User:Silvermatsu/sandbox
memo a
Hartshorne, Robin (1970). Ample Subvarieties of Algebraic Varieties. Lecture Notes in Mathematics. Vol. 156. doi:10.1007/BFb0067839. ISBN 978-3-540-05184-8.
https://books.google.com/books?id=okHfUv4l4vgC&pg=PA57 [1]
- https://books.google.com/books?id=7z4mBQAAQBAJ&pg=121
- https://books.google.com/books?id=7z4mBQAAQBAJ&pg=228
- https://books.google.com/books?id=nfpzBAAAQBAJ&pg=195
- https://books.google.com/books?id=vr8FCAAAQBAJ&pg=49
- https://books.google.com/books?id=MOAqeoYlBMQC&q=JP.+Serre%2C+%22Trees%22
memo b
memo c
memo d
Let . Let be arbitrary two parenthesized products of (in this order) with arbitrary insertions of unit objects . Let be two isomorphisms, obtained by composing associativity and unit isomorphisms and their inverses possibly tensored with identity morphisms. Then .
memo g
strictification
- Schauenburg, Peter (2001). "Turning monoidal categories into strict ones". The New York Journal of Mathematics [Electronic Only]. 7: 257–265. ISSN 1076-9803.
- Mac Lane, Saunders (1998). Categories for the working mathematician. New York: Springer. ISBN 0-387-98403-8. OCLC 37928530.
Mac Lane, Saunders (1978). "Symmetry and Braidings in Monoidal Categories". Categories for the Working Mathematician. Graduate Texts in Mathematics. Vol. 5. pp. 251–266. doi:10.1007/978-1-4757-4721-8_12. ISBN 978-1-4419-3123-8. §3. Strict Monoidal Categories,
memo i
In monoidal category , the following two conditions are called coherence conditions:
- Let a bifunctor called the tensor product, a natural isomorphism , called the associator:
- Also, let an identity object and has a left identity, a natural isomorphism called the left unitor:
as well as, let has a right identity, a natural isomorphism called the right unitor:
.
memo j
- ^ Costa, Laura; Miró-Roig, Rosa María; Pons-Llopis, Joan (2021). Ulrich Bundles. doi:10.1515/9783110647686. ISBN 9783110647686.
- ^ Mitchell, Barry (1965). Theory of Categories. Academic Press. ISBN 978-0-12-499250-4.
- ^ Faith, Carl (1973). "Product and Coproduct". Algebra. pp. 83–109. doi:10.1007/978-3-642-80634-6_4. ISBN 978-3-642-80636-0.
- ^ Leinster, Tom (2014). Basic Category Theory. arXiv:1612.09375. doi:10.1017/CBO9781107360068. ISBN 978-1-107-04424-1.
- ^ Category Theory. Oxford University Press. 17 June 2010. ISBN 978-0-19-958736-0.
- ^ https://doi.org/10.48550/arXiv.2201.11738.
{{cite journal}}
: Cite journal requires|journal=
(help); Missing or empty|title=
(help) - ^ MacLane, Saunders; Paré, Robert (1985). "Coherence for bicategories and indexed categories". Journal of Pure and Applied Algebra. 37: 59–80. doi:10.1016/0022-4049(85)90087-8.