Cluster algebra: Difference between revisions
Appearance
Content deleted Content added
m Undid revision 436562167 by Snow white dntwry (talk) |
→References: Added AMS Notices reference |
||
Line 11: | Line 11: | ||
*{{Citation | last1=Fomin | first1=Sergey | last2=Zelevinsky | first2=Andrei | title=Cluster algebras. IV. Coefficients | url=http://dx.doi.org/10.1112/S0010437X06002521 | mr=2295199 | year=2007 | journal=Compositio Mathematica | volume=143 | issue=1 | pages=112–164}} |
*{{Citation | last1=Fomin | first1=Sergey | last2=Zelevinsky | first2=Andrei | title=Cluster algebras. IV. Coefficients | url=http://dx.doi.org/10.1112/S0010437X06002521 | mr=2295199 | year=2007 | journal=Compositio Mathematica | volume=143 | issue=1 | pages=112–164}} |
||
*{{Citation | last1=Fomin | first1=Sergey | last2=Reading | first2=Nathan | editor1-last=Miller | editor1-first=Ezra | editor2-last=Reiner | editor2-first=Victor | editor3-last=Sturmfels | editor3-first=Bernd | editor3-link=Bernd Sturmfels | title=Geometric combinatorics |chapter=Root systems and generalized associahedra |publisher=Amer. Math. Soc. | location=Providence, R.I. | series=IAS/Park City Math. Ser. | mr=2383126 | year=2007 | volume=13 | isbn=9780821837368|arxiv=math/0505518}} |
*{{Citation | last1=Fomin | first1=Sergey | last2=Reading | first2=Nathan | editor1-last=Miller | editor1-first=Ezra | editor2-last=Reiner | editor2-first=Victor | editor3-last=Sturmfels | editor3-first=Bernd | editor3-link=Bernd Sturmfels | title=Geometric combinatorics |chapter=Root systems and generalized associahedra |publisher=Amer. Math. Soc. | location=Providence, R.I. | series=IAS/Park City Math. Ser. | mr=2383126 | year=2007 | volume=13 | isbn=9780821837368|arxiv=math/0505518}} |
||
* {{citation | first = Andrei | last = Zelevinsky | title = What Is . . . a Cluster Algebra? | journal = AMS Notices | volume = 54 | issue = 11 | pages = 1494-1495 | year = 2007 |
|||
| url = http://www.ams.org/notices/200711/tx071101494p.pdf }}. |
|||
[[Category:Algebra]] |
[[Category:Algebra]] |
Revision as of 18:45, 2 August 2011
Cluster algebras are a class of commutative rings introduced by Fomin & Zelevinsky (2002). A cluster algebra of rank n is an integral domain A, together with some subsets of size n called clusters whose union generates the algebra A and which satisfy various conditions.
Simple examples are given by the algebras of homogeneous functions on the Grassmannians. The Plücker coordinates provide some of the distinguished elements.
For the Grassmannian of planes in ℂn, the situation is even more simple. In that case, the Plücker coordinates provide all the distinguished elements and the clusters can be completely described using triangulations of a regular polygon with n vertices.
References
- Berenstein, Arkady; Fomin, Sergey; Zelevinsky, Andrei (2005), "Cluster algebras. III. Upper bounds and double Bruhat cells", Duke Mathematical Journal, 126 (1): 1–52, MR 2110627
- Fomin, Sergey; Zelevinsky, Andrei (2002), "Cluster algebras. I. Foundations", Journal of the American Mathematical Society, 15 (2): 497–529, MR 1887642
- Fomin, Sergey; Zelevinsky, Andrei (2003), "Cluster algebras. II. Finite type classification", Inventiones Mathematicae, 154 (1): 63–121, MR 2004457
- Fomin, Sergey; Zelevinsky, Andrei (2007), "Cluster algebras. IV. Coefficients", Compositio Mathematica, 143 (1): 112–164, MR 2295199
- Fomin, Sergey; Reading, Nathan (2007), "Root systems and generalized associahedra", in Miller, Ezra; Reiner, Victor; Sturmfels, Bernd (eds.), Geometric combinatorics, IAS/Park City Math. Ser., vol. 13, Providence, R.I.: Amer. Math. Soc., arXiv:math/0505518, ISBN 9780821837368, MR 2383126
- Zelevinsky, Andrei (2007), "What Is . . . a Cluster Algebra?" (PDF), AMS Notices, 54 (11): 1494–1495.