Jump to content

Catechin-7-O-glucoside

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by NotWith (talk | contribs) at 09:23, 19 December 2012 (Natural occurrences: cleanup). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Catechin-7-O-glucoside
Chemical structure of catechin-7-O-glucoside
Names
IUPAC name
(2S,4S,5S)-2-[[(2R,3S)-2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-3,4-dihydro-2H-chromen-7-yl]oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
Other names
(2R,3S)-Catechin-7-O-β-D-glucopyranoside
Catechin 7-O-β-glucopyranoside
(+)-catechin 7-O-β-glucoside
(+)-catechin 7-O-beta-D-glucopyranoside
Catechin 7-glucoside
C7G
CA-G
Identifiers
3D model (JSmol)
  • InChI=1S/C21H24O11/c22-7-16-17(27)18(28)19(29)21(32-16)30-9-4-12(24)10-6-14(26)20(31-15(10)5-9)8-1-2-11(23)13(25)3-8/h1-5,14,16-29H,6-7H2/t14-,16?,17+,18-,19?,20+,21+/m0/s1
    Key: VLFIBROLAXKPQK-RJNJCGSWSA-N
  • C1C(C(OC2=CC(=CC(=C21)O)OC3C(C(C(C(O3)CO)O)O)O)C4=CC(=C(C=C4)O)O)O
Properties
C21H24O11
Molar mass 452.41 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Catechin-7-O-glucoside is a flavan-3-ol glycoside formed from catechin.

Natural occurrences

Catechin-7-O-glucoside can be isolated from the hemolymph of the European pine sawfly (Neodiprion sertifer).[1]

It can also be produced by biotransformation of (+)-catechin by cultured cells of Eucalyptus perriniana.[2]

Presence in natural traditional drugs

Catechin-7-O-glucoside can be found in Paeoniae Radix, the crude drug made from roots of the Chinese peony (Paeonia lactiflora)[3], in Polygonum macrophyllum[4], in the stem barks of the Nepali hog plum (Choerospondias axillaris)[5], in Bergenia ciliata[6], in the Korean plum yew (Cephalotaxus koreana)[7] and in Huanarpo Macho (Jatropha macrantha).[8]

Presence in food

It is found in buckwheat groats[9], in the red bean (the seed of Vigna umbellata, formely known as Phaseolus calcaratus)[10], in barley (Hordeum vulgare L.) and malt. [11]

Health effects

This compound has an antioxidant activity leading to a cytoprotective effect.[12][10]

References

  1. ^ Flavonoid Metabolites in the Hemolymph of European Pine Sawfly (Neodiprion sertifer) Larvae. Matti Vihakas, Petri Tähtinen, Vladimir Ossipov and Juha-Pekka Salminen, Journal of Chemical Ecology, May 2012, Volume 38, Issue 5, pages 538-546, doi:10.1007/s10886-012-0113-y
  2. ^ Biotransformation of (+)-catechin by plant cultured cells of Eucalyptus perriniana. Otani S, Kondo Y, Asada Y, Furuya, Hamada, Nakajima, Ishihara and Hamada H, Plant Biotechnol., 2004, Vol. 21, No. 5, pages 407-409 (abstract)
  3. ^ New Monoterpene Glycoside Esters and Phenolic Constituents of Paeoniae Radix, and Increase of Water Solubility of Proanthocyanidins in the Presence of Paeoniflorin. Takashi Tanaka, Maki Kataoka, Nagisa Tsuboi and Isao Kouno, Chem. Pharm. Bull., 2000, 48(2), pages 201—207
  4. ^ Studies on chemical constituents from Polygonum macrophyllum. Wang S, Wang D and Feng S, Zhong yao cai (Zhongyaocai = Journal of Chinese Medicinal Materials), 2004, 27(6), pages 411-413, PMID 15524292
  5. ^ Flavanoidal constituents of Choerospondias axillaries and their in vitro antitumor and anti-hypoxia activities. Li Chang-wei, Cui Cheng-bin, Cai Bing, Han Bing, Li Ming-ming and Fan Ming, Chinese Journal Of Medicinal Chemistry, 2009, 19 (1), pages 48-51,64 (abstract)
  6. ^ Simultaneous Quantification of Bergenin, (+)-Catechin, Gallicin and Gallic acid; and quantification of β-Sitosterol using HPTLC from Bergenia ciliata (Haw.) Sternb. Forma ligulata Yeo (Pasanbheda). Rathee Dharmender, Thanki Madhavi, Agrawal Reena and Anandjiwala Sheetal, Pharm Anal Acta, 1, 104, doi:10.4172/2153-2435.1000104
  7. ^ Inhibitors of Osteoclast Differentiation from Cephalotaxus koreana. Kee Dong Yoon, Doc Gyun Jeong, Yun Ha Hwang, Jei Man Ryu and Jinwoong Kim, J. Nat. Prod., 2007, 70, pages 2029–2032, doi:10.1021/np070327e
  8. ^ Catechin derivatives in Jatropha macrantha stems: Characterisation and LC/ESI/MS/MS quali-quantitative analysis. Benavides A, Montoro P, Bassarello C, Piacente S and Pizza C, Journal of Pharmaceutical and Biomedical Analysis, 2006, Vol. 40, No. 3, pages 639-647, doi:10.1016/j.jpba.2005.10.004
  9. ^ Report on cereals at Phenol-Explorer.eu. Retrieved 18 December 2012.
  10. ^ a b Catechin-7-O-β-d-glucopyranoside scavenges free radicals and protects human B lymphoma BJAB cells on H2O2-mediated oxidative stress. Baek Jin-A, Son Young-Ok, Fang Minghao, Lee Young Jae, Cho Hyoung-Kwon, Whang Wan Kyunn and Lee Jeong-Chae, Food science and biotechnology, 2011, vol. 20, no 1, pages 151-158, doi:10.1007/s10068-011-0021-x, INIST 23809899
  11. ^ Identification of a new flavanol glucoside from barley (Hordeum vulgare L.) and malt. Wolfgang Friedrich and Rudolf Galensa, European Food Research and Technology, May 2002, Volume 214, Issue 5, pages 388-393, doi:10.1007/s00217-002-0498-x
  12. ^ Cytoprotective effects of catechin 7-O-β-D glucopyranoside against mitochondrial dysfunction damaged by streptozotocin in RINm5F cells. Kim KC, Kim JS, Kang KA, Kim JM and Won Hyun J, Cell Biochem Funct., 2010 Dec 2, 28(8), pages 651-660, doi:10.1002/cbf.1703, PMID 21104932

Template:Natural phenol-stub