Jump to content

User:Silvermatsu/sandbox

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Silvermatsu (talk | contribs) at 02:24, 23 November 2024 (memo i). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

memo a

Hartshorne, Robin (1970). Ample Subvarieties of Algebraic Varieties. Lecture Notes in Mathematics. Vol. 156. doi:10.1007/BFb0067839. ISBN 978-3-540-05184-8.

https://books.google.com/books?id=okHfUv4l4vgC&pg=PA57 [1]

memo b

[2] [3]

memo c

memo d

Let . Let be arbitrary two parenthesized products of (in this order) with arbitrary insertions of unit objects . Let be two isomorphisms, obtained by composing associativity and unit isomorphisms and their inverses possibly tensored with identity morphisms. Then .

memo g

[4] [5]

strictification

[6]

[7]

Mac Lane, Saunders (1978). "Symmetry and Braidings in Monoidal Categories". Categories for the Working Mathematician. Graduate Texts in Mathematics. Vol. 5. pp. 251–266. doi:10.1007/978-1-4757-4721-8_12. ISBN 978-1-4419-3123-8. §3. Strict Monoidal Categories,

memo i

In monoidal category , the following two conditions are called coherence conditions:

  • Let a bifunctor called the tensor product, a natural isomorphism , called the associator:
  • Also, let an identity object and has a left identity, a natural isomorphism called the left unitor:

as well as, let has a right identity, a natural isomorphism called the right unitor:

.

memo j

  1. ^ Costa, Laura; Miró-Roig, Rosa María; Pons-Llopis, Joan (2021). Ulrich Bundles. doi:10.1515/9783110647686. ISBN 9783110647686.
  2. ^ Mitchell, Barry (1965). Theory of Categories. Academic Press. ISBN 978-0-12-499250-4.
  3. ^ Faith, Carl (1973). "Product and Coproduct". Algebra. pp. 83–109. doi:10.1007/978-3-642-80634-6_4. ISBN 978-3-642-80636-0.
  4. ^ Leinster, Tom (2014). Basic Category Theory. arXiv:1612.09375. doi:10.1017/CBO9781107360068. ISBN 978-1-107-04424-1.
  5. ^ Category Theory. Oxford University Press. 17 June 2010. ISBN 978-0-19-958736-0.
  6. ^ https://doi.org/10.48550/arXiv.2201.11738. {{cite journal}}: Cite journal requires |journal= (help); Missing or empty |title= (help)
  7. ^ MacLane, Saunders; Paré, Robert (1985). "Coherence for bicategories and indexed categories". Journal of Pure and Applied Algebra. 37: 59–80. doi:10.1016/0022-4049(85)90087-8.