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Abstract. This paper contains three parts. In the first part we present a new side channel 
attack on plaintext encrypted by EME-OAEP PKCS#1 v.2.1. In contrast with Manger´s 
attack, we attack that part of the plaintext, which is shielded by the OAEP method. In the 
second part we show that Bleichenbacher’s and Manger’s attack on the RSA encryption 
scheme PKCS#1 v.1.5 and EME-OAEP PKCS#1 v.2.1 can be converted to an attack on the 
RSA signature scheme with any message encoding (not only PKCS). This is a new threat for 
those implementations of PKI, in which the roles of signature and encryption keys are not 
strictly separated. This situation is often encountered in the SSL protocol used to secure 
access to web servers. In the third part we deploy a general idea of fault-based attacks on the 
RSA-KEM scheme and present two particular attacks as the examples. The result is the 
private key instead of the plaintext as with attacks on PKCS#1 v.1.5 and v.2.1. These attacks 
should highlight the fact that the RSA-KEM scheme is not an entirely universal solution to 
problems of RSAES-OAEP implementation and that even here the manner of implementation 
is significant. 
 
Category / Keywords: public-key cryptography / side channel attack, confirmation oracle, 
RSA-KEM, RSAES-OAEP, PKCS#1 v.1.5, PKCS#1 v.2.1, Bleichenbacher’s attack, 
Manger’s attack, power analysis, fault analysis. 

1 Introduction 
In 1998, Bleichenbacher [5] described an attack on the PKCS#1 v.1.5 encoding and in 2001 
Manger [13] described an attack on the improved scheme PKCS#1 v.2.1, called also RSAES-
OAEP. These attacks underline the significance of the theorem of RSA individual bits [11] 
which states that: If RSA cannot be broken in a random polynomial time, then it is not 
possible to predict the value of any selected bit of the plaintext with a probability not 
negligibly different from 1/2. A negligible difference for the purpose of this theorem is such 
ε(n) that for any constant c > 0 it holds that ε(n) < L(n)-c, where L(n) is the length of an 
appropriate sufficiently large RSA modulus n. From the standpoint of side channels it is 
important to understand this theorem as saying: If the value of any chosen bit of the plaintext 
can be predicted with a probability not negligibly different from 1/2 then RSA can be broken 
within a random polynomial time. Breaking RSA [19] is understood here to mean that a value 
of the plaintext is obtained. Bleichenbacher’s and Manger’s attacks [5, 13] use side channels 
which provide the attacker with a relatively large amount of information about the plaintext 
(at least the two most significant bytes are 00 02 or one byte is 00, respectively).  
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In this paper plaintext will always mean a value of m which is created immediately 
after an operation with a private RSA key, m = cd mod n, not the value of M obtained after 
decoding m. 

In section 2 we present another realistic attack on the RSAES-OAEP (PKCS#1 v.2.1) 
scheme. It is a side channel attack using only the information about Hamming weight of 
certain 32-bit words produced in the process of decoding m by the EME-OAEP-DECODE 
procedure according to PKCS#1 v.2.1. Theoretically, it is a weakening of the assumptions of 
Manger’s and Bleichenbacher’s attacks. From the practical point of view, the new attack can 
be used especially on smart cards. It follows from the theorem of RSA individual bits that it is 
necessary to prevent the leakage of any information about the individual bits of the plaintext. 
Our attack demonstrates that the Hamming weight of a part of the plaintext can be used to 
carry out a successful attack. 

In section 3 we present a very simple but efficient conversion of the 
Manger/Bleichenbacher breaking oracle to a universal (signature) oracle. The principle that a 
private RSA key should not be used simultaneously for encryption and for digital signature is 
well known but is very often violated in practice. Typical examples include some of the 
current implementations of PKI, the SSL protocol etc. We show that if we can perform 
Bleichenbacher’s or Manger’s attack on the encryption scheme using PKCS#1 (v.1.5 or v.2.1) 
in such way that we can obtain the plaintext then we can also obtain the digital signature of 
any message (encoded in any way) using the same private RSA key. In the SSL protocol this 
means the ability to create signatures with the server-side private key and even create false 
servers with the identity of the original server, provided that sufficient decrypting speed can 
be ensured. 

In section 4 we present a new fault side channel attack on the RSA-KEM. RSA-KEM 
attempted to remove the structural relations in order to prevent leaking of information about 
the plaintext. Despite this we discovered a natural method of obtaining such information. 
Input plaintext for RSA-KEM consists of symmetric encryption keys, information about 
which can be obtained by means of an integrity check of the messages they encrypt. A typical 
integrity check consists of block cipher padding, e.g. PKCS#5 [16]. The result produced by 
the attack that uses this information is a private RSA key whilst the attacks on PKCS#1 v.1.5 
and 2.1 always discovered only a plaintext. 
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2 Side Channel Attack on RSAES-OAEP Plaintext 
In this section we will demonstrate a new method of attacking the RSAES-OAEP scheme 
(PKCS#1 v.2.1 [15]) at the time when decoding operation EME-OAEP-DECODE (EM, P) is 
performed, see fig. 1. The attack is based on the assumption that there is a side channel 
carrying some information about the plaintext. In particular we assume that the attacker can 
obtain the Hamming weight w(x) (i.e. the number of ‘1’ bits) of a word x during the time 
when the plaintext (m) is being processed in the MGF operation (to be specified later). As it 
was shown in [14], this assumption is realistic for instance in power side channels which tend 
to leak this information in a relatively readable way.  

We note that this attack is possible with some modifications even when we have access 
to the Hamming distance of processed data rather than the weight.  

2.1 Attack Description 
Consider RSA with a modulus n which has the length of L(n) bits where L(n) is the multiple 
of 512, i.e. L(n) = 512*k, where k is a natural number. The attack will target the RSAES-
OAEP scheme during the processing of the plaintext immediately after the RSA decryption 
operation cd mod n, see fig. 1. SeedMask will be calculated according to [15] as 

seedMask = MGF(maskedDB, 20) = SHA-1(maskedDB || 00 00 00 00), 
where the four zero octets are appended to the message by the MGF function. It follows from 
the definition of OAEP encoding that maskedDB always contains 64*k - 1 - 20 octets, so that 
64*k - 17 octets (4 extra zero octets) enter SHA-1. By the definition of SHA-1 [20] the 
message is divided into blocks of 64 octets, which are processed sequentially by the 
compression function. Note that the least significant bit of the original message m is processed 
in the last block. It is followed by four zero octets and 17 octets of the SHA-1 padding.  
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For various L(n) the particular value of the padding is different, but it is a constant 
known to the attacker. To present an example, we will consider L(n) = 1024.  

Let us denote the i-th octet of the plaintext as m[i] where m[0] is the least significant 
octet. The last block entering the SHA-1 compression function is in this case equal to 

m[42.....0] 00 || 00 00 00 80 || 00 00 00 00  || 00 00 00 00 || 00 00 00 00 || 00 00 03 78, 
where m is followed by 4 zero octets (from MGF) and the SHA-1 padding. The padding 
consists of bit 1, 71 zero bits and a 64-bit representation of the message bit length. The length 
is 888 = 0x 00 00 00 00 00 00 03 78 bits in this case (64*2 – 17 = 111 octets). The SHA-1 
compression function fills this last block into 32-bit variables W0, ..., W15, where 
 

W8  = m[10] m[9] m[8] m[7] W9  = m[6] m[5] m[4] m[3] 
W10 = m[2] m[1] m[0] 00 W11 = 00 00 00 80 
W12 = 00 00 00 00 W13 = 00 00 00 00 
W14 = 00 00 00 00 W15 = 00 00 03 78 

 
And then expansion to words W16 , ..., W79 is performed according to the following relations 
 

W16 = S1(W13 xor W8 xor W2 xor W0 ), 
 W17 = S1(W14 xor W9  xor W3 xor W1 ), 

       W18 = S1(W15 xor W10 xor W4 xor W2 ), etc. 
 
When calculating W16, the first operation performed is W13 xor W8, where W13 is a known 
constant. This moment is an example of a general situation when D-1 known parameters and 
one unknown enter a D-ary operation. Here various side channels are often applicable, 
especially the power side channel. 

We assume that the attacker is able to gather the Hamming weight w(W8) ∈ {0, ..., 32} 
of word W8 during the W13 xor W8 operation (W8 is the only unknown operand in it). The same 
situation arises in the following two operations as well, so we are able to gather w(W9) and 
w(W10). 

We number the bits of the word Wi (from the msb to the lsb) as Wi,31 Wi,30 Wi,29 ... Wi,0. 
We will show that now we can predict the value of W10,8 with a probability not negligibly 
different from 1/2. Note that this is the value of the least significant bit (lsb) of the plaintext. 
Hence, using the theorem of RSA individual bits [11] we can design an attack on the entire 
plaintext. It is widely known that information about the lsb of the plaintext leads to very 
efficient attacks [23]. 

2.2 Obtaining the Least Significant Bit of the Plaintext 
The procedure which leads to obtaining the value of W10,8 is as follows. We denote the 
ciphertext to be attacked by c, the modulus by n and the public RSA exponent by e. First we 
let the attacked device decrypt and decode the original ciphertext c. During decoding we 
gather the values of Hamming weights w(W8), w(W9) and w(W10). In the next step we request 
the equipment to decrypt and decode a value c’ = c*2-e mod n. Plaintext m’ is the result of this 
and during the calculation we will obtain Hamming weights w(W8’), w(W9’) and w(W10’). If 
the W10,8 bit is zero, then the decryption returns the value m’ = m >> 1, where ">> 1" means 
a shift one bit to the right. Otherwise m’ = (m + n) >> 1.  

If we assume W10,8 = 0 then (W8’, W9’, W10’) will be created of (W8, W9, W10) by a 
shift one bit to the right (with the exception of W10, where the shift only affects the leftmost 
bits which are then independently complemented by eight zero bits). The difference between 
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appropriate Hamming weights (w(W8), w(W9), w(W10)) and (w(W8´), w(W9´), w(W10´)) is 
therefore 0 or 1. More precisely  

w(W8´) = w(W8) - W8,0 + W7,0 , w(W9´) = w(W9) - W9,0 + W8,0 , w(W10´) = w(W10) - 
W10,8  + W9,0 = w(W10) + W9,0 and therefore the three relations included in exactly one of the 
eight rows of table 1 are valid.  

However, if W10,8 = 1, m´ is not created by a shift of m, but produced as (m + n) >> 1. 
This, with a high probability, destroys the linear relations in the table 1. By the obtained 
weights (w(W8), w(W9), w(W10)) and (w(W8´), w(W9´), w(W10´)) we determine whether they fit 
all relations in any single row. If so, we adopt a hypothesis that W10,8 = 0, otherwise we refuse 
it and assume that W10,8 = 1. The probability of establishing the bit W10,8 correctly is close to 1 
for an ideal side channel. It will be sufficient to realise that m is randomised by a hash 
function in MGF and n is assumed to be common, not specially constructed. Therefore, the 
probability of adopting the hypothesis that W10,8 = 0 if it was W10,8 = 1, can be estimated as 
the probability that the random variables W8, W9, W10 and W8´, W9´, W10´ (with the properties 
that lower nine bits of W10 are 100000000 and lower eight bits of W10´ are 00000000) will fit 
any of the relations in table 1, which is approximately 0.008. 

That enables us to obtain the least significant bit of the plaintext m with a high 
probability and therefore, in accordance with [11] we can establish the remaining part of m. 
We presume that procedures in [11] will be used directly, in particular the methods based on 
computing gcd (for details see [2]). In this way we are able to handle errors during the 
reception of information from the side channel. 

In this paper we strive to show that such an attack is realistic and that it operates in a 
random polynomial time, following from the above analysis and the results of [2, 11]. We 
would like to emphasize the importance of a thorough implementation. The significance of 
the implementation stage cannot simply be reduced to the problem of finding “the right 
encoding method” as was perhaps deemed earlier. 
In practice the described attack can be further modified with respect to what information 
(Hamming weight or distance) at what level of accuracy the attacker can obtain. At a low 
level of side channel interference special breaking methods based on the knowledge of the lsb 
[23] can be applied. Those will obviously be more efficient than the general ones of [2, 11]. 
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´) = w(W8) 
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´) = w(W9)       w(W8
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´) = w(W8) -1 

0 1 1 w(W10
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´) = w(W8) 

1 0 0 w(W10
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´) = w(W8) 
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1 1 0 w(W10
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Tab.1: Possible relations among random variables W and W´ when W10,8 = 0 
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3 Note on Converting the Deciphering Oracle to a Signing 
Oracle 

In this section we will demonstrate that if the attacker can use Bleichenbacher’s or Manger’s 
attack on the PKCS#1 v.1.5 or 2.1 encryption scheme, he/she is also able to create false 
signatures using the same private RSA key with any encoding of the message to be signed. 
This conversion is technically very simple but it has interesting practical consequences on the 
applications where the same key is used both for encryption and for digital signature. One 
example is the SSL protocol used to secure access to web servers. In its application the public 
key certificate at the server sometimes permits the use of the key both for encryption and for 
signature. That means that a signature made by the server’s private key is meaningful in the 
PKI system and it is not appropriate that it should be forgeable. Conversion will be 
demonstrated for both Bleichenbacher’s attack on PKCS#1 v.1.5 and for Manger’s attack on 
PKCS#1 v.2.1. 

Manger’s attack uses only one element of the EME-OAEP PKCS#1 v.2.1 encoding - 
whether a zero occurred in the most significant octet (MSB) of the plaintext decrypted by the 
private key. We will denote the oracle which tells the attacker this as “Partial information 
oracle” PIOMSB:  

PIOMSB(c) = "yes" iff c = me mod n, MSB(m) = 0x00. 
Using this oracle a decryption machine (Whole information oracle) WIOMSB is constructed in 
[13]. If the plaintext has a format of m = 00 || ...., then the WIOMSB (using PIOMSB) can 
extract from the ciphertext c the original plaintext 

m = WIOMSB(c) = cd mod n. 
Now, we will assume that the same private key (d) is used in another RSA scheme (with any 
encoding) for digital signature. The attacker can now easily forge the digital signature of any 
message using the same private key (d) if he/she has access to PIOMSB. Let c be the message 
that the attacker prepares for signing. He/she then randomly selects various natural numbers r 
= r1, r2, .... different from one another, smaller than n and sends numbers c´ = c*re mod n to 
the oracle PIOMSB successively. After decryption m´ = m*r mod n is produced on the 
recipient’s side. Unless the most significant octet of m´ is zero, it is rejected by PIOMSB: 

PIOMSB(c´) = "no". 
Because the random value r produces a random most significant octet in m´, this octet will be 
zero with a probability of 1/256. After several hundreds of trials the value of c´ will conform 
with the initial condition of Manger’s attack and WIOMSB then decrypts c´:  

m´= WIOMSB (c´) = (c´)d mod n. 
The attacker then only has to calculate 

m = m´* r-1 mod n 
as a valid signature of the message c. The particular type of encoding for a signature is 
irrelevant here. 

The attacker follows the same procedure when converting Bleichenbacher's attack. 
This attack assumes the oracle PIOPKCS_CONF, which tells the attacker whether the plaintext 
produced by decryption is “PKCS#1 conforming” [5]. That means that the two most 
significant octets of the plaintext must be equal to 00 || 02 and from the 11th octet onwards 
some octet must be zero (separator). On the basis of PIOPKCS_CONF a decryption machine 
WIOPKCS_CONF is then constructed. If the plaintext is “PKCS#1 conforming”, then 
WIOPKCS_CONF can use PIOPKCS_CONF on the corresponding ciphertext c to obtain the original 
plaintext 

m = WIOPKCS_CONF(c) = cd mod n. 
Using the same procedure as above, i.e. by a randomly selected r, we test whether 
PIOPKCS_CONF on c´ = c*re mod n responds “yes”. This time the probability of such answer is 
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several hundred times lower than in the case of Manger’s attack (depending on the number of 
bits of n; for 1024 it is approximately 715-times less, see [13]). As soon as such a situation 
occurs, the attacker can again compute m = m´* r-1 mod n as a valid signature of the message 
c. 

Note that the attack described in section 2 of this paper does not place any special 
requirements on the ciphertext. It is therefore suitable for forging signatures even without any 
changes. 

4 Side Channel Attack on RSA-KEM 
 
After Bleichenbacher’s attack on the scheme PKCS#1 v.1.5, a new scheme PKCS#1 v.2.1, 
based on the EME-OAEP encoding, was recommended for use. However, Manger’s attack 
[13] showed that RSAES-OAEP is also vulnerable to side channel attacks. After that Shoup 
[21] proposed the new key encapsulation mechanism RSA-KEM. This mechanism was 
believed to have eliminated problems with side channels. We show that RSA-KEM is also 
vulnerable to some types of side channel attacks, and therefore has to be implemented 
carefully. In these attacks, the private key may be obtained. In this sense, the RSA-KEM 
mechanism is even more vulnerable to side channel attacks than PKCS#1. Next we will 
describe an RSA confirmation oracle (CO) based on RSA-KEM. We will show how to use a 
CO to obtain a RSA private key. 

4.1 Confirmation Oracle 
In this text, we are using the terminology of [21], except for the term RSAES-OAEP that is 
defined in PKCS#1 v.2.1. The purpose of RSA-KEM is to transmit the symmetric key to the 
receiver, and so it is natural to consider the properties of the whole hybrid public-key 
encryption scheme H-PKEKEM, DEM, consisting of the Data Encapsulation Mechanism (DEM) 
and the Key Encapsulation Mechanism (KEM). Our attack on RSA-KEM is based on the 
behaviour of the entire hybrid scheme. Later we will see that our requirements are sufficiently 
general and make it easily realizable in practical applications. We will start by reviewing 
some important terms (algorithms) from [21] in a simplified form: 

The Key Encapsulation Mechanism (KEM) has this abstract interface: 
KEM.Encrypt(PubKey) → (K, C0) - generates a symmetric encryption key K and using the 
public key PubKey, creates a corresponding ciphertext C0 
KEM.Decrypt(PrivKey, C0) → (K) - decrypts C0 using the private key PrivKey, and derives 
the symmetric key K by applying the key derivation function KDF to that result 

The Data Encapsulation Mechanism (DEM) has this abstract interface: 
DEM.Encrypt(K, M) → (C1) - encrypts the message M with the symmetric key K and returns 
the corresponding ciphertext C1 
DEM.Decrypt(K, C1) → (M) - decrypts the ciphertext C1 with the symmetric key K and 
returns the plaintext M 

The hybrid public-key encryption scheme H-PKEKEM, DEM is a combination of the 
KEM and DEM schemes. The algorithm for the encryption of a message M by the public key 
PubKey resulting in the ciphertext C is as follows: 

1. (K, C0) = KEM.Encrypt(PubKey) 
2. C1 = DEM.Encrypt(K, M) 
3. Ciphertext C = C0 || C1 

On the receiving end, the decryption of the ciphertext C with the private key PrivKey is 
carried out as follows: 
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1. Let C = C0 || C1      
2. K = KEM.Decrypt(C0) 
3. M = DEM.Decrypt(K, C1) 

We assume that there is no integrity check for the key K (e.g. analogous to a check used in 
the encoding method OAEP) however an integrity check exists for the message M in step 3. 
It can be based on the message padding check, as in the standard PKCS#5 [16], on the use of 
labels as described in [21], or on any other technique. We assume the attacker will find out 
whenever the receiver's integrity check rejects a ciphertext C. In this situation we can expect 
that the receiver will send an error message to the sender. Acceptance or rejection of a 
ciphertext C defines the receiver oracle (RO). On the basis of RO we can define the 
confirmation oracle (CO). The term CO may be defined more generally, however, we will 
only define the RSA confirmation oracle (RSA-CO). 

We assume that the private key PrivKey is a private exponent d and n is a public 
modulus. Later we will show that the modulus n should be part of the private key rather than 
independently taken from the public key, as it is recommended in [21]. 
 
Definition: RSA confirmation oracle RSA-COd,n(r, y). Let us have a receiver oracle RO that 
uses RSA in the hybrid encryption H-PKEKEM, DEM.  We will construct a RSA confirmation 
oracle  
RSA-COd,n(r, y) → (ANSWER = “yes/no”) as follows: 

1. K = KDF(r); KDF - Key Derivation Function 
2. C0 = y; for simplicity we omit the conversion between integers and strings 
3. C1 = DEM.Encrypt(K, M); where M contains the maximum possible integrity check  
4. C = C0 || C1 
5. Send the ciphertext C to the receiver oracle RO. RO then continues: 

a. Compute K = KEM.Decrypt(d, C0) following these steps: 
i. Check if y = C0 < n. If not, an error has occurred. 

ii. Compute r’ = (yd mod n) 
iii. K´ = KDF(r’) 

b. M´ = DEM.Decrypt(K´, C1) 
c. Check the integrity of M´ 
d. If it is correct, the answer of RO is “yes”, otherwise it is “no” 

6. The answer of RSA-COd,n(r, y) is “yes”, if RO returned “yes”, otherwise it is “no” 
 

We note that whenever r = (yd mod n), the oracle returns “yes”. If r ≠ (yd mod n) then the 
oracle returns “no” with a high probability close to 1 (the value depends on collisions in the 
function KDF and the strength of the integrity check).   

The key point is that an attacker may use the oracle RSA-COd,n(r, y) to check the 
congruence r ≡ yd (mod n) without knowledge of the particular value of the private key d used 
in the step 5.a.ii above. 

4.2 Fault Side Channel Attacks 
The congruence r ≡ yd (mod n) can be confirmed with the public key. However, using  
RSA-COd,n(r, y) is the natural way of exploiting the receiver's behaviour. The oracle becomes 
far more interesting when an error occurs in step 5.a.ii of the algorithm above. This 
confirmation oracle can be used to design many attacks. Therefore we will only present a 
brief description of two examples to illustrate the core of this problem. We note that these 
attacks are targeted at the private key, rather than the plaintext. This is paradoxically caused 
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by the absence of structural checks of the plaintext in RSA-KEM, which is really a positive 
quality in other contexts.  

4.2.1 Faults in the Bits of the Private Exponent d 
The impact of faults in the bits of the private exponent RSA was described in [3]. We will 
show that the confirmation oracle RSA-COd,n can be used to mount these attacks on the hybrid 
encryption scheme based on RSA-KEM. As an example we will assume that the attacker is 
able to swap the i-th bit d(i) of the receiver’s private exponent d (in step 5.a.ii), and this 
change will go undetected by the receiver. Such a situation can occur with chip cards. 

Let us assume that a fault occurred in the i-th bit d(i) and let us denote by d´ the defect 
value of the private exponent. Depending on the value of d(i), either d’ = d+2i or d’ = d-2i. 
Let I = 2i, α ≡  yI (mod n) and α*α-1 ≡ 1 (mod n). For the value r = yd’ mod n we have: 

•  r = (yd * α mod n) if d(i) = 0 
•  r = (yd * α-1 mod n) if d(i) = 1 

Using the access to the confirmation oracle RSA-COd´,n we can find out the value of d(i) in 
this way: 

1. Randomly pick x, 0 < x < n 
2. Let y = xe mod n, where e is the corresponding public exponent RSA 
3. Let r = x * α mod n 
4. If RSA-COd´,n(r, y) returns “yes” then set d(i) = 0 else set d(i) = 1. 

 
We can repeat this procedure for various bit positions (and their combinations) and thus 
obtain the whole private key d. In the case of irreversible changes we will gradually carry out 
an appropriate correction in step 3 using the previously obtained bits. In this way the 
corruption of d is allowed to be irreversible. Moreover, it is enough to obtain only a part of d 
from which the remaining bits can be computed analytically in a doable time, see overview in 
[6]. In [3, 7] we may find other sophisticated attacks of this type. We have presented the 
confirmation oracle as an “interface” that allows the attacker to apply some general attacks on 
“unformatted RSA” to RSA-KEM.  

4.2.2 The Usage of Trojan Modulus 
We have mentioned that in the RSA-KEM scheme, the modulus n is not part of the private 
key. This would allow for a change of the modulus n without any security alarm. The 
following attack shows the need to change this set up.  

Let us assume that we can obtain the value r = gd mod n’ for an unknown exponent d 
and any given values of g and n´. It is widely known that one such value r is sufficient to 
discover d. We can, for instance, choose a modulus n’ to be a prime in the form n’ = t*2s+ 1, 
where t is a very small prime number and s is a very large natural number. Further we choose 
g to be a generator of the multiplicative group Zn’

*.  
Now we can solve the discrete logarithm problem in Zn’

* by a simple modification of 
the Pohlig-Hellman algorithm [17]. This algorithm requires the value of gd mod n’ directly, 
which we cannot obtain from the confirmation oracle. We can only ask the oracle whether the 
pair (r, g) satisfies the congruence r ≡ gd mod n’. On a closer look at the Pohlig-Hellman 
algorithm we notice that it can be modified so that the value of r is not needed directly, but 
only in comparisons of the type x =? (rα mod n’) for some integers x, α. If we substitute  

(gα)d (mod n’) for rα, we want to know whether x =? ((gα)d mod n’), which can be 
obtained from the confirmation oracle  
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RSA-COd,n’(x, gα mod n’). This is the main idea of the modification. The complete algorithm 
A1 is presented in the next subsection. 

This attack is also possible even if the modulus n is part of the private key. However in 
this case we can expect that it will be a little bit more difficult to plant a false value of n’.  

This idea can also be extended to the case when a method based on the Chinese 
Remainder Theorem is used for operations with the private key. 

4.2.3 Algorithm A1: Computation of the Private Exponent Using the Access to a 
Confirmation Oracle RSA 

In the following we will describe an efficient algorithm for a private exponent d computation, 
based on a modified Pohlig-Hellman algorithm for the solving the discrete logarithm problem 
in the multiplicative group Zp

*. This group has a special structure chosen by an attacker, 
because the value of p is taken to be the fraudulent modulus n’. 
 
Proposition. Let us assume to have access to a confirmation oracle RSA-COd,p , where p is a 
prime such that p = t*2s + 1 and t is a small prime. Let g be the generator of Zp

*. The 
following procedure computes the private exponent d. We note that the order of Zp

* has to be 
larger than the highest possible value of d 
 
Step 1: Computation of the value Ds = d mod 2s 

Let d = d(b-1)*2b-1 + d(b-2)*2b-2 + ...+ d(0), where b is the number of bits of the binary form 
of d, and d(i) ∈  {0,1}, for 0 ≤ i ≤ b-1. We assume that p-1 is divisible by 2i and we define r = 
gd mod p and D(i) = d mod 2i. Let I = 2i and J = 2j. Then  
r(p-1)/I ≡ [gd](p-1)/I ≡ [g(p-1)/I]d ≡ [g(p-1)/I]d mod I ≡ [g(p-1)/I]D(i) (mod p), and hence 

r(p-1)/I ≡ [g(p-1)/I]D(i) (mod p).        (1) 
The value of D(i) can be expressed as D(i) = d(i-1)*2i-1 + d(i-2)*2i-2 + ...+ d(0). We will 
show that having access to the confirmation oracle we can easily compute the lowest s bits of 
the private exponent d (one bit of d per one oracle call). 

We will start with the lowest bit d(0) and inductively extend to the bit d(s-1). For i = 1 
from (1) we have r(p-1)/2 ≡ [g(p-1)/2]d(0) (mod p). From the definition of r we have  

r(p-1)/2 ≡ [g(p-1)/2]d (mod p), and so  
[g(p-1)/2]d ≡ [g(p-1)/2]d(0) (mod p).        (2)  

We note that g(p-1)/2 ≡ p-1 (mod p), and [g(p-1)/2]d(0) mod p can achieve only two possible 
values, depending on the bit d(0). Using the confirmation oracle, we can either confirm or 
refute the value of d(0) in (2). Let d(0) = 1 and call the oracle in the form  
RSA-COd,p(p-1, p-1), which represents the congruence (2). If the oracle returns “yes“ we set 
d(0) = 1, otherwise we set d(0) = 0. We note that a correctly generated private exponent RSA 
should induce d(0) = 1, therefore this step can be omitted.  
We determine the remaining bits of D(s) inductively. We assume that we know the value D(j) 
for some 0 < j < s. Next we will compute the value D(j+1). From (1) we have 

r(p-1)/(2J) ≡ [g(p-1)/(2J)]D(j+1) (mod p).        (3) 
Let α = d(j) * 2j = d(j) * J. Then D(j+1) = d mod 2j+1 = α + D(j). For the value on the right-
hand side of (3) we have that  
[g(p-1)/(2J)]D(j+1) ≡ [g(p-1)/(2J)]α *[g(p-1)/(2J)]D(j) ≡ [g(p-1)/2]d(j) * [g(p-1)/(2J)]D(j) ≡ 

≡ (p-1)d(j) * [g(p-1)/(2J)]D(j) (mod p), so we get r(p-1)/(2J) ≡ (p-1)d(j) * [g(p-1)/(2J)]D(j) (mod p). Using 
the definition of r (r = gd mod p) we obtain: 

[g(p-1)/(2J)]d  ≡ (p-1)d(j) * [g(p-1)/(2J)]D(j)  (mod p).      (4) 
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On the right-hand side of (4), almost entirely known values appear, with the exception of the 
value of d(j). We will again use the confirmation oracle to decide between the two possible 
values of the bit d(j). We guess that d(j) = 0 and call the oracle in the form  
RSA-COd, p( [g(p-1)/(2J)]D(j)  mod p, g(p-1)/(2J) mod p), which represents the congruence (4). If the 
oracle returns “yes“, we set d(j) = 0, otherwise we do the correction d(j) = 1. The inductive 
step is finished and we have obtained Ds = D(s).  
 
Step 2: Computation of the value Dt = d mod t 
It is simple to show that an integer j, under the condition r(p-1)/t ≡ [g(p-1)/t]j (mod p), satisfies 
that D ≡ j (mod t). Whenever j < t, then we directly obtain that Dt = j. Therefore we can 
identify the value Dt in this step by testing every number j = 0, ..., t-1, until we find the j that 
satisfies the congruence r(p-1)/t ≡ [g(p-1)/t]j (mod p). This j is then the sought value of Dt. In 
order to determine this value we rewrite the congruence (using the definition of r) as follows: 

[g(p-1)/t]d ≡ [g(p-1)/t]j (mod p)       (5) 
and use the oracle in the form  RSA-COd, p( [g(p-1)/t]j mod p, g(p-1)/t mod p) gradually for  
j = 0,..., t-1. The correct value of j is reached when the oracle returns “yes“ and we set Dt = j. 
 
Step 3: Computation of the value d 
In the previous steps we have obtained two congruencies: 

•  d ≡ Ds (mod 2s) 
•  d ≡ Dt (mod t) 

It also holds that gcd(t, 2s) = 1, and so by the Chinese Remainder Theorem, there exists a 
single value 0 ≤ d < t*2s, satisfying both congruencies. The value of d can be computed 
directly as bellow:  

1. Compute γ, γ*2s ≡ 1 (mod t), a unique value exists because gcd(t, 2s) = 1 
2. Compute v = (Dt

  - Ds)*γ mod t 
3. d = Ds + v*2s   

4.2.4 Other Computational Faults  
So far we have only considered the attacks based on modifications of the private exponent d 
and the modulus n. However, similar attacks may be developed, considering general 
permanent or transient faults that appear during RSA computations within the function 
KEM.Decrypt. A discussion on these attacks, however, is beyond the scope of this paper. For 
more details, the reader may consult papers [3, 7]. We can realistically assume that certain 
types of attacks described there can be used on RSA-KEM with the use of the confirmation 
oracle. Some additional research can be done on this subject. 

4.2.5 Comparison of attacks on RSA schemes  
We recapitulate that from the theorem about RSA individual bits [11], all implementations of 
the cryptosystem RSA have to be carried out with caution because of side channels. Manger 
[13] showed that the RSAES-OAEP scheme has certain problems with the most significant 
octet. These problems must be avoided by proper implementation. We have shown that RSA-
KEM has similar problems, when fault side channel attacks can occur. The attacker has the 
possibility of disclosing the value of the private key instead of the plaintext. Whenever we use 
RSA-KEM it is then essential to exclude fault side channels. We must carry out reliable 
private key integrity checks (the modulus should be a natural part of the private key) as well 
as using fault tolerant computations. We still need to consider the consequences of the RSA 
individual bit theorem and make sure that no information about any individual bit of the 
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plaintext has leaked. Table 1 below contains a brief overview of the current state of most used 
RSA schemes when side channel attacks are considered. 
 

 PKCS1 v.1.5 RSAES-OAEP RSA-
KEM 

Public attack  Yes Yes Yes 
Side channel 
(information) 
used in attack 

The information 
whether the 
plaintext is 
PKCS#1 v.1.5 
conforming 

•  Information about 
whether the most 
significant octet of 
plaintext is zero 

•  Hamming weight 
of processed data 

Fault  
side 
channel 

Information 
obtained in attack 

Plaintext Plaintext Private 
key 

4.3 General Countermeasures  
When we consider the state-of-the-art in cryptanalysis, we can specify three basic security 
criteria that need to be satisfied in every cryptosystem design on the RSA basis. These are: 

a) Resistance to adaptive chosen ciphertext attacks 
b) Resistance to side channel information leakage 
c) Resistance to fault side channels 

Imperfect resistance to any of these types of attack can result in the ability to decrypt 
ciphertext (mainly (a)) or to obtain directly the value of the private key (mainly (c)). We have 
purposely omitted from the list resistance to purely algebraic attacks, such as problems with a 
low value of the private or public exponent, among other similar ones (their overview appears 
in [6]), since most successful attacks are based on an incorrect use of RSA and 
implementation faults. The problem of the correct use of RSA is rooted in the mathematics 
underlying the algorithm (for details see [11, 2, 6, 7, 13, 5] and attacks presented there) and 
thus it should be examined from a mathematical perspective. It seems too risky to leave the 
issue in the hands of implementators. We also note that cryptanalysis has gradually accepted 
the assumption that an attacker has nearly unlimited access to an attacked system.  We do not 
merely consider attacks on "data passing through" but direct attacks on autonomous 
cryptographic units. This approach is logically enforced by the realistic situation when users 
have access to certain features of the cryptographic modules, without knowledge of their inner 
set-up (mainly cryptographic keys).  

Furthermore, we can see that it is not possible to satisfactorily solve the defence 
against the types of attacks specified above by a single universal encoding of data being 
encrypted. This is a consequence of the fact that the encoding mechanism is only part of the 
whole scheme and as such can only affect part of its properties. 

Now we will look at basic defence mechanisms against the above types of attacks. The 
first category, adaptive chosen ciphertext attacks, has not been considered in this paper. We 
think that a satisfactory solution is the random oracle paradigm [4], which has been 
successfully applied [21, 22, 9]. For category (b), we need to constantly bear in mind the 
claim in [11], and prevent any leakage of plaintext information. It is not possible to limit our 
attention only to the easily visible information such as the value of the most significant octet 
of plaintext in RSAES-OAEP. In section 2, we showed that the leakage of information from 
completely other part of the scheme has also a negative effect on security. Power side channel 
attacks [12, 14, 1] and nascent theory of electromagnetic side channel attacks [18, 10] is 
necessary to be considered a particularly high threat. However, defence measures against 



 

 - 13 - 

these channel attacks [8] are beyond the scope of this paper. It was our aim to show that these 
countermeasures need to be used in every single function that deals with individual parts of 
the plaintext. Here we focused our attention on the function SHA-1 as an example.  

The last category is fault attacks. The vulnerability of RSA to these attacks does not 
originate directly from the theorem [11]. However, it seems to be an innate quality of the RSA 
system [3, 6, 7]. As well as with the other types of attacks, certain types of encoding can more 
or less eliminate fault attacks. We showed that RSA-KEM, despite it seems to be well 
resistant to other types of attacks [21], can be easily and straightforwardly effected by fault 
side channel attacks. To avoid fault attacks it is recommended especially: 

a) To consistently check the integrity of the private key and of the other parameters used 
with it in its processing 

b) To minimize the range of error messages 
c) Wherever possible, to use platforms equipped with fault detection and eventually also 

correction facilities (fault tolerant systems) 
As a rather strong countermeasure, even though not 100% sure, we can recommend to check 
every result x = (yd mod n) as y =? (xe mod n), where d is the private exponent, e is the public 
exponent and n is the respective RSA modulus. This measure effectively prevents both attacks 
presented as the examples in this paper. The proof is simple: with a high probability, the 
relationship e*d ≡ 1 (mod ord(y)), where ord(y) is the order of y in the multiplicative group 
Zn

*, will be violated in both examples.  

5 Conclusion 
The RSA individual bits theorem [11] is generally considered to be a good property of RSA 
[19]. However, it also shows the way for attacks based on side channels. As it was shown in  
[5, 13], the RSA scheme is prone to these attacks not only theoretically, but also practically.  

We have presented another possible attack on the encryption scheme RSAES-OAEP 
where, in contrast with the previous work [13], we attack that part of the plaintext “shielded” 
by the OAEP method. In this, we use the algebraic properties of RSA, rather than some 
weakness of the OAEP encoding. To prevent this attack, we need to eliminate the parasitic 
leakage of information from individual operations in partial procedures of the entire scheme. 
This goes well beyond the scope of the general description of the OAEP encoding method. 
Also Manger´s and Bleichenbacher´s attacks mainly employ the basic properties of the RSA 
algorithm. From the type of the encoding (EME-OAEP or PKCS#1 v.1.5) they only choose 
those RSA features that allow an attack.  

Next we presented a new side channel attack on the RSA-KEM. This scheme was built 
to prevent the parasitic leakage of information about the plaintext, especially under the 
consideration of chosen ciphertext attack. However, we managed to point out a side channel 
that allows the leakage of this information. Unlike previous attacks that returned the plaintext, 
this time the attacker obtains the RSA private key. The attack was again made possible by the 
basic multiplicative property of RSA. 

Our contribution underlies the significance of the known algebraic properties of RSA 
in relation to rapidly evolving attacks based on side channels. Consequently, it is possible to 
expect similar side channel attacks in other RSA schemes that may employ different message 
encoding. Therefore, it is necessary to pay more attention to side channel countermeasures in 
implementations of these cryptographic schemes.  

As a small note in our paper, we pointed out the rule of keeping RSA keys for 
encryption and digital signature strictly separated, which is often neglected. We assumed that 
the rule is not adhered to (as in often the case in SSL), and described an approach to convert 
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both Manger´s and Bleicherbacher´s oracles for plaintext decryption into oracles that can 
create valid digital signatures for arbitrarily encoded messages. 
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