
Fast hashing onto elliptic curves
over fields of characteristic 3

Paulo S. L. M. Barreto1 and Hae Y. Kim2

1 Scopus Tecnologia S. A.
Av. Mutinga, 4105

BR 05110–000 São Paulo (SP), Brazil.
pbarreto@scopus.com.br

2 Universidade de São Paulo, Escola Politécnica.
Av. Prof. Luciano Gualberto, tr. 3, 158
BR 05508-900, São Paulo(SP), Brazil.

hae@lps.usp.br

Abstract. We describe a fast hash algorithm that maps arbitrary mes-
sages onto points of an elliptic curve defined over a finite field of charac-
teristic 3. Our new scheme runs in time O(m2) for curves over F3m . The
best previous algorithm for this task runs in time O(m3). Experimental
data confirms the speedup by a factor O(m), or approximately a hun-
dred times for practical m values. Our results apply for both standard
and normal basis representations of F3m .

1 Introduction

The recent discovery of groups where the Decision Diffie-Hellman (DDH) prob-
lem is easy while the Computational Diffie-Hellman (CDH) problem is hard [13]
has given rise to a digital signing scheme by Boneh et al. [3], here dubbed simply
BLS, where the signature size is essentially the same as the underlying finite
field. Contrary to all previously known schemes the new algorithm uses intrinsic
properties of elliptic curves and have no equivalent in more conventional groups
like Z∗

p. Although other kinds of signature algorithms are known that produce
smaller signatures [21, 6], the BLS scheme is much faster in practice, and to the
best of our knowledge not covered by patents.

Currently, the BLS algorithm has only been instantiated for supersingular
elliptic curves over F3m , and it depends on the existence of a hash function that
maps arbitrary messages directly onto curve points in such a way that the dis-
crete logarithm of the hash value remains unknown. The original description of
the BLS algorithm suggests for this hash function an iterated probabilistic con-
struction whose running time is cubic in the extension degree of the underlying
finite field, i.e. O(m3), which derives from the need to compute the square roots
in the finite field.

We propose a different, but conceptually simple approach that entirely avoids
the square root evaluations and takes O(m2) steps. The computational complex-
ity derives from the squaring of a field element and from solving a system of linear
equations over F3m with coefficients in F3.

Compared to the original BLS hash, our scheme needs a slightly higher num-
ber of coin tosses to produce a hash value, namely, about 3 instead of 2 hash
oracle queries, but this is completely offset by the increased efficiency of each
query. The signature size is also increased by 2 bits (or rather by an element
from F3).

In a sense, our results shed some light on the practicality of working with the
seldom used F3m fields, where operations can be surprisingly efficient if properly
implemented.

This document is organized as follows. Section 2 discusses the Decision Diffie-
Hellman problem. Section 3 describes BLS signatures, and section 4 the asso-
ciated hashing algorithm. We present our improved hash scheme in section 5,
analyze its security properties in section 6, and show how to use it in a signa-
ture scheme in section 7. In section 8 we provide experimental results, and we
conclude in section 9.

2 The Decision Diffie-Hellman problem

Consider the tuple (P, aP, bP, cP) where P is a point of order q of an elliptic
curve E/Fpm . The Decision Diffie-Hellman (DDH) problem on the subgroup 〈P 〉
consists of deciding whether ab ≡ c (mod q).

We begin by defining the security multiplier of an elliptic curve group (or a
subgroup thereof).

Definition 1. Let p be a prime, m a positive exponent, and E an elliptic curve
over Fpm with n points. Let P ∈ E be a point of prime order q where q2 6 | m.
We say that the subgroup 〈P 〉 has a security multiplier α for some integer α > 0
if q | pmα−1 and q 6 | pmk−1 for all k−1, 2, . . . , α−1 (this means that the order
of pm in F∗q is α).

Given P ∈ E of order q, let Q be another curve point of the same order but
linearly independent from P , and let E[q] be the subgroup of E/Fpmα generated
by P and Q, where α is the security multiplier of 〈P 〉. The Weil pairing [13, 18,
20, 24] is a mapping e : E[q]× E[q]← F∗pmα satisfying the following properties:

1. Bilinearity: for all P,Q ∈ E[q] and a, b ∈ Z, e(aP, bQ) = e(P,Q)ab.
2. Alternation: for all P,Q ∈ E[q], e(P,Q) = e(Q, P)−1, so in particular

e(P, P) = 1.
3. Non-degenerate: if e(P,Q) = 1 for all Q ∈ E[q], then P = O.

An efficient, very clearly presented algorithm to compute the Weil pairing on
supersingular elliptic curves is given in [4, appendices B and C], based on work
by Miller [20].

The Weil pairing allows one to determine whether the tuple (P, aP,Q, bQ) is
such that a ≡ b (mod q), since this is equivalent to e(P, bQ) = e(aP, Q). Suppose
there is a computable isomorphism φ : 〈P 〉 → 〈Q〉; then the Weil pairing solves
the DDH defined by the tuple (P, aP, bP, cP) by means of the relation:

ab ≡ c (mod q)⇔ e(P, φ(cP)) = e(aP, φ(bP)).

2

3 The BLS signature algorithm

Cryptosystems based on group arithmetic are all susceptible, at least to some
extent, to generic group attacks, of which the most powerful known is Pollard’s
rho attack [22]. Two very powerful dedicated attacks are known against ellip-
tic curve cryptosystems: the Weil descent attack and the Menezes-Okamoto-
Vanstone (MOV for short) attack.

Weil descent attacks [8–10] map the elliptic curve group to a subgroup of a
hyperelliptic curve of higher genus, where the discrete logarithm problem can
be solved by subexponential algorithms. This attack is not applicable if the
extension degree of the finite field over which the curve is defined is prime.

The MOV attack [18] maps the elliptic curve discrete logarithm problem to
an analogous problem in the multiplicative group of a finite field (an extension
field of the underlying field over which the curve is defined). Resistance against
the MOV attack can be quantified by the curve’s security multiplier α: an ellip-
tic curve cryptosystem resists the MOV attack if the discrete logarithm in the
extension field Fpmα is infeasible. In practice, the MOV attack is only effective
against certain supersingular curves whose security multiplier is very small.

The BLS scheme uses supersingular elliptic curves over F3m defined by E± :
y2 = x3−x± 1. Only finite fields of prime extension degree m are used to avoid
Weil descent attacks. Furthermore, only curves with security multiplier α = 6
(the maximum achievable value for supersingular curves) are allowed to prevent
the MOV attack. Values of m of practical interest are 79, 97, 149, 163, and 169.

3.1 Key generation

Given one of the values m above, let E/F3m be the corresponding curve and let
q be the largest prime factor of the order of the curve. Let P ∈ E be a point
of order q. The private signing key is a statistically unique, uniformly chosen
element s ∈ F∗q , and the corresponding public key is the tuple (m,P, V) where
V is the curve point V = sP (the public value q is implicit in the public key
because the value of m and the curve equation uniquely determine q).

3.2 Signing

To sign a message M ∈ {0, 1}∗, map M to a point PM ∈ 〈P 〉. Set SM ← sPM .
The signature σ is the abscissa of SM . Notice that σ ∈ F3m .

3.3 Verification

The BLS scheme verifies signatures by solving the DDH problem with the Weil
pairing.

Let u, r± be elements of F3mα satisfying u2 + 1 = 0, (r±)3 − r± ± 2 = 0,
and let φ± : E± → E± such that φ±(x, y) ≡ (−x + r±, uy) for any point
P = (x, y) ∈ E± of order q. Then Q = φ±(P) is a point of the same order q
linearly independent from P [24, p. 326].

Given a public key (m,P, V), a message M , and a signature σ do:

3

1. Find a point S ∈ E/F3m of order q whose abscissa is σ and whose ordinate
is y for some y ∈ F3m . If no such point exists, reject the signature.

2. Set u ← e(P, φ(S)) and v ← e(V, φ(h(M))), where e is the Weil pairing on
the curve E/F36m .

3. Accept the signature if, and only if, either u = v or u−1 = v.

Note that both (σ, y) and (σ,−y) are points on E/F3m with abscissa σ. Either
one of these two points can be the point SM used to generate the signature in
the signing algorithm. Indeed, since (σ,−y) = −(σ, y) on the curve, we have
that e(P, φ(−S)) = e(P, φ(S))−1. Therefore, u = v tests that (P, V, h(M), S) is
a Diffie-Hellman tuple, while u−1 = v tests that (P, V, h(M),−S) is a Diffie-
Hellman tuple. The fact that the signature consists exclusively of the abscissa
of S causes a slight degradation in the ability of detecting forgery, since S and
−S are indistinguishable to the verifying algorithm.

4 Hashing onto curves

To complete the above specification one needs a hash function to map messages
onto 〈P 〉. In what follows we assume for simplicity that 〈P 〉 spans the whole
elliptic curve group; the case of a proper subgroup is easy to derive, and is
explained in detail in [3, section 3.3].

One can view the field F3m as a vector space of dimension m over F3, in which
case an element u ∈ F3m is represented in a basis by a tuple (u0, u1, . . . , um−1),
ui ∈ F3 for i = 0, 1, . . . ,m − 1. Besides standard polynomial bases, we also
consider normal bases defined as follows.

Definition 2. A normal basis is a linearly independent set {θ3i | 0 6 i < m}
where θ is a root in F3m of an irreducible polynomial of degree m.

For convenience, define τ(u) ≡ u0, i.e. the independent term in standard
polynomial basis, or the coefficient of θ in normal basis. We also define ũ ≡
(u1, . . . , um−1).

The original Map2Group function maps a message M to a curve point (x, y)
using a more conventional hash function h : Z × {0, 1}∗ as follows. Let the
elliptic curve equation be y2 = x3 − x + b over F3m , where b = ±1. Fix a small
parameter I = dlg lg(1/δ)e, where δ is some desired bound on the probability of
failure. Then compute function Map2Group as follows:

Map2Grouph(M)

1. Set i = 0.
2. Hash the pair (i,M) to a pair h(i,M) = (x, t) where x ∈ F3m and t ∈ {0, 1}.
3. Compute u = x3 − x + b.
4. Solve the quadratic equation y2 = u in F3m .
5. If no solution is found, increment i and try again from step 2.
6. Otherwise, use t to choose between the solutions y0 and y1, and return (x, yt).

4

Choosing between the roots in the last step above merely consists of ensuring
that τ(y0) < τ(y1).

If an upper bound is imposed on the counter i, then it is possible that an
unhashable message exists. The failure probability can be made arbitrarily small
by picking an appropriately large I. Furthermore, it is necessary to compute a
square root in a finite field of characteristic 3 to solve the quadratic equation.
Actually, the quadratic equation solving at step 4 must be also executed during
verification (in step 1).

It is not really necessary to hash (i,M) onto a pair (x, t); mapping to x alone
would work as fine. Indeed, t is only needed to distinguish between two curve
points PM = (x, y) and −PM = (x,−y), which lead to the same signature since
both SM = sPM and −SM = s(−PM) share the same abscissa. Therefore, the
actual value of t is irrelevant, and a fixed t would be equally suitable.

5 The new approach

Before we proceed it is convenient to provide some definitions.
Let C : F3m → F3m be defined by C(x) = x3 − x. The kernel of C is F3 [16,

chapter 2, section 1], hence the rank of C is m− 1 [11, section 3.1, theorem 2].

Definition 3. The (absolute) trace of an element a ∈ F3m is given by

Tr(a) = a + a3 + a9 + · · ·+ a3m−1
.

The trace will always be in F3 as one can easily check by noticing from the
above definition that C ◦ Tr ≡ 0, i.e. Tr(a)3 = Tr(a), for all a ∈ F3m . The trace
is also surjective and linear over F3, so it can always be represented as a matrix
in a basis.

Obtaining a full curve point by first specifying the abscissa and then com-
puting a suitable ordinate is commonplace in elliptic curve cryptography. Such
a technique is used in all algorithms adopted for existing standards [1, 12].

In fields of characteristic 3, cubing is a linear operation. Therefore, it is more
advantageous to hash the message M to an ordinate instead of an abscissa. This
property is exploited by function Map3Group below. Fix a small parameter J =
dlg lg(1/δ)− lg(lg(3)− 1)e ≈ dlg lg(1/δ)e+1 = I+1, where δ is the desired bound
on the probability of failure. Then compute function Map2Group as follows:

Map3Grouph(M)

1. Set i = 0.
2. Hash the pair (i, M) to a pair h(i,M) = (y, t) ∈ F3m × F3.
3. Compute u = y2 − b.
4. Solve the cubic equation C(x) = u.
5. If no solution is found, increment i and try again from step 2.
6. Otherwise, use t to choose between the solutions y0 to y2, and return (x, yt).

5

As before, choosing between the roots in the last step above merely consists
of ensuring that τ(y0) < τ(y1) < τ(y2).

The equation in step 4 has a solution if, and only if, Tr(u) = 0 [16, theo-
rem 2.25]. This is the case for 1/3 of the elements in F3m , since the trace function
is linear and surjective.

Here too the failure probability can be made arbitrarily small by picking an
appropriately large J , which is only one unit larger than the corresponding value
of I in the original Map2Group. For each i, the probability (over the choice of
the random oracle h′) that h′(i||M) leads to a point on G∗ is that of finding
a solution to the cubic equation in Step 4, or 1/3 for uniformly distributed u
values. Hence, the expected number of calls to h′ is approximately 3, and the
probability that a given message M will be found unhashable is (2/3)2

J

6 δ.
The complexity derives from the squaring in step 3 and the cubic equation

solving in step 4. Squaring is obviously no more complex than O(m2) (this may
involve the use of multiplication matrices for a normal basis [17, section 6.1]).
We now show how to efficiently solve the cubic equation on F3m .

5.1 Solving the cubic equation in standard polynomial basis

Trace computation: Since the trace is actually a linear form Tr : F3m → F3,
precompute its representation T (an usually sparse m-tuple of F3 elements) in
the given basis, and thereafter obtain Tr(u) as the inner product Tu in O(m)
time.

Solving C(x) = u: The cubic equation reduces to a system of linear equations
with coefficients in F3, and can be solved in no more than O(m2) steps. This is
achieved by first checking whether the system has solutions, i.e. whether Tr(u) =
0. If so, since the rank of C is m− 1 one obtains an invertible (m− 1)× (m− 1)
matrix A by leaving out the one row and correspondingly one column of the
matrix representation of C on the given basis. A solution of the cubic equation
is then given by an arbitrary element x0 ∈ F3 and by the solution of system
Ax̃ = ũ, which is obtained as x̃ = A−1ũ in O(m2) time.

5.2 Solving the cubic equation in normal basis:

Trace computation: The trace can be computed very easily in a normal basis.
From the definition of trace, one sees that computing Tr(u) amounts to summing
up all coefficients of u in the normal basis and multiplying the result by Tr(θ).
Obviously, it is most advantageous to choose θ so that Tr(θ) = 1.

Solving C(x) = u: Using a normal basis to represent field elements, it is not
difficult to see that the cubic equation can be efficiently solved in O(m) time by
the following algorithm (the proof is straightforward and left as an exercise):

6

x0 ← root selector (an arbitrary element from F3)
for i← 1 to m− 1 do {

xi ← xi−1 − ui

}
x is a solution if, and only if, xm−1 = x0 + u0.

A minor drawback of hashing onto an ordinate instead of an abscissa is that
the convergence is slower, since the probability of finding a solution to the cubic
equation in step 4 is only 1/3 for uniformly distributed hash values in step 2.
This means that the expected number of hash queries in step 2 is 3 instead of 2.

6 Proof of security

We now show that our hash proposal is secure in the random oracle model [2]
against existential forgery under chosen-message attacks. Both the theorem be-
low and its proof closely follow [3, Lemma 4].

For simplicity, here again we only discuss hashing onto the full elliptic curve
group. Modifying the argument for hashing onto a proper subgroup thereof is
fairly simple.

Definition 4. A forger algorithm F (t, qH , qS , ε)-breaks a signature scheme if
F runs in time at most t, makes at most qH adaptive queries to a hash oracle
and at most qS adaptive queries to a signing oracle, and produces with probability
not smaller than ε a message M and a valid signature σ for M under a given,
randomly generated key pair (s, V).

Definition 5. A signature scheme is (t, qH , qS , ε)-secure against existential
forgery on adaptive chosen-message attacks if no forger (t, qH , qS , ε)-breaks it.

Theorem 1. Suppose the BLS signature scheme is (t, qH , qS , ε)-secure in the
group G when using a random hash function h : {0, 1}∗ → G∗. Then it
is (t − 2JqH lg n, qH , qS , ε)-secure when the hash function h is computed with
Map3Grouph′ where h′ is a random hash function h′ : {0, 1}∗ → F3m × F3.

Proof. Suppose a forger algorithm F ′ (t, qH , qS , ε)-breaks the BLS algorithm on
the bgroup G when the hash function h is computed using Map3Grouph′ . We
construct an algorithm F that (t + 2JqH , qH , qS , ε)-breaks the scheme when h is
a random oracle h : {0, 1}∗ → G∗.

The forger F runs F ′ as a black box. F will use its own hash oracle h :
{0, 1}∗ → G∗ to simulate for F ′ the behavior of Map3Grouph′ . It uses an array sij

of elements of F3m×F3. The array has qH rows and 2J columns. On initialization,
F fills sij with uniformly-selected elements of F3m × F3.
F then runs F ′, and keeps track of all the unique messages Mi for which F ′

requests an h′ hash. When F ′ asks for an h′ hash of a message (w,Mi) whose
Mi F had not previously seen (and whose w is an arbitrary J-bit string), F
computes (xi, yi) = h(Mi) ∈ G∗ and scans the row sij , 0 6 j < 2J . For each

7

(x, b) = sij , F solves the cubic equation in step 4 of Map3Group above, seeking
points in G∗. For the smallest j for which sij maps into G∗, F replaces sij with a
different point (xi, bi) where b ∈ F3 is set so that (xi, bi) corresponds to (xi, yi)
in step 6 of Map3Grouph′ . This way Map3Grouph′(Mi) = h(Mi) as required.

Once this preliminary patching has been completed, F is able to answer h′

hash queries by F ′ for pairs (w′,Mi) by simply returning siw′ . The simulated h′

which F ′ sees is statistically indistinguishable from that in the real attack. Thus,
if F ′ succeeds in breaking the signature scheme using Map3Grouph′ , then F , in
running F ′ while consulting h, succeeds with the same likelihood, and suffers
only a running-time penalty from maintaining the bookkeeping information. ut

In the case of hashing onto a proper subgroup, one can show that the scheme
is (t− 2JqH lg n, qH , qS , ε)-secure, where n is the subgroup order.

7 A modified signature scheme

As we pointed out in section 4, in the original BLS scheme it is necessary to
solve a quadratic equation not only at signing time but during verification as
well. To completely avoid this, we propose the following modified scheme (key
generation is unchanged):

7.1 Signing

To sign a message M ∈ {0, 1}∗, map M to a point PM ∈ 〈P 〉 using Map3Group.
Set (xσ, yσ)← sPM . The signature σ is the pair (tσ, yσ), where tσ ≡ τ(xσ).

7.2 Verification

Given a public key (m,P, V), a message M , and a signature (tσ, yσ) do:

1. Find a point S = (xS , yS) ∈ E/F3m of order q satisfying yS = yσ and
τ(xS) = tσ. If no such point exists, reject the signature.

2. Set u ← e(P, φ(S)) and v ← e(V, φ(h(M))), where e is the Weil pairing on
the curve E/F36m .

3. Accept the signature if, and only if, u = v.

This scheme has the drawback that the signature is slightly larger (by an
extra F(3) element) than the original scheme. Unfortunately this seems avoid-
able only at the cost of an additional DDH step, which would deteriorate the
verification speed. On the other hand, attaching the selector tσ to the signature
increases the ability to detect forgery by a factor of 2, as now only the exact
point resulting from the signing process is accepted as valid.

8

8 Experimental results

We have implemented both the original and the modified forms of Map3Group
for the curve E− : y2 = x3 − x − 1 over F379 and F3163 , and the curve E+ :
y2 = x3−x+1 over F397 . In particular, E+ gives rise to signatures of about 160
bits in lengths and security roughly equivalent to 320-bit DSA or ECDSA [1]
signatures, and has very practical interest.

The improved hash scheme runs noticeably faster (by about two orders of
magnitude) than the original algorithm, as we see in table 8.

Table 1. Running times of Map2Group and Map3Group in ms.

m Map2Group Map3Group

79 3.02 0.037
97 5.53 0.054
163 25.7 0.164

8.1 Techniques for software implementation

The algorithms were coded in the C++ language and run on a 550 MHz Pen-
tium III processor. Only modest attempts were made to optimize the coded
algorithms, namely by applying some standard implementation techniques like
inner loop unrolling and function inlining.

Contrary to the situation of F2m and Fp, current processors in general lack
native support for arithmetic in F3m . Nevertheless, it is possible to exploit ex-
isting operations to maximize parallelism within computer words. Our reference
implementation represents F3m in polynomial basis by packing eight coefficients
per 32-bit word, each F3 coefficient occupying a nibble (4 bits). Although it is
possible to store 10 or even 11 coefficients per word (in the latter case, if carry
bits are taken care of separately), our choice is more natural and leads to simpler
formulas. This representation is also suitable when computing inverses with the
almost inverse algorithm [23].

The square root extraction algorithm used by the original BLS scheme is
described in [5, section 1.5] and uses the property that, if x = r2 for some r ∈ Fq

where q ≡ 3 (mod 4), then r ∈ {r1, r2} where r1 = x(q+1)/4 and r2 = −r1.
This property, which holds for q = 3m if m is odd, is exploited in a windowed
exponentiation algorithm [19, algorithm 14.82].

9 Conclusions and extensions

We have proposed a variant of the hash scheme used in BLS digital signature
algorithm that is substantially faster than the original approach. The main idea

9

is to hash messages onto curve ordinates and then solving a cubic equation over
F3m to compute the corresponding abscissa, which can be done in time O(m2).
In comparison, the original algorithm hashes messages onto curve abscissas and
then solves a quadratic equation to compute a valid ordinate, a process that
takes time O(m3). Experimental results indicate that even simple cubic equation
solving methods are very effective, improving the running time by a factor of
one hundred or more. The linear system found in the process is fairly sparse, so
dedicated solving methods may increase performance to some extent.

Under certain circumstances, it may be undesirable to transmit the full
counter used by function Map3Group together with the signature. In theory,
the counter might be omitted from the signature data altogether, but this would
burden the verifier, which already has the heavier part of the work, with the
same effort the signer has to spend. A straightforward tradeoff is to attach only
a few counter bits to the signature, say the least significant ones, and recompute
only the remaining bits upon verification. The speed achievable with our pro-
posed hash scheme reduce the recalculation overhead and makes the penalty for
the verification algorithm negligible.

Still, the elliptic curve scalar multiplications necessary to complete the signa-
ture are the bottleneck of the BLS algorithm. Some techniques enables practical
speedups for these operations. Point halving [14] and the methods proposed by
Koblitz [15] for curves over fields of characteristic 3 may be used for this purpose
to great effect, though the computational effort incurred is still O(m3).

Although the overall speedup our technique provides is modest, to the best
of our knowledge it is free of patents, which may be an important consideration
under several circumstances.

10 Acknowledgements

We are grateful to Dan Boneh, Ben Lynn, Ricardo Komatsu de Almeida, and
especially to Frederik Vercauteren for fruitful discussions regarding the contents
of this paper.

References

1. ANSI X9.62, “Public Key Cryptography for the Financial Services Industry: the
Elliptic Curve Digital Signature Algorithm (ECDSA),” 1999. Also published in
FIPS 186-2.

2. M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for design-
ing efficient protocols,” Proc. First Annual Conference on Computer and Commu-
nications Security, ACM, 1993.

3. D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pair-
ing,” Proceedings of AsiaCrypt’2001, to appear. Preprint available online at
http://crypto.stanford.edu/ dabo/abstracts/weilsigs.html.

4. D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,”
Advances in Cryptology, Crypto’2001, Lecture Notes in Computer Science 2139,
pp. 213-229, Springer-Verlag, 2001.

10

5. H. Cohen, “A Course in Computational Algebraic Number Theory,” Springer-
Verlag, 1993.

6. N. Courtois, M. Finiasz and N. Sendrier, “How to achieve a McEliece-based digital
signature scheme,” Proceedings of Asiacrypt’2001, to appear. Available online at
http://eprint.iacr.org/2001/010/.

7. G. Frey, M. Müller, and H. Rück, “The Tate Pairing and the Discrete Logarithm
Applied to Elliptic Curve Cryptosystems,” IEEE Transactions on Information The-
ory, 45(5), pp. 1717–1719, 1999.

8. S.D. Galbraith, F. Hess, N.P. Smart, “Extending the GHS Weil Descent Attack,”
Cryptology ePrint Archive: Report 2001/054.

9. S.D. Galbraith, N.P. Smart, “A cryptographic application of Weil Descent,” Codes
and Cryptography, Lecture Notes in Computer Science 1746, pp. 191–200, Springer-
Verlag, 1999.

10. P. Gaudry, F. Hess and N.P. Smart, “Constructive and destructive facets of Weil
descent on elliptic curves,” Journal of Cryptology, to appear.

11. K. Hoffman and R. Kunze, “Linear Algebra,” 2nd Edition, Prentice-Hall Inc., 1971.
12. IEEE Std 1363-2000, “Standard Specifications for Public-Key Cryptography,”

2000.
13. A. Joux and K. Nguyen, “Separating Decision Diffie-Hellman from Diffie-Hellman

in Cryptographic Groups,” Cryptology ePrint Archive, Report 2001/003, 2001.
http://eprint.iacr.org/.

14. E.W. Knudsen, “Elliptic Scalar Multiplication Using Point Halving,” Proceedings
of AsiaCrypt’99, Lecture Notes in Computer Science 1716, pp. 135–149, Springer-
Verlag, 1999.

15. N. Koblitz, “An Elliptic Curve Implementation of the Finite Field Digital Signature
Algorithm,” Advances in Cryptology – Crypto ’98. Lecture Notes in Computer
Science 1462, pp. 327–337, Springer-Verlag, 1998.

16. R. Lidl and H. Niederreiter, “Finite Fields,” Encyclopedia of Mathematics and its
Applications, vol. 20, 2nd Edition, Cambridge University Press, 1997.

17. A.J. Menezes, “Elliptic Curve Public Key Cryptosystems,” Kluwer International
Series in Engineering and Computer Science, 1993.

18. A. Menezes, T. Okamoto, and P. Vanstone, “Reducing elliptic curve logarithms
to logarithms in a finite field,” IEEE Transactions on Information Theory 39(5),
pp. 1639–1646, 1993.

19. A.J. Menezes, P.C. Van Oorschot, S.A. Vanstone, “Handbook of Applied Cryptog-
raphy,” CRC Press, 1997.

20. V. Miller, “Short Programs for Functions on Curves,” unpublished manuscript,
1986.

21. J. Patarin, N. Courtois and L. Goubin, “Quartz, 128-bit long digital signatures,”
NESSIE submission, 2000. Available online at http://www.cryptonessie.org/.

22. J.M. Pollard, “Monte Carlo methods for index computation (mod p),” Mathematics
of Computation 32(1978), pp. 918–924.

23. R. Schroeppel, H. Orman, S. O’Malley, O. Spatscheck, “Fast Key Exchange with
Elliptic Curve Systems,” Advances in Cryptology – Crypto ’95. Lecture Notes in
Computer Science 963, pp. 43–56, Springer-Verlag, 1995.

24. J.H. Silverman, “The Arithmetic of Elliptic Curves,” Graduate Texts in Mathe-
matics, vol. 106, Springer-Verlag, 1986.

11

