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Abstract

We consider threshold cryptosystems over a composite modulus N where the fac-
tors of N are shared among the participants as the secret key. This is a new paradigm
for threshold cryptosystems based on a composite modulus, differing from the typi-
cal treatment of RSA-based systems where a “decryption exponent” is shared among
the participants. Our approach yields solutions to some open problems in threshold
cryptography; in particular, we obtain the following:

1. Threshold homomorphic encryption. A number of applications (e.g., electronic
voting or efficient multi-party computation) require threshold homomorphic en-
cryption schemes. We present a protocol for threshold decryption of the homo-

morphic Goldwasser-Micali encryption scheme [36], answering an open question
of [23].

2. Threshold cryptosystems as secure as factoring. We describe a threshold version
of a variant of the signature standards ISO 9796-2 and PKCS#1 v1.5 (cf. [41,
Section 11.3.4]), thus giving the first threshold signature scheme whose security
(in the random oracle model) is equivalent to the hardness of factoring [12]. Our
techniques may be adapted to distribute the Rabin encryption scheme [46] whose
semantic security may be reduced to the hardness of factoring.

3. Efficient threshold schemes without a trusted dealer. Because our schemes only
require sharing of N — which furthermore need not be a product of strong primes
— our schemes are very efficient (compared to previous schemes) when a trusted
dealer is not assumed and key generation is done in a distributed manner.

Extensions to achieve robustness and proactivation are also possible with our schemes.

1 Introduction

Threshold cryptosystems provide for increased security and availability of a particular cryp-
tographic protocol by distributing the protocol among a number of participants. In a k-
out-of-¢ threshold scheme, the protocol is distributed in such a way that an adversary who
corrupts at most k£ — 1 participants (and learns all their local information) still cannot de-
termine the secret key of the system or break the underlying cryptographic protocol. On
the other hand, increased availability is achieved by ensuring that only k participants are
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needed in order to carry out the computation and deliver the result. Going further, systems
can be designed in a robust manner, such that even a malicious adversary who causes up to
k —1 (k < £/2) players to deviate arbitrarily from the protocol cannot prevent the correct
output from being computed. Threshold schemes can also be proactivized to withstand
the compromise of even all participants over the lifetime of the protocol, as long as only
k — 1 participants are corrupted during each time period; they may also be extended to
handle adaptive adversaries who decide whom to corrupt at any point during execution of
the protocol.

A long line of research has focused on threshold cryptography, with particular emphasis
on threshold signature schemes (in many cases, deriving a threshold decryption scheme from
a related signature scheme is easy). The approach was initiated by [17, 18, 19], and the
first provably secure schemes for RSA- and discrete-logarithm-based signature schemes were
given in [16, 32, 37]. Subsequent work focused on adding robustness to existing schemes
[26, 33, 34] and on threshold decryption schemes with security against chosen-ciphertext
attacks [49, 9, 22].

The above protocols are all proven secure with respect to a non-adaptive adversary who
must choose which participants to corrupt before protocol execution begins (this is the
type of adversary we consider here). Many recent works have dealt with stronger classes
of adversaries, including adaptive [2, 7] and proactive [43] adversaries. We refer the reader
elsewhere for more comprehensive surveys of the existing literature (e.g., [30, 38]).

The protocols mentioned above assume a dealer who distributes keys to the participants
before the protocol begins. The dealer must be minimally trusted not to reveal the secret
key and therefore represents a single point of failure for the entire system. Thus, it is often
desirable to distribute the key-generation phase among the participants. This was first
accomplished for discrete-logarithm-based cryptosystems in [34, 8] (building on [45]), and
for RSA-based cryptosystems in [5] (for passive adversaries) and [29] (for active adversaries).

There is still a need to design threshold schemes for many specific cryptosystems (most
previous research on threshold cryptography was restricted to RSA- and discrete-logarithm-
based schemes). First, note that for threshold cryptography to become truly practical, it
remains important to improve the efficiency and conceptual simplicity of existing solutions.!
Furthermore, as pointed out many times previously [31, 23, 14, 39, 13], threshold homomor-
phic encryption schemes are useful for achieving such goals as electronic voting and efficient
multi-party computation. Threshold schemes have been given previously [45, 23, 14] for the
El Gamal (which is homomorphic under group multiplication) and Paillier [44] (which is
homomorphic under addition) cryptosystems. Yet, for some applications, homomorphism
over, e.g., Zs is required or sufficient [31, 40, 39, 13] and hence other homomorphic schemes
may not work or may be “overkill” for the problem at hand. Clearly, additional approaches
yielding threshold homomorphic encryption are needed (and this was left as an explicit open
question in [23]; see also [13]).

1.1 Owur Contributions

THRESHOLD HOMOMORPHIC ENCRYPTION. We show how to achieve threshold decryption

IThis is the motivation for the study of threshold cryptography since, in a theoretical sense, “solutions”
already exist using generic multi-party computation [35].



for the Goldwasser-Micali (GM) encryption scheme [36], whose security is based on the
hardness of deciding quadratic residuosity. The GM encryption scheme is homomorphic
over Zs. As mentioned above, (semantically-secure) threshold homomorphic encryption
schemes have many important applications; for example, efficient multi-party computation
can be based on any (efficient) scheme of this type [31, 13]. Threshold GM encryption can
also be used for distributed tallying in electronic voting [39].

Concurrent with the present work, a variant threshold GM-like cryptosystem has been
constructed [13] using an alternate approach. However, this scheme (which builds on [31])
requires the DDH assumption in Z%;, whereas the security of our construction relies only on
the quadratic residuosity assumption. Indeed, eliminating this assumption is left as an open
question in [13]. We believe our solution also offers a more efficient and conceptually simpler
method. Finally, our scheme has the added advantage of allowing for efficient distributed
key generation when a trusted dealer is not assumed; this is not possible in [13] because
they require N to be a product of safe primes.?

THRESHOLD CRYPTOSYSTEMS BASED ON FACTORING. We are not aware of any previous
constructions of threshold cryptosystems whose security can be reduced to the assumption
that factoring is hard. Here, we propose a novel and efficient distributed version of the
Rabin-Williams signature scheme [41, Section 11.3.4] (see also [46]), variants of which have
been standardized. Security of this scheme has recently been shown [12] to be equivalent
to the hardness of factoring in the random oracle model (see also earlier work of [3]). Our
techniques may be adapted for other cryptosystems whose security is based on factoring,
such as the Rabin encryption scheme [46].

EFFICIENCY IMPROVEMENTS. The protocols we present are all efficient and practical thresh-
old schemes. When a trusted dealer cannot be assumed (and key generation must therefore
be done in a distributed fashion), our threshold schemes are more efficient than previous
solutions not requiring a trusted dealer [15, 24]. The threshold schemes presented here may
be easily executed in a modular manner following a “streamlined” version of the distributed
key-generation protocols of [5, 29]: all information required by the present schemes is in
place upon completion of these key-generation protocols, and we do not require that N be
a product of safe primes. A “streamlined” version of these protocols may be used because
we do not require computation of an inverse over a shared (secret) modulus (and therefore
are done once N has been generated). We are therefore able to avoid altogether the step
whose efficiency is improved by [10].

Finally, we believe the methods outlined in this paper are interesting in their own right;
the sharing of the factors of IV alone, without the need to additionally share a “decryption
exponent”, is a new paradigm for threshold cryptography over composite moduli and may
prove useful in the design of future schemes. It is specifically useful whenever the function
to be computed can be expressed as a combination of the factors and where the computation
of its partial results is enabled by shares of the factors.

2The recent work of [1] shows how N of this form can be generated efficiently in a distributed fashion;
even so, it remains more efficient to generate N without this added requirement.



2 Model and Definitions
2.1 The Model

PARTICIPANTS. The participants are £ servers {P,..., P} and a trusted dealer D.?> The
dealer generates a public key IV for the underlying cryptosystem and distributes shares to
each of the participants. After the dealing phase, the dealer does not take part in executions
of the protocol. Following [32], we assume the participants are connected by a complete net-
work of private channels. In addition, all players have access to an authenticated broadcast
channel so that the true sender of a message can always be correctly determined. These
assumptions allow us to focus on high-level descriptions of the protocols; however, they
may be instantiated using standard cryptographic techniques (in the proactive setting, care
needs to be taken; see [43, 37]).

THE ADVERSARY. Our k-out-of-¢ schemes assume a non-adaptive adversary who may cor-
rupt up to k — 1 participants in advance of protocol execution. The adversary has access to
all information available to the corrupted players, including their secret keys, messages they
receive, and messages broadcast to all players. One may consider two types of adversaries:
passive adversaries who follow the protocol faithfully yet monitor all information available
to corrupted participants, and active adversaries who may cause participants to deviate
arbitrarily from the protocol. We consider both types of adversaries in what follows. In
the case of threshold signature schemes, the adversary may submit signing requests to the
system at any time; in the case of threshold decryption, we consider both chosen plaintext
and chosen ciphertext attacks.

2.2 Security

Formal definitions of security for threshold cryptosystems have appeared elsewhere [33]. We
describe, informally, our requirements. First, we want the security of the threshold scheme
to be equivalent to the security of the original scheme even when an adversary has corrupted
k—1 servers and obtained all their local information. To prove that this requirement is met,
we reduce the security of the threshold scheme to that of the original scheme by showing
how an adversary attacking the original scheme can simulate the view of (up to) k—1 servers
in the threshold scheme. Following [33], we call such threshold protocols simulatable. An
additional requirement we will consider is robustness: for any active adversary who causes
at most k — 1 (k < ¢/2) participants to deviate arbitrarily from the protocol, the correct
result can always be computed by the remaining (uncorrupted) participants.

3 A Threshold Homomorphic Encryption Scheme

We begin by describing how to achieve threshold decryption for the well-known homomor-
phic encryption scheme of Goldwasser and Micali [36] (henceforth, GM). The GM encryp-
tion scheme is as follows: the public key is a composite N = pq, where p and ¢ are prime
and p = ¢ = 3 mod 4. The private key consists of the factorization of N. To encrypt bit

$We stress that this trusted dealer is not essential to our schemes since a distributed algorithm (adapting
[5, 29]) may be run when a dealer is not available.



Dealing Phase
Input: Composite N and primes p, q (|p| = |¢| = n) such that N = pq
with p, ¢ = 3 mod 4

1. Choose p1,q1,...,pe, g €r (0,22") such that p; = ¢; = 0 mod 4, for all i
2. Set pp=p—Yi_ypiand qo =q— > i_1 4
3. Send (p;, q;) to player i

4. Broadcast (N, po, qo)

Decryption Phase
Input: Ciphertext C

1. All players compute J = (%) (this computation is done publicly)
2. If J # 1, all players output L and stop

3. Otherwise (J = 1), player i broadcasts b; = C(~Pi=%)/* mod N
4. All players publicly compute by = C(N—Po—00+1)/4 yod N

5. The decrypted bit b is computed as b = (1 — Hfzobi mod N) /2

Figure 1: f-out-of-¢ decryption for the GM cryptosystem

b € {0,1}, choose a random element r € Zy and send C = (—1)%2 mod N. Decryption
of ciphertext C proceeds by determining whether C is a quadratic residue or not. To do
this, first calculate the Jacobi symbol J = (%) If J # 1, the ciphertext is ill-formed (i.e.,
the encryption algorithm was not run honestly, or else the message was corrupted in trans-
mission); therefore, simply output L. If J = 1, we may decide whether C is a quadratic
residue by computing b’ = CN—P=¢+1)/4 ;od N; note that b’ = +1 and furthermore C is a
quadratic residue iff b’ = 1. The original plaintext can be recovered as b = (1 — b’)/2. This
scheme is semantically secure under the quadratic residuosity assumption [36].

3.1 An /-out-of-¢ Protocol

For simplicity and clarity of exposition, we describe in this section a protocol for “basic”
threshold GM decryption (cf. Figure 1) which assumes a trusted dealer and is an ¢-out-of-£
solution. Thus, all ¢ participants are needed in order to decrypt a ciphertext; on the other
hand, it remains infeasible for any adversary who corrupts £ — 1 or fewer participants to
decrypt a given ciphertext. In the following section, we discuss extensions and modifica-
tions which allow for the more general k-out-of-¢ threshold, provide robustness, and enable
proactivation of the protocol. Additionally, we discuss how to remove the trusted dealer
and perform the initial key generation in a distributed manner.



KEY DISTRIBUTION. The dealer generates primes p,q = 3 mod 4 (where |p| = |¢| = n) and
sets N = pq. The public key is N, and the private key is computed as d = (N —p—q+1)/4;
note that d is always an integer. For all 4, the dealer chooses integers p;, ¢; €x (0,22") such
that p; = ¢; = 0 mod 4. Finally, the dealer sets pg = p — Zle p; and gg = q— Zle gi- The
dealer sends (p;, ;) to player i and broadcasts (IV, pg,qo). We note that it would suffice for
the dealer to send (p; + ¢;)/4 to each party — and this is likely what would be done in
practice — but we prefer the present description for pedagogical reasons.

DECRYPTION. Decryption of a ciphertext C proceeds as follows: first, the Jacobi symbol
J = (%) is computed; this can be computed in polynomial time even without knowledge of
the factorization of N. If J # 1, all players simply output L. Otherwise, player i outputs
b; = C(Pi=t)/4 mod N (note that, by design, the exponent is an integer and hence b; can
be efficiently computed). Players publicly compute by = CWN=po—a0+1)/4 yod N (again, by
design, the exponent is an integer). Deciding whether C' is a quadratic residue may be done
by computing b’ = Hfzobi mod N. The decrypted bit is simply b = 1_TI’I.

Theorem 1 The protocol of Figure 1 is simulatable for any adversary who passively eaves-
drops on at most £ — 1 parties. This implies the semantic security of the encryption scheme
for such an adversary, assuming the hardness of deciding quadratic residuosity.

The proof is similar to the more involved proof of security for the Rabin-Williams signature
scheme given below (cf. Theorem 4), and is therefore omitted.

3.2 Extensions

REDUCING THE THRESHOLD. It is a severe limitation to require £ active servers in order
to decrypt. More preferable is a k-out-of-¢ solution in which only k servers are required for
decryption. A number of techniques exist for accomplishing this using the above protocol
as a starting point; we sketch two such solutions here (but see [4] for another approach).

One approach is to adapt the suggestions of Rabin [47] to our setting. First, the dealer
fixes a prime P > 22" which is broadcast to all participants. Then, for each p; (and also
qi), the dealer chooses a random (k — 1)-degree polynomial f;(-) over the field Z p such that
1i(0) = p;. To player j, the dealer sends f;(j) for 1 <i < £. This achieves a k-out-of-¢ secret
sharing of the {p;} (and also the {¢;}). Decryption proceeds as before, with each player 7
broadcasting its share b;. In addition, players prove correctness of their shares using one
of the robustness techniques described below. If player ¢ cannot prove correctness of his
share (or, more generally, if player i fails to participate), the remaining players can publicly
reconstruct (p;,q;) using the shares they have been given. The correct share b; may then
be computed publicly and included in the calculation of b. We note that, in case a trusted
dealer is not available, each player may itself deal shares of (p;,q;) to the other players.
If robustness is desired for this step, verifiable secret sharing (VSS) may be used. Details
appear in [47].

A problem with this approach is that it may unfairly penalize servers which are tem-
porarily off-line or otherwise unable to participate in an execution of the protocol. If this
happens, this player’s share is publicly reconstructed and hence available to an adversary
eavesdropping on the protocol. Note that it may be much easier for an adversary to dis-
connect or prevent communication from a player than to corrupt a player (even passively).



By “disconnecting” users one-by-one — possibly in parallel — an adversary may be able to
obtain the secret key of the system.*

An alternative is to use ideas motivated by the protocols of Frankel, et al. [28]. Let
L = /. Instead of the f-out-of-¢ additive sharing illustrated in Figure 1, the dealer now
performs k-out-of-£ polynomial sharing as follows: The dealer chooses s* € (0, 2%27) subject
to s* = 0 mod 4, and additionally chooses a (k—1)-degree polynomial f over the integers —
with coefficients chosen uniformly from {0,4L, ..., L323"k} — such that f(0) = L%s*. The

dealer distributes s; def f(i) to player i. Finally, the dealer broadcasts the value p+q— L2s*.
To decrypt, the players first choose a random subset A consisting of k players. Each player in
A computes the appropriate Lagrange interpolation coefficient z; o and sets his (temporary)
share to §; = z; A - s;. Note that, due to the careful choice of the polynomial f, the {3;} may
be computed over the integers and furthermore §; = 0 mod 4 for all i. The {§;};ca thus
constitute a k-out-of-k additive sharing of L?s*, and may be used to decrypt as in Figure
1. Techniques to achieve robustness for the above approach are given in [28].

Theorem 2 The protocol of Figure 1 modified using either of the approaches described
above gives a k-out-of-€ protocol which is simulatable for any adversary who passively eaves-
drops on at most k — 1 parties.

(Informal Idea of the) Proof The approach of Rabin [47] may be viewed as a “generic”
approach which converts any f-out-of-¢ scheme to a k-out-of-£ scheme. The approach of
Frankel, et al. [28] must be more carefully modified for the cryptosystem at hand; for the
modification sketched above, however, a proof follows easily using their techniques. |

ROBUSTNESS. We may distinguish two types of methods for adding robustness to the above
protocol: methods which work for arbitrary N, and methods which work only when N is
a product of strong primes®. Methods specialized for the latter case can be more efficient;
on the other hand, when distributed key generation is required, methods which work for
arbitrary N may be preferred because distributed generation of N a product of safe primes
is less efficient [1].

Gennaro, et al. [33] give two methods for verifying correctness of the partial outputs
b; when N is a product of strong primes. One method, which is non-interactive, requires
the dealer to distribute verification information to all players during the dealing phase;
namely, V; ; is sent to player ¢ to enable his verification of player j. When executing the
protocol, player 7 outputs b; and also b; ; for all j; player j verifies the correctness of b; using
Vi and b; ;. This requires O(¢) additional memory for each player, and also increases the
communication of the protocol (per player) to O(¥).

A second approach of [33] requires the dealer to choose a random element (of high order)
g € Z% and broadcast g along with witnesses w; = g(=Pi=4)/4 mod N, for all i. After player
i broadcasts b;, he engages in an (interactive) zero-knowledge proof with all other players
in which he proves that log, w; = +logq b;. Unfortunately, this approach seems to require
interaction even in the random oracle model. More recently, Shoup [48] (based on earlier
work of [11]) describes a non-interactive, zero-knowledge proof (in the random oracle model)
for equality of discrete logarithms. Here, players work in the subgroup of quadratic residues

4This was pointed out to us by an anonymous referee.
SThat is, N = pg with p = 2p’ + 1 and ¢ = 2¢’ + 1, where p, ¢,p’, ¢’ are all prime.



QN C Zj: the dealer chooses g € Qn and player ¢ now proves that log, w; = logee b?
(squaring is necessary to ensure that values are in Q).

The above approaches suffice for N a product of strong primes. For general IV, however,
we must use other techniques to achieve robustness.® One possibility is to use the crypto-
graphic program-checking method of [26], which requires interaction between each pair of
parties (this interaction can be reduced to only two rounds using a random oracle). Another
approach extends the witness-based approach above. Using a random oracle, players may, as
above, give an efficient, non-interactive, zero-knowledge proof [11] that log, w; = +log¢ b;.
A difficulty here is that soundness is only guaranteed if g is of high order; however, as shown
in [29], a set (of super-logarithmic size) of random elements of Z7}, generates a large-order
subgroup of Z%; with all but negligible probability. Soundness can thus be guaranteed by
fixing such a set as part of the dealing phase and having players give a non-interactive proof
with respect to each element in this set. Fouque and Stern [24] suggest another method
for achieving robustness; they require N of a special form but show how such N can be
generated efficiently in a distributed manner.

A problem with the above approaches is that they only prove correctness of the outputs b;
to within a factor of £1. This is fine for threshold signature generation (in the examples cited
above as well as in Section 4) since the correct sign of the final signature can be correctly
determined using the public verification key. This is a potentially fatal flaw, however, for
decryption in the GM cryptosystem! Luckily, this is easy to fix: the dealer simply constructs
the partial shares (—p; — ¢;)/4 so they are even (i.e., by choosing p; = ¢; = 0 mod 8) and
player ¢ proves both that his output b; is within a factor of 1 of the correct value and that
b; is a quadratic residue [21, 20]. This ensures that b; is indeed the correct value. (This
problem and its solution were pointed out to us by J.B. Nielsen.)

The above approaches to proving correctness of exponentiation modulo N allow proofs
of correctness for the partial shares b; broadcast by each player in the protocol. Theorems
1 and 2, together with the results cited above, thus yield the following theorem:

Theorem 3 The protocol of Figure 1 augmented with any of the robustness techniques
described above (appropriate for the modulus N ) and any of the approaches for achieving a
k-out-of-€ (k < €/2) threshold (as described in Theorem 2) results in a robust protocol which
1s simulatable for any adversary who actively controls at most k — 1 parties.

REMOVING THE TRUSTED DEALER. The efficiency improvement of the current protocol
is most evident when a trusted dealer is not assumed, and the public modulus must be
generated in a distributed fashion. In this case, our scheme has two advantages: (1) moduli
of a special form (i.e., N a product of strong primes) are not required, in contrast with
some recent solutions (e.g., [48]). (Even though a protocol has recently been given [1] for
efficiently generating N of this form in a distributed fashion, this protocol remains less
efficient than protocols for more general N [5, 29].) Furthermore, (2) an expensive step of
the distributed key-generation protocol can be skipped entirely. Specifically, computation
of an inverse” over p(N) (recall that ¢(N) must remain hidden from the players) is not
required in our scheme.

S Although we still refer to a dealer, the techniques described here can be implemented easily following
the (robust) distributed key-generation protocol of [29].
"This is precisely the step whose efficiency is improved by [10]. Here, we avoid this step altogether!



The protocol of Figure 1 may be combined modularly with the distributed key-generation
protocols of [5, 29]. Following execution of these key-generation protocols, all the players
already have additive shares (p;,q;) of the factors of N. A small complication is that the
protocol requires all players to have p; = ¢; = 0 mod 4. To deal with this, simply have
player i choose p; = ¢; = 0 mod 4. Additionally, the “public remainder” may be set to
(po,q0) = (3,3). Decryption is then done as before. A similar approach was used in, e.g.,
[5] where they require p = ¢ = 3 mod 4.

PROACTIVE SECURITY. Proactive security may be added to our protocols using known
techniques. For example, if the approach of Rabin [47] is used to achieve k-out-of-¢ thresh-
old, the generic proactivation techniques given there will work here as well. Similarly, if the
approach of Frankel, et al. [28] is used, the proactivation techniques given there will also
work for the present protocol.

CHOSEN-CIPHERTEXT SECURITY. A generic method for making threshold cryptosystems
secure against chosen-ciphertext attack in the random oracle model (adapting [42]) was
recently described [22]. What is required are two encryption schemes and an honest-verifier
ZK proof of knowledge that two ciphertexts correspond to the same plaintext. Such a
proof system for the GM cryptosystem is presented in Figure 2. Although the protocol
as presented is interactive, it can be made non-interactive (and reasonably efficient) in the
random-oracle model.

Input: Blum integers N1, Ny and X1, Xo where:
{X; = (=1)2% mod Ny, X5 = (—1)2% mod Ny} with z; € Zy, and b € {0,1}.

Repeat k times in parallel:

1. The prover chooses a random bit ¢ and “twin encrypts” it; i.e.,
{Vi = (=1)*v} mod Ny, Vo = (—1)“v3 mod N»} for random v; € Zy,-
The prover sends V7, V.

2. The verifier chooses a challenge bit d and sends it.
3. The prover responds by sending: {m; = vlazil mod Ny, mg = vgazg mod Ny}

4. The verifier checks that there exists a bit a such that both:
(=1)*m? = V1 - X mod Ny and (—1)*m32 = V- X¢ mod N,

The verifier accepts only if the checks succeed in all iterations.

Figure 2: Proof of knowledge of “twin” GM-encryption

4 A Threshold Signature Scheme Based on Factoring

Distributing the prime factors of the modulus among the participants offers a new paradigm
for the construction of threshold systems over composite moduli. As a further example of
the applicability of our technique, we describe a method for distributing the Rabin-Williams



signature scheme [46], variants of which have been standardized as ISO 9796-2 and PKCS#1
v1.5. This scheme is particularly interesting since it offers the first threshold signature
scheme whose security can be based on the hardness of factoring (in the random oracle
model) [12].

4.1 The (Modified) Rabin Signature Scheme

The modified Rabin signature scheme [41, Section 11.3.4] is defined as follows: a public key
is generated by choosing two primes p, ¢ of length n such that p = 3 mod 8 and ¢ = 7 mod 8.
The public key is set to N = pq (N of this form are called Williams integers). The private
key isd= (N —p—q+5)/8.

Messages m to be signed are assumed to be appropriately encoded and the resulting
underlying message space is M = {m : m = 6 mod 16} (see [12]). First, the Jacobi symbol
J = (%) is computed. If J = 1, set m = m; if J = —1, set m = m/2 (note that there is
only negligible probability that J # 1, —1). The signature is computed as s = m? mod N.

To verify signature s on message m (where m = 6 mod 16), first compute 1 = s? mod N.
Then, verify the following:

e If m = 6 mod 8, verify whether m L
o If n = 3 mod 8, verify whether m Zom
e If m = 7 mod 8, verify whether m ZN—m

o If o = 2 mod 8, verify whether m L 2(N —m)

We refer the reader to [41, Section 11.3.4] for a proof of correctness and further discussion.

4.2 An /-out-of-¢ Protocol

As above, we present the ¢-out-of-¢ solution here for simplicity (cf. Figure 3); extensions as
discussed in Section 3.2 are applicable here as well.

KEY DISTRIBUTION. The dealer generates primes p,q (where |p| = |¢| = n, p = 3 mod 8§,
and ¢ = 7 mod 8) and sets N = pq. The public key of the protocol is N, and the private
key (see Section 4.1) is d = (N —p —q+5)/8. Fori = 1,...,¢, the dealer then chooses
ph,q; €r (0,2%") such that p; = ¢; = 0 mod 8. The dealer sets py = p — Zle p; and
go=¢q — Zle pi- Finally, the dealer sends (p;,¢;) to player i and broadcasts (pg, qo)-

SIGNATURE GENERATION. We assume the message m € M to be signed is already encoded
in some appropriate agreed-upon manner (i.e., as discussed above). First, the Jacobi symbol
J = (%) is computed publicly (note that the Jacobi symbol can be computed in polynomial
time even without knowledge of the factorization of N). If J = 1, define m = m; if J = —1,
define m = m/2; this step may be done publicly as well.

The desired signature is s = m% = mN-P=9+5/8 ;mod N. Player i broadcasts the value
s; = m"Pi—6)/8 ;mod N (note that, by design, the exponent is an integer and hence s; can
be efficiently computed). Players publicly compute sy = mN=Po—20+5)/8 1hod N (again, by
design, the exponent is an integer). Finally, the signature is computed as s = Hfzosi mod N.
Verification of the signature is exactly as described in Section 4.1.
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Dealing Phase
Input: Composite N and primes p,q (|p| = |g| = n) such that N = pg
with p = 3 mod 8 and ¢ = 7 mod 8

1. Choose p1,q1,---,pe, g €r (0,22") such that p; = ¢; = 0 mod 8, for all i
2. Set pg =p— Zlepi and go = ¢q — Zf:l qi

3. Send (p;, q;) to player i

4. Broadcast (N, po, qo)

Signature Generation Phase
Input: Message m = 6 mod 16 (appropriately encoded)

1. Player i computes J = (%) (this computation is done publicly)
2. If J =1, set m = m; else set m = m/2

3. Player i broadcasts s; = m("Pi~%)/8 mod N

4. All players publicly compute sy = mN=Po=20+5)/8 mod N

5. The signature s is computed as s = Hfzosi mod N

Figure 3: f-out-of-¢ signing for the Rabin signature scheme

Theorem 4 The protocol of Figure 8 is simulatable for any adversary who passively eaves-
drops on at most £ — 1 parties. This implies that the signature scheme is existentially un-
forgeable under chosen message attacks, assuming the hardness of factoring (in the random
oracle model).

Proof A description of a simulator for the dealing phase and the signature generation
phase appears in Figure 4. We assume (without loss of generality) that the adversary
eavesdrops on players 1,...,¢ — 1. Simulatability of the dealing phase is evident from the
following:

e The {pi, ¢i}1<i<¢—1 have the same distribution as in a real execution of the protocol.

e The distribution on (pg, qo), conditioned on the values of {p;,¢;}1<i</—1 seen by the
adversary, is statistically indistinguishable from the distribution on (pg,gp) in a real
execution of the protocol. This is because, for any p,p* < 2"*!, the distributions
{P = P1}pieno,22n) and {p* — p1}, e (0,22n) are statistically indistinguishable.

Simulatability of the signature generation phase (in particular, the value sy) follows easily
from the simulatability of the dealing phase. |

Efficient extensions to achieve optimal threshold, robustness, proactivation, and dis-
tributed key generation are all possible as outlined in Section 3.2. Also, the above method
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Simulation of Dealing Phase
Input: Composite N where |N| = 2n

1. Choose p1,q1,...,pe,qe €r (0,2%7) such that p; = ¢; = 0 mod 8

2. Choose random p*, ¢* such that |p*| = |¢*| = n, p* = 3 mod 8, and ¢* = 7 mod 8
3. Set po=p* — i piand o =q* — i, ¢

4. Send (p;,q;) to player i, for 1 <i</{—1

5. Broadcast (po, qo)

Simulation of Player ¢ in Signature Generation Phase
Input: Message m = 6 mod 16 (appropriately encoded); signature s

1. Compute J = (%)
2. If J =1, set m = m; else set m = m/2

3. Compute s; = m("Pi—%)/8 mod N, for 1 <i< ¢ —1

B

. Compute sy = mV—Po—0+5)/8 1nod N

ot

. Broadcast sy = s/ (Hf;ési) mod N

Figure 4: Simulator for ¢-out-of-¢ threshold Rabin signature scheme

extends to give threshold decryption of the Rabin encryption scheme [46], whose semantic
security may be based on the hardness of factoring.
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