

 - 1 -

Further Results and Considerations on Side Channel
Attacks on RSA

Vlastimil Klíma 1 and Tomáš Rosa 1,2

1 ICZ, V Olšinách 75, 100 97 Prague 10, Czech Republic, http://www.i.cz
2 Department of Computer Science and Engineering, Faculty of Electrical Engineering,

Czech Technical University in Prague, Karlovo náměstí 13, 121 35 Prague 2, Czech Republic
{vlastimil.klima, tomas.rosa}@i.cz

May 24, 2002

Abstract. This paper contains three parts. In the first part we present a new side channel
attack on plaintext encrypted by EME-OAEP PKCS#1 v.2.1. In contrast with Manger´s
attack, we attack that part of the plaintext, which is shielded by the OAEP method. In the
second part we show that Bleichenbacher’s and Manger’s attack on the RSA encryption
scheme PKCS#1 v.1.5 and EME-OAEP PKCS#1 v.2.1 can be converted to an attack on the
RSA signature scheme with any message encoding (not only PKCS). This is a new threat for
those implementations of PKI, in which the roles of signature and encryption keys are not
strictly separated. This situation is often encountered in the SSL protocol used to secure
access to web servers. In the third part we deploy a general idea of fault-based attacks on the
RSA-KEM scheme and present two particular attacks as the examples. The result is the
private key instead of the plaintext as with attacks on PKCS#1 v.1.5 and v.2.1. These attacks
should highlight the fact that the RSA-KEM scheme is not an entirely universal solution to
problems of RSAES-OAEP implementation and that even here the manner of implementation
is significant.

Category / Keywords: public-key cryptography / side channel attack, confirmation oracle,
RSA-KEM, RSAES-OAEP, PKCS#1 v.1.5, PKCS#1 v.2.1, Bleichenbacher’s attack,
Manger’s attack, power analysis, fault analysis.

1 Introduction
In 1998, Bleichenbacher [5] described an attack on the PKCS#1 v.1.5 encoding and in 2001
Manger [13] described an attack on the improved scheme PKCS#1 v.2.1, called also RSAES-
OAEP. These attacks underline the significance of the theorem of RSA individual bits [11]
which states that: If RSA cannot be broken in a random polynomial time, then it is not
possible to predict the value of any selected bit of the plaintext with a probability not
negligibly different from 1/2. A negligible difference for the purpose of this theorem is such
ε(n) that for any constant c > 0 it holds that ε(n) < L(n)-c, where L(n) is the length of an
appropriate sufficiently large RSA modulus n. From the standpoint of side channels it is
important to understand this theorem as saying: If the value of any chosen bit of the plaintext
can be predicted with a probability not negligibly different from 1/2 then RSA can be broken
within a random polynomial time. Breaking RSA [19] is understood here to mean that a value
of the plaintext is obtained. Bleichenbacher’s and Manger’s attacks [5, 13] use side channels
which provide the attacker with a relatively large amount of information about the plaintext
(at least the two most significant bytes are 00 02 or one byte is 00, respectively).

 - 2 -

In this paper plaintext will always mean a value of m which is created immediately
after an operation with a private RSA key, m = cd mod n, not the value of M obtained after
decoding m.

In section 2 we present another realistic attack on the RSAES-OAEP (PKCS#1 v.2.1)
scheme. It is a side channel attack using only the information about Hamming weight of
certain 32-bit words produced in the process of decoding m by the EME-OAEP-DECODE
procedure according to PKCS#1 v.2.1. Theoretically, it is a weakening of the assumptions of
Manger’s and Bleichenbacher’s attacks. From the practical point of view, the new attack can
be used especially on smart cards. It follows from the theorem of RSA individual bits that it is
necessary to prevent the leakage of any information about the individual bits of the plaintext.
Our attack demonstrates that the Hamming weight of a part of the plaintext can be used to
carry out a successful attack.

In section 3 we present a very simple but efficient conversion of the
Manger/Bleichenbacher breaking oracle to a universal (signature) oracle. The principle that a
private RSA key should not be used simultaneously for encryption and for digital signature is
well known but is very often violated in practice. Typical examples include some of the
current implementations of PKI, the SSL protocol etc. We show that if we can perform
Bleichenbacher’s or Manger’s attack on the encryption scheme using PKCS#1 (v.1.5 or v.2.1)
in such way that we can obtain the plaintext then we can also obtain the digital signature of
any message (encoded in any way) using the same private RSA key. In the SSL protocol this
means the ability to create signatures with the server-side private key and even create false
servers with the identity of the original server, provided that sufficient decrypting speed can
be ensured.

In section 4 we present a new fault side channel attack on the RSA-KEM. RSA-KEM
attempted to remove the structural relations in order to prevent leaking of information about
the plaintext. Despite this we discovered a natural method of obtaining such information.
Input plaintext for RSA-KEM consists of symmetric encryption keys, information about
which can be obtained by means of an integrity check of the messages they encrypt. A typical
integrity check consists of block cipher padding, e.g. PKCS#5 [16]. The result produced by
the attack that uses this information is a private RSA key whilst the attacks on PKCS#1 v.1.5
and 2.1 always discovered only a plaintext.

 - 3 -

2 Side Channel Attack on RSAES-OAEP Plaintext
In this section we will demonstrate a new method of attacking the RSAES-OAEP scheme
(PKCS#1 v.2.1 [15]) at the time when decoding operation EME-OAEP-DECODE (EM, P) is
performed, see fig. 1. The attack is based on the assumption that there is a side channel
carrying some information about the plaintext. In particular we assume that the attacker can
obtain the Hamming weight w(x) (i.e. the number of ‘1’ bits) of a word x during the time
when the plaintext (m) is being processed in the MGF operation (to be specified later). As it
was shown in [14], this assumption is realistic for instance in power side channels which tend
to leak this information in a relatively readable way.

We note that this attack is possible with some modifications even when we have access
to the Hamming distance of processed data rather than the weight.

2.1 Attack Description
Consider RSA with a modulus n which has the length of L(n) bits where L(n) is the multiple
of 512, i.e. L(n) = 512*k, where k is a natural number. The attack will target the RSAES-
OAEP scheme during the processing of the plaintext immediately after the RSA decryption
operation cd mod n, see fig. 1. SeedMask will be calculated according to [15] as

seedMask = MGF(maskedDB, 20) = SHA-1(maskedDB || 00 00 00 00),
where the four zero octets are appended to the message by the MGF function. It follows from
the definition of OAEP encoding that maskedDB always contains 64*k - 1 - 20 octets, so that
64*k - 17 octets (4 extra zero octets) enter SHA-1. By the definition of SHA-1 [20] the
message is divided into blocks of 64 octets, which are processed sequentially by the
compression function. Note that the least significant bit of the original message m is processed
in the last block. It is followed by four zero octets and 17 octets of the SHA-1 padding.

MGF

pHash

DB

 EM = I2OSP(m)

seedMask

seed M

MGF

maskedSeed

PS 01

maskedDB

M
 = EM

E-O
A

EP-D
EC

O
D

E (EM
, P)

m = RSADP(c) =cd mod n

M
anger´s attack

Fig.1: New side channel attack against RSA-OAEP

side channel
attack due MGF

(SHA-1)

dbMask

0x00

 - 4 -

For various L(n) the particular value of the padding is different, but it is a constant
known to the attacker. To present an example, we will consider L(n) = 1024.

Let us denote the i-th octet of the plaintext as m[i] where m[0] is the least significant
octet. The last block entering the SHA-1 compression function is in this case equal to

m[42.....0] 00 || 00 00 00 80 || 00 00 00 00 || 00 00 00 00 || 00 00 00 00 || 00 00 03 78,
where m is followed by 4 zero octets (from MGF) and the SHA-1 padding. The padding
consists of bit 1, 71 zero bits and a 64-bit representation of the message bit length. The length
is 888 = 0x 00 00 00 00 00 00 03 78 bits in this case (64*2 – 17 = 111 octets). The SHA-1
compression function fills this last block into 32-bit variables W0, ..., W15, where

W8 = m[10] m[9] m[8] m[7] W9 = m[6] m[5] m[4] m[3]
W10 = m[2] m[1] m[0] 00 W11 = 00 00 00 80
W12 = 00 00 00 00 W13 = 00 00 00 00
W14 = 00 00 00 00 W15 = 00 00 03 78

And then expansion to words W16 , ..., W79 is performed according to the following relations

W16 = S1(W13 xor W8 xor W2 xor W0),
 W17 = S1(W14 xor W9 xor W3 xor W1),

 W18 = S1(W15 xor W10 xor W4 xor W2), etc.

When calculating W16, the first operation performed is W13 xor W8, where W13 is a known
constant. This moment is an example of a general situation when D-1 known parameters and
one unknown enter a D-ary operation. Here various side channels are often applicable,
especially the power side channel.

We assume that the attacker is able to gather the Hamming weight w(W8) ∈ {0, ..., 32}
of word W8 during the W13 xor W8 operation (W8 is the only unknown operand in it). The same
situation arises in the following two operations as well, so we are able to gather w(W9) and
w(W10).

We number the bits of the word Wi (from the msb to the lsb) as Wi,31 Wi,30 Wi,29 ... Wi,0.
We will show that now we can predict the value of W10,8 with a probability not negligibly
different from 1/2. Note that this is the value of the least significant bit (lsb) of the plaintext.
Hence, using the theorem of RSA individual bits [11] we can design an attack on the entire
plaintext. It is widely known that information about the lsb of the plaintext leads to very
efficient attacks [23].

2.2 Obtaining the Least Significant Bit of the Plaintext
The procedure which leads to obtaining the value of W10,8 is as follows. We denote the
ciphertext to be attacked by c, the modulus by n and the public RSA exponent by e. First we
let the attacked device decrypt and decode the original ciphertext c. During decoding we
gather the values of Hamming weights w(W8), w(W9) and w(W10). In the next step we request
the equipment to decrypt and decode a value c’ = c*2-e mod n. Plaintext m’ is the result of this
and during the calculation we will obtain Hamming weights w(W8’), w(W9’) and w(W10’). If
the W10,8 bit is zero, then the decryption returns the value m’ = m >> 1, where ">> 1" means
a shift one bit to the right. Otherwise m’ = (m + n) >> 1.

If we assume W10,8 = 0 then (W8’, W9’, W10’) will be created of (W8, W9, W10) by a
shift one bit to the right (with the exception of W10, where the shift only affects the leftmost
bits which are then independently complemented by eight zero bits). The difference between

 - 5 -

appropriate Hamming weights (w(W8), w(W9), w(W10)) and (w(W8´), w(W9´), w(W10´)) is
therefore 0 or 1. More precisely

w(W8´) = w(W8) - W8,0 + W7,0 , w(W9´) = w(W9) - W9,0 + W8,0 , w(W10´) = w(W10) -
W10,8 + W9,0 = w(W10) + W9,0 and therefore the three relations included in exactly one of the
eight rows of table 1 are valid.

However, if W10,8 = 1, m´ is not created by a shift of m, but produced as (m + n) >> 1.
This, with a high probability, destroys the linear relations in the table 1. By the obtained
weights (w(W8), w(W9), w(W10)) and (w(W8´), w(W9´), w(W10´)) we determine whether they fit
all relations in any single row. If so, we adopt a hypothesis that W10,8 = 0, otherwise we refuse
it and assume that W10,8 = 1. The probability of establishing the bit W10,8 correctly is close to 1
for an ideal side channel. It will be sufficient to realise that m is randomised by a hash
function in MGF and n is assumed to be common, not specially constructed. Therefore, the
probability of adopting the hypothesis that W10,8 = 0 if it was W10,8 = 1, can be estimated as
the probability that the random variables W8, W9, W10 and W8´, W9´, W10´ (with the properties
that lower nine bits of W10 are 100000000 and lower eight bits of W10´ are 00000000) will fit
any of the relations in table 1, which is approximately 0.008.

That enables us to obtain the least significant bit of the plaintext m with a high
probability and therefore, in accordance with [11] we can establish the remaining part of m.
We presume that procedures in [11] will be used directly, in particular the methods based on
computing gcd (for details see [2]). In this way we are able to handle errors during the
reception of information from the side channel.

In this paper we strive to show that such an attack is realistic and that it operates in a
random polynomial time, following from the above analysis and the results of [2, 11]. We
would like to emphasize the importance of a thorough implementation. The significance of
the implementation stage cannot simply be reduced to the problem of finding “the right
encoding method” as was perhaps deemed earlier.
In practice the described attack can be further modified with respect to what information
(Hamming weight or distance) at what level of accuracy the attacker can obtain. At a low
level of side channel interference special breaking methods based on the knowledge of the lsb
[23] can be applied. Those will obviously be more efficient than the general ones of [2, 11].

 weight w(W8

´) weight w(W9
´) weight w(W10

´)

 W8

´

 W9

´

W´10,31........W´10,8

 W7

 W8

 W9

W10,31.......... W10,8

 weight w(W8) weight w(W9) weight w(W10)

Bits
W9,0 W8,0 W7,0

Possible relations

0 0 0 w(W10
´) = w(W10) w(W9

´) = w(W9) w(W8
´) = w(W8)

0 0 1 w(W10
´) = w(W10) w(W9

´) = w(W9) w(W8
´) = w(W8) +1

0 1 0 w(W10
´) = w(W10) w(W9

´) = w(W9) +1 w(W8
´) = w(W8) -1

0 1 1 w(W10
´) = w(W10) w(W9

´) = w(W9) +1 w(W8
´) = w(W8)

1 0 0 w(W10
´) = w(W10) +1 w(W9

´) = w(W9) -1 w(W8
´) = w(W8)

1 0 1 w(W10
´) = w(W10) +1 w(W9

´) = w(W9) -1 w(W8
´) = w(W8) +1

1 1 0 w(W10
´) = w(W10) +1 w(W9

´) = w(W9) w(W8
´) = w(W8) -1

1 1 1 w(W10
´) = w(W10) +1 w(W9

´) = w(W9) w(W8
´) = w(W8)

Tab.1: Possible relations among random variables W and W´ when W10,8 = 0

 - 6 -

3 Note on Converting the Deciphering Oracle to a Signing
Oracle

In this section we will demonstrate that if the attacker can use Bleichenbacher’s or Manger’s
attack on the PKCS#1 v.1.5 or 2.1 encryption scheme, he/she is also able to create false
signatures using the same private RSA key with any encoding of the message to be signed.
This conversion is technically very simple but it has interesting practical consequences on the
applications where the same key is used both for encryption and for digital signature. One
example is the SSL protocol used to secure access to web servers. In its application the public
key certificate at the server sometimes permits the use of the key both for encryption and for
signature. That means that a signature made by the server’s private key is meaningful in the
PKI system and it is not appropriate that it should be forgeable. Conversion will be
demonstrated for both Bleichenbacher’s attack on PKCS#1 v.1.5 and for Manger’s attack on
PKCS#1 v.2.1.

Manger’s attack uses only one element of the EME-OAEP PKCS#1 v.2.1 encoding -
whether a zero occurred in the most significant octet (MSB) of the plaintext decrypted by the
private key. We will denote the oracle which tells the attacker this as “Partial information
oracle” PIOMSB:

PIOMSB(c) = "yes" iff c = me mod n, MSB(m) = 0x00.
Using this oracle a decryption machine (Whole information oracle) WIOMSB is constructed in
[13]. If the plaintext has a format of m = 00 ||, then the WIOMSB (using PIOMSB) can
extract from the ciphertext c the original plaintext

m = WIOMSB(c) = cd mod n.
Now, we will assume that the same private key (d) is used in another RSA scheme (with any
encoding) for digital signature. The attacker can now easily forge the digital signature of any
message using the same private key (d) if he/she has access to PIOMSB. Let c be the message
that the attacker prepares for signing. He/she then randomly selects various natural numbers r
= r1, r2, different from one another, smaller than n and sends numbers c´ = c*re mod n to
the oracle PIOMSB successively. After decryption m´ = m*r mod n is produced on the
recipient’s side. Unless the most significant octet of m´ is zero, it is rejected by PIOMSB:

PIOMSB(c´) = "no".
Because the random value r produces a random most significant octet in m´, this octet will be
zero with a probability of 1/256. After several hundreds of trials the value of c´ will conform
with the initial condition of Manger’s attack and WIOMSB then decrypts c´:

m´= WIOMSB (c´) = (c´)d mod n.
The attacker then only has to calculate

m = m´* r-1 mod n
as a valid signature of the message c. The particular type of encoding for a signature is
irrelevant here.

The attacker follows the same procedure when converting Bleichenbacher's attack.
This attack assumes the oracle PIOPKCS_CONF, which tells the attacker whether the plaintext
produced by decryption is “PKCS#1 conforming” [5]. That means that the two most
significant octets of the plaintext must be equal to 00 || 02 and from the 11th octet onwards
some octet must be zero (separator). On the basis of PIOPKCS_CONF a decryption machine
WIOPKCS_CONF is then constructed. If the plaintext is “PKCS#1 conforming”, then
WIOPKCS_CONF can use PIOPKCS_CONF on the corresponding ciphertext c to obtain the original
plaintext

m = WIOPKCS_CONF(c) = cd mod n.
Using the same procedure as above, i.e. by a randomly selected r, we test whether
PIOPKCS_CONF on c´ = c*re mod n responds “yes”. This time the probability of such answer is

 - 7 -

several hundred times lower than in the case of Manger’s attack (depending on the number of
bits of n; for 1024 it is approximately 715-times less, see [13]). As soon as such a situation
occurs, the attacker can again compute m = m´* r-1 mod n as a valid signature of the message
c.

Note that the attack described in section 2 of this paper does not place any special
requirements on the ciphertext. It is therefore suitable for forging signatures even without any
changes.

4 Side Channel Attack on RSA-KEM

After Bleichenbacher’s attack on the scheme PKCS#1 v.1.5, a new scheme PKCS#1 v.2.1,
based on the EME-OAEP encoding, was recommended for use. However, Manger’s attack
[13] showed that RSAES-OAEP is also vulnerable to side channel attacks. After that Shoup
[21] proposed the new key encapsulation mechanism RSA-KEM. This mechanism was
believed to have eliminated problems with side channels. We show that RSA-KEM is also
vulnerable to some types of side channel attacks, and therefore has to be implemented
carefully. In these attacks, the private key may be obtained. In this sense, the RSA-KEM
mechanism is even more vulnerable to side channel attacks than PKCS#1. Next we will
describe an RSA confirmation oracle (CO) based on RSA-KEM. We will show how to use a
CO to obtain a RSA private key.

4.1 Confirmation Oracle
In this text, we are using the terminology of [21], except for the term RSAES-OAEP that is
defined in PKCS#1 v.2.1. The purpose of RSA-KEM is to transmit the symmetric key to the
receiver, and so it is natural to consider the properties of the whole hybrid public-key
encryption scheme H-PKEKEM, DEM, consisting of the Data Encapsulation Mechanism (DEM)
and the Key Encapsulation Mechanism (KEM). Our attack on RSA-KEM is based on the
behaviour of the entire hybrid scheme. Later we will see that our requirements are sufficiently
general and make it easily realizable in practical applications. We will start by reviewing
some important terms (algorithms) from [21] in a simplified form:

The Key Encapsulation Mechanism (KEM) has this abstract interface:
KEM.Encrypt(PubKey) → (K, C0) - generates a symmetric encryption key K and using the
public key PubKey, creates a corresponding ciphertext C0
KEM.Decrypt(PrivKey, C0) → (K) - decrypts C0 using the private key PrivKey, and derives
the symmetric key K by applying the key derivation function KDF to that result

The Data Encapsulation Mechanism (DEM) has this abstract interface:
DEM.Encrypt(K, M) → (C1) - encrypts the message M with the symmetric key K and returns
the corresponding ciphertext C1
DEM.Decrypt(K, C1) → (M) - decrypts the ciphertext C1 with the symmetric key K and
returns the plaintext M

The hybrid public-key encryption scheme H-PKEKEM, DEM is a combination of the
KEM and DEM schemes. The algorithm for the encryption of a message M by the public key
PubKey resulting in the ciphertext C is as follows:

1. (K, C0) = KEM.Encrypt(PubKey)
2. C1 = DEM.Encrypt(K, M)
3. Ciphertext C = C0 || C1

On the receiving end, the decryption of the ciphertext C with the private key PrivKey is
carried out as follows:

 - 8 -

1. Let C = C0 || C1
2. K = KEM.Decrypt(C0)
3. M = DEM.Decrypt(K, C1)

We assume that there is no integrity check for the key K (e.g. analogous to a check used in
the encoding method OAEP) however an integrity check exists for the message M in step 3.
It can be based on the message padding check, as in the standard PKCS#5 [16], on the use of
labels as described in [21], or on any other technique. We assume the attacker will find out
whenever the receiver's integrity check rejects a ciphertext C. In this situation we can expect
that the receiver will send an error message to the sender. Acceptance or rejection of a
ciphertext C defines the receiver oracle (RO). On the basis of RO we can define the
confirmation oracle (CO). The term CO may be defined more generally, however, we will
only define the RSA confirmation oracle (RSA-CO).

We assume that the private key PrivKey is a private exponent d and n is a public
modulus. Later we will show that the modulus n should be part of the private key rather than
independently taken from the public key, as it is recommended in [21].

Definition: RSA confirmation oracle RSA-COd,n(r, y). Let us have a receiver oracle RO that
uses RSA in the hybrid encryption H-PKEKEM, DEM. We will construct a RSA confirmation
oracle
RSA-COd,n(r, y) → (ANSWER = “yes/no”) as follows:

1. K = KDF(r); KDF - Key Derivation Function
2. C0 = y; for simplicity we omit the conversion between integers and strings
3. C1 = DEM.Encrypt(K, M); where M contains the maximum possible integrity check
4. C = C0 || C1
5. Send the ciphertext C to the receiver oracle RO. RO then continues:

a. Compute K = KEM.Decrypt(d, C0) following these steps:
i. Check if y = C0 < n. If not, an error has occurred.

ii. Compute r’ = (yd mod n)
iii. K´ = KDF(r’)

b. M´ = DEM.Decrypt(K´, C1)
c. Check the integrity of M´
d. If it is correct, the answer of RO is “yes”, otherwise it is “no”

6. The answer of RSA-COd,n(r, y) is “yes”, if RO returned “yes”, otherwise it is “no”

We note that whenever r = (yd mod n), the oracle returns “yes”. If r ≠ (yd mod n) then the
oracle returns “no” with a high probability close to 1 (the value depends on collisions in the
function KDF and the strength of the integrity check).

The key point is that an attacker may use the oracle RSA-COd,n(r, y) to check the
congruence r ≡ yd (mod n) without knowledge of the particular value of the private key d used
in the step 5.a.ii above.

4.2 Fault Side Channel Attacks
The congruence r ≡ yd (mod n) can be confirmed with the public key. However, using
RSA-COd,n(r, y) is the natural way of exploiting the receiver's behaviour. The oracle becomes
far more interesting when an error occurs in step 5.a.ii of the algorithm above. This
confirmation oracle can be used to design many attacks. Therefore we will only present a
brief description of two examples to illustrate the core of this problem. We note that these
attacks are targeted at the private key, rather than the plaintext. This is paradoxically caused

 - 9 -

by the absence of structural checks of the plaintext in RSA-KEM, which is really a positive
quality in other contexts.

4.2.1 Faults in the Bits of the Private Exponent d
The impact of faults in the bits of the private exponent RSA was described in [3]. We will
show that the confirmation oracle RSA-COd,n can be used to mount these attacks on the hybrid
encryption scheme based on RSA-KEM. As an example we will assume that the attacker is
able to swap the i-th bit d(i) of the receiver’s private exponent d (in step 5.a.ii), and this
change will go undetected by the receiver. Such a situation can occur with chip cards.

Let us assume that a fault occurred in the i-th bit d(i) and let us denote by d´ the defect
value of the private exponent. Depending on the value of d(i), either d’ = d+2i or d’ = d-2i.
Let I = 2i, α ≡ yI (mod n) and α*α-1 ≡ 1 (mod n). For the value r = yd’ mod n we have:

• r = (yd * α mod n) if d(i) = 0
• r = (yd * α-1 mod n) if d(i) = 1

Using the access to the confirmation oracle RSA-COd´,n we can find out the value of d(i) in
this way:

1. Randomly pick x, 0 < x < n
2. Let y = xe mod n, where e is the corresponding public exponent RSA
3. Let r = x * α mod n
4. If RSA-COd´,n(r, y) returns “yes” then set d(i) = 0 else set d(i) = 1.

We can repeat this procedure for various bit positions (and their combinations) and thus
obtain the whole private key d. In the case of irreversible changes we will gradually carry out
an appropriate correction in step 3 using the previously obtained bits. In this way the
corruption of d is allowed to be irreversible. Moreover, it is enough to obtain only a part of d
from which the remaining bits can be computed analytically in a doable time, see overview in
[6]. In [3, 7] we may find other sophisticated attacks of this type. We have presented the
confirmation oracle as an “interface” that allows the attacker to apply some general attacks on
“unformatted RSA” to RSA-KEM.

4.2.2 The Usage of Trojan Modulus
We have mentioned that in the RSA-KEM scheme, the modulus n is not part of the private
key. This would allow for a change of the modulus n without any security alarm. The
following attack shows the need to change this set up.

Let us assume that we can obtain the value r = gd mod n’ for an unknown exponent d
and any given values of g and n´. It is widely known that one such value r is sufficient to
discover d. We can, for instance, choose a modulus n’ to be a prime in the form n’ = t*2s+ 1,
where t is a very small prime number and s is a very large natural number. Further we choose
g to be a generator of the multiplicative group Zn’

*.
Now we can solve the discrete logarithm problem in Zn’

* by a simple modification of
the Pohlig-Hellman algorithm [17]. This algorithm requires the value of gd mod n’ directly,
which we cannot obtain from the confirmation oracle. We can only ask the oracle whether the
pair (r, g) satisfies the congruence r ≡ gd mod n’. On a closer look at the Pohlig-Hellman
algorithm we notice that it can be modified so that the value of r is not needed directly, but
only in comparisons of the type x =? (rα mod n’) for some integers x, α. If we substitute

(gα)d (mod n’) for rα, we want to know whether x =? ((gα)d mod n’), which can be
obtained from the confirmation oracle

 - 10 -

RSA-COd,n’(x, gα mod n’). This is the main idea of the modification. The complete algorithm
A1 is presented in the next subsection.

This attack is also possible even if the modulus n is part of the private key. However in
this case we can expect that it will be a little bit more difficult to plant a false value of n’.

This idea can also be extended to the case when a method based on the Chinese
Remainder Theorem is used for operations with the private key.

4.2.3 Algorithm A1: Computation of the Private Exponent Using the Access to a
Confirmation Oracle RSA

In the following we will describe an efficient algorithm for a private exponent d computation,
based on a modified Pohlig-Hellman algorithm for the solving the discrete logarithm problem
in the multiplicative group Zp

*. This group has a special structure chosen by an attacker,
because the value of p is taken to be the fraudulent modulus n’.

Proposition. Let us assume to have access to a confirmation oracle RSA-COd,p , where p is a
prime such that p = t*2s + 1 and t is a small prime. Let g be the generator of Zp

*. The
following procedure computes the private exponent d. We note that the order of Zp

* has to be
larger than the highest possible value of d

Step 1: Computation of the value Ds = d mod 2s

Let d = d(b-1)*2b-1 + d(b-2)*2b-2 + ...+ d(0), where b is the number of bits of the binary form
of d, and d(i) ∈ {0,1}, for 0 ≤ i ≤ b-1. We assume that p-1 is divisible by 2i and we define r =
gd mod p and D(i) = d mod 2i. Let I = 2i and J = 2j. Then
r(p-1)/I ≡ [gd](p-1)/I ≡ [g(p-1)/I]d ≡ [g(p-1)/I]d mod I ≡ [g(p-1)/I]D(i) (mod p), and hence

r(p-1)/I ≡ [g(p-1)/I]D(i) (mod p). (1)
The value of D(i) can be expressed as D(i) = d(i-1)*2i-1 + d(i-2)*2i-2 + ...+ d(0). We will
show that having access to the confirmation oracle we can easily compute the lowest s bits of
the private exponent d (one bit of d per one oracle call).

We will start with the lowest bit d(0) and inductively extend to the bit d(s-1). For i = 1
from (1) we have r(p-1)/2 ≡ [g(p-1)/2]d(0) (mod p). From the definition of r we have

r(p-1)/2 ≡ [g(p-1)/2]d (mod p), and so
[g(p-1)/2]d ≡ [g(p-1)/2]d(0) (mod p). (2)

We note that g(p-1)/2 ≡ p-1 (mod p), and [g(p-1)/2]d(0) mod p can achieve only two possible
values, depending on the bit d(0). Using the confirmation oracle, we can either confirm or
refute the value of d(0) in (2). Let d(0) = 1 and call the oracle in the form
RSA-COd,p(p-1, p-1), which represents the congruence (2). If the oracle returns “yes“ we set
d(0) = 1, otherwise we set d(0) = 0. We note that a correctly generated private exponent RSA
should induce d(0) = 1, therefore this step can be omitted.
We determine the remaining bits of D(s) inductively. We assume that we know the value D(j)
for some 0 < j < s. Next we will compute the value D(j+1). From (1) we have

r(p-1)/(2J) ≡ [g(p-1)/(2J)]D(j+1) (mod p). (3)
Let α = d(j) * 2j = d(j) * J. Then D(j+1) = d mod 2j+1 = α + D(j). For the value on the right-
hand side of (3) we have that
[g(p-1)/(2J)]D(j+1) ≡ [g(p-1)/(2J)]α *[g(p-1)/(2J)]D(j) ≡ [g(p-1)/2]d(j) * [g(p-1)/(2J)]D(j) ≡

≡ (p-1)d(j) * [g(p-1)/(2J)]D(j) (mod p), so we get r(p-1)/(2J) ≡ (p-1)d(j) * [g(p-1)/(2J)]D(j) (mod p). Using
the definition of r (r = gd mod p) we obtain:

[g(p-1)/(2J)]d ≡ (p-1)d(j) * [g(p-1)/(2J)]D(j) (mod p). (4)

 - 11 -

On the right-hand side of (4), almost entirely known values appear, with the exception of the
value of d(j). We will again use the confirmation oracle to decide between the two possible
values of the bit d(j). We guess that d(j) = 0 and call the oracle in the form
RSA-COd, p([g(p-1)/(2J)]D(j) mod p, g(p-1)/(2J) mod p), which represents the congruence (4). If the
oracle returns “yes“, we set d(j) = 0, otherwise we do the correction d(j) = 1. The inductive
step is finished and we have obtained Ds = D(s).

Step 2: Computation of the value Dt = d mod t
It is simple to show that an integer j, under the condition r(p-1)/t ≡ [g(p-1)/t]j (mod p), satisfies
that D ≡ j (mod t). Whenever j < t, then we directly obtain that Dt = j. Therefore we can
identify the value Dt in this step by testing every number j = 0, ..., t-1, until we find the j that
satisfies the congruence r(p-1)/t ≡ [g(p-1)/t]j (mod p). This j is then the sought value of Dt. In
order to determine this value we rewrite the congruence (using the definition of r) as follows:

[g(p-1)/t]d ≡ [g(p-1)/t]j (mod p) (5)
and use the oracle in the form RSA-COd, p([g(p-1)/t]j mod p, g(p-1)/t mod p) gradually for
j = 0,..., t-1. The correct value of j is reached when the oracle returns “yes“ and we set Dt = j.

Step 3: Computation of the value d
In the previous steps we have obtained two congruencies:

• d ≡ Ds (mod 2s)
• d ≡ Dt (mod t)

It also holds that gcd(t, 2s) = 1, and so by the Chinese Remainder Theorem, there exists a
single value 0 ≤ d < t*2s, satisfying both congruencies. The value of d can be computed
directly as bellow:

1. Compute γ, γ*2s ≡ 1 (mod t), a unique value exists because gcd(t, 2s) = 1
2. Compute v = (Dt

 - Ds)*γ mod t
3. d = Ds + v*2s

4.2.4 Other Computational Faults
So far we have only considered the attacks based on modifications of the private exponent d
and the modulus n. However, similar attacks may be developed, considering general
permanent or transient faults that appear during RSA computations within the function
KEM.Decrypt. A discussion on these attacks, however, is beyond the scope of this paper. For
more details, the reader may consult papers [3, 7]. We can realistically assume that certain
types of attacks described there can be used on RSA-KEM with the use of the confirmation
oracle. Some additional research can be done on this subject.

4.2.5 Comparison of attacks on RSA schemes
We recapitulate that from the theorem about RSA individual bits [11], all implementations of
the cryptosystem RSA have to be carried out with caution because of side channels. Manger
[13] showed that the RSAES-OAEP scheme has certain problems with the most significant
octet. These problems must be avoided by proper implementation. We have shown that RSA-
KEM has similar problems, when fault side channel attacks can occur. The attacker has the
possibility of disclosing the value of the private key instead of the plaintext. Whenever we use
RSA-KEM it is then essential to exclude fault side channels. We must carry out reliable
private key integrity checks (the modulus should be a natural part of the private key) as well
as using fault tolerant computations. We still need to consider the consequences of the RSA
individual bit theorem and make sure that no information about any individual bit of the

 - 12 -

plaintext has leaked. Table 1 below contains a brief overview of the current state of most used
RSA schemes when side channel attacks are considered.

 PKCS1 v.1.5 RSAES-OAEP RSA-
KEM

Public attack Yes Yes Yes
Side channel
(information)
used in attack

The information
whether the
plaintext is
PKCS#1 v.1.5
conforming

• Information about
whether the most
significant octet of
plaintext is zero

• Hamming weight
of processed data

Fault
side
channel

Information
obtained in attack

Plaintext Plaintext Private
key

4.3 General Countermeasures
When we consider the state-of-the-art in cryptanalysis, we can specify three basic security
criteria that need to be satisfied in every cryptosystem design on the RSA basis. These are:

a) Resistance to adaptive chosen ciphertext attacks
b) Resistance to side channel information leakage
c) Resistance to fault side channels

Imperfect resistance to any of these types of attack can result in the ability to decrypt
ciphertext (mainly (a)) or to obtain directly the value of the private key (mainly (c)). We have
purposely omitted from the list resistance to purely algebraic attacks, such as problems with a
low value of the private or public exponent, among other similar ones (their overview appears
in [6]), since most successful attacks are based on an incorrect use of RSA and
implementation faults. The problem of the correct use of RSA is rooted in the mathematics
underlying the algorithm (for details see [11, 2, 6, 7, 13, 5] and attacks presented there) and
thus it should be examined from a mathematical perspective. It seems too risky to leave the
issue in the hands of implementators. We also note that cryptanalysis has gradually accepted
the assumption that an attacker has nearly unlimited access to an attacked system. We do not
merely consider attacks on "data passing through" but direct attacks on autonomous
cryptographic units. This approach is logically enforced by the realistic situation when users
have access to certain features of the cryptographic modules, without knowledge of their inner
set-up (mainly cryptographic keys).

Furthermore, we can see that it is not possible to satisfactorily solve the defence
against the types of attacks specified above by a single universal encoding of data being
encrypted. This is a consequence of the fact that the encoding mechanism is only part of the
whole scheme and as such can only affect part of its properties.

Now we will look at basic defence mechanisms against the above types of attacks. The
first category, adaptive chosen ciphertext attacks, has not been considered in this paper. We
think that a satisfactory solution is the random oracle paradigm [4], which has been
successfully applied [21, 22, 9]. For category (b), we need to constantly bear in mind the
claim in [11], and prevent any leakage of plaintext information. It is not possible to limit our
attention only to the easily visible information such as the value of the most significant octet
of plaintext in RSAES-OAEP. In section 2, we showed that the leakage of information from
completely other part of the scheme has also a negative effect on security. Power side channel
attacks [12, 14, 1] and nascent theory of electromagnetic side channel attacks [18, 10] is
necessary to be considered a particularly high threat. However, defence measures against

 - 13 -

these channel attacks [8] are beyond the scope of this paper. It was our aim to show that these
countermeasures need to be used in every single function that deals with individual parts of
the plaintext. Here we focused our attention on the function SHA-1 as an example.

The last category is fault attacks. The vulnerability of RSA to these attacks does not
originate directly from the theorem [11]. However, it seems to be an innate quality of the RSA
system [3, 6, 7]. As well as with the other types of attacks, certain types of encoding can more
or less eliminate fault attacks. We showed that RSA-KEM, despite it seems to be well
resistant to other types of attacks [21], can be easily and straightforwardly effected by fault
side channel attacks. To avoid fault attacks it is recommended especially:

a) To consistently check the integrity of the private key and of the other parameters used
with it in its processing

b) To minimize the range of error messages
c) Wherever possible, to use platforms equipped with fault detection and eventually also

correction facilities (fault tolerant systems)
As a rather strong countermeasure, even though not 100% sure, we can recommend to check
every result x = (yd mod n) as y =? (xe mod n), where d is the private exponent, e is the public
exponent and n is the respective RSA modulus. This measure effectively prevents both attacks
presented as the examples in this paper. The proof is simple: with a high probability, the
relationship e*d ≡ 1 (mod ord(y)), where ord(y) is the order of y in the multiplicative group
Zn

*, will be violated in both examples.

5 Conclusion
The RSA individual bits theorem [11] is generally considered to be a good property of RSA
[19]. However, it also shows the way for attacks based on side channels. As it was shown in
[5, 13], the RSA scheme is prone to these attacks not only theoretically, but also practically.

We have presented another possible attack on the encryption scheme RSAES-OAEP
where, in contrast with the previous work [13], we attack that part of the plaintext “shielded”
by the OAEP method. In this, we use the algebraic properties of RSA, rather than some
weakness of the OAEP encoding. To prevent this attack, we need to eliminate the parasitic
leakage of information from individual operations in partial procedures of the entire scheme.
This goes well beyond the scope of the general description of the OAEP encoding method.
Also Manger´s and Bleichenbacher´s attacks mainly employ the basic properties of the RSA
algorithm. From the type of the encoding (EME-OAEP or PKCS#1 v.1.5) they only choose
those RSA features that allow an attack.

Next we presented a new side channel attack on the RSA-KEM. This scheme was built
to prevent the parasitic leakage of information about the plaintext, especially under the
consideration of chosen ciphertext attack. However, we managed to point out a side channel
that allows the leakage of this information. Unlike previous attacks that returned the plaintext,
this time the attacker obtains the RSA private key. The attack was again made possible by the
basic multiplicative property of RSA.

Our contribution underlies the significance of the known algebraic properties of RSA
in relation to rapidly evolving attacks based on side channels. Consequently, it is possible to
expect similar side channel attacks in other RSA schemes that may employ different message
encoding. Therefore, it is necessary to pay more attention to side channel countermeasures in
implementations of these cryptographic schemes.

As a small note in our paper, we pointed out the rule of keeping RSA keys for
encryption and digital signature strictly separated, which is often neglected. We assumed that
the rule is not adhered to (as in often the case in SSL), and described an approach to convert

 - 14 -

both Manger´s and Bleicherbacher´s oracles for plaintext decryption into oracles that can
create valid digital signatures for arbitrarily encoded messages.

6 References
1. Akkar, M.-L., Bevan, R., Dischamp, P. and Moyart, D.: Power Analysis, What Is Now Possible...,

in Proc. of ASIACRYPT 2000, pp. 489-502, 2000.
2. Alexi, W., Chor, B., Goldreich, O. and Schnorr, C.: RSA and Rabin functions: Certain parts are as

hard as the whole, SIAM Journal on Computing, 17(2), pp. 194-209, 1988.
3. Bao, F., Deng, R.-H., Han, Y., Jeng, A., Narasimhalu, A.-D. and Ngair, T.: Breaking Public Key

Cryptosystems on Tamper Resistant Devices in the Presence of Transient Faults, in Proc. of
Security Protocols ’97, pp. 115-124, 1997.

4. Bellare, M. and Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols, October 20, 1995, originally published in Proc. of the First ACM Conference on
Computer and Communications Security, ACM, November 1993.

5. Bleichenbacher, D.: Chosen Ciphertexts Attacks Against Protocols Based on the RSA Encryption
Standard PKCS#1, in Proc. of CRYPTO ’98, pp. 1-12, 1998.

6. Boneh, D.: Twenty Years of Attacks on the RSA Cryptosystems, Notices of the American
Mathematical Society, vol. 46, no. 2, pp. 203-213, 1999.

7. Boneh, D., DeMillo, R. A. and Lipton, R. J.: On the Importance of Checking Cryptographic
Protocols for Faults, in Proc. of EUROCRYPT ’97, pp. 37-51, 1997.

8. Chari, S., Jutla, C.-S., Rao, J. and Rohatgi, P.: Towards Sound Approaches to Counteract Power-
Analysis Attacks, in Proc. of CRYPTO ’99, pp. 398-411, 1999.

9. Fujisaki, E., Okamoto, T., Pointcheval, D. and Stern, J.: RSA-OAEP Is Secure under the RSA
Assumption, in Proc. of CRYPTO 2001, pp. 260-274, 2001.

10. Gandolfi, K., Mourtel, C. and Olivier, F.: Electromagnetic Analysis: Concrete Results, in Proc. of
CHES 2001, pp. 251-261, 2001.

11. Håstad, J. and Näslund M.: The Security of Individual RSA Bits, in Proc. of FOCS ’98, pp. 510-
521, 1998.

12. Kocher, P., Jaffe, J. and Jun, B.: Differential Power Analysis: Leaking Secrets, in Proc. of
CRYPTO ’99, pp. 388-397, 1999.

13. Manger, J.: A Chosen Ciphertext Attack On RSA Optimal Asymmetric Encryption Padding
(OAEP) as Standardized In PKCS #1, in Proc. of CRYPTO 2001, pp. 230-238, 2001.

14. Messegers, T.-S., Dabbish, E. A. and Sloan, R. H.: Investigations of Power Analysis Attacks on
Smartcards, in Proc. of USENIX Workshop on Smartcard Technology, pp. 151-161, 1999.

15. PKCS#1 v2.1: RSA Cryptography Standard, RSA Laboratories, DRAFT2, January 5 2001.
16. PKCS#5 v2.0: Password-Based Cryptography Standard, RSA Laboratories, March 25, 1999.
17. Pohlig S.C., Hellman M.E.: An improved algorithm for computing logarithms over GF(p) and its

cryptographic significance, IEEE Transactions on Information Theory, 24 (1978), 106-110.
18. Rao, J.-R and Rohatgi, P.: EMpowering Side-Channel Attacks, preliminary technical report, May

11 2001.
19. Rivest, R., L., Shamir, A. and Adleman L.: A method for obtaining digital signatures and public-

key cryptosystems, Communications of the ACM, pp. 120-126, 1978.
20. Secure Hash Standard, Federal Information Processing Standards Publication 180-1, 1995 April

17.
21. Shoup, V.: A Proposal for an ISO Standard for Public Key Encryption (version 2.0), September

17, 2001.
22. Shoup, V.: OAEP Reconsidered (Extended Abstract), in Proc. of CRYPTO 2001, pp. 239-259,

2001.
23. Stinson, D., R.: Cryptography – Theory and Practice, CRC Press, 1995.

