Jump to content

2023 in reptile paleontology

From Wikipedia, the free encyclopedia

List of years in reptile paleontology
In archosaur paleontology
2020
2021
2022
2023
2024
2025
2026
In paleontology
2020
2021
2022
2023
2024
2025
2026
+...

This list of fossil reptiles described in 2023 is a list of new taxa of fossil reptiles that were described during the year 2023, as well as other significant discoveries and events related to reptile paleontology that occurred in 2023.

Squamates

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Bauersaurus[1]

Gen. et sp. nov

Valid

Čerňanský et al.

Eocene

Quercy Phosphorites Formation

 France

A pan-gekkotan. The type species is B. cosensis.

Bentiabasaurus[2] Gen. et sp. nov. Polcyn, Schulp & Gonçalves Late Cretaceous (Maastrichtian) Mocuio Formation  Angola A mosasaurine belonging to the group Plotosaurini. The type species is B. jacobsi.

Bifurcodentodon[3]

Gen. et sp. nov

Čerňanský et al.

Eocene (Ypresian)

 Belgium

An iguanian belonging to the group Pleurodonta. The type species is B. ragei.

Carentonosaurus algorensis[4]

Sp. nov

Valid

Cabezuelo-Hernández & Pérez-García

Late Cretaceous (Cenomanian)

Arenas de Utrillas Formation

 Spain

A member of Pythonomorpha.

Carentonosaurus soaresi[5]

Sp. nov

Pimentel et al.

Late Cretaceous (Cenomanian)

 Portugal

A member of Pythonomorpha. Berrocal-Casero et al. 2024 placed it in the new genus Segurasaurus[6]

Cryptobicuspidon[7]

Gen. et sp. nov

Carvalho & Santucci

Early Cretaceous (Aptian)

Quiricó Formation

 Brazil

A member of Polyglyphanodontia. The type species is C. pachysymphysealis. Announced in 2023; the final article version will be published in 2024.

Deccansaurus[8]

Gen. et sp. nov

Yadav et al.

Late Cretaceous-Paleocene

Deccan Intertrappean Beds

 India

A possible member of Cordyliformes. The type species is D. palaeoindicus.

Ectenosaurus shannoni[9]

Sp. nov

Valid

Kiernan & Ebersole

Late Cretaceous (Campanian)

Mooreville Chalk

 United States
( Alabama)

A mosasaur belonging to the subfamily Plioplatecarpinae.

Ectenosaurus tlemonectes[9]

Sp. nov

Valid

Kiernan & Ebersole

Late Cretaceous (Coniacian-Campanian)

Niobrara Formation

 United States
( Kansas)

A mosasaur belonging to the subfamily Plioplatecarpinae.

Eoconstrictor barnesi[10]

Sp. nov

Valid

Palci et al.

Eocene (Lutetian)

Geiseltal Lagerstätte

 Germany

A snake belonging to the group Booidea.

Eryx linxiaensis[11] Sp. nov. Shi et al. Miocene Liushu Formation  China A species of Eryx.

Halisaurus hebae[12]

Sp. nov

Shaker et al.

Late Cretaceous (Maastrichtian)

Dakhla Formation

 Egypt

A mosasaur belonging to the subfamily Halisaurinae. Announced in 2023; the final article version will be published in 2024.

Helioscopos[13]

Gen. et sp. nov

Valid

Meyer et al.

Late Jurassic (Tithonian)

Morrison Formation

 United States
( Utah)

A member of the family Ardeosauridae. The type species is H. dickersonae.

Jormungandr[14] Gen. et sp. nov. Zietlow, Boyd & van Vranken Late Cretaceous (Campanian) Pierre Shale  United States ( North Dakota) A mosasaur belonging to the subfamily Mosasaurinae. The type species is J. walhallaensis.

Limnoscansor[13]

Gen. et sp. nov

Valid

Meyer et al.

Late Jurassic (Tithonian)

Solnhofen Limestone

 Germany

A member of the family Ardeosauridae. The type species is "Homoeosaurus" digitatellus Grier 1914.

Megapterygius[15]

Gen. et sp. nov

Valid

Konishi et al.

Late Cretaceous (Campanian/Maastrichtian)

Toyajo Formation

 Japan

A mosasaurine mosasaur. The type species is M. wakayamaensis.

Sarabosaurus[16]

Gen. et sp. nov

Polcyn et al.

Late Cretaceous (Turonian)

Tropic Shale

 United States
( Utah)

A mosasaur belonging to the subfamily Plioplatecarpinae. The type species is S. dahli.

Stelladens[17] Gen. et sp. nov Valid Longrich et al. Late Cretaceous (Maastrichtian) Ouled Abdoun Basin  Morocco A mosasaurid belonging to the clade Mosasaurinae. Genus includes new species S. mysteriosus.

Sullivanosaurus[18][19]

Gen. et sp. nov

Čerňanský, Tabuce & Vidalenc

Eocene (MP 10–11)

Quercy Phosphorites Formation

 France

A glyptosaurine. The type species is S. gallicus.

Yaguarasaurus regiomontanus[20] Sp. nov Rivera-Sylva et al. Late Cretaceous (Turonian-Coniacian) Agua Nueva Formation  Mexico A mosasaur belonging to the subfamily Plioplatecarpinae. Announced in 2023; the final article version was published in 2024.
Yechilacerta[21] Gen. et sp. nov Xing, Niu, & Evans Late Cretaceous (Maastrichtian) Hekou Formation  China A member of Polyglyphanodontia. The type species is Y. yingliangia.

Squamate research

[edit]
  • Redescription of Palaeogekko risgoviensis is published by Villa (2023), who confirms the validity of this species as a distinct taxon, and interprets it as a non-eublepharid gekkonoid of uncertain affinities.[22]
  • Thorn et al. (2023) describe new fossil material of Aethesia frangens from the Pleistocene of Australia, interpret it as a large-bodied (approximately 2.4 kg) blue-tongued skink, and transfer it to the genus Tiliqua.[23]
  • Lacertid, blanid and anguid fossil material, including one of the oldest records of the genus Blanus reported to date, is described from the Early Miocene localities Montaigu-le-Blin and Crémat (France) by Čerňanský (2023), expanding known spatial and temporal distribution of Blanus cf. gracilis during the Early Miocene.[24]
  • Redescription of Uquiasaurus heptanodonta is published by Scanferla & Díaz-Fernández (2023), who interpret the type series of this species as a fossil bone assemblage composed by more than one species of Liolaemus, extending known fossil record of the latter genus.[25]
  • Hamilton et al. (2023) report the discovery of the fossil material of cf. Palaeosaniwa canadensis from the Campanian Wapiti Formation (Alberta, Canada), representing the northernmost definitive occurrence of Monstersauria in the Upper Cretaceous of North America reported to date.[26]
  • Loréal et al. (2023) describe new fossil material of Pseudopus pannonicus from the Neogene localities across Moldova, Russia and Ukraine, including fossils from the Turolian localities Gaverdovsky and Volchaya Balka in North Caucasus representing the easternmost or some of the easternmost known occurrences of this species, and revise the diagnostic features of P. pannonicus.[27]
  • Georgalis, Mennecart & Smith (2023) describe two teeth of a probable member of the genus Varanus from the Miocene deposits from the Hüenerbach locality (Switzerland), representing of the oldest occurrences of the genus from Europe.[28]
  • A specimen of the ammonite Mammites nodosoides, preserved with bite traces interpreted as most likely resulting from a lethal attack of a mosasaur directed at the apertural part of the ammonite with the head and arm crown, is described from the Turonian Bílá Hora Formation (Czech Republic) by Mazuch et al. (2023).[29]
  • Evidence from tooth microwear of mosasaurs from the type area for the Maastrichtian, interpreted as indicative of preferences for vertebrate and/or invertebrate prey in different mosasaur taxa but not indicative of strict dietary partitioning, is presented by Holwerda et al. (2023).[30]
  • A humerus of a mosasaurine related to Plotosaurus beninsoni and members of the genus Mosasaurus is described from the Maastrichtian Lopez de Bertodano Formation (Antarctica) by O'Gorman et al. (2023), expanding known diversity of Antarctic mosasaurines.[31]
  • LeBlanc et al. (2023) report that tooth replacement in extant snakes occurs by resorption of dentine by odontoclasts from within the pulp of the tooth, and that this mechanism was already present in Yurlunggur and Portugalophis.[32]
  • A study on the evolution of the snake brain, based on data from extant and fossil taxa, is published by Macrì et al. (2023), who interpret their findings as indicative of a burrowing lifestyle with opportunistic behavior at the origin of the crown group of snakes.[33]
  • A palaeophiid vertebra tentatively referred to the genus Pterosphenus is described from the Eocene Ameki Formation (Nigeria) by Georgalis (2023), expanding known diversity of palaeophiids from Nigeria.[34]
  • Averianov (2023) describes new fossil material of Pterosphenus muruntau from the Eocene (Bartonian) deposits from the Dzheroi 2 locality in the Central Kyzylkum Desert (Uzbekistan), and considers P. muruntau to be a valid species.[35]
  • Alfonso-Rojas et al. (2023) describe new fossil material of Colombophis from the Miocene La Victoria and Villavieja formations (Colombia), and interpret its anatomy as supporting the placement of Colombophis among the alethinophidians.[36]
  • Shi et al. (2023) describe an assemblage of early Pliocene snake fossils entombed with the mammalian fauna from Houxushan (Queshan, Henan, China), and interpret the studied fossils as indicative of a warmer and more humid climate in this region during the early Pliocene.[37]
  • Bolet (2023) describes an assemblage of squamate fossils from the Eocene locality of Mazaterón (Spain), providing evidence of the persistence of glyptosaur and anguine anguids, iguanids and lacertids through most of the Iberian Eocene, and including one of the oldest records of amphisbaenians in Europe after the apparent gap in their European fossil record in the MP11–MP15 interval.[38]
  • Lofgren et al. (2023) describe new fossil material of squamates from the Uintan, Chadronian and Whitneyan strata in Montana (United States), including the first records of varanids, Calamagras and a possible member of the genus Peltosaurus from the Tertiary depositional basins of southwest Montana, and the first record of Aciprion formosum from the state and from the Whitneyan strata.[39]
  • Georgalis et al. (2023) describe fossil material of lizards and snakes from the Miocene localities in Anatolia (Turkey), including fossil remains tentatively referred to chameleons, potentially representing the oldest occurrences of chameleons from Asia reported to date.[40]

Ichthyosauromorphs

[edit]

Ichthyosauromorph research

[edit]
  • A study on the skull morphology of Hupehsuchus nanchangensis, based on data from new specimens from the Lower Triassic Jialingjiang Formation (China), is published by Fang et al. (2023), who find the shape of the skull roof and snout of H. nanchangensis to be highly convergent with modern baleen whales, and interpret Hupehsuchus as likely employing continuous ram filter feeding as in extant bowhead and right whales.[41]
  • Kear et al. (2023) describe ichthyopterygian fossil material (including 11 vertebral centra which are substantially larger than those of typical basal ichthyosauriforms) from the Lower Triassic Vikinghøgda Formation (Svalbard, Norway), interpreting the internal structure of the studied bones as indicating that they belonged to a fully pelagic animal, and argue that ichthyosauromorphs might have originated before the Permian–Triassic extinction event.[42]
  • Engelschiøn et al. (2023) use radiography and computed tomography to reveal taxonomically significant details of the skeletal anatomy of a mixosaurid specimen from the Middle Triassic Botneheia Formation (Svalbard, Norway), and interpret it as a member of the genus Phalarodon with affinities to P. atavus.[43]
  • A study on three gravid Mixosaurus specimens from the Middle Triassic Besano Formation at the Monte San Giorgio locality at the Swiss-Italian border is published by Miedema et al. (2023), who report that two of the studied specimens were preserved with fetuses with tail-first birth position while the third specimen was preserved with fetuses with head-first birth position, propose that a slight preference for tail-first birth likely arose at the base of the Merriamosauria, and argue that fetal orientation at birth in ichthyosaurs was more likely to be related to expulsion mechanics during birth or to maternal stress induced from the fetal orientation during pregnancy than to the need for reduction of asphyxiation risk.[44]
  • A study on the cranial ontogeny of Mixosaurus cornalianus, providing evidence of developmental patterns in the early ontogenetic stages that were reminiscent of the probable ancestral reptile condition, is published by Miedema et al. (2023).[45]
  • A study on the ecomorphological variation of skulls and teeth of members of the genus Temnodontosaurus, providing evidence of a range of configurations allowing prey to be captured and processed in different ways by members of different species and possibly indicative of niche partitioning, is published by Bennion et al. (2023).[46]
  • Redescription of the holotypes of Grendelius pseudoscythicus and G. zhuravlevi is published by Zverkov, Arkhangelsky & Stenshin (2023), who consider both species to be valid, indicating the presence of at least three species of Grendelius in the Middle Russian Sea during the latest Jurassic, and argue that there is insufficient evidence for synonymy between the genera Brachypterygius and Grendelius.[47]
  • Delsett et al. (2023) compare the ossified hyoid elements in ophthalmosaurid ichthyosaurs and toothed whales, and report that, based on hyoid shape, suction feeding seems to never have evolved in ichthyosaurs.[48]
  • Reassessment of the history and identity of the ichthyosaur specimens from the Posidonia Shale housed in the Paleontological Collection of Tübingen University is published by Stöhr & Werneburg (2023).[49]
  • Motani & Shimada (2023) providence evidence that derived ichthyosaurs, modern whales, tunas and lamnid sharks share characteristics of caudal vertebrae related to the mechanics of thunniform swimming, and allowing identifications of thunniform swimmers in the fossil record.[50]

Sauropterygians

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images
Chubutinectes[51] Gen. et sp. nov O'Gorman et al. Late Cretaceous (Maastrichtian) La Colonia Formation  Argentina An elasmosaurid. The type species is C. carmeloi.

Chusaurus[52]

Gen. et sp. nov

Liu et al.

Early Triassic (Olenekian)

Jialingjiang Formation

 China

A member of the family Pachypleurosauridae. The type species is C. xiangensis.

Lorrainosaurus[53] Gen. et comb. nov Sachs et al. Middle Jurassic (Bajocian) Marnes de Gravelotte  France A thalassophonean pliosaur. The type species is "Simolestes". keileni.

Luopingosaurus[54]

Gen. et sp. nov

Valid

Xu et al.

Middle Triassic (Anisian)

Guanling Formation

 China

A member of the family Pachypleurosauridae. The type species is L. imparilis.

Martinectes[55] Gen. et comb. nov In press Clark, O'Keefe, & Slack Late Cretaceous (Campanian) Pierre Shale  United States
( Wyoming,
 South Dakota)
A polycotylid. The type species is "Dolichorhynchops" bonneri. Announced in 2023; the final article version will be published in 2024.

Prosaurosphargis[56]

Gen. et sp. nov

Valid

Wolniewicz et al.

Early Triassic (Olenekian)

Jialingjiang Formation

 China

A saurosphargid. The type species is P. yingzishanensis.

Scalamagnus[55] Gen. et comb. nov In press Clark, O'Keefe, & Slack Late Cretaceous (Turonian) Tropic Shale  United States
( Utah)
A polycotylid. The type species is "Dolichorhynchops" tropicensis. Announced in 2023; the final article version will be published in 2024.

Styxosaurus rezaci[57]

Sp. nov

Valid

Armour Smith & O'Keefe

Late Cretaceous (Cenomanian)

 United States
( Nebraska)

Unktaheela[55] Gen. et sp. nov In press Clark, O'Keefe, & Slack Late Cretaceous (Campanian) Sharon Springs Formation  United States
( Wyoming,
 South Dakota)
A polycotylid. The type species is U. specta. Announced in 2023; the final article version will be published in 2024.

Sauropterygian research

[edit]
  • A study on the ecomorphological diversification of Middle Triassic eosauropterygians, providing evidence of evolution of anatomically diverse skulls and teeth (likely related to different feeding specializations of pachypleurosauroids, nothosauroids and pistosauroids) and more homogeneous postcranial skeletons, as well as evidence of regional variations in morphological diversity, is published by Laboury et al. (2023).[58]
  • An aggregation of bones of at least three individuals of Keichousaurus hui, interpreted as a likely regurgitalith probably produced by a near-shore sauropterygian such as Nothosaurus or Lariosaurus, is described from the Middle Triassic Xingyi Fauna (Guizhou, China) by Ye, Sun & Yao (2023).[59]
  • Li et al. (2023) report preservation of the digestive tract with food remains in specimens of Keichousaurus hui from the Zhuganpo Member of the Falang Formation (China), and reconstruct the internal distribution and organ composition of the digestive tract of K. hui.[60]
  • Morphological and histological evidence interpreted as indicative of puberty as one of the four life stages is reported in the fossil material of Keichousaurus by Li et al. (2023).[61]
  • New specimen of Yunguisaurus, providing new information on the anatomy of the skull in this taxon, is described from the Ladinian Zhuganpo Member of the Falang Formation (China) by Lu et al. (2023).[62]
  • Reassessment of Trematospondylus macrocephalus is published by Sachs et al. (2023), who interpret the taxon as a dubious rhomaleosaurid.[63]
  • Teeth of freshwater pliosauroids, possibly representing a transitional taxon between the Middle Jurassic and Late Jurassic pliosaurids, are described from the Middle Jurassic Xintiangou Formation (China) by Ma et al. (2023).[64]
  • Vertebrae belonging to a pliosaurid estimated as being 9.8 to 14.4 m in length are described from the Kimmeridgian Kimmeridge Clay (United Kingdom) by Martill et al. (2023).[65]
  • Fossil material of pliosaurids, including two specimens whose skull size approached that of Megacephalosaurus, is described from the Cenomanian and Turonian of the Yezo Group (Hokkaido, Japan) by Sato et al. (2023).[66]
  • A study on the skeletal anatomy and phylogenetic relationships of Luskhan itilensis is published by Fischer et al. (2023).[67]
  • Redescription of "Plesiosaurus" bavaricus and description of the fossil material of a member of the same or related species from the Posidonia Shale (Germany) is published by Sachs, Abel & Madzia (2023), who interpret the studied fossils as indicative of the presence of a distinct plesiosaur taxon in the upper Lower Jurassic of the Posidonia Shale of Germany.[68]
  • D'Angelo et al. (2023) describe a mature elasmosaurid specimen from the Maastrichtian Calafate Formation (Argentina), with histological features of the phalanx and vertebral apophysis otherwise found in juvenile individuals, and interpret this finding as contradicting the hypotheses that proposed that the maturation of elasmosaurid involved a shift in bone density which was related to migration from coastal waters to the open sea.[69]
  • O'Gorman & Otero (2023) revise the fossil material of Late Cretaceous short-necked plesiosaurs from New Zealand, and argue that only one specimen from the Tahora Formation and one from the Conway Formation can be confidently referred to the family Polycotylidae, while another specimen from the Conway Formation and one specimen from uncertain locality can be referred to this family with doubts.[70]
  • May et al. (2023) describe possible pliosaurid and possible small-bodied plesiosaur fossil material from the Upper Jurassic Malone Formation, representing the first Jurassic vertebrate fossils from Texas reported to date.[71]
  • Fossil trackway probably produced by a plesiosaur swimming in contact with the mud at the bottom of the sea is described from the Upper Jurassic–Lower Cretaceous Maiolica Formation (Italy) by Natali & Leonardi (2023), who name a new ichnotaxon Coneroichnus marinus.[72]
  • A study on the skeletal maturity status of known plesiosaur skeletons, indicating that determination of the ontogenetic stage of the studied specimens may be confounded by paedomorphism (especially in later taxa), is published by Araújo & Smith (2023).[73]

Turtles

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Abalakemys[74]

Gen. et sp. nov

Valid

Pérez-García

Late Cretaceous (Maastrichtian)

Farin-Doutchi Formation

 Niger

A member of the family Bothremydidae. The type species is A. chapmanae.

Astrochelys rogerbouri[75]

Sp. nov

Valid

Kehlmaier et al.

Holocene

 Madagascar

A tortoise, a species of Astrochelys.

Carettochelys niahensis[76]

Sp. nov

In press

White et al.

Cenozoic (probably late Oligocene or younger in age)

 Malaysia

A member of the family Carettochelyidae.

Floridemys nancei[77]

Sp. nov

Valid

Weems

Miocene

St. Marys Formation

 United States
( Maryland)

A tortoise.

Gehennachelys[78] Gen. et comb. nov Adrian, Smith, & Noto Late Cretaceous (Cenomanian) Lewisville Formation  United States ( Texas) A member of the family Baenidae; a new genus for "Trinitichelys" maini Adrain et al. (2019).

Kansastega[79]

Nom. nov

McDavid & Hooks

Late Cretaceous

Niobrara Chalk

 United States
( Kansas)

A member of the family Protostegidae; a replacement name for Microstega Hooks (1998).

Khargachelys[80] Gen. et sp. nov AbdelGawad et al. Late Cretaceous (Campanian) Quseir Formation  Egypt A member of Bothremydidae. The type species is K. caironensis

Nanhsiungchelys yangi[81]

Sp. nov

Valid

Ke et al.

Late Cretaceous

Dafeng Formation

 China

A member of the family Nanhsiungchelyidae.

Podocnemis tatacoensis[82]

Sp. nov

Valid

Cadena & Vanegas

Miocene (Serravallian)

La Victoria Formation

 Colombia

A species of Podocnemis.

Proadocus[83]

Gen. et sp. nov

Kim et al.

Early Cretaceous

Hasandong Formation

 South Korea

A member of the family Adocidae. The type species is P. hadongensis.

Striatochelys[84]

Gen. et sp. nov

Valid

Massonne et al.

Eocene (Bartonian–Priabonian)

Na Duong Formation

 Vietnam

A pan-trionychid. The type species is S. baba.

Titanochelon schleichi[85]

Sp. nov

Pappa, Vlachos & Moser

Miocene (Burdigalian/Langhian boundary)

 Germany

A tortoise.

Turtle research

[edit]
  • A study on the body size evolution in turtles is published by Farina et al. (2023), who interpret their findings as indicating that body size was influenced by lineage-specific specializations, such as habitat choice, rather than global trends.[86]
  • A study on the topological organization of the turtle skull throughout the evolutionary history of turtles is published by Miller et al. (2023), who interpret their findings as indicating that turtles have a derived cranial topology which was established early in turtle evolutionary history and subsequently conserved.[87]
  • Szczygielski & Piechowski (2023) describe the anatomy of the limbs and girdles of Proterochersis, reporting the presence of a mosaic of characteristics suggesting either terrestrial or aquatic ecology.[88]
  • A study on the limb bone histology in Proterochersis porebensis and Proganochelys quenstedtii, providing evidence of general microstructural patterns typical for extant turtles and of faster growth during early life stages in P. quenstedtii than in P. porebensis, is published by Szczygielski et al. (2023).[89]
  • New specimen of Naomichelys speciosa, providing new information on the anatomy and intraspecific variation in this species, is described from the Lower Cretaceous Cloverly Formation (Montana, United States) by Lawver & Garner (2023).[90]
  • Joyce et al. (2023) describe fossil material of Helochelydra nopcsai from the Lower Cretaceous strata in North Rhine-Westphalia (Germany), extending known geographic range of this species and providing new information on its anatomy.[91]
  • Tong et al. (2023) describe a skull of a member of the species Solemys gaudryi from the Upper Cretaceous (Campanian) Bastide Neuve locality (Var, France), providing new information on the skull anatomy of helochelydrid turtles.[92]
  • Chou et al. (2023) describe a new specimen of Chengyuchelys latimarginalis from the Upper Jurassic Shangshaximiao Formation (China), expanding known geographical distribution of this species and providing new information on its intraspecific variation.[93]
  • The first specimen of Solnhofia parsonsi preserving largely complete and articulated limbs is described from the Kimmeridgian Torleite Formation (Germany) by Augustin et al. (2023), who interpret this finding as indicating that S. parsonsi lacked stiffened paddles otherwise present in more pelagic marine turtles, and argue against interpreting the presence flexible flippers in fossil turtles as evidence for freshwater lifestyle by itself.[94]
  • Pérez-García, Camilo & Ortega (2023) describe new fossil material of Hylaeochelys kappa from the Tithonian Freixial Formation (Portugal), providing new information on the anatomy and intraspecific variability in this species.[95]
  • A specimen of Eodortoka cf. morellana, representing both the oldest occurrence of the family Dortokidae reported to date and the first record of the group from the United Kingdom, is described from the Lower Cretaceous Wessex Formation by Jacobs et al. (2023).[96]
  • Cadena et al. (2023) describe new fossil material of Chelus lewisi from the Miocene Socorro Formation (Urumaco, Venezuela) and of Chelus colombiana from the La Victoria Formation (Tatacoa, Colombia), and interpret the anatomy of the studied fossils as supporting the validity of both species.[97]
  • Martín-Jiménez & Pérez-García (2023) present the reconstruction of the skull and neuroanatomical structures of the holotype of Euraxemys essweini.[98]
  • A study on the ecology of Araripemys barretoi is published by Batista, Carvalho & de la Fuente (2023).[99]
  • Bogado et al. (2023) describe new fossil material of Roxochelys from the Upper Cretaceous Presidente Prudente Formation (Brazil), and provide an emended diagnosis for Roxochelys.[100]
  • Martín-Jiménez & Pérez-García (2023) provide a three-dimensional reconstruction of the anatomical and neuroanatomical cranial structures of Neochelys arenarum.[101]
  • A study on the anatomy of the mandible of Glyptops ornatus is published by Evers (2023), who interprets G. ornatus as a likely active aquatic hunter.[102]
  • Smith, Berg & Adrian (2023) describe a well-preserved skull of a specimen of Plesiobaena antiqua from the Judith River Formation (Montana, United States), providing new information on the morphology of the middle and inner ear and endocast of baenids.[103]
  • Description of a partial skeleton of Denazinemys nodosa from the Campanian Kaiparowits Formation (Utah, United States) and a study on the phylogenetic affinities of this taxon is published by Spicher et al. (2023).[104]
  • Description of the anatomy of the skull and mandible of Plastomenus thomasii, and a study on the phylogenetic relationships and the evolutionary history of softshell turtles, is published by Evers, Chapelle & Joyce (2023).[105]
  • Redescription of Rafetus bohemicus is published by Chroust et al. (2023).[106]
  • Cadena & Combita-Romero (2023) describe protostegid fossil material from the Lower Cretaceous (Valanginian) Rosablanca Formation (Colombia), representing both the earliest protostegid record reported to date and the largest Early Cretaceous protostegid worldwide, providing evidence of early evolution of large size in protostegids.[107]
  • A study on the long bone microstructure of Protostega gigas is published by Wilson (2023), who interprets her findings as indicating that P. gigas, unlike the more basal protostegid Desmatochelys, had rapid bone growth patterns similar to those of extant leatherback sea turtles.[108]
  • Purported plant fossils from the Lower Cretaceous Paja Formation (Colombia), originally described as Sphenophyllum colombianum, are reinterpreted by Palma-Castro et al. (2023) as hatchling marine turtles, representing the first finding of hatchlings turtle carapaces from northwestern South America reported to date.[109]
  • Fossil material of a sea turtle is described from the Lutetian Santiago Formation, California by Poust, Holroyd & Deméré (2023), providing evidence of the presence of sea turtles in North Pacific during the middle Eocene.[110]
  • Zvonok, Benitskiy & Danilov (2023) describe new fossil material of Tasbacka aldabergeni from the Paleogene (Paleocene or Ypresian) Kudinovka locality (Rostov Oblast, Russia), including the most complete postcranial skeleton of a member of this species, providing new information on its anatomy.[111]
  • A carapace of a sea turtle representing the oldest record of the genus Lepidochelys reported to date is described from the Miocene Chagres Formation (Panama) by Cadena, De Gracia & Combita-Romero (2023), who report evidence of exceptional preservation of bone microstructure, including remains of blood vessels, collagen fibers, osteocytes with possible DNA.[112]
  • A study on the diversification of tortoises throughout their evolutionary history is published by Silveira et al. (2023).[113]
  • A study on the bone histology of fossil and extant angulate tortoises from South Africa, providing evidence of impact of environmental conditions on the growth of studied tortoises, is published by Bhat, Chinsamy & Parkington (2023).[114]
  • Delfino et al. (2023) describe Late Pleistocene fossils representing the first fossil material of Testudo hermanni hermanni from Sicily reported to date.[115]
  • A study on the relationship of body size to climate and on the role of metabolism in governing size in turtles is published by Parker et al. (2023), who report that the Plio-Pleistocene fossil record of turtles from the Shungura Formation (Ethiopia) included tortoises which were significantly larger than any extant African taxon, but aquatic turtles did not reach significantly larger maximum sizes than extant eastern African turtles; the authors find the studied fossil record of turtles to be consistent with habitat reconstructions for the Shungura Formation, interpret it as indicating that temperature-dependent metabolism likely wasn't a dominant factor for body size sorting in turtles from the Shungura Formation, and argue that the extinction of the largest eastern African tortoises may have been driven, in part, by human exploitation.[116]
  • Revision of the fossil material of Paleogene turtles from Eastern Europe is published by Zvonok & Danilov (2023).[117]

Archosauriformes

[edit]

Archosaurs

[edit]

Other archosauriforms

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Colossosuchus[118]

Gen. et sp. nov

Datta & Ray

Late Triassic

Tiki Formation

 India

A mystriosuchine phytosaur. The type species is C. techniensis.

Colossosuchus (top)
Jupijkam[119]

Gen. et sp. nov

Brownstein

Late Triassic (Norian-Rhaetian)

Blomidon Formation

 Canada

A mystriosuchine phytosaur. The type species is J. paleofluvialis.

Kuruxuchampsa[120]

Gen. et sp. nov

Paes-Neto et al.

Late Triassic (Carnian)

Santa Cruz do Sul Sequence of the Santa Maria Supersequence

 Brazil

A rhadinosuchine proterochampsid. The type species is K. dornellesi.

Mystriosuchus alleroq[121]

Sp. nov

López-Rojas et al.

Late Triassic

Malmros Klint Formation

 Greenland

A mystriosuchine phytosaur.

Pinheirochampsa[120]

Gen. et sp. nov

Paes-Neto et al.

Triassic (Ladinian-Carnian)

Pinheiros-Chiniquá Sequence of the Santa Maria Supersequence

 Brazil

A rhadinosuchine proterochampsid. The type species is P. rodriguesi.

Samsarasuchus[122]

Gen. et sp. nov

Valid

Ezcurra et al.

Early Triassic (Induan)

Panchet Formation

 India

A chasmatosuchine proterosuchid. The type species is S. pamelae.

Archosauriform research

[edit]
  • A study on the bone histology of Chanaresuchus bonapartei and Tropidosuchus romeri from the Chañares Formation (Argentina) is published by Garcia Marsà et al. (2023), who interpret their findings as indicative of variability of the developmental patterns in the studied taxa, as well as suggestive of their terrestrial lifestyle.[123]
  • A study on the locomotor capabilities of Euparkeria capensis is published by Demuth, Wiseman & Hutchinson (2023), who conclude that it is unlikely that Euparkeria was facultatively bipedal, and was probably quadrupedal.[124]

Other reptiles

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Alamitosphenos[125]

Gen. et sp. nov

In press

Agnolín et al.

Late Cretaceous (Maastrichtian)

Los Alamitos Formation

 Argentina

A sphenodontid rhynchocephalian. The type species is A. mineri. Announced in 2023; the final article version will be published in 2024.

Austronaga[126]

Gen. et sp. nov

Valid

Wang, Lei & Li

Middle Triassic (Anisian)

Guanling Formation

 China

A member of the family Dinocephalosauridae. The type species is A. minuta.

Beesiiwo[127]

Gen. et sp. nov

Fitch et al.

Late Triassic (Carnian)

Popo Agie Formation

 United States
( Wyoming)

A rhynchosaur belonging to the subfamily Hyperodapedontinae. The type species is B. cooowuse.

Clevosaurus nicholasi[128]

Sp. nov

Bhat et al.

Late Triassic

Tiki Formation

 India

Gansurhinus naobaogouensis[129] Sp. nov Liu Late Permian Naogaobou Formation  China A member of the family Captorhinidae.

Gracilicollum[130]

Gen. et sp. nov

Wang et al.

Middle Triassic (Anisian)

Guanling Formation

 China

An early diverging archosauromorph with a long neck, likely a tanystropheid. The type species is G. latens.

Halgaitosaurus[131]

Gen. et sp. nov

Valid

Henrici et al.

Carboniferous (Gzhelian)

Halgaito Formation

 United States
( Utah)

A member of Araeoscelidia. The type species is H. gregarius.

Hwiccewyrm[132]

Gen. et sp. nov

In press

Butler et al.

Late Triassic

Magnesian Conglomerate

 United Kingdom

A member of the family Procolophonidae belonging to the subfamily Leptopleuroninae. The type species is H. trispiculum.

Luxisaurus[133]

Gen. et sp. nov

Valid

Lu & Liu

Middle Triassic (Anisian)

Guanling Formation

 China

A member of the family Tanystropheidae. The type species is L. terrestris.

Rutiotomodon[134]

Gen. et sp. nov

Valid

Sues & Schoch

Middle Triassic (Ladinian)

Erfurt Formation

 Germany

A member of the family Trilophosauridae. The type species is R. tytthos.

Senectosaurus[135]

Gen. et sp. nov

Valid

Boyarinova & Golubev

Permian

 Russia
( Orenburg Oblast)

A pareiasaur. The type species is S. karamzini.

Tramuntanasaurus[136]

Gen. et sp. nov

Matamales-Andreu et al.

Permian

Port des Canonge Formation

 Spain

A member of the family Captorhinidae belonging to the subfamily Moradisaurinae. The type species is T. tiai.

Wirtembergia[137]

Gen. et sp. nov

Sues & Schoch

Middle Triassic (Ladinian)

Erfurt Formation

 Germany

An early rhynchocephalian. The type species is W. hauboldae.

Other reptile research

[edit]
  • Redescription and a study on the affinities of Coelostegus prothales is published by Klembara et al. (2023).[138]
  • Redescription of the holotype specimen of Delorhynchus cifellii is published by Rowe, Bevitt & Reisz (2023).[139]
  • Pohlmann et al. (2023) describe new cranial material of Procolophon trigoniceps from the Sanga do Cabral Formation (Brazil), preserving evidence of temporal fenestration, and interpret the recurrent presence and varying morphology of temporal fenestrae in P. trigoniceps as supporting its characterization as an anomalous trait within the species.[140]
  • Description of new fossil material of Libognathus sheddi from the Upper Triassic Cooper Canyon Formation (Texas, United States), providing new information on the skull anatomy of this procolophonid, is published by Mueller et al. (2023).[141]
  • Van den Brandt et al. (2023) provide the first volumetric body mass estimate of Bradysaurus baini.[142]
  • A study on the structure and placement of the osteoderm cover of Scutosaurus tuberculatus is published by Boyarinova & Golubev (2023).[143]
  • New information on the anatomy of the palate and mandible of Youngina capensis is presented by Hunt et al. (2023), who interpret the anatomy of the studied bones as supporting the phylogenetic placement of Youngina as an early diverging neodiapsid.[144]
  • A study on the morphology of the femora of members of Drepanosauromorpha, interpreted as indicative of increased capacity for femoral adduction and protraction relative to most other Permo-Triassic diapsids, is published by Pritchard et al. (2023).[145]
  • A study on the anatomy of the hindlimbs of Megalancosaurus preonensis and M. endennae is published by Renesto & Saller (2023), who interpret the differences in the skeletal anatomy of the studied drepanosauromorphs as indicating that the two species may have exploited different microhabitats in the arboreal environment.[146]
  • Browstein et al. (2023) exclude Cryptovaranoides microlanius from the crown group of Squamata, and consider it to be a neodiapsid of unclear placement with possible affinities to early archosauromorphs.[147]
  • Roese-Miron et al. (2023) compare the endocasts of Clevosaurus brasiliensis and extant tuatara, reporting that the reptilian encephalization quotient of C. brasiliensis in much lower than that of the tuatara, and providing evidence of a previously undocumented neuroanatomical diversity among rhynchocephalians.[148]
  • Probable sphenodontian burrows are described from the Lower Cretaceous (Aptian) Cerro Barcino Formation (Argentina) by Melchor et al. (2023).[149]
  • Redescription of Wapitisaurus problematicus is published by Bastiaans, Buffa & Scheyer (2023), who reinterpret this reptile as a member of Thalattosauroidea.[150]
  • A study comparing bone histology of Askeptosaurus italicus and an unnamed thalattosauroid from the Vester Formation (Oregon, United States), providing evidence of different growth patterns in the studied thalattosaurs, is published by Klein et al. (2023).[151]
  • Redescription of the holotype of Wayaosaurus bellus is published by Chai et al. (2023), who consider Miodentosaurus brevis to be a possible junior synonym of W. bellus, and interpret thalattosaur morphology as indicating that, unlike sauropterygians and ichthyosauriforms, thalattosaurs night have been adapted only to the nearshore environments.[152]
  • A study on the stable carbon, oxygen and sulfur isotope compositions of bones of two specimens of Odontochelys is published by Goedert et al. (2023), who interpret their findings as indicating that Odontochelys was herbivorous and lived in a coastal marine environment.[153]
  • Jiang et al. (2023) report the discovery of an embryo of a member of the genus Ikechosaurus from the Lower Cretaceous Jiufotang Formation (China) preserved inside a parchment-shelled egg, interpret the ossification sequence of the embryo as confirming the placement of choristoderans within Archosauromorpha, and interpret this finding as suggesting that the ancestral amniote displayed extended embryo retention, including viviparity.[154]
  • Dudgeon, Mallon & Evans (2023) describe a specimen of Champsosaurus lindoei from the Two Medicine Formation (Montana, United States), representing the first confirmed record of this species outside of Dinosaur Provincial Park and its vicinity, and providing evidence that Champsosaurus was able to live in drier environments than previously thought.[155]
  • Spiekman & Mujal (2023) describe two specimens of Tanystropheus (belonging to the species T. hydroides and T. longobardicus) from the Middle Triassic Monte San Giorgio Lagerstätte with completely severed necks, and interpret the studied specimens as likely victims of a predatory attack, providing evidence that the long neck of Tanystropheus might have been susceptible to predation.[156]
  • Redescription of Anisodontosaurus greeri is published by Foffa et al. (2023), who provide new information on the anatomy of this reptile, supporting its referral to the clade Trilophosauridae.[157]
  • A study on microwear patterns in teeth of trilophosaurids is published by Mellett et al. (2023), who interpret their findings as suggestive of niche partitioning in closely related trilophosaurids in the Norian American Southwest.[158]
  • Redescription of the skull of the holotype of Bentonyx sidensis, including description of previously obscured anatomical details, is published by Sethapanichsakul, Coram & Benton (2023).[159]
  • A study on tooth implantation in rhynchosaurs and on changes in their teeth and jaw morphology as they aged is published by Sethapanichsakul, Coram & Benton (2023), who interpret the fossil record of rhynchosaurs as indicative of two phases of diversification, first in the Anisian, and second following the Carnian pluvial episode.[160]
  • Redescription of the holotype specimen of Prolacerta broomi is published by Sobral (2023).[161]

Reptiles in general

[edit]
  • A study on the relationship between femoral microstructure and posture in extant reptiles, and on its implications for the reconstruction of the posture of extinct reptiles, is published by Gônet et al. (2023), who find that the posture can be reliably inferred for extinct reptile taxa that preceded and followed the quadruped/biped and sprawling/erect transitions, but also that the inferences are more questionable for taxa contemporary with these transitions.[162]
  • A study on the nasal passage shapes and nasal airflow patterns in extant diapsids, comparing simulated airflow patterns in nasal passages without soft tissues (representing the typical degree of nasal passage preservation in fossils) and with soft tissues, is published by Bourke & Witmer (2023), who interpret their findings as indicating that previous nasal passage reconstructions in extinct species might overestimate airway size, which might affect estimates of physiological capacities of the nasal passages.[163]
  • Hoffman, Hancox & Nesbitt (2023) describe an assemblage of teeth of diapsid reptiles from the Lower Triassic Burgersdorp Formation (South Africa), report the presence of seven tooth morphotypes which are distinct but show limited morphological disparity, and interpret this finding as confirming that the recovery of diverse ecosystems after the Permian–Triassic extinction event was delayed until the Middle or even the Late Triassic.[164]
  • Zverkov et al. (2023) describe Late Cretaceous reptile fossils from the Pyasina River, Tanama River and Kheta River basins (Siberia, Russia), representing the northernmost Cretaceous Eurasian occurrences of plesiosaurs, turtles and possibly mosasaurids reported to date, and including immature plesiosaur fossils which might indicate that the Late Cretaceous shallow waters in the studied area were a breeding and nursery area for plesiosaurs.[165]
  • A study on the competition for prey between Miocene mammalian and reptilian predators at La Venta (Colombia) is published by Wilson & Parker (2023), who interpret their findings as indicative of limited competition for resources among the carnivore guild compared to the most similar extant communities, a dominant role of crocodyliform predators in the studied community, and low predation pressure which might have resulted in overpopulation leading to feeding stress in the notoungulate species Pericotoxodon platignathus.[166]

References

[edit]
  1. ^ Čerňanský, A.; Daza, J. D.; Tabuce, R.; Saxton, E.; Vidalenc, D. (2023). "An early Eocene pan-gekkotan from France could represent an extra squamate group that survived the K/Pg extinction". Acta Palaeontologica Polonica. 68 (4): 695–708. doi:10.4202/app.01083.2023.
  2. ^ Polcyn, Michael J.; Schulp, Anne S.; Gonçalves, António O. (2023). "Remarkably well-preserved in-situ gut content in a specimen of Prognathodon kianda (Squamata: Mosasauridae) reveals multispecies intrafamilial predation, cannibalism, and a new mosasaurine taxon". Windows into Sauropsid and Synapsid Evolution. Essays in honor of Prof. Louis L. Jacobs: 66–98.
  3. ^ Čerňanský, A.; Smith, R.; Smith, T.; Folie, A. (2023). "Iguanian lizards (Acrodonta and Pleurodonta) from the earliest Eocene (MP 7) of Dormaal, Belgium: the first stages of these iconic reptiles in Europe". Journal of Vertebrate Paleontology. 42 (4). e2184696. doi:10.1080/02724634.2023.2184696. S2CID 257817600.
  4. ^ Cabezuelo-Hernández, A.; Pérez-García, A. (2023). "A New Species of the Pythonomorph Carentonosaurus from the Cenomanian of Algora (Guadalajara, Central Spain)". Animals. 13 (7). 1197. doi:10.3390/ani13071197. PMC 10093179. PMID 37048453.
  5. ^ Pimentel, A.; Audije-Gil, J.; Barroso-Barcenilla, F.; Berrocal-Casero, M.; Callapez, P. M.; de Juanas, S. O.; Segura, M. (2023). "On the occurrence of Carentonosaurus Rage and Néraudeau, 2004 (Squamata, Pythonomorpha) in the Iberian Cretaceous, with description of a new species from the uppermost middle Cenomanian of West Portugal". Cretaceous Research. 151. 105649. Bibcode:2023CrRes.15105649P. doi:10.1016/j.cretres.2023.105649. S2CID 260024960.
  6. ^ Berrocal-Casero, Mélani; Pimentel, Ricardo; Callapez, Pedro Miguel; Barroso-Barcenilla, Fernando; Ozkaya de Juanas, Senay (2024). "On Segurasaurus (Squamata: Pythonomorpha), a New Genus of Lizard from the Cenomanian (Upper Cretaceous) of Portugal". Geosciences. 14 (3): 84. Bibcode:2024Geosc..14...84B. doi:10.3390/geosciences14030084. ISSN 2076-3263.
  7. ^ Carvalho, J. C.; Santucci, R. M. (2023). "A new fossil Squamata from the Quiricó Formation (Lower Cretaceous), Sanfranciscana Basin, Minas Gerais, Brazil". Cretaceous Research. 154. 105717. doi:10.1016/j.cretres.2023.105717.
  8. ^ Yadav, R.; Bajpai, S.; Maurya, A. S.; Čerňanský, A. (2023). "The first potential cordyliform (Squamata, Scincoidea) from India (uppermost Cretaceous – lowermost Paleocene): an African lizard clade brings possible implications for Indo-Madagascar biogeographic links". Cretaceous Research. 150. 105606. Bibcode:2023CrRes.15005606Y. doi:10.1016/j.cretres.2023.105606. S2CID 259774247.
  9. ^ a b Kiernan, C. R.; Ebersole, J. A. (2023). "Two new plioplatecarpine mosasaurs (Mosasauridae; Plioplatecarpinae) of the genus Ectenosaurus from the Upper Cretaceous of North America". PaleoBios. 40 (13): 1–28. doi:10.5070/P9401362375.
  10. ^ Palci, A.; Onary, S.; Lee, M. S. Y.; Smith, K. T.; Wings, O.; Rabi, M.; Georgalis, G. L. (2023). "A new booid snake from the Eocene (Lutetian) Konservat-Lagerstätte of Geiseltal, Germany, and a new phylogenetic analysis of Booidea". Zoological Journal of the Linnean Society. 202 (2). doi:10.1093/zoolinnean/zlad179.
  11. ^ Shi, J.; Li, Q.; Stidham, T. A.; Zhang, C.; Jiangzuo, Q.; Chen, M.; Ni, X. (2023). "Evolutionary and biogeographic implications of an Erycine snake (Serpentes, Erycidae, Eryx) from the Upper Miocene Linxia Basin, Gansu Province, China". Palaeogeography, Palaeoclimatology, Palaeoecology. 617. 111491. doi:10.1016/j.palaeo.2023.111491. S2CID 257476614.
  12. ^ Shaker, A. A.; Longrich, N. R.; Strougo, A.; Asan, A.; Bardet, N.; Mousa, M. K.; Tantawy, A. A.; Abu El-Kheir, G. A. (2023). "A new species of Halisaurus (Mosasauridae: Halisaurinae) from the lower Maastrichtian (Upper Cretaceous) of the Western Desert, Egypt". Cretaceous Research. 154. 105719. doi:10.1016/j.cretres.2023.105719.
  13. ^ a b Meyer, D.; Brownstein, C. D.; Jenkins, K. M.; Gauthier, J. A. (2023). "A Morrison stem gekkotan reveals gecko evolution and Jurassic biogeography". Proceedings of the Royal Society B: Biological Sciences. 290 (2011). 20232284. doi:10.1098/rspb.2023.2284. PMC 10685121. PMID 38018104.
  14. ^ Zietlow, Amelia R.; Boyd, Clint A.; Van Vranken, Nathan E. (2023-10-30). "Jormungandr walhallaensis: a new mosasaurine (Squamata: Mosasauroidea) from the Pierre Shale Formation (Pembina Member: Middle Campanian) of North Dakota". Bulletin of the American Museum of Natural History. 464 (464). doi:10.1206/0003-0090.464.1.1. hdl:2246/7332. ISSN 0003-0090. Archived from the original on 2023-10-30. Retrieved 2023-10-30.
  15. ^ Konishi, T.; Ohara, M.; Misaki, A.; Matsuoka, H.; Street, H. P.; Caldwell, M. W. (2023). "A new derived mosasaurine (Squamata: Mosasaurinae) from south-western Japan reveals unexpected postcranial diversity among hydropedal mosasaurs". Journal of Systematic Palaeontology. 21 (1). 2277921. Bibcode:2023JSPal..2177921K. doi:10.1080/14772019.2023.2277921.
  16. ^ Polcyn, M. J.; Bardet, N.; Albright, L. B.; Titus, A. (2023). "A new lower Turonian mosasaurid from the Western Interior Seaway and the antiquity of the unique basicranial circulation pattern in Plioplatecarpinae". Cretaceous Research. 151. 105621. Bibcode:2023CrRes.15105621P. doi:10.1016/j.cretres.2023.105621.
  17. ^ Longrich, Nicholas R.; Jalil, Nour-Eddine; Pereda-Suberbiola, Xabier; Bardet, Nathalie (2023). "Stelladens mysteriosus: A Strange New Mosasaurid (Squamata) from the Maastrichtian (Late Cretaceous) of Morocco". Fossils. 1 (1): 2–14. doi:10.3390/fossils1010002. hdl:10810/64193.
  18. ^ Čerňanský, A.; Tabuce, R.; Vidalenc, D. (2023). "Anguimorph lizards from the lower Eocene (MP 10–11) of the Cos locality, Phosphorites du Quercy, France, and the early evolution of Glyptosaurinae in Europe" (PDF). Journal of Vertebrate Paleontology. 42 (5). e2211646. doi:10.1080/02724634.2023.2211646. S2CID 259043331.
  19. ^ Čerňanský, A.; Tabuce, R.; Vidalenc, D. (2023). "A replacement name for Sullivania Čerňanský et al., 2023, non Sullivania Palmer, 1947". Journal of Vertebrate Paleontology. 42 (6). e2231254. doi:10.1080/02724634.2023.2231254. S2CID 260141598.
  20. ^ Rivera-Sylva, Héctor E.; Longrich, Nicholas R.; Padilla-Gutierrez, José M.; Guzmán-Gutiérrez, José Rubén; Escalante-Hernández, Víctor M.; González-Ávila, José G. (2023-11-16). "A new species of Yaguarasaurus (Mosasauridae: Plioplatecarpinae) from the Agua Nueva formation (upper Turonian – ?Lower Coniacian) of Nuevo Leon, Mexico". Journal of South American Earth Sciences. 133: 104694. doi:10.1016/j.jsames.2023.104694. ISSN 0895-9811.
  21. ^ Xing, Lida; Niu, Kecheng; Evans, Susan E. (2023). "A new polyglyphanodontian lizard with a complete lower temporal bar from the Upper Cretaceous of southern China". Journal of Systematic Palaeontology. 21 (1). Bibcode:2023JSPal..2181494X. doi:10.1080/14772019.2023.2281494. ISSN 1477-2019.
  22. ^ Villa, A. (2023). "A redescription of Palaeogekko risgoviensis (Squamata, Gekkota) from the Middle Miocene of Germany, with new data on its morphology". PeerJ. 11. e14717. doi:10.7717/peerj.14717. PMC 9841909. PMID 36655047.
  23. ^ Thorn, K. M.; Fusco, D. A.; Hutchinson, M. N.; Gardner, M. G.; Clayton, J. L.; Prideaux, G. J.; Lee, M. S. Y. (2023). "A giant armoured skink from Australia expands lizard morphospace and the scope of the Pleistocene extinctions". Proceedings of the Royal Society B: Biological Sciences. 290 (2000). 20230704. doi:10.1098/rspb.2023.0704. PMC 10265006. PMID 37312544.
  24. ^ Čerňanský, A. (2023). "New lizard material from two Early Miocene localities in France: Montaigu-le-Blin (MN 2) and Crémat (MN 3)". Geobios. 80: 15–28. Bibcode:2023Geobi..80...15C. doi:10.1016/j.geobios.2023.06.007.
  25. ^ Scanferla, A.; Díaz-Fernández, L. (2023). "Reassessment of Uquiasaurus heptanodonta, an iguanian lizard from the late Pliocene (Uquía Formation) of NW Argentina". Ameghiniana. 60 (6): 535–539. doi:10.5710/AMGH.01.09.2023.3577. S2CID 261523182.
  26. ^ Hamilton, S. M.; Paparella, I.; Bell, P. R.; Campione, N. E.; Fanti, F.; Larson, D. W.; Sissons, R. L.; Vavrek, M. J.; Balsai, M. J.; Sullivan, C. (2023). "New Lizard Specimens from the Campanian Wapiti Formation of Alberta, Canada". Geosciences. 13 (11). 337. Bibcode:2023Geosc..13..337H. doi:10.3390/geosciences13110337. hdl:11585/954542.
  27. ^ Loréal, E.; Syromyatnikova, E. V.; Danilov, I. G.; Čerňanský, A. (2023). "The easternmost record of the largest anguine lizard that has ever lived – Pseudopus pannonicus (Squamata, Anguidae): new fossils from the late Neogene of Eastern Europe". Fossil Record. 26 (1): 51–84. doi:10.3897/fr.26.100059. S2CID 257288946.
  28. ^ Georgalis, G. L.; Mennecart, B.; Smith, K. T. (2023). "First fossil record of Varanus (Reptilia, Squamata) from Switzerland and the earliest occurrences of the genus in Europe". Swiss Journal of Geosciences. 116 (1). 9. doi:10.1186/s00015-023-00440-5.
  29. ^ Mazuch, M.; Košťák, M.; Mikuláš, R.; Culka, A.; Kohout, O.; Jagt, J. W. M. (2023). "Bite traces of a large, mosasaur-type(?) vertebrate predator in the lower Turonian ammonite Mammites nodosoides (Schlüter, 1871) from the Czech Republic". Cretaceous Research. 153. 105714. doi:10.1016/j.cretres.2023.105714.
  30. ^ Holwerda, F. M.; Bestwick, J.; Purnell, M. A.; Jagt, J. W. M.; Schulp, A. S. (2023). "Three-dimensional dental microwear in type-Maastrichtian mosasaur teeth (Reptilia, Squamata)". Scientific Reports. 13 (1). 18720. Bibcode:2023NatSR..1318720H. doi:10.1038/s41598-023-42369-7. PMC 10636054. PMID 37945619.
  31. ^ O'Gorman, J. P.; Bona, P.; Canale, J. I.; Tineo, D. E.; Fernández, M. S.; Cárdenas, M.; Reguero, M. (2023). "A new mosasaurine specimen (Squamata, Mosasauridae) from the Upper Cretaceous of Antarctica with comments on the Weddellian diversity of Mosasaurinae". Alcheringa: An Australasian Journal of Palaeontology. 47 (2): 211–220. Bibcode:2023Alch...47..211O. doi:10.1080/03115518.2023.2203739. S2CID 258691668.
  32. ^ LeBlanc, A. R. H.; Palci, A.; Anthwal, N.; Tucker, A. S.; Araújo, R.; Pereira, M. F. C.; Caldwell, M. W. (2023). "A conserved tooth resorption mechanism in modern and fossil snakes". Nature Communications. 14 (1). 742. Bibcode:2023NatCo..14..742L. doi:10.1038/s41467-023-36422-2. PMC 9918488. PMID 36765054.
  33. ^ Macrì, S.; Aalto, I.-M.; Allemand, R.; Di-Poï, N. (2023). "Reconstructing the origin and early evolution of the snake brain". Science Advances. 9 (39). eadi6888. Bibcode:2023SciA....9I6888M. doi:10.1126/sciadv.adi6888. PMC 10530081. PMID 37756406.
  34. ^ Georgalis, G. L. (2023). "First potential occurrence of the large aquatic snake Pterosphenus (Serpentes, Palaeophiidae) from Nigeria, with further documentation of Pterosphenus schweinfurthi from Egypt". Alcheringa: An Australasian Journal of Palaeontology. 47 (3): 327–335. Bibcode:2023Alch...47..327G. doi:10.1080/03115518.2023.2217874. S2CID 259422068.
  35. ^ Averianov, A. O. (2023). "Pterosphenus muruntau – valid species of sea snakes (Squamata: Palaeophiidae) from the middle Eocene of Uzbekistan". Zoosystematica Rossica. 32 (1): 85–92. doi:10.31610/zsr/2023.32.1.85. S2CID 259456317.
  36. ^ Alfonso-Rojas, A.; Vanegas, R. D.; Mariño-Morejón, E.; Cadena, E.-A. (2023). "Newly discovered fossils provide novel insights on the biology of the South American Miocene snake Colombophis Hoffstetter & Rage, 1977". Geodiversitas. 45 (13): 377–399. doi:10.5252/geodiversitas2023v45a13. S2CID 259975515.
  37. ^ Shi, J.; Wang, Y.; Messenger, K. R.; Jiangzuo, Q.; Chen, Y.; Jin, C. (2023). "Early Pliocene fossil snakes (Squamata, Colubroidea) with various teeth from the fissure deposit from Queshan, Henan, China". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2022.2161382. S2CID 255649762.
  38. ^ Bolet, A. (2023). "Lizards and amphisbaenians (Reptilia, Squamata) from the middle Eocene of Mazaterón (Soria, Spain)". The Anatomical Record. doi:10.1002/ar.25271. PMID 37283299. S2CID 259097435.
  39. ^ Lofgren, D.; Hanneman, D.; Runkel, A.; Fong, P.; Hong, G.; Burdekin, J.; Chai, M.; Kan, Y.; Jorgensen, B. (2023). "New records of Eocene and Oligocene squamates from southwest Montana". Paludicola. 14 (3): 110–121.
  40. ^ Georgalis, G. L.; Čerňanský, A.; Göktaş, F.; Alpagut, B.; Şarbak, A.; Mayda, S. (2023). "The antiquity of Asian chameleons—first potential Chamaeleonidae and associated squamate fauna from the Lower and Middle Miocene of Anatolia". Journal of Vertebrate Paleontology. 42 (2). e2160644. doi:10.1080/02724634.2022.2160644. S2CID 256349649.
  41. ^ Fang, Z.-C.; Li, J.-L.; Yan, C.-B.; Zou, Y.-R.; Tian, L.; Zhao, B.; Benton, M. J.; Cheng, L.; Lai, X.-L. (2023). "First filter feeding in the Early Triassic: cranial morphological convergence between Hupehsuchus and baleen whales". BMC Ecology and Evolution. 23 (1). 36. doi:10.1186/s12862-023-02143-9. PMC 10408079. PMID 37550649.
  42. ^ Kear, B. P.; Engelschiøn, V. S.; Hammer, Ø.; Roberts, A. J.; Hurum, J. H. (2023). "Earliest Triassic ichthyosaur fossils push back oceanic reptile origins". Current Biology. 33 (5): R178–R179. Bibcode:2023CBio...33R.178K. doi:10.1016/j.cub.2022.12.053. PMID 36917937. S2CID 257498390.
  43. ^ Engelschiøn, V. S.; Roberts, A. J.; With, R.; Hammer, Ø. (2023). "Exceptional X-Ray contrast: Radiography imaging of a Middle Triassic mixosaurid from Svalbard". PLOS ONE. 18 (5). e0285939. Bibcode:2023PLoSO..1885939E. doi:10.1371/journal.pone.0285939. PMC 10231774. PMID 37256843.
  44. ^ Miedema, F.; Klein, N.; Blackburn, D. G.; Sander, P. M.; Maxwell, E. E.; Griebeler, E. M.; Scheyer, T. M. (2023). "Heads or tails first? Evolution of fetal orientation in ichthyosaurs, with a scrutiny of the prevailing hypothesis". BMC Ecology and Evolution. 23 (1). 12. doi:10.1186/s12862-023-02110-4. PMC 10114408. PMID 37072698.
  45. ^ Miedema, F.; Bindellini, G.; Dal Sasso, C.; Scheyer, T. M.; Maxwell, E. E. (2023). "Ontogenetic variation in the cranium of Mixosaurus cornalianus, with implications for the evolution of ichthyosaurian cranial development". Swiss Journal of Palaeontology. 142 (1). 27. Bibcode:2023SwJP..142...27M. doi:10.1186/s13358-023-00289-z. PMC 10556136. PMID 37810205.
  46. ^ Bennion, R. F.; Maxwell, E. E.; Lambert, O.; Fischer, V. (2023). "Craniodental ecomorphology of the large Jurassic ichthyosaurian Temnodontosaurus". Journal of Anatomy. 244 (1): 22–41. doi:10.1111/joa.13939. PMC 10734653. PMID 37591692. S2CID 260969287.
  47. ^ Zverkov, N. G.; Arkhangelsky, M. S.; Stenshin, I. M. (2023). "New Data on Late Jurassic Ichthyosaurs of the Genus Grendelius from European Russia". Paleontological Journal. 56 (11): 1459–1481. doi:10.1134/S003103012211020X. S2CID 256618348.
  48. ^ Delsett, L. L.; Pyenson, N.; Miedema, F.; Hammer, Ø. (2023). "Is the hyoid a constraint on innovation? A study in convergence driving feeding in fish-shaped marine tetrapods". Paleobiology. 49 (4): 684–699. Bibcode:2023Pbio...49..684D. doi:10.1017/pab.2023.12. hdl:10852/106844. S2CID 258087360.
  49. ^ Stöhr, H.; Werneburg, I. (2023). "The Tübingen collection of ichthyosaurs from the Lower Jurassic (Lower Toarcian) Posidonienschiefer Formation of Württemberg: a historical and curatorial perspective". Palaeodiversity. 16 (1): 39–97. doi:10.18476/pale.v16.a3. S2CID 258383828.
  50. ^ Motani, R.; Shimada, K. (2023). "Skeletal convergence in thunniform sharks, ichthyosaurs, whales, and tunas, and its possible ecological links through the marine ecosystem evolution". Scientific Reports. 13 (1). 16664. Bibcode:2023NatSR..1316664M. doi:10.1038/s41598-023-41812-z. PMC 10550938. PMID 37794094.
  51. ^ O'Gorman, José P.; Carignano, Ana Paula; Calvo-Marcilese, Lydia; Pérez Panera, Juan Pablo (2023-08-10). "A new elasmosaurid (Sauropterygia, Plesiosauria) from the upper levels of the La Colonia Formation (upper Maastrichtian), Chubut Province, Argentina". Cretaceous Research. 152: 105674. Bibcode:2023CrRes.15205674O. doi:10.1016/j.cretres.2023.105674. ISSN 0195-6671. S2CID 260830333.
  52. ^ Liu, Q.-L.; Cheng, L.; Stubbs, T. L.; Moon, B. C.; Benton, M. J.; Yan, C.-B.; Tian, L. (2023). "Rapid neck elongation in Sauropterygia (Reptilia: Diapsida) revealed by a new basal pachypleurosaur from the Lower Triassic of China". BMC Ecology and Evolution. 23 (1). 44. doi:10.1186/s12862-023-02150-w. PMC 10469986. PMID 37648992.
  53. ^ Sachs, Sven; Madzia, Daniel; Thuy, Ben; Kear, Benjamin P. (2023-10-16). "The rise of macropredatory pliosaurids near the Early-Middle Jurassic transition". Scientific Reports. 13 (1): 17558. Bibcode:2023NatSR..1317558S. doi:10.1038/s41598-023-43015-y. ISSN 2045-2322. PMC 10579310. PMID 37845269.
  54. ^ Xu, G.-H.; Shang, Q.-H.; Wang, W.; Ren, Y.; Lei, H.; Liao, J.-L.; Zhao, L.-J.; Li, C. (2023). "A new long-snouted marine reptile from the Middle Triassic of China illuminates pachypleurosauroid evolution". Scientific Reports. 13 (1). 16. Bibcode:2023NatSR..13...16X. doi:10.1038/s41598-022-24930-y. PMC 9816097. PMID 36604433.
  55. ^ a b c Clark, Robert O.; O'Keefe, F. Robin; Slack, Sara E. (2023-12-24). "A new genus of small polycotylid plesiosaur from the Upper Cretaceous of the Western Interior Seaway and a clarification of the genus Dolichorhynchops". Cretaceous Research. 157: 105812. doi:10.1016/j.cretres.2023.105812. ISSN 0195-6671.
  56. ^ Wolniewicz, A. S.; Shen, Y.; Li, Q.; Sun, Y.; Qiao, Y.; Chen, Y.; Hu, Y.-W.; Liu, J. (2023). "An armoured marine reptile from the Early Triassic of South China and its phylogenetic and evolutionary implications". eLife. 12. e83163. doi:10.7554/eLife.83163. PMC 10499374. PMID 37551884.
  57. ^ Armour Smith, E.; O'Keefe, F. R. (2023). "Occurrence of Styxosaurus (Sauropterygia: Plesiosauria) in the Cenomanian: implications for relationships of elasmosaurids of the Western Interior Seaway". Journal of Systematic Palaeontology. 21 (1). 2242846. Bibcode:2023JSPal..2142846A. doi:10.1080/14772019.2023.2242846. S2CID 261147918.
  58. ^ Laboury, A.; Scheyer, T. M.; Klein, N.; Stubbs, T. L.; Fischer, V. (2023). "High phenotypic plasticity at the dawn of the eosauropterygian radiation". PeerJ. 11. e15776. doi:10.7717/peerj.15776. PMC 10476616. PMID 37671356.
  59. ^ Ye, X.-J.; Sun, Z.-Y.; Yao, M.-T. (2023). "A Keichousaurus-bearing regurgitalite from the Middle Triassic Xingyi Fauna, Dingxiao of Xingyi City, Guizhou, South China". Palaeoworld. 33 (2): 363–373. doi:10.1016/j.palwor.2023.03.009. S2CID 257906301.
  60. ^ Li, J.; Lehrmann, D. J.; Luo, Y.; Adams, T. L.; Yu, M.; Liao, J.; Qin, Y.; Li, Y.; Wang, Y. (2023). "Soft tissue preservation in the Triassic pachypleurosaur Keichousaurus hui: evidence for digestive tract anatomy, diet, and feeding behavior". Frontiers in Ecology and Evolution. 11. 1186354. doi:10.3389/fevo.2023.1186354.
  61. ^ Li, Q.; Liu, J.; Klein, N.; Nakajima, Y.; Sander, P. M. (2023). "Puberty in a Mesozoic reptile". Current Biology. 33 (14): 3011–3016.e3. Bibcode:2023CBio...33E3011L. doi:10.1016/j.cub.2023.05.073. hdl:20.500.11811/11342. PMID 37352853. S2CID 259226719.
  62. ^ Lu, H.; Zhou, M.; Fu, W.; Chai, J. (2023). "The cranial characters of a new specimen of Yunguisaurus from Middle Triassic Ladinian Xingyi fauna, Guizhou". Geological Bulletin of China. 42 (10): 1696–1705. doi:10.12097/j.issn.1671-2552.2023.10.007.
  63. ^ Sachs, Sven; Abel, Pascal; Madzia, Daniel (2023-05-22). "A 'long-forgotten' plesiosaur provides evidence of large-bodied rhomaleosaurids in the Middle Jurassic of Germany". Journal of Vertebrate Paleontology. 42 (5). e2205456. doi:10.1080/02724634.2023.2205456. ISSN 0272-4634. S2CID 258848564.
  64. ^ Ma, Q.; Li, N.; Lin, Y.; Xiong, C.; Wei, X. (2023). "Isolated freshwater pliosaurid teeth from the Middle Jurassic Xintiangou Formation of Chongqing, China". Historical Biology: An International Journal of Paleobiology. 36 (12): 2577–2586. doi:10.1080/08912963.2023.2268617.
  65. ^ Martill, David M.; Jacobs, Megan L.; Smith, Roy E. (2023). "A truly gigantic pliosaur (Reptilia, Sauropterygia) from the Kimmeridge Clay Formation (Upper Jurassic, Kimmeridgian) of England". Proceedings of the Geologists' Association. 134 (3): 361–373. Bibcode:2023PrGA..134..361M. doi:10.1016/j.pgeola.2023.04.005. S2CID 258630597.
  66. ^ Sato, T.; Nagai, K.; Echizenya, H.; Shinmura, T.; Hikida, Y.; Soeda, Y. (2023). "Pliosaurid (Reptilia: Sauropterygia) remains from the Upper Cretaceous of Japan, and their biostratigraphic and paleogeographic significance". Cretaceous Research. 150. 105593. Bibcode:2023CrRes.15005593S. doi:10.1016/j.cretres.2023.105593.
  67. ^ Fischer, V.; Benson, R. B. J.; Zverkov, N. G.; Arkhangelsky, M. S.; Stenshin, I. M.; Uspensky, G. N.; Prilepskaya, N. E. (2023). "Anatomy and relationships of the bizarre Early Cretaceous pliosaurid Luskhan itilensis". Zoological Journal of the Linnean Society. 198 (1): 220–256. doi:10.1093/zoolinnean/zlac108.
  68. ^ Sachs, S.; Abel, P.; Madzia, D. (2023). "Unusual plesiosaur vertebrae from the Lower Jurassic Posidonia Shale of Germany". Historical Biology: An International Journal of Paleobiology. 36 (10): 2124–2132. doi:10.1080/08912963.2023.2242376. S2CID 260994061.
  69. ^ D'Angelo, J. S.; Marsà, J. A. G.; Agnolín, F. L.; Novas, F. E. (2023). "Biological implications of the bone microstructure of a new elasmosaurid (Sauropterygia, Plesiosauroidea) from the uppermost Cretaceous of Patagonia". Historical Biology: An International Journal of Paleobiology. 36 (4): 719–727. doi:10.1080/08912963.2023.2180744. S2CID 257316200.
  70. ^ O'Gorman, J. P.; Otero, R. A. (2023). "Revision of the short-necked Cretaceous plesiosaurians from New Zealand". Comptes Rendus Palevol. 22 (6): 77–90. doi:10.5852/cr-palevol2023v22a6. S2CID 257549391.
  71. ^ May, S. R.; Bader, K. S.; Boucher, L. D.; Jacobs, L. L.; Lively, J. R.; Myers, T. S.; Polcyn, M. J. (2023). "A record of Late Jurassic vertebrates from Texas". Rocky Mountain Geology. 58 (1): 19–37. Bibcode:2023RMGeo..58...19M. doi:10.24872/rmgjournal.58.1.19.
  72. ^ Natali, L.; Leonardi, G. (2023). "Coneroichnus marinus ichnogenus et ichnospecies nov., a fossil trackway of marine reptile in the Maiolica Formation (Upper Jurassic–Lower Cretaceous) from Monte Conero, Marche, Italy". Revista Brasileira de Paleontologia. 26 (3): 156–171. doi:10.4072/rbp.2023.3.02.
  73. ^ Araújo, R.; Smith, A. S. (2023). "Recognising and quantifying the evolution of skeletal paedomorphosis in Plesiosauria". Fossil Record. 26 (1): 85–101. Bibcode:2023FossR..26...85A. doi:10.3897/fr.26.97686.
  74. ^ Pérez-García, A. (2023). "The Ornamented Shell of a New Bothremydid Turtle from the Uppermost Cretaceous of Niger". Diversity. 15 (3). 375. doi:10.3390/d15030375.
  75. ^ Kehlmaier, C.; Graciá, E.; Ali, J. R.; Campbell, P. D.; Chapman, S. D.; Deepak, V.; Ihlow, F.; Jalil, N.-E.; Pierre-Huyet, L.; Samonds, K. E.; Vences, M.; Fritz, U. (2023). "Ancient DNA elucidates the lost world of western Indian Ocean giant tortoises and reveals a new extinct species from Madagascar". Science Advances. 9 (2). eabq2574. Bibcode:2023SciA....9.2574K. doi:10.1126/sciadv.abq2574. PMC 9833658. PMID 36630487.
  76. ^ White, A. W.; Archer, M.; Hand, S. J.; Godthelp, H.; Gillespie, A. K. (2023). "A new broad-snouted fossil carettochelyid turtle from a previously unknown Caenozoic deposit in Sarawak, Malaysia". Alcheringa: An Australasian Journal of Palaeontology. 47 (4): 614–623. Bibcode:2023Alch...47..614W. doi:10.1080/03115518.2023.2243503. S2CID 261112100.
  77. ^ Weems, R. E. (2023). "Miocene and Pliocene Chelonians from the Calvert Cliffs and Nearby Regions". Smithsonian Contributions to Paleobiology. 107. Washington, D.C: 3–48. doi:10.5479/si.23847438. S2CID 260911542.
  78. ^ Adrian, Brent; Smith, Heather F.; Noto, Christopher R. (2023-07-22). "A revision of "Trinitichelys" maini (Testudinata: Baenidae) and additional material of its new genus from the Lewisville Formation (Woodbine Group, Cenomanian), Texas, USA". Palaeontologia Electronica. 26 (2): 1–43. doi:10.26879/1266. ISSN 1094-8074.
  79. ^ McDavid, S. N.; Hooks, G. E. (2023). "Kansastega, nom. nov., a replacement name for Microstega Hooks, preoccupied by Meyrick". Journal of Vertebrate Paleontology. 43 (1). e2252648. doi:10.1080/02724634.2023.2252648.
  80. ^ AbdelGawad, Mohamed; Pérez-García, Adán; Hirayama, Ren; Mohesn, Sara; Tantawy, Abdel-Aziz; Abu El-Kheir, Gebely (2023). "The First Side-Necked Turtle (Pleurodira, Bothremydidae) from the Campanian (Late Cretaceous) of Egypt". Diversity. 15 (2): 284. doi:10.3390/d15020284. ISSN 1424-2818.
  81. ^ Ke, Y.; Rahman, I. A.; Song, H.; Hu, J.; Niu, K.; Lou, F.; Li, H.; Han, F. (2023). "A new species of Nanhsiungchelys (Testudines: Cryptodira: Nanhsiungchelyidae) from the Upper Cretaceous of Nanxiong Basin, China". PeerJ. 11. e15439. doi:10.7717/peerj.15439. PMC 10237181. PMID 37273532.
  82. ^ Cadena, E.-A.; Vanegas, R. D. (2023). "A new fossil turtle ends the controversy on the occurrence of the extant genus Podocnemis Wagler, 1830 at the Miocene fauna of La Venta, Colombia". Geodiversitas. 45 (3): 127–138. doi:10.5252/geodiversitas2023v45a3. S2CID 257258234.
  83. ^ Kim, D. H.; Lee, Y.-N.; Ko, H.; Park, J.-Y.; Kim, S.-H.; Lee, S.; Jung, S.-H.; Kong, D.-Y. (2023). "The first adocid turtle in South Korea (Lower Cretaceous) and the early evolution of the Adocidae". Cretaceous Research. 151. 105665. Bibcode:2023CrRes.15105665K. doi:10.1016/j.cretres.2023.105665. S2CID 260295679.
  84. ^ Massonne, T.; Augustin, F. J.; Matzke, A. T.; Böhme, M. (2023). "A new cryptodire from the Eocene of the Na Duong Basin (northern Vietnam) sheds new light on Pan-Trionychidae from Southeast Asia". Journal of Systematic Palaeontology. 21 (1). 2217505. Bibcode:2023JSPal..2117505M. doi:10.1080/14772019.2023.2217505.
  85. ^ Pappa, I.; Vlachos, E.; Moser, M. (2023). "A new species of a giant tortoise from Sandelzhausen (MN5, Burdigalian/Langhian boundary, Early/Middle Miocene, South Germany)". The Anatomical Record. doi:10.1002/ar.25280. PMID 37358053. S2CID 259249972.
  86. ^ Farina, B. M.; Godoy, P. L.; Benson, R. B. J.; Langer, M. C.; Ferreira, G. S. (2023). "Turtle body size evolution is determined by lineage-specific specializations rather than global trends". Ecology and Evolution. 13 (6). e10201. Bibcode:2023EcoEv..1310201F. doi:10.1002/ece3.10201. PMC 10293707. PMID 37384241.
  87. ^ Miller, E.; Lee, H. W.; Abzhanov, A.; Evers, S. W. (2023). "The topological organization of the turtle cranium is constrained and conserved over long evolutionary timescales". The Anatomical Record. 307 (8): 2713–2748. doi:10.1002/ar.25356. PMID 38102921.
  88. ^ Szczygielski, T.; Piechowski, R. (2023). "Limb anatomy of the Triassic turtles: appendicular osteology of Proterochersis (Testudinata, Proterochersidae)". Zoological Journal of the Linnean Society. 199 (3): 771–831. doi:10.1093/zoolinnean/zlad057.
  89. ^ Szczygielski, T.; Klein, N.; Słowiak-Morkovina, J.; Scheyer, T. M. (2023). "Limb histology of the Triassic stem turtles Proterochersis porebensis Szczygielski & Sulej, 2016 and Proganochelys quenstedtii Baur, 1887 with insights into growth patterns of early turtles". Comptes Rendus Palevol. 22 (32): 635–665. doi:10.5852/cr-palevol2023v22a32.
  90. ^ Lawver, D. R.; Garner, B. A. (2023). "Skeletal variation of the stem turtle Naomichelys speciosa (Testudinata: Helochelydridae): insights from a new specimen from the Lower Cretaceous Cloverly Formation of Montana". Cretaceous Research. 149. 105551. Bibcode:2023CrRes.14905551L. doi:10.1016/j.cretres.2023.105551. S2CID 258125867.
  91. ^ Joyce, W. G.; Evers, S. W.; Ren, S.; Rollot, Y.; Schwermann, A. H. (2023). "The helochelydrid turtle Helochelydra nopcsai from the Early Cretaceous (late Barremian – early Aptian) fissure fills of Balve, North Rhine-Westphalia, Germany, including a large sample of granicones". Fossil Record. 26 (1): 117–133. doi:10.3897/fr.26.102128.
  92. ^ Tong, H.; Buffetaut, E.; Méchin, P.; Méchin-Salessy, A.; Claude, J. (2023). "A Solemys Skull from the Late Cretaceous of Southern France". Diversity. 15 (1). 58. doi:10.3390/d15010058.
  93. ^ Chou, C.; Xing, L.; Wang, F.; Xie, X.; Tong, H. (2023). "A new Chengyuchelys latimarginalis record from the Upper Jurassic Shangshaximaio Formation of Sichuan Basin, China, and the intraspecific variation". Historical Biology: An International Journal of Paleobiology. 36 (5): 992–1006. doi:10.1080/08912963.2023.2201932. S2CID 258401161.
  94. ^ Augustin, F. J.; Rabi, M.; Spindler, F.; Kampouridis, P.; Hartung, J.; Albersdörfer, R.; Matzke, A. T. (2023). "A new specimen of Solnhofia parsonsi from the Upper Jurassic (Kimmeridgian) Plattenkalk deposits of Painten (Bavaria, Germany) and comments on the relationship between limb taphonomy and habitat ecology in fossil turtles". PLOS ONE. 18 (7). e0287936. Bibcode:2023PLoSO..1887936A. doi:10.1371/journal.pone.0287936. PMC 10370695. PMID 37494369.
  95. ^ Pérez-García, A.; Camilo, B.; Ortega, F. (2023). "New Data on the Poorly Known Jurassic Record of the Turtle Hylaeochelys (Thalassochelydia), Based on New Finds from Portugal". Diversity. 15 (2). 167. doi:10.3390/d15020167.
  96. ^ Jacobs, M. L.; Pérez-García, A.; Martín-Jiménez, M.; Mottram, C. M.; Martill, D. M.; Gale, A. S.; Mattsson, O.; Wood, C. (2023). "A well preserved pan-pleurodiran (Dortokidae) turtle from the English Lower Cretaceous and the first radiometric date for the Wessex Formation (Hauterivian-Barremian) of the Isle of Wight, United Kingdom". Cretaceous Research. 150. 105590. Bibcode:2023CrRes.15005590J. doi:10.1016/j.cretres.2023.105590.
  97. ^ Cadena, E.-A.; Link, A.; Vanegas, A.; Avellaneda-Otero, C.-A.; Perdomo, C.; Urueña-Carrillo, D. A.; Sánchez, R.; Vanegas, R. D.; Scheyer, T. M.; Carrillo-Briceño, J. D. (2023). "New insights into the fossil record of the turtle genus Chelus Duméril, 1806 including new specimens with information on cervicals and limb bones". Comptes Rendus Palevol. 22 (34): 689–709. doi:10.5852/cr-palevol2023v22a34.
  98. ^ Martín-Jiménez, M.; Pérez-García, A. (2023). "Neuroanatomical Study and Three-Dimensional Cranial Reconstruction of the Brazilian Albian Pleurodiran Turtle Euraxemys essweini". Diversity. 15 (3). 374. doi:10.3390/d15030374.
  99. ^ Batista, D. L.; Carvalho, I. S.; de la Fuente, M. S. (2023). "Araripemys barretoi: Paleoecological analysis of a pelomedusoid Chelonia from the Lower Cretaceous of Araripe and Parnaíba basins, Brazil". Cretaceous Research. 148. 105503. Bibcode:2023CrRes.14805503B. doi:10.1016/j.cretres.2023.105503. S2CID 256786671.
  100. ^ Bogado, J. P.; Pereira, P. V. L. G. C.; de la Fuente, M. S.; Bergqvist, L. P. (2023). "New records of Testudines from the Presidente Prudente Formation of the Bauru group (Late Cretaceous), with a revised diagnosis for Roxochelys wanderleyi and palaeoichnological remarks". Journal of South American Earth Sciences. 128. 104478. Bibcode:2023JSAES.12804478B. doi:10.1016/j.jsames.2023.104478. S2CID 259379689.
  101. ^ Martín-Jiménez, M.; Pérez-García, A. (2023). "Neuroanatomical study of the podocnemidid turtle Neochelys arenarum (Pleurodira), from the early Eocene of France". The Anatomical Record. doi:10.1002/ar.25217. PMID 36974769. S2CID 257772937.
  102. ^ Evers, S. W. (2023). "Mandibular anatomy of the paracryptodire Glyptops ornatus supports active hunting behavior in a Jurassic turtle". The Anatomical Record. 307 (6): 2007–2017. doi:10.1002/ar.25320. PMID 37747271.
  103. ^ Smith, H. F.; Berg, M.; Adrian, B. (2023). "A well-preserved cranium from the Judith River Formation (Montana, USA) reveals the inner ear and neuroanatomy of a Campanian baenid turtle". The Anatomical Record. 306 (6): 1431–1451. doi:10.1002/ar.25185. PMID 36899495. S2CID 257438399.
  104. ^ Spicher, G. E.; Sertich, J. J. W.; Girard, L. C.; Joyce, W. G.; Lyson, T. R.; Rollot, Y. (2023). "A description of a Denazinemys nodosa specimen (Testudinata, Baenidae) from the Late Cretaceous Kaiparowits Formation of southern Utah". Fossil Record. 26 (2): 151–170. Bibcode:2023FossR..26..151S. doi:10.3897/fr.26.102520.
  105. ^ Evers, S. W.; Chapelle, K. E. J.; Joyce, W. G. (2023). "Cranial and mandibular anatomy of Plastomenus thomasii and a new time-tree of trionychid evolution". Swiss Journal of Palaeontology. 142 (1). 1. Bibcode:2023SwJP..142....1E. doi:10.1186/s13358-023-00267-5. PMC 10020266. PMID 36941994.
  106. ^ Chroust, M.; Mazuch, M.; Ivanov, M.; Alba, D. M.; Luján, À. H. (2023). "Redescription of the soft-shell turtle Rafetus bohemicus (Testudines, Trionychidae) from the Early Miocene of Czechia". PeerJ. 11. e15658. doi:10.7717/peerj.15658. PMC 10387236. PMID 37525660.
  107. ^ Cadena, E.-A.; Combita-Romero, D. A. (2023). "The onset of large size in Cretaceous marine turtles (Protostegidae) evidenced by new fossil remains from the Valanginian of Colombia". Zoological Journal of the Linnean Society. 202 (1). doi:10.1093/zoolinnean/zlad053.
  108. ^ Wilson, L. E. (2023). "Rapid growth in Late Cretaceous sea turtles reveals life history strategies similar to extant leatherbacks". PeerJ. 11. e14864. doi:10.7717/peerj.14864. PMC 9924133. PMID 36793890.
  109. ^ Palma-Castro, H. D.; Cómbita-Romero, D. A.; Cadena, E.-A.; Carvalho, M. R.; Herrera, F. (2023). "An Early Cretaceous Sphenophyllum or a hatchling turtle?". Palaeontologia Electronica. 26 (3). 26.3.a50. doi:10.26879/1306.
  110. ^ Poust, A. W.; Holroyd, P. A.; Deméré, T. A. (2023). "An Eocene sea turtle from the eastern North Pacific fills a Paleogene gap". Acta Palaeontologica Polonica. 68 (1): 47–51. doi:10.4202/app.01034.2022. S2CID 257423413.
  111. ^ Zvonok, E. A.; Benitskiy, K. S.; Danilov, I. G. (2023). "The sea turtle Tasbacka aldabergeni Nessov, 1987 from the lower Paleogene deposits of the Kudinovka locality (Rostov Province, Russia)". Paleontological Journal. 57 (2): 217–230. Bibcode:2023PalJ...57..217Z. doi:10.1134/S0031030123020144. S2CID 258640566.
  112. ^ Cadena, E.-A.; De Gracia, C.; Combita-Romero, D. A. (2023). "An Upper Miocene marine turtle from Panama that preserves osteocytes with potential DNA". Journal of Vertebrate Paleontology. 43 (1). e2254356. doi:10.1080/02724634.2023.2254356.
  113. ^ Silveira, I. O.; Liparini, A.; Martinez, P. A.; Eduardo, A. A. (2023). "The global Cenozoic diversification process of tortoises (Testudinidae)". The Anatomical Record. 306 (6): 1528–1536. doi:10.1002/ar.25182. PMID 36951396. S2CID 257694745.
  114. ^ Bhat, M. S.; Chinsamy, A.; Parkington, J. (2023). "Bone histology of Neogene angulate tortoises (Testudines: Testudinidae) from South Africa: palaeobiological and skeletochronological implications". Royal Society Open Science. 10 (3). 230064. Bibcode:2023RSOS...1030064B. doi:10.1098/rsos.230064. PMC 9993054. PMID 36908987.
  115. ^ Delfino, M.; Fritz, U.; Bonfiglio, L.; Marino, L.; Ragni, C.; Insacco, G. (2023). "Late Pleistocene evidence for the presence of Hermann's tortoise (Testudo hermanni) in Sicily". Bollettino della Società Paleontologica Italiana. 62 (3): 289–299. doi:10.4435/BSPI.2023.11 (inactive 2024-11-20).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  116. ^ Parker, A. K.; Müller, J.; Boisserie, J.-R.; Head, J. J. (2023). "The utility of body size as a functional trait to link the past and present in a diverse reptile clade". Proceedings of the National Academy of Sciences of the United States of America. 120 (7). e2201948119. Bibcode:2023PNAS..12001948P. doi:10.1073/pnas.2201948119. PMC 9964042. PMID 36745796.
  117. ^ Zvonok, E. A.; Danilov, I. G. (2023). "Paleogene turtles of Eastern Europe: new findings and a revision". Proceedings of the Zoological Institute of the Russian Academy of Sciences. 327 (3): 496–554. doi:10.31610/trudyzin/2023.327.3.496.
  118. ^ Datta, D.; Ray, S. (2023). "A giant phytosaur (Diapsida, Archosauria) from the Upper Triassic of India with new insights on phytosaur migration, endemism and extinction". Papers in Palaeontology. 9 (1). e1476. Bibcode:2023PPal....9E1476D. doi:10.1002/spp2.1476. S2CID 257103850.
  119. ^ Brownstein, Chase Doran (2023-07-17). "A late-surviving phytosaur from the northern Atlantic rift reveals climate constraints on Triassic reptile biogeography". BMC Ecology and Evolution. 23 (1): 33. doi:10.1186/s12862-023-02136-8. ISSN 2730-7182. PMC 10351158. PMID 37460985.
  120. ^ a b Paes-Neto, D.; Lacerda, M. B.; Ezcurra, M. D.; Raugust, T.; Trotteyn, M. J.; Soares, M. B.; Schultz, C. L.; Pretto, F. A.; Francischini, H.; Martinelli, A. G. (2023). "New rhadinosuchine proterochampsids from the late Middle-early Late Triassic of southern Brazil enhance the diversity of archosauriforms". The Anatomical Record. 307 (4): 851–889. doi:10.1002/ar.25294. PMID 37589539. S2CID 260954434.
  121. ^ López-Rojas, Víctor; Clemmensen, Lars B.; Milàn, Jesper; Wings, Oliver; Klein, Nicole; Mateus, Octávio (2023-03-24). "A new phytosaur species (Archosauriformes) from the Upper Triassic of Jameson Land, central East Greenland". Journal of Vertebrate Paleontology. 42 (3): e2181086. doi:10.1080/02724634.2023.2181086. ISSN 0272-4634. S2CID 257756028.
  122. ^ Ezcurra, M. D.; Bandyopadhyay, S.; Sengupta, D. P.; Sen, K.; Sennikov, A. G.; Sookias, R. B.; Nesbitt, S. J.; Butler, R. J. (2023). "A new archosauriform species from the Panchet Formation of India and the diversification of Proterosuchidae after the end-Permian mass extinction". Royal Society Open Science. 10 (10). 230387. Bibcode:2023RSOS...1030387E. doi:10.1098/rsos.230387. PMC 10598453. PMID 37885992.
  123. ^ Garcia Marsà, J. A.; Ponce, D. A.; Agnolín, F. L.; Novas, F. E. (2023). "Histovariability and lifestyle in Proterochampsidae Romer, 1966 (Archosauriformes) from the Chañares Formation (Late Triassic), northwestern Argentina". Comptes Rendus Palevol. 22 (30): 605–622. doi:10.5852/cr-palevol2023v22a30.
  124. ^ Demuth, O. E.; Wiseman, A. L. A.; Hutchinson, J. R. (2023). "Quantitative biomechanical assessment of locomotor capabilities of the stem archosaur Euparkeria capensis". Royal Society Open Science. 10 (1). 221195. Bibcode:2023RSOS...1021195D. doi:10.1098/rsos.221195. PMC 9874271. PMID 36704253.
  125. ^ Agnolín, F. L.; Aranciaga Rolando, A. M.; Chimento, N. R.; Novas, F. E. (2023). "New small reptile remains from the Late Cretaceous of Patagonia increase morphological diversity of sphenodontids (Lepidosauria)". Proceedings of the Geologists' Association. 135: 36–44. doi:10.1016/j.pgeola.2023.09.007.
  126. ^ Wang, W.; Lei, H.; Li, C. (2023). "A small-sized dinocephalosaurid archosauromorph from the Middle Triassic of Yunnan, southwestern China". Vertebrata PalAsiatica. 62 (1): 13–32. doi:10.19615/j.cnki.2096-9899.231013.
  127. ^ Fitch, A. J.; Haas, M.; C'Hair, W.; Ridgley, E.; Ridgley, B.; Oldman, D.; Reynolds, C.; Lovelace, D. M. (2023). "A New Rhynchosaur Taxon from the Popo Agie Formation, WY: Implications for a Northern Pangean Early-Late Triassic (Carnian) Fauna". Diversity. 15 (4). 544. doi:10.3390/d15040544. hdl:10919/114487.
  128. ^ Bhat, M. S.; Datta, D.; Ray, S.; Datta, P. M. (2023). "A new clevosaurid (Lepidosauria: Rhynchocephalia) from the Upper Triassic of India". Journal of Vertebrate Paleontology. 43 (1). e2232833. doi:10.1080/02724634.2023.2232833. S2CID 260525273.
  129. ^ Liu, J. (2023). "The tetrapod fauna of the upper Permian Naobaogou Formation of China: 9. A new species of Gansurhinus (Reptilia: Captorhinidae) and a revision of Chinese captorhinids". Journal of Vertebrate Paleontology. 42 (5). e2203200. doi:10.1080/02724634.2023.2203200. S2CID 258606272.
  130. ^ Wang, W.; Spiekman, S. N. F.; Zhao, L.; Rieppel, O.; Scheyer, T. M.; Fraser, N. C.; Li, C. (2023). "A new long-necked archosauromorph from the Guanling Formation (Anisian, Middle Triassic) of southwestern China and its implications for neck evolution in tanystropheids". The Anatomical Record. doi:10.1002/ar.25216. PMID 37029530. S2CID 258028261.
  131. ^ Henrici, A. C.; Berman, D. S.; Sumida, S. S.; Huttenlocker, A. K. (2023). "Halgaitosaurus gregarius, a New Upper Carboniferous Araeoscelidian (Reptilia: Diapsida) from the Halgaito Formation, Bears Ears National Monument, Utah, USA". Annals of Carnegie Museum. 88 (3): 161–192. doi:10.2992/007.088.0301.
  132. ^ Butler, R. J.; Meade, L. E.; Cleary, T. J.; McWhirter, K. T.; Brown, E. E.; Kemp, T. S.; Benito, J.; Fraser, N. C. (2023). "Hwiccewyrm trispiculum gen. et sp. nov., a new leptopleuronine procolophonid from the Late Triassic of southwest England". The Anatomical Record. 307 (4): 1390–1420. doi:10.1002/ar.25316. PMID 37735997.
  133. ^ Lu, Y.-T.; Liu, J. (2023). "A new tanystropheid (Diapsida: Archosauromorpha) from the Middle Triassic of SW China and the biogeographical origin of Tanystropheidae". Journal of Systematic Palaeontology. 21 (1). 2250778. Bibcode:2023JSPal..2150778L. doi:10.1080/14772019.2023.2250778.
  134. ^ Sues, H.-D.; Schoch, R. R. (2023). "A new Middle Triassic (Ladinian) trilophosaurid stem-archosaur from Germany increases diversity and temporal range of this clade". Royal Society Open Science. 10 (3). 230083. Bibcode:2023RSOS...1030083S. doi:10.1098/rsos.230083. PMC 10031418. PMID 36968237.
  135. ^ Boyarinova, E. I.; Golubev, V. K. (2023). "A new pareiasaur (Parareptilia) from the Lower Vyatkian (Upper Permian) of Orenburg Region, Russia". Paleontological Journal. 57 (6): 646–658. Bibcode:2023PalJ...57..646B. doi:10.1134/S0031030123060023.
  136. ^ Matamales-Andreu, R.; Mujal, E.; Galobart, À.; Fortuny, J. (2023). "A new medium-sized moradisaurine captorhinid eureptile from the Permian of Mallorca (Balearic Islands, western Mediterranean) and correlation with the co-occurring ichnogenus Hyloidichnus". Papers in Palaeontology. 9 (3). e1498. Bibcode:2023PPal....9E1498M. doi:10.1002/spp2.1498. S2CID 259253091.
  137. ^ Sues, H.-D.; Schoch, R. R. (2023). "The oldest known rhynchocephalian reptile from the Middle Triassic (Ladinian) of Germany and its phylogenetic position among Lepidosauromorpha". The Anatomical Record. 307 (4): 776–790. doi:10.1002/ar.25339. PMID 37937325.
  138. ^ Klembara, J.; Ruta, M.; Anderson, J.; Mayer, T.; Hain, M.; Valaška, D. (2023). "A review of Coelostegus prothales Carroll and Baird, 1972 from the Upper Carboniferous of the Czech Republic and the interrelationships of basal eureptiles". PLOS ONE. 18 (9). e0291687. Bibcode:2023PLoSO..1891687K. doi:10.1371/journal.pone.0291687. PMC 10513281. PMID 37733816.
  139. ^ Rowe, D. C. T.; Bevitt, J. J.; Reisz, R. R. (2023). "Skeletal anatomy of the early Permian parareptile Delorhynchus with new information provided by neutron tomography". PeerJ. 11. e15935. doi:10.7717/peerj.15935. PMC 10452630. PMID 37637171.
  140. ^ Pohlmann, K.; Cisneros, J. C.; Da-Rosa, Á. A. S.; Pinheiro, F. L. (2023). "Temporal fenestration in a Procolophon trigoniceps specimen (Procolophonoidea) from the Lower Triassic of Brazil". The Anatomical Record. 307 (4): 744–751. doi:10.1002/ar.25354. PMID 37982365.
  141. ^ Mueller, B. D.; Small, B. J.; Jenkins, X.; Huttenlocker, A. K.; Chatterjee, S. (2023). "Cranial anatomy of Libognathus sheddi Small, 1997 (Parareptilia, Procolophonidae) from the Upper Triassic Dockum Group of West Texas, USA". The Anatomical Record. 307 (4): 1421–1441. doi:10.1002/ar.25364. PMID 38071453.
  142. ^ Van den Brandt, M. J.; Day, M. O.; Manucci, F.; Viglietti, P. A.; Angielczyk, K. D.; Romano, M. (2023). "First volumetric body mass estimate and a new in vivo 3D reconstruction of the oldest Karoo pareiasaur Bradysaurus baini, and body size evolution in Pareiasauria". Historical Biology: An International Journal of Paleobiology. 36 (3): 587–601. doi:10.1080/08912963.2023.2175211. S2CID 257369904.
  143. ^ Boyarinova, E. I.; Golubev, V. K. (2023). "Topographic Morphology of the Postcranial Osteoderm Cover of an Adult Scutosaurus tuberculatus (Amalitzky) (Pareiasaurina) from the Late Permian of Eastern Europe". Paleontological Journal. 56 (11): 1437–1458. doi:10.1134/S003103012211003X. S2CID 256618503.
  144. ^ Hunt, A. K.; Ford, D. P.; Fernandez, V.; Choiniere, J. N.; Benson, R. B. J. (2023). "A description of the palate and mandible of Youngina capensis (Sauropsida, Diapsida) based on synchrotron tomography, and the phylogenetic implications". Papers in Palaeontology. 9 (5). e1521. Bibcode:2023PPal....9E1521H. doi:10.1002/spp2.1521. S2CID 261547253.
  145. ^ Pritchard, A. C.; Irmis, R. B.; Olori, J. C.; Nesbitt, S. J.; Smith, N. D.; Stocker, M. R.; Turner, A. H. (2023). "The femora of Drepanosauromorpha (Reptilia: Diapsida): Implications for the functional evolution of the thigh of Sauropsida". The Anatomical Record. 306 (8): 2102–2118. doi:10.1002/ar.25160. PMID 36847780. S2CID 257217856.
  146. ^ Renesto, S.; Saller, F. (2023). "Differences in the hindlimb anatomy in the two species of the Late Triassic drepanosauromorph diapsid Megalancosaurus indicate habitat partitioning within the arboreal environment". Rivista Italiana di Paleontologia e Stratigrafia. 129 (2): 309–328. doi:10.54103/2039-4942/19176. S2CID 259021119.
  147. ^ Browstein, C. D.; Simões, T. R.; Caldwell, M. W.; Lee, M. S. Y.; Meyer, D. L.; Scarpetta, S. G. (2023). "The affinities of the Late Triassic Cryptovaranoides and the age of crown squamates". Royal Society Open Science. 10 (10). 230968. doi:10.1098/rsos.230968. PMC 10565374. PMID 37830017.
  148. ^ Roese-Miron, L.; Jones, M. E. H.; Ferreira, J. D.; Hsiou, A. S. (2023). "Virtual endocasts of Clevosaurus brasiliensis and the tuatara: Rhynchocephalian neuroanatomy and the oldest endocranial record for Lepidosauria". The Anatomical Record. 307 (4): 1366–1389. doi:10.1002/ar.25212. PMID 36951279. S2CID 257694276.
  149. ^ Melchor, R.; Perez, M.; Villegas, P.; Espinoza, N.; Umazano, A.; Cardonatto, M. C. (2023). "Early Cretaceous lepidosaur (sphenodontian?) burrows". Scientific Reports. 13 (1). 10209. Bibcode:2023NatSR..1310209M. doi:10.1038/s41598-023-37385-6. PMC 10290101. PMID 37353642.
  150. ^ Bastiaans, D.; Buffa, V.; Scheyer, T. M. (2023). "To glide or to swim? A reinvestigation of the enigmatic Wapitisaurus problematicus (Reptilia) from the Early Triassic of British Columbia, Canada". Royal Society Open Science. 10 (11). 231171. Bibcode:2023RSOS...1031171B. doi:10.1098/rsos.231171. PMC 10646446. PMID 38026014.
  151. ^ Klein, N.; Sander, P. M.; Liu, J.; Druckenmiller, P.; Metz, E. T.; Kelley, N. P.; Scheyer, T. M. (2023). "Comparative bone histology of two thalattosaurians (Diapsida: Thalattosauria): Askeptosaurus italicus from the Alpine Triassic (Middle Triassic) and a Thalattosauroidea indet. from the Carnian of Oregon (Late Triassic)". Swiss Journal of Palaeontology. 142 (1). 15. Bibcode:2023SwJP..142...15K. doi:10.1186/s13358-023-00277-3. PMC 10432342. PMID 37601161.
  152. ^ Chai, J.; Lu, H.; Jiang, D.-Y.; Motani, R.; Druckenmiller, P. S.; Tintori, A.; Kelley, N. P. (2023). "Reidentification of Wayaosaurus bellus and the conservative trunk and tail shape of Thalattosauria". Historical Biology: An International Journal of Paleobiology. 36 (12): 2537–2556. doi:10.1080/08912963.2023.2264886.
  153. ^ Goedert, J.; Amiot, R.; Anquetin, J.; Séon, N.; Bourgeais, R.; Bailly, G.; Fourel, F.; Simon, L.; Li, C.; Wang, W.; Lécuyer, C. (2023). "Multi-isotopic analysis reveals the early stem turtle Odontochelys as a nearshore herbivorous forager". Frontiers in Ecology and Evolution. 11. 1175128. doi:10.3389/fevo.2023.1175128.
  154. ^ Jiang, B.; He, Y.; Elsler, A.; Wang, S.; Keating, J. N.; Song, J.; Kearns, S. L.; Benton, M. J. (2023). "Extended embryo retention and viviparity in the first amniotes". Nature Ecology & Evolution. 7 (7): 1131–1140. Bibcode:2023NatEE...7.1131J. doi:10.1038/s41559-023-02074-0. PMC 10333127. PMID 37308704.
  155. ^ Dudgeon, T. W.; Mallon, J. C.; Evans, D. C. (2023). "The first report of Champsosaurus lindoei (Choristodera: Champsosauridae) from the Campanian of the United States: anatomical, phylogenetic, and palaeoecological significance". Zoological Journal of the Linnean Society. 200 (3): 776–795. doi:10.1093/zoolinnean/zlad087.
  156. ^ Spiekman, S. N. F.; Mujal, E. (2023). "Decapitation in the long-necked Triassic marine reptile Tanystropheus". Current Biology. 33 (13): R708–R709. Bibcode:2023CBio...33R.708S. doi:10.1016/j.cub.2023.04.027. PMID 37343555. S2CID 259207369.
  157. ^ Foffa, D.; Nesbitt, S. J.; Kligman, B. T.; Butler, R. J.; Stocker, M. R. (2023). "New specimen and redescription of Anisodontosaurus greeri (Moenkopi Formation: Middle Triassic) and the spatiotemporal origins of Trilophosauridae". Journal of Vertebrate Paleontology. 42 (6). e2220015. doi:10.1080/02724634.2023.2220015.
  158. ^ Mellett, M. P.; Kligman, B. T.; Nesbitt, S. J.; Stocker, M. R. (2023). "Masticatory mechanisms, dental function, and diet in Triassic trilophosaurids (Reptilia: Allokotosauria)". Palaeodiversity. 16 (1): 99–124. doi:10.18476/pale.v16.a4. S2CID 258691923.
  159. ^ Sethapanichsakul, T.; Coram, R. A.; Benton, M. J. (2023). "New information on the cranial anatomy of the Middle Triassic rhynchosaurian reptile Bentonyx sidensis". Acta Palaeontologica Polonica. 68 (1): 53–62. doi:10.4202/app.01019.2022. S2CID 256169114.
  160. ^ Sethapanichsakul, T.; Coram, R. A.; Benton, M. J. (2023). "Unique dentition of rhynchosaurs and their two-phase success as herbivores in the Triassic". Palaeontology. 66 (3). e12654. Bibcode:2023Palgy..6612654S. doi:10.1111/pala.12654.
  161. ^ Sobral, G. (2023). "The holotype of the basal archosauromorph Prolacerta broomi revisited". Acta Palaeontologica Polonica. 68 (3): 393–413. doi:10.4202/app.01067.2023.
  162. ^ Gônet, J.; Bardin, J.; Girondot, M.; Hutchinson, J. R.; Laurin, M. (2023). "Locomotor and postural diversity among reptiles viewed through the prism of femoral microanatomy: Palaeobiological implications for some Permian and Mesozoic taxa". Journal of Anatomy. 242 (5): 891–916. doi:10.1111/joa.13833. PMC 10093171. PMID 36807199. S2CID 257037744.
  163. ^ Bourke, J. M.; Witmer, L. M. (2023). "Soft tissues influence nasal airflow in diapsids: Implications for dinosaurs". Journal of Morphology. 284 (9). e21619. doi:10.1002/jmor.21619. PMID 37585224.
  164. ^ Hoffman, D. K.; Hancox, J. P.; Nesbitt, S. J. (2023). "A diverse diapsid tooth assemblage from the Early Triassic (Driefontein locality, South Africa) records the recovery of diapsids following the end-Permian mass extinction". PLOS ONE. 18 (5). e0285111. Bibcode:2023PLoSO..1885111H. doi:10.1371/journal.pone.0285111. PMC 10150976. PMID 37126508.
  165. ^ Zverkov, N. G.; Rogov, M. A.; Zakharov, V. A.; Danilov, I. G.; Grigoriev, D. V.; M., Košťák (2023). "Northernmost occurrences of plesiosaurs and turtles in the Upper Cretaceous of Eurasia". Cretaceous Research. 148. 105537. Bibcode:2023CrRes.14805537Z. doi:10.1016/j.cretres.2023.105537. S2CID 257654850.
  166. ^ Wilson, O. E.; Parker, A. K. (2023). "Low predator competition indicates occupation of macro-predatory niches by giant Miocene reptiles at La Venta, Colombia". Palaeogeography, Palaeoclimatology, Palaeoecology. 632. 111843. Bibcode:2023PPP...63211843W. doi:10.1016/j.palaeo.2023.111843.