
1

Side Channel Attacks on CBC Encrypted Messages in the PKCS#7
Format

Vlastimil Klíma 1 and Tomáš Rosa 1,2

{vlastimil.klima, tomas.rosa}@i.cz
1 ICZ a.s., V Olšinách 75, 100 97 Prague 10, Czech Republic

2 Department of Computer Science and Engineering, Faculty of Electrical Engineering,
Czech Technical University in Prague, Karlovo náměstí 13, 121 35 Prague 2, Czech Republic

Abstract
Vaudenay has shown in [5] that a CBC encryption mode ([2], [9]) combined with the PKCS#5 padding [3]
scheme allows an attacker to invert the underlying block cipher, provided she has access to a valid-padding
oracle which for each input ciphertext tells her whether the corresponding plaintext has a valid padding or not.
Having on mind the countermeasures against this attack, different padding schemes have been studied in [1]. The
best one is referred to as the ABYT-PAD. It is designed for byte-oriented messages. It removes the valid-padding
oracle, thereby defeating Vaudenay's attack, since all deciphered plaintexts are valid in this padding scheme. In
this paper, we try to combine the well-known cryptographic message syntax standard PKCS#7 [8] with the use of
ABYT-PAD instead of PKCS#5. Let us assume that we have access to a PKCS#7CONF oracle that tells us for a
given ciphertext (encapsulated in the PKCS#7 structure) whether the deciphered plaintext is correct or not
according to the PKCS#7 (v1.6) syntax. This is probably a very natural assumption, because applications usually
have to reflect this situation in its behavior. It could be a message for the user, an API error message, an entry in
the log file, different timing behavior, etc. We show that access to such an oracle again enables an attacker to
invert the underlying block cipher. The attack requires single captured ciphertext and approximately 128 oracle
calls per one ciphertext byte. It shows that we cannot hope to fully solve problems with side channel attacks on
the CBC encryption mode by using a “magic” padding method or an obscure message-encoding format. Strong
cryptographic integrity checks of ciphertexts should be incorporated instead.

Keywords: CBC, symmetrical encryption, padding, ABYT-PAD, ABIT-PAD, PKCS#7, cryptanalysis, side
channel attack, confirmation oracle.

1 Introduction
Vaudenay's attack [5] has been further studied in [1], where several extensions of and countermeasures were
proposed. The only effective padding types defined there were referred to as the ABYT-PAD (arbitrary-tail
padding) for byte-oriented messages and the ABIT-PAD for bit-oriented messages. The ABYT-PAD was defined
in the following way; let the last byte (bit) of the message be X; pick an arbitrary distinct byte (bit) Y and add one
or more bytes (bits) Y as needed to the end of the message. The receiver reads the last byte (bit) of the plaintext
and removes all successive bytes (bits) which are the same as Y from the end of the plaintext. The main benefit of
this padding is that there is no incorrectly padded plaintext. Therefore, it is no longer possible to use Vaudenay's
attack based on a valid-padding oracle, because such an oracle doesn't tell us any new information (its output has
a zero entropy overall). However, even when using these methods, there are a lot of other vulnerabilities and
possible attacks. In [1] it was underlined that such attacks are pervasive when the integrity of ciphertexts is not
guaranteed. As an example, the authors of [1] designed a so-called "cryptographic relay" (a device), which
consists of two cryptographic schemes. The first one uses the substantial padding scheme described above, while
the second uses a length-preserving scheme (e.g. CTR mode). The device decrypts the ciphertext coming from
the first scheme and then re-encrypts it using the second scheme. Because the second scheme does not hide the
original plaintext length, it is possible to use this information for an attack on the first scheme. In this paper, we
show that it is not necessary to design such an abstract scheme to carry out a successful attack. We simply
combine the well-known cryptographic message syntax standard PKCS#7 [8] with the use of the ABYT-PAD
padding scheme instead of the PKCS#5 padding. Let us assume that we have access to an oracle PKCS#7CONF
which tells us for a given ciphertext (encapsulated in the PKCS#7 structure) whether the decrypted plaintext is
correct or not according to the PKCS#7 syntax. This is probably a very natural assumption, because applications
usually have to reflect this situation in its behavior. It could be a message for the user, an API error message, an

2

entry in the log file, different timing behavior, etc. We show that by having access to such an oracle an attacker
can invert the underlying block cipher for a particular arbitrary key, thereby deciphering the secret encrypted
message. This attack requires a single captured ciphertext belonging to the key and approximately 128 oracle
calls per one ciphertext byte. This kind of attack can be extended to other padding schemes (i.e. ABIT-PAD,
etc.). Surprisingly, our attack is allowed by those PKCS#7 (v1.6) properties that are planned to improve version
v1.5. According to the new version (v1.6) there are not only data-octets (bytes) encrypted (as in the previous
version), but it also encrypts the length-octets and type-octets. The main idea of the attack is to carefully combine
the changes at the beginning and the end of the encrypted message. Then we use the PKCS#7-confirmation
oracle, which tells us whether the change was correct or not in the sense of the PKCS#7 v1.6 format. This
information thwarts the original good property of the ABYT-PAD scheme that all deciphered plaintexts are valid.
The "improvement" of version 1.5 of the standard thus brought a new kind of attack. It follows that an
improvement that is good under a local estimation may turn out to be a bad choice under a broader context
evaluation. On the other hand, we do not express the opinion that our attack is a problem of the step of moving
from the PKCS#7 v1.5 to the PKCS#7-v1.6 standard. The conclusion of our paper is that, just like the area of
asymmetrical cryptography, we cannot hope to fully solve these problems with side channel attacks just by using
a "magic" padding method or an obscure message-encoding format.

The rest of the paper is organized as follows; firstly we introduce the necessary notation and description of the
PKCS#7 format (§2) and the confirmation oracle PKCS#7CONF (§3). An attack is then presented in §4. In §5 we
summarize the complexity of the attack and its extensions. Countermeasures are presented in section §6 and a
conclusion is made in §7.

2 Preliminaries

2.1 Notation

We will denote CT the ciphertext C without an initializing value (IV), thus C = (IV, CT). We will assume the
block cipher, which works over n-bytes blocks, where n is a positive integer. We will denote EK(B) and DK(B)
enciphering and deciphering of a data block B under a secret (symmetric) key K. We will denote ENC-CBCK and
DEC-CBCK enciphering and deciphering of the whole plaintext and ciphertext in the CBC mode, respectively. To
be consistent with the ASN.1 notation, we will talk about octets with the assumption that the term octet means the
same as byte in this paper. We will use "BIG ENDIAN" ordering of bytes inside the data block, i.e. b1 will be the
most significant byte in the n-byte block B = (b1, ..., bn). Hexadecimal numbers are denoted using the prefix 0x,
the exclusive OR operation is denoted ⊕ . We will use it for bits, bytes and blocks of bytes. If the blocks are
indexed, we use the second index to pick the byte from it, for instance CTs,n is the last byte of the block CTs.
Note that C1 = IV and CT1 = C2 is the first “payload” block corresponding to the plaintext P1 in our notation.

2.2 Description of PKCS#7 data structures, padding scheme and our assumptions

2.2.1 PKCS#7

As stated in [4], the standard PKCS#7 describes the general syntax for cryptographically protected data, e.g. data
which is encrypted, digitally signed, etc. Data syntax is described using the notation ASN.1 [6]. It admits
recursion, so that one envelope (c.f. [4]) can be nested inside another. The values produced according to this
standard are intended to be BER-encoded [7], which means that the values would typically be represented as
octet strings. The syntax is general enough to support many different content types. PKCS#7 defines the six
following ones: data, signed data, enveloped data, signed-and-enveloped data, digested data, and encrypted data.
These content types are defined using the notation ASN.1 and they are used in a number of applications,
programs, protocols etc. For instance, we may take the banking protocol SET or the standard for a secure
electronic mail S/MIME. We will concentrate on the content type "enveloped data". It contains the data (a binary
content) encrypted by the symmetric encryption key, where this key is transmitted using a public-key algorithm.
We will assume that the data is as usually encrypted by a block cipher in the CBC mode.

2.2.2 ASN.1 encoding

Before encryption, the data being encrypted is ASN.1 encoded first, usually by using the BER/DER encoding [7].
In most cases encoding consists of adding some type-octets together with some length-octets before the data

3

itself. The type-octets define the type of data (type of data structures) and the length-octets define the length of
the data. This length means the length of the original data, which follows after the length-octets. The triplet (type-
octets, length-octets, data-octets) is then padded and encrypted in the CBC mode.

2.2.3 Data types

There are a lot of data types that can be used in various applications for data being encrypted. These data types
are usually publicly defined and their octet codes are thus well known for a concrete application. Probably the
most often used one is the data type OCTET STRING, encoded as one octet with the value 0x04. Without loss of
generality, we may assume that the data type is OCTET STRING for the purpose of our side channel attack
description.

2.2.4 Data length

Similarly, the length of the original data being encrypted is encoded into one or more length-octets. If the data
length is less than 128, then there is only one length-octet the value of which states exactly the data length. If the
data length is higher than or equal to 128, then it is encoded as a 2 to 128 octets long string of the length-octets.
In this case the first octet has the most significant bit set to 1 and its remaining bits express the number of the
following length-octets. The remaining length-octets then express the data length in the integer base 256. For
instance, if the length of the original data is less than 64 KBytes, then the first length-octet is 0x82 and the
following successive two octets give the particular length in the base 256. The number of length-octets doesn't
play any important role in our side channel attack. For the sake of simplicity, we will assume that the data being
encrypted has only one length-octet.

2.3 Encryption in the PKCS#7 version 1.5 and 1.6

Let us have L bytes of data. We will assume their ASN.1 encoding as (0x04, L, data). Version 1.5 of PKCS#7 [4]
was designed to enable PEM compatible formats, but this brought some inconveniences for applications. It
required applications to "dip under" the ASN.1 and deal directly with the BER/DER encoding of data (signing,
encryption). Such BER/DER "hacking" made it difficult for users of ASN.1 compilers to generate
encoding/decoding subroutines, because the head of the data and the data itself were processed separately.
Having accepted the ascendancy of S/MIME over PEM, and the desirability of avoiding low-level "hacking" of
the BER/DER encoding, version 1.6 of PKCS#7 [8] modified the processing rules to operate on the entire
BER/DER encoding of the data. In particular, this means that data-octets are encrypted together with the type-
octets and length-octets as one binary stream (type-octets, length-octets, data-octets). It is anticipated that version
2 of PKCS#7 will also incorporate this change.

2.4 Using ABYT-PAD padding scheme

Before the encryption, we need to append an appropriate padding. Finally, we encrypt the quadruple (0x04, L,
data, padding) in the CBC mode. Here we assume that the padding scheme used is ABYT-PAD [1], however the
attack can be easily extended to some other schemes (for instance ABIT-PAD). According to [1], ABYT-PAD is
defined in the following way.

Let the last byte of the plaintext be X and pick an arbitrary distinct byte Y. We add one or more bytes of Y as
needed to the end of the plaintext in such a way that the new plaintext length is an integer multiple of n.
Emphasize that at least one byte of Y must be appended. In the case of an empty plaintext, Y can be an arbitrary
value. If the padding is not more than n octets long, we talk about a "short" ABYT-PAD padding. In the case of
an unlimited padding length, we will talk about a "long" ABYT-PAD padding. The receiver reads the last byte of
the plaintext and removes all the successive identical bytes from the end of the plaintext. In the following text, we
will assume that the padding is the "short" one, i.e. the number of padding bytes has to be from 1 to n. However,
it will become clear that it is easily possible to extend the attack to the long ABYT-PAD padding. We also
assume that the symmetric key and the underlying block cipher are always the same during our attack.

3 Confirmation oracle PKCS#7CONF
Assume that a sender encrypts messages using: the PKCS#7 data type "enveloped data", a block cipher in the
CBC mode, and the ABYT-PAD padding scheme. The encrypted data is ASN.1 encoded, padded, and encrypted

4

using a random symmetric key, and then the ciphertext CT is put in a specific place in the highly structured data
block "enveloped data". The symmetric key is then encrypted using a public-key scheme and is also put in its
specific place in the "enveloped data". The initialization value (IV) is saved in this structure, outside the
ciphertext CT (in data type "Content Encryption Algorithm Identifier"), as well. In particular, we note that it is
possible to change IV without disturbing any other content of the "enveloped data". Furthermore, we assume that
when the attacker changes the length and the content of the ciphertext CT later on, she will also eventually
change the appropriate length octets of all "higher" structures containing it. Thus, the changed ciphertext CT will
be correctly encapsulated in the PKCS#7 structure. In the following, we will focus only on the receiver's dealing
with the IV and CT items in the block "enveloped data".

Definition (PKCS#7 confirmation oracle PKCS#7CONF(C)).

Let us have the ciphertext C = (IV, CT).

We conjecture a PKCS#7CONF confirmation oracle, PKCS#7CONF(C): C → (ANSWER = “OK/BAD”), to
encapsulate the following procedure:

1. P = DEC-CBCK(C); the plaintext P is obtained by deciphering the ciphertext C in the CBC mode under
the symmetric key K

2. Remove the padding from the plaintext P; the resulting message is denoted as M.

3. Parse M according to PKCS#7:

• Check the type-octets of M; according to the assumptions in §2 we expect one concrete value to be
here - 0x04. If it is not here, an error has occurred.

• Check the length-octets of M; we expect one length octet to be here (L), furthermore, L must be
equal to the length of M, obtained in step 2. If it is not, an error has occurred.

4. If the two previous checks in step 3 are successful, the answer of PKCS#7CONF(C) is “OK”; otherwise it
is “BAD”.

We note that no error messages are expected to occur in steps 1 and 2. For the sake of convenience, we will use
the symbols O and PKCS#7CONF when referring to the PKCS#7CONF confirmation oracle interchangeably.

4 Attack description
Let the attacker intercept a valid ciphertext C = (IV, CT1, CT2, ... CTs), s ≥ 1, and let (P1, P2, ... Ps) denote the
corresponding plaintext. We will show that she can then compute X = DK(Y) for any arbitrary chosen Y
obviously implying that she can decipher the whole intercepted ciphertext C.

Recall that we are working with short messages (one length-octet) with the short ABYT-PAD padding. However,
we will show in section 5 how to modify the attack for longer messages and longer ABYT-PAD padding. The
attack has several steps.

The first step is to be carried out only once, in the preparation phase. For simplicity, we assume that we have only
one intercepted ciphertext C. If we had more ciphertexts, the preparation phase could be easier.

4.1 Preparation phase: Finding the valid length L of the message

Since C is a valid ciphertext, the corresponding message M (plaintext without padding) conforms to PKCS#7.
Thus we have P1,1 = 0x04 and P1,2 = L, where L is the length of M. In this step we determine the value of L using
a PKCS#7CONF oracle.

Let s ≥ 3. This condition guarantees that changes made in Cs-1 will not affect the first plaintext block containing
the length octet. Let us denote LPAD the length of padding and LDATA the length of remaining data bytes in the
last plaintext block, i.e. LDATA + LPAD = n. At first, we will successively test every byte from the end of the
last plaintext block whether it is a padding byte or a data byte. When we find the first data byte from the end, we
have the value LDATA and we stop testing. According to our assumptions, 0 ≤ LDATA ≤ n -1, because at least
one byte (Ps,n) is a padding byte according to ABYT-PAD padding. Therefore we begin our test with Ps,n-1
following the pseudocode written below. We will denote C' our changes in the original ciphertext C.

5

Remarks

• There is the possibility of further optimising this process by various methods, for instance by the interval
halving method, similarly as in [1]. In this case, we would need O(log2n) oracle calls. On the other hand,
it is only a marginal improvement, because this step is carried out only once in the preparation phase.

• When the intercepted ciphertext has only one block CT1, i.e. s = 1, we can use the same process as in
case s ≥ 3, because we will have full control over changes in the first plaintext block.

• In the case s = 2, we can artificially lengthen the original ciphertext (IV, CT1, CT2), for instance, as (IV,
CT1, CT2, IV, IV, CT1, CT2). It is only necessary to change the second byte of the primary IV
appropriately, because we added 4*n bytes to the message M. For instance if n = 8, we artificially added
32 bytes to it and we can fix the length easily by xoring the byte C1,2 with 0x20, because the length of
the original message M was less than 14. Now we can follow the process above for s ≥ 3.

Now we have the plaintext byte P1,2 = L of the ciphertext C. The complexity of this step is maximally 2*(n - 1)
oracle calls.

CTemp = CTs-1

LDATA = 0

For j = (n -1) downto 1

{

CTs-1,j = CTempj ⊕⊕⊕⊕ 1

If O(C') = "OK" then LDATA = j, break

/* Note.

The change will result in the corruption of the whole block Ps-1 and of the byte Ps,j.

If O(C') returns "OK", then the change of the original plaintext byte Ps,j to the value Ps,j ⊕ 1 didn't
affect the length L. Therefore Ps,j is a data byte and we have LDATA = j.

If O(C') returns "BAD", the length L doesn't conform to the padding. There are two possibilities.

(i) Ps,j was the last data byte, but it has been artificially changed to the padding byte

(ii) Ps,j was the padding byte, which has been changed to a non-padding byte

We can decide between these two possibilities by setting CTs-1,j to the value CTempj ⊕ 2 and
calling the oracle O again.

*/

CTs-1,j = CTempj ⊕⊕⊕⊕ 2 and call O(C')

If O(C') = "OK" then LDATA = j, break

/* Note.

If it returns "OK", Ps,j was the data byte. If it returns "BAD", Ps,j was a padding byte. In this case
we continue to test the next bytes on the left.

*/

}

L = (n - 2) + (s - 2)*n + LDATA

/* Note that (n-2) bytes are counted from the first block and LDATA bytes come from the last block. The
resting (s - 2) blocks have the full length n.*/

6

4.2 Computing X = DK(Y) leaving one byte of uncertainty

Now we use the first two blocks (IV, CT1) of the intercepted ciphertext C and create a new one C' = (IV, CT1, S,
T, Y), where S and T are arbitrarily chosen and Y is the block which is to be decrypted. Let us denote P = (P1, P2,
P3, P4) as the plaintext corresponding to the ciphertext C'. We have P1,1 = 0x04 and P1,2 = L, where L is known
from the previous step. Using the following pseudocode, we determine X = DK(Y) leaving one byte of
uncertainty.

At the end of the procedure we have

(4.2) X1 ⊕ T1 = X2 ⊕ T2 = ... = Xn ⊕ Tn = A,

where the values of Ti (and eventually also Sn) have been adjusted above. Note that for n > 32 we will need more
length-octets, so it would be necessary to slightly modify this procedure.

In this step, we need 128*(n - 1) oracle calls on average. According to the procedure written above, the maximum
number of oracle calls is clearly limited by the number 512*(n - 1).

4.3 Determining the remaining byte of uncertainty

ITemp =IV , TTemp = T, A = Xn ⊕⊕⊕⊕ Tn

For i = (n - 1) downto 1

{

/* In this loop we derive the i-th byte P4,i, where P4,i+1 = ... = P4,n are padding bytes, all equal to
A.*/

N = (n - 2) + n + n + (i - 1)

IV2 = ITemp2 ⊕⊕⊕⊕ P1,2 ⊕⊕⊕⊕ N

/* After deciphering C', the oracle O gets the number N in the place of P1,2. Thus it will expect i -
1 data bytes and n - (i - 1) padding bytes in the last plaintext block P4. */

(*) For j = 0 to 255 do

{

Ti = TTempi ⊕⊕⊕⊕ j

If O(C') = "OK" go to (**)

/* If O(C') = "OK", the plaintext is PKCS#7 conforming and Xi ⊕ Ti is the
padding byte A. Thus we have Xi ⊕ Ti = Xi+1 ⊕ Ti+1 = ... = Xn ⊕ Tn = A and we
can continue to derive the next byte. */

}

If (i >1) then Ti-1 = TTempi-1 ⊕⊕⊕⊕ 1 else Sn = Sn ⊕⊕⊕⊕ 1

Go to (*)

/* If the oracle O has always responded "BAD" in the preceding cycle, it means that when the
correct value (A) occurred on the i-th byte, it accidentally also occurred on its left side.
Therefore, we change the left byte and go back to (*). Now, the oracle must once respond "OK".
*/

(**) /* Continue to the next loop. */

}

7

Now we use the blocks T and Y created in the previous step. The ciphertext C = (T, Y) gives the one plaintext
block consisting of n bytes having the same value A. We will now change T1, T2 and Tn to obtain a PKCS#7
conforming message. We construct the message in the way to have the length of n - 3 octets and one padding
byte. We then determine the value of A in the following way.

Now, we restore the value T from TTemp and we substitute it with A into the system of equations (4.2), thereby
deriving the value of X.

This step requires 128 oracle calls on average. It takes maximally 256 oracle calls.

5 Complexity of the attack and its extensions
Recall that the complexity of the attack is at most 2*(n-1) calls in the preparation phase. This phase is carried out
only once for a particular symmetric key. To decipher each ciphertext block, we then need 128*(n-1) + 128 =
128*n oracle calls on average. The maximum number of oracle calls per ciphertext block is bounded above by
512*(n - 1) + 256.

Now we summarize our remarks on possible extensions and modifications of the attack.

• In most cases of longer messages with more than one length-octet, we can easily derive the plaintext
byte P1,2 = L in the preparation phase. In these cases P1,2 is the first length-octet and thus P1,2 is equal to
the number of remaining length-octets + 0x80 (c.f. §2). We can estimate the number of remaining
length-octets directly from the length of the ciphertext.

• Generally speaking, when longer messages (with any kind of ABYT-PAD padding) with more than one
length-octet are used, we can successively change the third, fourth, etc. byte of the IV and send the
ciphertext to the oracle O. If we change the length octet, the oracle returns "BAD". If it returns "OK",
we hit the first data octet. Now we have the number of length octets (W) and we get P1,2 = 0x80 + W
immediately.

• If we may assume that the ciphertext contains at least n bytes of ABYT-PAD padding (one full block or
more), we can artificially shorten the ciphertext (IV, CT1, CT2, ..., CTs-1, CTs) to the last two blocks only
(CTs-1, CTs). We then use the procedure from §4.3 to determine the value of padding, i.e. we compute
the value of DK(CTs) ⊕ CTs-1. Basing on this knowledge, we can continue directly to step 4.2, thereby
bypassing step 4.1.

• A variant of this attack can be also derived for the ABIT-PAD padding. Since the only difference
between ABYT-PAD and ABIT-PAD is the size of the elementary block unit, the derivation is a matter
of changing the byte-oriented approach for a bit-oriented one. Note that the PKCS#7 format discussed
here is byte-oriented in its nature, therefore even when using ABIT-PAD, we pad bytes. However, we
may expect that the PKCS#7CONF based on ABIT-PAD would, in a certain way, allow an attacker to do
the inversion of EK(B) bit-by-bit instead of byte-by-byte. Such an approach generally helps the attacker

TTemp = T

For j = 0 to 255 do

{

T1 = TTemp1 ⊕⊕⊕⊕ 0x04 ⊕⊕⊕⊕ j, T2 = TTemp2 ⊕⊕⊕⊕ (n - 3) ⊕⊕⊕⊕ j, Tn = TTempn ⊕⊕⊕⊕ 1

C' = (T, Y)

/* Note that C' corresponds to the plaintext (A ⊕ 0x04 ⊕ j, A ⊕ (n-3) ⊕ j, A,..., A, A ⊕ 1). */

If O(C') = "OK" then A = j, break

/* If O(C') = "OK", the plaintext is PKCS#7 conforming. Thus, we have A ⊕ 0x04 ⊕ j = 0x04.
We then easily obtain the unknown A as A = j. */

}

8

to improve the effectiveness of her attack. Such an improvement would be useful in case of extremely
long padding string.

6 Countermeasures
The attack presented here is based on the behaviour of a typical transport-layer application, which routinely
receives a ciphertext, deciphers it, and decodes its data payload, which is then passed to the upper layers. If an
error occurs during this processing (e.g. ASN.1 parser fails, the padding is incorrect, etc.), it is natural that the
application informs its communicating peer. Ignoring these errors is theoretically possible, but in practice it
wouldn't make a lot of sense. Moreover, such a failure would be probably detectable from the behaviour of the
upper-layer application.

We emphasize that the attack discussed here is not only a particular problem for padding methods. Generally
speaking, such an attack can be expected whenever the following conditions are fulfilled:

(i) there are some formatting rules set for plaintexts which must be checked,

(ii) an attacker can freely modify captured ciphertexts and re-send them to the communicating application,

(iii) the changes made in (ii) induce predictable changes of the corresponding plaintext.

The combination of the CBC mode with the PKCS#5 padding scheme was perhaps the most obvious way in
which the conditions given above were fulfilled. The only thing that is still surprising is the amount of time it
took for the cryptanalysts to disclose this weakness. To avoid other possible “surprises”, we should constantly
verify these conditions when designing new encryption schemes. In this paper we addressed the situation where
the first condition seems to be thwarted, since the padding method ABYT-PAD does not impose any checkable
rules. However, the condition is easily restored if we incorporate the formatting rules given by the PKCS#7
standard. It clearly follows that despite being very tempting, we cannot hope to solve problems of attacks
addressed here and in [1] and [5] by thwarting only the first condition written above.

A better way seems to be to focus on conditions (ii) and (iii). We can use the paper of Krawczyk [12] to
conjecture that the best way is generally to thwart the second condition by using the authentication of ciphertexts.
This countermeasure was also generally recommended in [1]. However, in some older applications it might not
always be easy to introduce such a modification. Therefore, we looked at thwarting the last conditions. In [10] we
designed a method that effectively prevents an attacker from making predictable changes of the plaintext by
changing the ciphertext. Our method then enables any padding method that is limited to the last block to be used.
The main idea of our approach is encrypting the last block in a different way and under a different key. This so-
called strengthened encryption changes the definition of the encryption and decryption process, but it is still
compatible with the original CBC encryption from the point of view of data structures and their length. From a
practical viewpoint, we conjecture that for existing applications and protocols it is better to change the program
codes or data semantic rather than the data structure itself. We must emphasize that our method works well,
unless there are other structural checks of plaintexts. Therefore, generally we strongly recommend adding a
cryptographic check of ciphertexts in the sense of [12].

7 Conclusions
In this paper we have shown that we cannot hope to fully solve problems with side channel attacks on the CBC
encryption mode by using a magic padding method or an obscure message-encoding format. Vaudenay showed in
[5] that the CBC encryption mode ([2], [9]) combined with the PKCS#5 padding scheme ([3]) allows an attacker
to invert the underlying block cipher, provided she has access to an oracle which for each input ciphertext states
whether the corresponding plaintext has a valid padding or not. Countermeasures against this attack using
different padding schemes were studied in [1] and the best method was referred to as the ABYT-PAD.

In this paper, we combine the well-known cryptographic message syntax standard PKCS#7 [8] with the use of
ABYT-PAD in the place of the PKCS#5 padding scheme. We assume that the attacker has access to an oracle
PKCS#7CONF which tells her for a given ciphertext (encapsulated in the PKCS#7 structure) whether the
deciphered plaintext is correct or not according to the PKCS#7 (v1.6) syntax. This is a very natural and
straightforward assumption, because applications usually have to reflect this situation in their behaviour. It could
be a message for the user, an API error message, an entry in the log file, different timing behaviour, etc. We have
shown that having access to such an oracle enables the attacker to invert the underlying block cipher and decipher

9

the encrypted message. It requires a single ciphertext for a particular key and approximately 128 oracle calls per
ciphertext byte.

Surprisingly, the attack is allowed by those PKCS#7 (v1.6) properties that are designed to improve version v1.5.
They are also planned for version 2. However, the improvement of the standard brought a new kind of attack. It
follows that an improvement beneficial according to a local estimation may turn out to be a bad choice under a
broader context evaluation. On the other hand, we do not express the opinion that our attack is a problem of the
step of moving from the PKCS#7 v1.5 to the PKCS#7 v1.6 standard.

The attack described here can be also easily extended on other TLV-like schemes. The TLV stands for tag-
length-value, which is a common nickname of many data protocols and formats used nowadays. Since TLV
involves also many standards used in the banking sector, it indicates that existing systems in such areas deserve
certain amount of attention according to the attack presented here.

The discussed problems with side channel attacks on the CBC encryption mode should be solved using strong
cryptographic integrity checks of ciphertexts. Our contribution should be regarded as further evidence that these
checks must be included in the new cryptographic standards and protocols.

Acknowledgements
The second author is grateful to his postgraduate supervisor Dr. Petr Zemánek for his continuous support in
research projects.

References
[1] Black, J., and Urtubia, H.: Side-Channel Attacks on Symmetric Encryption Schemes: The Case for

Authenticated Encryption, In Proc. of 11th USENIX Security Symposium, San Francisco 2002, pp. 327-
338.

[2] NIST Special Publication SP 800-38A 2001 ED, Recommendation for Block Cipher Modes of Operation,
December 2001.

[3] PKCS#5 v. 2.0: Password-Based Cryptography Standard, RSA Laboratories, March 25, 1999.

[4] PKCS #7 v1.5: Cryptographic Message Syntax Standard, RSA Laboratories, November 1, 1993.

[5] Vaudenay, S.: Security Flaws Induced By CBC Padding - Application to SSL, IPSEC, WTLS...,
EUROCRYPT '02, pp. 534-545, Springer-Verlag, 2002.

[6] ITU-T Recommendation X.680 (1997), ISO/IEC 8824-1:1998, Information Technology - Abstract Syntax
Notation One (ASN.1): Specification of Basic Notation.

[7] ITU-T Recommendation X.690 (1997), ISO/IEC 8825-1:1998, Information Technology - ASN.1
Encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER).

[8] Extensions and Revisions to PKCS #7 (Draft PKCS #7 v1.6), An RSA Laboratories Technical Note, May
13, 1997.

[9] RFC 2268: Baldwin, R., and Rivest, R.: The RC5, RC5-CBC, RC5-CBC-Pad, and RC5-CTS Algorithms,
October 1996.

[10] Klíma, V., and Rosa, T.: Strengthened encryption in the CBC mode, Cryptology ePrint Archive: Report
2002/061, http://eprint.iacr.org/2002/061.pdf.

[11] Rosa, T.: Future Cryptography: Standards are not Enough, in Proc. of Security and Protection of
Information, NATO-IDET, 2001, Military Academy in Brno, pp. 237 - 245, Brno, 2001.

[12] Krawczyk, H.: The Order of Encryption and Authentication for Protecting Communications (or: How
Secure Is SSL?), CRYPTO' 01, pp. 310 - 331, Springer-Verlag, 2001.

