.; Smith, Jonathan D. H (2004). "Subloops of sedenions" (PDF). Comment. Math. Univ. Carolinae. 45 (2): 295–302.
- Moreno, Guillermo (1998), "The zero divisors of the Cayley–Dickson algebras over the real numbers", Bol. Soc. Mat. Mexicana, Series 3, 4 (1): 13–28, arXiv:q-alg/9710013, Bibcode:1997q.alg....10013G, MR 1625585
- Smith, Jonathan D. H. (1995), "A left loop on the 15-sphere", Journal of Algebra, 176 (1): 128–138, doi:10.1006/jabr.1995.1237, MR 1345298
- L. S. Saoud and H. Al-Marzouqi, "Metacognitive Sedenion-Valued Neural Network and its Learning Algorithm," in IEEE Access, vol. 8, pp. 144823-144838, 2020, doi: 10.1109/ACCESS.2020.3014690.