
Provably Secure Delegation-by-Certification Proxy

Signature Schemes

Zuowen Tan, Zhuojun Liu ∗

Institute of Systems Science, AMSS, Chinese Academy of Sciences,
State Key Laboratory of Information Security,

Graduate School of Chinese Academy of Sciences

{ztan, zliu}@mmrc.iss.ac.cn

Abstract

In this paper, we first show that previous proxy signature schemes by dele-

gation with certificate are not provably secure under adaptive-chosen mes-

sage attacks and adaptive-chosen warrant attacks. The schemes do not

provide the strong undeniability. Then we construct a proxy signature

scheme by delegation with certificate based on Co-GDH group from bilin-

ear map. Our proxy signature scheme is existentially unforgeable against

adaptive-chosen message attacks and adaptive-chosen warrant attacks in

random oracle model. We adopt a straight method of security reduction

in which our scheme’s security is reduced to hardness of the computational

co-Diffie-Hellem problem. The proposed signature scheme is the first secure

delegation-by-certificate proxy signature based on co-GDH groups from bi-

linear maps under the formal security model in random oracle model.

Key Words: digital signature, proxy signature, bilinear map, co-GDH

groups, provably secure.

1 Introduction

Digital signature schemes can provide the authenticity and integrity of the digi-

tal documents. However, digital signature schemes cannot directly be applied to

the proxy situation. Mambo et al. [11] introduced a new concept proxy signa-

ture to solve the problem. In a proxy signature scheme, an entity called original

signer can delegate his signing power to another entity called proxy signer, and

the proxy signer can sign message on behalf of the original. After the signature
∗Partially Supported by National Science Foundation of China(10371127)

1

verifier receives the proxy signature, he/she can not only check the validity of

the signature and identify the proxy signer, but also can be convinced of the

original’s agreement on the signed message. According to the delegation type,

Mambo et al. classify proxy signature schemes into full delegation, partial del-

egation and delegation by warrant schemes [11]. In full delegation, the original

signer sends its private key as the proxy signature key to the proxy via a secure

channel. The original signer’s standard signature is indistinguishable from the

proxy signature. In partial delegation, the proxy signer has a proxy signature

key obtained from the proxy signer’s private key and a delegation key from the

original. The delegation key is generated by the original through a trap-door

permutation of the original signer’s private key. The proxy signature is different

from both the original’s standard signature and the proxy’s standard signature.

In delegation by certificate, the original uses its standard signature algorithm to

sign a warrant which includes the type of the information delegated, both the

parties’ identities and the period of delegation, etc. The signature of the war-

rant is called certificate, which prevents the transfer of proxy power to a third

party. Verification of a proxy signature contains two phases. Since Mambo et al.

introduced proxy signature, many proxy signature schemes have been proposed,

such as threshold proxy signatures [13,16,20], nominative proxy signatures [12],

one-time proxy signatures [6,19], multi-proxy signature [4], proxy multi-signature

[3] and proxy blind signature [8,17], etc. Now the proxy signature schemes have

been suggested for numerous applications including mobile agent [5,9,10], mobile

communications [4], and electronic voting, etc.

Most of the research work on proxy signature focuses on constructing a more

efficient scheme. One always thought that if the underlying signature scheme is

secure, the proxy signature scheme must be secure. However, it is not true. Al-

most every other paper breaks some previously proposed proxy signature scheme

[14,15,18] and proposes a new scheme. Since those schemes lack provably-security

guarantee, to date very few schemes are left unbroken. In 2001, J. Lee, H. Kim

and K. Kim [9] gave five strong security properties that a secure proxy signature

scheme should hold: verifiability, strong unforgeability, strong non-repudiation,

strong identifiability and prevention of misuse. But these informal requirements

cannot give a precise meaning of security for proxy signature schemes. Boldyreva

et al. formalized a notion of security for proxy signature schemes [2], specify-

ing an adversary’s capabilities and goal, and indicating the situation when an

attacker is considered successful. In this model, the adversary is allowed to cor-

rupt the original signer or the proxy signer and learns their secret keys, even the

2

proxy signature key. The adversary can see the transcripts of all the executions

of delegation, i.e., the model does not require a secure channel. The adversary’s

goal is to generate a standard signature of the original signer, a standard signa-

ture of the proxy signer, or a proxy signature on a new message. Boldyreva et

al. gave a slight modification to the delegation-by-certificate scheme (Henceforth

BPW proxy scheme) [2] and claimed the resulting scheme is secure on the as-

sumption the underlying standard signature is secure. This is the first work on

proxy signatures in the provable-security direction.

In the paper, we will present an attack mounted by the original or the proxy

on BPW proxy scheme [2]. We give a new notion of security for delegation-

by-warrant proxy signature and show that our delegation-by-certificate scheme

is secure on the assumption the underlying standard signature is secure. The

security model and analysis are detailed in Section 2.

The other main contribution of the paper is construction of a delegation-by-

warrant proxy signature from the co-GDH signature scheme based on bilinear

maps [1]. The new proxy scheme is proved secure in the random oracle model

under the computational co-Diffie-Hellem assumption. We reduce our scheme’s

security to hardness of computational co-Diffie-Hellem problem. If the scheme

is not secure against existential forgery under adaptive chosen-message attacks

and adaptive chosen-warrant attacks, we could construct an algorithm which

can solve the computational co-Diffie-Hellem problem with a probability non-

negligible in the security parameter. Unlike the proof for the security for Triple

Schnorr scheme [2], we give the bound about the security parameter. The result

will be given in Section 3 and Section 4.

2 Analysis of BPW’s Proxy Signature Scheme

2.1 BPW’s delegation-by-certificate proxy signature scheme

Let DS = (G,K, S, V) be a signature scheme. The algorithms of the correspond-

ing delegation-by-certificate proxy signature scheme PS[DS]=(G1,K1,S1,V1, (D,P),

PS, PV , ID) are defined as follows.

• The randomized parameter-generation algorithm G takes input 1k, where

k is security parameter, and outputs some global parameters.

• The randomized key-generation algorithm K takes as input global param-

eters and outputs a public/secret key pair (pk, sk).

• The signing algorithm S takes as input a secret key sk and a message M ,

and outputs a signature σ.

3

• The deterministic verification algorithm V takes as input a public key pk,

a message M and a signature σ for M , and outputs 0 if σ is invalid or 1 if

σ is valid.

• The parameter-generation algorithm G1 = G, the key-generation algorithm

K1 = K, the signing algorithm S1(sk,M) = S(sk, 11||M), and the verifica-

tion V1(pk,M) = V (pk, 11||M,σ).

• (D,P) is a pair of interactive randomized algorithms forming the proxy-

designation protocol. D takes as input the secret key of the original signer

and the public keys of the two parties involved, but D has no local output.

P takes as input the secret key of the proxy signer and the public keys of

the two parties. The result of the interaction is (ω, cert).

• If User i designates user j as a proxy signer, i sends to j a warrant ω

together with a signature cert for message 00||ω by using the signature

algorithm S under the secret key of user i.

• The user j produces the proxy signature which contains message M , the

warrant ω, the certificate cert and a signature for 01||M under skj .

PS(skj , w, cert,M) = (w, cert,M, S(skj , 01||M)).

• Proxy signature verification is defined.

PV (pk,M, (ω, pk′, cert, σ)) = V (ω, 00||ω, cert) ∧ V (pk′, 01||M,σ).

• The identification algorithm is defined as ID(ω, pk′, σ) = pk′.

Boldyreva et al. claim that if DS is a secure digital signature scheme, the

delegation-by-certificate proxy signature scheme PS[DS] specified above is a se-

cure proxy signature scheme [2]. The result follows from the security of the

aggregate-signature-based proxy signature schemes.

2.2 Analysis of BPW’s delegation-by-certificate proxy signature

We will show that Boldyreva et al.’s statement [2] is improper. Let O be an origi-

nal signer and P a proxy signer. (pkO, skO) and (pkP , skP) are the public/private

key pairs. At time Ti, O produces warrant ωi and corresponding certificate certi.

By M i we denote message space which consists of all the messages possibly del-

egated at time Ti. Given a message mi ∈ M i, a warrant ωi and a certificate

certi, the proxy P generates a valid proxy signature (ωi, certi, S(skP , 01||mi)),

i.e. V (pki, 00||ωi, certi) = 1 and V (pk′, 01||M,S(skP , 01||mi)) = 1.

In general, for different subscript i,
⋂
M i 6= φ. We consider the simplest case

i = 1, 2. Since (ω1, cert1, S(skP , 01||m1)) and (ω2, cert2, S(skP , 01||m2)) are valid

4

proxy signatures, then (ω1, cert1, S(skP , 01||m2)) and (ω2, cert2, S(skP , 01||m1))

are also P ’s valid proxy signatures. This is because

V (pkO, 00||ω1, cert1) = 1 and V (pkP , 01||M,S(skP , 01||m2)) = 1.

V (pkO, 00||ω2, cert2) = 1 and V (pkP , 01||M,S(skP , 01||m1)) = 1.

Moreover, BPW’s proxy signature schemes suffer a type of attacks mounted by a

malicious original signer. Given a valid proxy signature (ωi, certi, S(skP , 01||mi)),

an original O can substitute ωj for ωi, where j 6= i, and generates a certificate

certj . Thus, the malicious original signer O obtains (ωj , certj , S(skP , 01||mi))

which satisfies the verification equation:

V (pkO, 00||ωj , certj) = 1 and V (pkP , 01||M,S(skP , 01||mi)) = 1.

In fact, the proxy signer P does not receive and accept the delegation (ωj , certj)

of the original signer O. If the malicious original changes the period Ti in the

warrant ωi into the period Tj in the warrant ωj , the forgery perhaps impairs the

proxy signer. BPW’s delegation-by-certificate proxy signature scheme can not

provide any protection of the proxy signer.

3 The proposed delegation-by-certificate proxy signature

3.1 Construction of the proposed scheme

Suppose that an original signer O delegates a proxy signer P to sign message M

on its behalf. O and P have public\private key pairs (pkO, skO) and (pkP , skP)

respectively. The algorithms of the corresponding delegation-by-certificate proxy

signature scheme are PS[DS]= (G1,K1,S1,V1,(D,P),PS,PV ,ID). The random-

ized parameter-generation algorithm G1, the randomized key-generation algo-

rithm K1, the signing algorithm S1 and the deterministic verification algorithm

V1 are defined as in Section 2.1. Other algorithms are defines as follows.

• The pair (D,P) of interactive randomized algorithms outputs (ω, cert),

where the warrant ω includes the type of the information delegated, two

involved parties’ public keys pkO, pkP and the period of delegation, and the

certificate is cert = S(skO, 00||ω).

• User P produces a proxy signature, which contains message M , the warrant

ω, the certificate cert and a signature σ for 01||M ||ω||cert under skP .

PS(skP , w, cert,M) = (w, cert,M, S(skP , 01||M ||ω||cert)).

5

• Proxy signature verification is defined as follows.

PV (pk,M, (ω, pk′, cert, σ)) = V (pk, 00||ω, cert) ∧ V (pk′, 01||M ||ω||cert, σ).

• The identification algorithm is defined as ID(ω, pk′, σ) = pk′.

3.2 Notion of Security for delegation-by-certificate proxy signa-
ture schemes

Now we consider the security model for delegation-by-certificate proxy signature

schemes. An adversary aims at personating the original signer or the proxy signer

and forging a standard signature, or forging a proxy signature. In our model, an

adversary is working against a single honest user, say user 1, and can select and

register keys for all other users i, where i = 2, 3, · · · , n. The adversary can play

the role of the user i 6= 1, as an original signer or a proxy signer. We allow

the adversary request user 1 to delegate himself and see the transcript of the

self-delegation. The security model does not assume the existence of a secure

channel between the original signer and the proxy signer. We model chosen-

message attack and chosen-warrant attack capabilities by equipping the adversary

with a signing oracle. As a matter of convenience, we classify the adversaries

into outside adversaries and inside adversaries. The inside adversaries refer to

the malicious original signers or the malicious proxy signers. Since the insider

adversaries own the original signer’s or proxy signer’s private key, they have

more advantages over the outside adversaries during the signature forgery. We

only consider inside attacks. Our notion of security for delegation-by-certificate

proxy signature schemes is formally defined as follows.

Definition [security for proposed proxy signature schemes]

We consider two experiments Expos
PS,A1 and Expps

PS,A2 related to the proposed

proxy scheme PS, adversaries A1, A2 and security parameter k.

We first consider the experiment Expos
PS,A1. In the experiment, only one

target signer of the adversary A1 is the original signer. System parameters are

generated by running G on 1k. Then the key-generation algorithm K is run and

generates a public\private key pair (pkO, skO) of the original signer. Adversary

A1 is given input the public key pkO of the target user. In the sequel, we make the

convention that the target signer is user 1. A1 can make the following requests

or quests in any order and any number of times.

• (i register pki)A1 can request to register user i by outputting a public\private

key pair (pki, ski) of the user i. These pairs are stored. We keep a list

WCERTi that are initially empty. The list WCERTi will consist of all

6

the warrants and certificates by which user 1 delegates the user i as the

proxy signer.

• (1 designates i) A1 can request user 1 to designate A1 as a proxy signer i.

A1 plays the role of the proxy signer i by running the algorithm P . User

1 runs the algorithm D and produces a warrant ωi and send it to the ad-

versary A1. A1 queries the signing oracle OS(sk1, ·) about the warrant ωi.

The oracle outputs certi. Add (ωi, certi) to the list WCERTi.

• (1 designates 1) A1 can request user 1 to designate itself. User 1 runs the al-

gorithms D and P , produces a warrant ω1 and send it to the adversary A1.

A1 queries the signing oracle OS(sk1, ·) about the warrant ωi and obtains a

certificate cert1 = OS(sk1, 01||ω1). Add (ω1, cert1) to the list WCERT1.

• (standard signature by 1) A1 can request user 1 to sign message M of his

choice by querying the signing oracle OS(sk1). Let σ = OS(sk1, 11||M).

Add the message\signature (M,σ) to the list STMS.

• (l-self delegation signature of user 1) A1 can make a query (1, l,M) to

the signing oracle OS(sk1, ·). If WCERT1[l] in the list WCERT1 has

been defined, the oracle returns σ = OS(sk1, 01||M ||ω1[l]||cert1[l]). Add

(ω1[l], cert1[l],M, σ) to the list SDS. Otherwise, the oracle returns ⊥.

Finally, A1 outputs a forgery (M,σ) or (ω, cert,M, σ). The output of the

experiment is defined as follows.

1. If the adversary A1’s forgery is (M,σ), where V (pkO, 11||M,σ) = 1 and

(M,σ) /∈ STMS, then the experiment Expos
PS,A1 returns 1.

2. If the forgery is (ω1[j], cert1[j],M, σ), where V (pkO, 00||ω1[j], cert1[j]) = 1,

V (pkO, 01||ω1[j]||cert1[j]||M,σ) = 1, and (ω1[j], cert1[j],M, σ) /∈ SDS,

then the experiment Expos
PS,A1 returns 1.

3. If the forgery is (ωi[j], certi[j],M, σ), i = 2, 3, · · · , n, where V (pkO, 00||ωi[j],

certi[j]) = 1, V (pki, 01||ωi[j]||certi[j]||M , σ) = 1, and (ωi[j], certi[j], ·, ·)
/∈WCERTi, then the experiment Expos

PS,A1 returns 1.

4. Otherwise, Expos
PS,A1 returns 0.

Here we in essence define the goal of the adversary A1: I. a standard signature

by user 1 for a message\signature pair that did not appear in the query list

STMS. II. a self delegation proxy signature (ω1[j], cert1[j],M, σ) of the target

user 1 such that (ω1[j], cert1[j],M, σ) /∈ SDS. III. a delegation warrant ωi[j]

and certificate certi[j] which was never generated by the original user 1 and

(ωi[j], certi[j], ·, ·) /∈ WCERTi. In other words, user 1 never designated user i

by warrant ωi[j] and certificate certi[j].

7

We define advantage of the adversary A1 in the experiment Expos
PS,A1 related

to scheme PS, an adversary A1 and security parameter k as

Advos
PS,A1(k) = Pr[Expos

PS,A1 = 1].

Now, we consider the experiment Expps
PS,A2. In this experiment, only one

target signer of an adversary A2 is the proxy signer. System parameters are

generated by running G on 1k. Then the key-generation algorithm K is run and

generates a public\private key pair (pkP , skP) of the proxy signer. Adversary A2

is given input the public key pkP of the target signer user 1. A2 can make the

following requests or quests in any order and any number of times.

• (i register pki)A2 can request to register user i by outputting a public\private

key pair (pki, ski) of the user i. These pairs are stored. We keep a list

WCERTi that are initially empty. The list WCERTi will consist of all

the warrants and certificates by which user i delegate the user 1 as the

proxy signer.

• (i designates 1) A2 can designate user 1 as a proxy signer. A2 chooses a

warrant ωi, produces a signature certi on the warrant ωi and sends them

to the user 1. Because A2 has the private key ski of user i, A2 runs signing

algorithm: S(ski, 01||ωi) = certi. User 1 checks validity of the delegation

by running the verification algorithm V (pki, ωi, certi). If the algorithm out-

puts 1, add (ωi, certi) to the list WCERTi. Otherwise abandons.

• (1 designates 1) A2 can request user 1 to designate itself. User 1 runs the

algorithm D and P and produces a warrant ω1 and sends it to the ad-

versary A2. A2 queries the signing oracle OS(sk1, ·) about the warrant ωi

and obtains a certificate cert1 = OS(sk1, 01||ω1). Add ω1, cert1 to the list

WCERT1.

• (standard signature by 1) A2 can request user 1 to sign message M of his

choice by querying the signing oracle OS(sk1). Let σ = OS(sk1, 11||M).

Add the message\signature (M,σ) to the list STMS.

• (l-self delegation signature of user 1) A2 can make a query (1, l,M) to

the signing oracle OS(sk1, ·). If WCERT1[l] in the list WCERT1 have

been defined, the oracle returns σ = OS(sk1, 01||M ||ω1[l]||cert1[l]). Add

(ω1[l], cert1[l],M, σ) to the list SDS. Otherwise, the oracle returns ⊥.

• (proxy signature by user 1 on behalf of i with the l-th delegation-by-

certificate) A2 can make a query (i, l,M) to the signing oracle OS(sk1, ·),
i = 2, 3, · · · , n. If WCERTi[l] in the list WCERTi has not been defined,

adversary A2 can produce (ωi[l], certi[l]) and add them to the list. Hence

8

we always assume that WCERTi[l] in the list WCERTi. The signing or-

acle OS(sk1, ·) returns σ, where σ = OS(sk1, 01||M ||ωi[l]||certi[l]). Add

(ωi[l], certi[l],M, σ) to the list PDSi.

Finally, A2 outputs a forgery (M,σ) or (ω, cert,M, σ). The experiment pro-

duces the output according to the following.

1. If the adversary A2’s forgery is (M,σ), where V (pkP , 11||M,σ) = 1 and

(M,σ) /∈ STMS, then the experiment Expps
PS,A2 returns 1.

2. If the forgery is (ω1[i], cert1[i],M, σ), where V (pkP , 00||ω1[i], cert1[i]) = 1,

V (pkP , 01||ω1[i]||cert1[i]||M,σ) = 1, and (ω1[i], cert1[i],M, σ) /∈ SDS, then

the experiment Expps
PS,A2 returns 1.

3. If the forgery is (ωi[j], certi[j],M, σ), where V (pkO, 00||ωi[j], certi[j]) = 1,

V (pki, 01||ωi[j]||certi[j]||M,σ) = 1, and (ωi[j], certi[j],M, σ) /∈ PDSi, then

the experiment Expps
PS,A2 returns 1.

4. Otherwise, Expps
PS,A2 returns 0.

Here we define the goal of the adversary A2: I. a standard signature by user

1 for a message\signature pair that did not appear the query list STMS. II.

a self delegation proxy signature (ω1[j], cert1[j],M, σ) by the target user 1 such

that (ω1[j], cert1[j],M, σ) /∈ SDS. III. the proxy signature (ωi[j], certi[j],M, σ) /∈
PDSi, i.e, the query 01||M ||ωi[j]||certi[j] to the signing oracle OS(sk1, ·) was not

made.

We define the advantage of adversary A2 in the experiment Expps
PS,A2 as

Advps
PS,A2(k) = Pr[Expps

PS,A2 = 1].

Finally we define the advantage of PS. For any t, q, the advantage of PS is

defined as

Advps,os
PS (t, q, k) = max

A
{Advps

PS,A(k),Advos
PS,A(k)}.

where the maximum is over all A having time-complexity t and making q oracle

queries. The time t of the adversary A is the total time of two experiments which

includes the time taken in parameter and key generation, and response to the

requests and the queries.

We say that a delegation-by-certificate proxy signature scheme PS is secure

if Advps,os
PS (t, q, k) is negligible for all the adversaries A of time polynomial t in

the security parameter k.

9

Theorem 1 Assume the underlying signature scheme DS = (G,K, S, V) is

secure against adaptive chosen-message attacks, then our delegation-by-certificate

proxy signature scheme PS = (G, K, S, V , (D,P), PS, PV , ID) constructed

as above is secure against adaptive chosen-message attacks and chosen-certificate

attacks.

We give proof sketch of the theorem in Appendix B.

4 A Concrete Delegation-by-certificate Proxy Signature Scheme

4.1 Construction of our proposed scheme

We first present a delegation-by-certificate proxy signature scheme based on short

signature scheme from the weil pairing (See Appendix A.2). The proxy signature

scheme PS comprises of the following phases.

• System Setup

The parameter-generation algorithmG generates (t, ε) co-Gap Diffie-Hellman

pair (G1, G2) with |G1| = |G2| = p and a generator pair (g1, g2), an ef-

ficiently computable isomorphism ψ : G2 −→ G1, a bilinear map e :

G1 × G2 −→ GT (See Appendix A.1) where GT is a order-p group, and

a public full-domain hash function H : {0, 1}∗ −→ G1. On input these

parameters, the key-generation algorithm K outputs an original signer O’s

public\private key pair (xO, yO) and a proxy signer P ’s public\private key

pair (xP , yP), yP = gxP
2 , yO = gxO

2 .

• Delegation-by-Certificate Phase

1. (Certificate Generation Phase) The original signer O generates a war-

rant ω ∈ {0, 1}∗, which records the delegation limits of authority, valid

period of delegation, and the identities of the original signer and proxy

signer. O computes cert = H(00||ω)xO and sends (ω, cert) to the proxy

signer P .
2. (Delegation Verification Phase) After the proxy signer receives the

delegation warrant and certification (ω, cert), P checks if e(g2, cert) =

e(yO,H(00||ω)). If so, P begins to execute the proxy signature gener-

ation algorithm. Otherwise, P refuses this delegation.

• Proxy Signature Generation Phase

P computes σ = H(01||M ||ω||cert)xP . Then, the proxy signature on mes-

sage M is (M,ω, cert, σ).

10

• Proxy Signature Verification Phase

To verify a delegation-by-certificate signature (M,ω, cert, σ), the proxy

verification algorithm PV is run. If e(g2, cert) = e(yO,H(00||ω)) and

e(g2, σ) = e(yP ,H(01||M ||ω||cert)), the verification algorithm outputs 1.

Otherwise, it outputs 0. The first verification equation checks the validity

of the certificate and the other equation checks the validity of the remaining

part of proxy signature.

4.2 Security Analysis of our Proposed Scheme

Now we consider the security of our proposed scheme in the security model for

delegation-by-certificate. An adversary aims at personating the original signer

or the proxy signer and forging a standard signature, or forging a proxy signa-

ture. We model chosen-message attack and chosen-warrant attack capabilities by

equipping the adversary with a signing oracle.

Let us first consider an adversary A1 with knowledge of the original signer’s

private key xO (here xi, i = 2, 3, · · · , n). Let qS, (resp. qH) be the number

of signature queries (resp. hash queries) the adversary A1 made. The succedent

theorem shows that our scheme can resist the chosen-message and chosen-warrant

attacks in random oracle model. During the proof of the theorem, hash function

is treated as a random function. For clearness, we divide hash queries into three

types: H1, H2 and H3. Supposed that A1 makes at most qH i
1 H1-queries about

(i, 00, ω) hash queries, at most qH i
2 H2-queries about (i, 01, ω, d, cert,M) hash

queries, and at most qH3 H3-queries about (11,M) hash queries. The total of

hash queries is still at most qH =
∑n

i=1(qH1 + qH2) + qH3, where user 1 is

the target user of the adversary A1 and A registers at most n − 1 users. The

signature queries contain at most qS1 queries of the standard signature and at

most qSi
2 queries of the proxy signature with the original signer user i, where

qS1 +
∑n

i=1 qS
i
2 = qS.

Theorem 2. Let (G1, G2) be a (t, ε)-co-GDH group pair of order p as defined

above. Then the proposed delegation-by-certificate proxy signature scheme is

(t′, qS, qH, ε′)-secure against existential forgery under an adaptive chosen-message

and chosen-warrant attack (in the random oracle model) for all t′ and ε′ for the

adversary A1, where

ε ≥ (1− 1/(qS + q + 1))qS+q+1 · 1/(qS + q + 1) · ε′. (1)

t ≤ t′ +
n∑

i=1

(qH i
1 + qH i

2 + 2qSi
2 + qi) + q1 + qH3 + 2qS1. (2)

11

We provide the proof of Theorem 2 in Appendix C.

Now, let us consider an adversary A2 with knowledge of the proxy signer’s

private key xP (here xi, i = 2, 3, · · · , n). Let qS, (resp. qH) be the number

of signature queries (resp. hash queries) the adversary A2 made The following

theorem shows that our scheme can resist the chosen-message and chosen-warrant

attacks of the adversary A2 in random oracle model. For clearness, we still divide

hash queries into three types: H1, H2 and H3. When user O (here user 1)

delegates user i, A2 makes at most qH i
1 hash queries. During the generation of

the proxy signature, A2 makes at most qH i
2 hash queries. During the generation

of the standard signature, A2 makes at most qH3 hash queries. The total of

these hash queries is still at most qH, i.e.
∑n

i=1(qH1 + qH2) + qH3 = qH. User

1 is the target user of the adversary A2 and A2 registers at most n − 1 users.

The signature queries contain at most qS1 queries of the standard signature and

at most qSi
2 queries of the proxy signature with the proxy signer user i, where

qS1 +
∑n

i=1 qS
i
2 = qS.

Theorem 3. Let (G1, G2) be a (t, ε)-co-GDH group pair of order p. Then the

proposed delegation-by-certificate proxy signature scheme is (t′, qS, qH, ε′)-secure

against existential forgery under an adaptive chosen-message and chosen-warrant

attack in the random oracle model for all t′ and ε′ for the adversary A2.

ε ≥ (1− 1/(qS + q + 1))qS1+qS1
2+q+1 · 1/(qS + q + 1) · ε′. (3)

t ≤ t′ +
n∑

i=1

(qH i
1 + qH i

2 + qSi
2 + 2qi) + qH3 + qS1. (4)

We provide the proof of Theorem 3 in Appendix C.

5 Conclusion

In this paper, we have presented an attack on that the delegation-by-certificate

proxy signature scheme [2]. We have proposed delegation-by-certificate proxy

signature schemes and constructed a concrete one based on Co-Gap group from

bilinear map. Our proxy signature scheme is existentially unforgeable against

adaptive-chosen message attacks and adaptive-chosen warrant attacks in random

oracle model. A method of reducing the scheme’s security to hardness of the

computational co-Diffie-Hellman problem is proposed. In addition, it is possible

to construct secure hierarchy proxy signatures by the proposed delegation-by-

certificate proxy signature schemes.

12

References

[1] D.Boneh, B. Lynn and H. Shacham. Short Signatures from the Weil Pairi-
ing. In Proceedings of Asiacrypt 2001, Lecture Notes in Computer Science,
Springer-Verlag, Vol. 2248, pp. 514-532, 2001.

[2] A.Boldyreva, A. Palacio, B. Warinschi. Secure Proxy Signature Schemes for
Delegation of Signing Rights. At:http://eprint.iacr.org/2003/096.

[3] S. J. Hwang and C. C. Chen. A new proxy multi-signature scheme. In Inter-
national workshop on cryptology and network security, Tamkang University,
Taipei, Taiwan, Sep. 26-28, 2001.

[4] S. J. Hwang and C. H. Shi. A simple multi-proxy signature scheme. In Pro-
ceedings of the Tenth National Conference on Information Security, pp. 134-
138, 2000.

[5] P. Kotzanikolaous, M.Burmester, and V. Chrisskopoulos. Secure transac-
tions with mobile agent in hostile environments. In Proc. ACISP 2000, Lec-
ture Notes in Computer Science 1841, Springer-Verlag, pp. 289-297, 2000.

[6] H. Kim, J. Baek, B. Lee, and K. Kim. Secrets for mobile agent using one-
time proxy signature. Cryptography and Information Security 2001, Vol 2/2,
pp. 845-850, 2001.

[7] S. J. Kim, S. J. Park, D. H. Won. Proxy Signatures, revisited. ICICS’97,
Lecture Notes in Computer Science 1334, pp. 223-232, Springer-Verlag.

[8] W.D. Lin and J.K. Jan. A security personal learning tools using a proxy blind
signature scheme. In Pro. of International Conference on Chinese Language
Computing, Illinois, USA, July 2000, pp. 273-277, 2000.

[9] B. Lee, H. Kim, and K. Kim. Strong proxy signgture and its applications.
In Proceedings of SCIS, 2001, pp. 603-608.

[10] B. Lee, H. Kim, and K. Kim. Secure mobile agent using strong non-
designated proxy signature. In Proc. ACISP 2001, pp. 474-486.

[11] M. Mambo, K. Usuda and E. Okamoto. Proxy signatures for delegating
signing operation. In Proc. 3rd ACM Conference on Computer and Commu-
nications Security, ACM Press, 1996, pp. 48-57.

[12] H.-U. Park and L.-Y. Lee. A digital nominative proxy signature scheme for
mobile communications. ICICS 2001, Lecture Notes in Computer Science
2229, Springer-Verlag, pp. 451-455, 2001.

[13] H. M. Sun. An efficient nonrepudiable threshold proxy signatures with known
signers. Computer Communications 22(8),1999, pp. 717-722.

[14] H.-M Sun and B.-T Hsieh. On the security of some proxy blind signature
schemes. In AISW2004, Dunedin, New Zealand. Conferences in Research
and Practice in Information Technology, Vol. 32.

[15] H. M. Sun, and B.-T. Hsieh. On the security of some proxy signature scheme.
At:http://eprint.iacr.org/2003/068.

13

[16] H. Sun, N. -Y. Lee, and T. Hwang. Threshold proxy signatures. In IEEE
Proceedings-Computes and Digital Technique, Vol. 146, IEEE Press, 1999,
pp. 259-263.

[17] Z.-W.Tan, Z.-J. Liu. Proxy blind signature scheme based on DLP. Journal
of Software, 2003/14, pp. 1931-1935, 2003.

[18] Guilin Wang, Feng Bao, Jianying Zhou, and Robert H. Deng. Security Anal-
ysis of Some Proxy Signatures. In Information Security and Cryptology -
ICISC 2003, Springer-Verlag, 2004.

[19] Huaxion Wang and Josef Pieprzyk. Efficient One-time proxy signatures. In
ASIACRYPT 2003, pp. 507-522, 2004, Springer-Verlag.

[20] K. Zhang. Threshold proxy signature schemes. In 1997 Information Security
Workshop, Japan, pp. 191-197, 1997.

A Preliminaries

Here we review a few concepts related to co-GDH Diffie-Hellem groups and the

short signature based on co-GDH Diffie-Hellem groups from bilinear maps. We

use the following notations:

1. G1 and G2 are two multiplicative cyclic groups of prime order p;

2. GT is an additional group of prime order p;

3. g1 is a generator of G1 and g2 is a generator of G2;

4. ψ is an isomorphism from G2 to G1 such that ψ(g2) = g1;

A.1 co-GDH Diffie-Hellem groups from bilinear maps

Definition 1. Let G1, G2 and GT be groups as mentioned above. A map

e : G1 × G2 −→ GT is a bilinear map if the map e satisfies the following

properties:

1. Bilinear: e(au, bv) = e(u, v)ab for all u ∈ G1, v ∈ G2 and a, b ∈ Z.
2. Non-degenerate: e(g1, g2) 6= 1.

3. Efficient Computable: There is a polynomial algorithm to compute e(u, v)

for all u ∈ G1, v ∈ G2.

Definition 2. Given two order-p multiplicative groups G1, G2, two elements

g2, g
a
2 ∈ G2 and h ∈ G1, compute ha ∈ G1. The problem is called Computa-

tional co-Diffie-Hellman (co-CDH) Problem on (G1, G2).

Definition 3. Given two order-p multiplicative groups G1, G2, two elements

g2, g
a
2 ∈ G2 and two elements h, hb ∈ G1, determine whether a = b mod p holds.

14

The problem is called Decisional co-Diffie-Hellman (co-DDH) Problem on

(G1, G2).

Before we define the co-GDH gap group pair, we recall the definition of the

advantage of an algorithm A in solving the co-CDH problem on (G1, G2):

Adv co-CDHA
def
= Pr[A(g2, ga

2 , h) = ha : a R← Zp, h
R← G1], (5)

where the probability is taken over the random choice of a from Zp and h from

G1, over the coin tosses of the algorithm A. If an algorithm A solve the co-

DDH problem in time at most t, and Adv co-CDHA at least ε, we say that A

(t, ε)-breaks Computational co-Diffie-Hellman on (G1, G2).

Definition 4. Two order-p groups (G1, G2) are a (t, ε)-co-GDH groups if

the following properties are satisfied:

1. The group action on G1 and G2 and the isomorphism ψ from G2 to G1 can

be computed in one time unit.

2. The Decisional co-Diffie-Hellman on (G1, G2) can be solved in one time

unit.

3. No algorithm (t, ε)-breaks Computational co-Diffie-Hellman on (G1, G2).

Definition 5. Suppose the order-p groups (G1, G2) and GT , e be given as

in Definition 1. If no algorithm (t, ε)-breaks Computational co-Diffie-Hellman on

(G1, G2), (G1, G2) are called a (t, ε)-bilinear group pair.

For a (t, ε)-bilinear group pair (G1, G2), decisional co-Diffie-Hellman (co-

DDH) problem on can be solved by using the efficiently-computable bilinear map

e as follows: For a tuple (g2, ga
2 , h, h

b), h ∈ G1, we have

a = b modp⇔ e(h, ga
2) = e(hb, g2).

A.2 Short signature scheme from the weil pairing

We recall the short signature from co-GDH groups from bilinear maps. Let

(G1, G2) be (t, ε) co-GDH group pair from bilinear maps. The signature scheme

is comprised of three algorithms, KeyGen, Sign and V erify. Let H : {0, 1}∗ −→
G1 be a full-domain hash function.

KeyGen take a random x ∈R Zp as input and outputs y = gx
2 . Then (y, x) is

a public/secret pair.

Sign takes a message M ∈ {0, 1}∗ and a secret key x ∈ Zp as input and

outputs a signature σ = hx, where h = H(M) ∈ G1.

15

V erify is given the public y ∈ G2, a message M ∈ {0, 1}∗, and a signature

σ ∈ G1, and outputs 1 if (g2, y, h, σ) is a valid co-Diffie-Hellman tuple, otherwise

outputs 0.

The signature scheme has been proved secure against existential forgery under

a chosen-message attack in the random oracle model (for details see [1]).

B The proof of Theorem 1

Theorem 1 Assume the underlying signature schemeDS = (G,K, S, V) is secure

against adaptive chosen-message attacks, then our delegation-by-certificate proxy

signature scheme PS = (G, K,S,V ,(D,P),PS,PV ,ID) constructed as above is

secure against adaptive chosen-message attacks and chosen-certificate attacks.

Proof Sketch : We prove it by reduction. If an adversary can forge a valid

standard signature or a self delegation proxy signature by the target signer user

1, it will contradict that the underlying signature scheme is secure. If the proxy

signer is an adversary A1 and A1 generates a valid proxy signature (ω, cert,M, σ),

then (ω, cert, ·, ·) is not in WCERTi, i.e, A1 forges a valid warrant and certificate

pair. If the original signer is an adversary A2 and A2 generates a valid proxy

signature (ω, cert,M, σ), then (ω, cert,M, σ) is not in PDSi. i.e, A2 forges a valid

underlying signature on 01||M ||ω||cert. These contradict that the underlying

signature scheme is secure.

C The proof of Theorem 2 and 3

Theorem 2. Let (G1, G2) be a (t, ε)-co-GDH group pair of order p as defined

above. Then the proposed delegation-by-certificate proxy signature scheme is

(t′, qS, qH, ε′)-secure against existential forgery under an adaptive chosen-message

and chosen-warrant attack (in the random oracle model) for all t′ and ε′ for the

adversary A1, where

ε ≥ (1− 1/(qS + q + 1))qS+q+1 · 1/(qS + q + 1) · ε′. (6)

t ≤ t′ +
n∑

i=1

(qH i
1 + qH i

2 + 2qSi
2 + qi) + q1 + qH3 + 2qS1 (7)

Proof: Suppose A1 is a forgery algorithm that (t′, qS, qH, ε′)-breaks the sig-

nature scheme. We will construct an algorithm B to solve co-CDH in (G1, G2)

with probability at least ε in time at most t by using the adversary A1.

Algorithm B is given a generator g2 of G2, u ∈ G2 and h ∈ G1, where u = ga
2 .

B attempts to output ha ∈ G1. Note that a is unknown to B. B must simulate

the challenger and respond to A1’s queries and requests.

16

• Setup B gives A1 the generator g2 of G2 and u · gr
2, r ∈R Zp as the public

key of the target user 1. Here user 1 is the proxy signer.

• Simulation B responds to the queries of the adversary A1.

1. (i registers pki) When A1 outputs a public\private key pair (pki, ski)

of the user i, B stores these key pairs, where i = 2, 3, · · · , n, n is the

number of the registered users. B keeps a list WCERTi that are

initially empty.

2. (H1-queries) WhenA1 queries (i, 00, ω) toH1-oracle, where i = 1, 2,· · ·,n,

we keepB’s response to these queries in the list LH i
1. If (i, 00, ω, d, ·, ·) ∈

LH i
1, B returns d . Otherwise, B randomly chooses a bit cj so that

Pr[cj = 0]=1/(qS + q + 1), where q =
∑n

i=1 qi, bj ∈ Zp. We as-

sumes A1 makes at most qH i
1 H1-queries about (i, 00, ω). The sub-

script j shows that this is the j-th queries to H1-oracle. If cj = 0,

dj = h · ψ(g2)bj ∈ G1, otherwise cj = 1, dj = ψ(g2)bj ∈ G1. B returns

dj and adds (i, oo, ω, dj , cj , bj) to the list LH i
1.

3. (H2-queries) When A1 queries (i, 01, ω, d, cert,M) to H2-oracle, where

i = 1, 2, · · · , n, we keep B’s response to the queries in the list LH i
2. We

assume A1 makes at most qH i
2 H2-queries about (i, 01, ω, d, cert,M)

and this is the j-th queries to H1-oracle, where j = 1, 2, · · · , qH i
2.

If (i, 01, ω, d, cert,M, dM , ·, ·) ∈ LH i
2, B returns dM . Otherwise, B

randomly chooses a bit cj so that Pr[cj = 0]=1/(qS + q + 1), bj ∈ Zp,

if cj = 0, dM = h · ψ(g2)bj ∈ G1; if cj = 1, dM = ψ(g2)bj ∈ G1. B

returns dM and add (i, 01, ω, d, cert,M, dM , cj , bj) to the list LH i
2.

4. (H3-queries) When A1 queries (11,M) to H3-oracle, we keep B’s re-

sponse to these queries in the list LH3. We assumes A1 makes at

most qH3 H3-queries about (11,M) and this is the j-th queries to H3-

oracle. If (11,M, d, ·, ·) ∈ LH3, B returns d. Otherwise, B randomly

chooses a bit cj so that Pr[cj = 0]=1/(qS + q + 1), bj ∈ Zp, where

j = 1, 2, · · · , qH3, if cj = 0, dj = h · ψ(g2)bj ∈ G1, otherwise cj = 1,

dj = ψ(g2)bj ∈ G1. Return dj . Add (11,M, dj , cj , bj) to the list LH3.

5. (i designates 1) A1 can play the role of the original signer i (i =

2, 3, · · · , n) to designate user 1 as a proxy signer. We assumes that A1

makes at most qi such designations from user i to user 1. A1 outputs ω,

then queries (i, 00, ω) to H1-oracle. B makes the same response as in

H1-oracle. After that, A1 outputs (i, ω, cert) and sends the tuple to B.

17

B checks the validity of the tuple (i, ω, cert). Finally, add (ω, d, cert)

to WCERTi.

6. (1 designates 1) A1 can request user 1 to designate itself. Assume

that A1 requests at most q1 self designations of user 1 and this is the

j-th request. User 1 produces a warrant ω1. The adversary A1 makes

H1-queries about (1, 00, ω). B responses as in H1-queries and returns

d. If cj = 0, B returns FAILURE, otherwise cj = 1, B lets certj =

ψ(u)bj ·ψ(g2)rbj , r ∈ Zp. B returns certj . Add (ωj , dj , certj , ·, ·) to the

list WCERT1.

7. (standard signature by 1) When A1 requests user 1 to sign message M

of its choice by querying the signing oracle OS(sk1), B first answers

H3-query about (11,M). If there exists s, such that (M,d, s) ∈ LS,

B returns s; otherwise for (11,M, d, c, b) in the list LH3, if c = 0, B

returns FAILURE; otherwise c = 1, B lets s = ψ(u)b · ψ(g2)rb, r ∈ Zp

and returns s. Add (M,d, s) to the list STMS. Assume A1 makes at

most qS1 queries of standard signature by user 1.

8. (proxy signature by user 1 on behalf of i with the l-th delegation-

by-certificate) Assume that A1 makes a query (i, l,M) to the sign-

ing oracle OS(sk1, ·), where i = 1, 2, · · · , n. If WCERTi[l] in the list

WCERTi has not been defined, B returns INVALID. If WCERTi[l]/∈
WCERTi, but (i, ωl, dl, certl,M, dM , s) ∈ PDSi (when i 6= 1) or

SDS (when i = 1), B returns s. If WCERTi[l]/∈ WCERTi and

(i, ωl, dl, certl,M, dM , s) /∈ PDSi (when i 6= 1) or SDS (when i =

1), B first answers H2-query about (i, 01, ωl, dl, certl,M) and re-

turns dM , then B responses to the signing oracle OS(sk1, ·) about

01||M ||ωl||certl: if cj = 0, B returns FAILURE, otherwise cj = 1, B

lets sj = ψ(u)bj · ψ(g2)rjbj , rj ∈ Zp, and returns sj . Add (ωl, dl, certl,

M , dM , sj) to the list PDSi when i 6= 1 or SDS when i = 1.

• Forgery A1 produces its forgery (M, s) or (ω, cert,M, s).

• Output Algorithm B generates its output according to the type of the

forgery.

[F1] If the forgery is the standard signature (M, s) of the target user, where

V (pk1, 11||M, s) = 1 and (M, ·, s) /∈STMS, B finds (11,M, ·, ·, ·) in

LH3. If c = 1, B returns FAILURE; otherwise c = 0, B computes

ha = s/(hr · ψ(u)b · ψ(g2)rb). The result follows from the fact d =

h · ψ(g2)b, s = [h · ψ(g2)b]a+r.

18

[F2] The forgery is the self-proxy signature (ω1, cert1,M, s) of the target

user, where V (pk1, 00||ω1, cert1) = 1, V (pk1, 01||M ||ω1||cert1, s) = 1

and (ω1, cert1,M, s) /∈ SDS. If (ω1, ·, cert1) ∈WCERT1, B finds

(1, 01, ω1, d, cert1,M, dM , ·, ·) in the list LH1
2 . Then B outputs ha

as in the event F1. If (ω1, ·, cert1) /∈WCERT1, then according to

V (pk1, 00||ω1, cert1)= 1, B can find (1, 00, ω1, d, ·, ·) in the list LH1.

B outputs ha as above.

[F3] The forgery is the proxy signature (ωi, certi,M, s) of the target user

with the original signer i, i = 2, 3, · · · , n, where V (pki, 00||ωi, certi) =

1, V (pk1, 01||M ||ωi||certi, s) = 1 and (ωi, certi,M, s) /∈PDSi. Whether

(ωi, ·, certi) ∈WCERTi or (ωi, ·, certi) /∈WCERTi, we always as-

sume that (i, 01, ωi, certi,M, ·, ·, ·) ∈ LH i
2. In fact, when the tu-

ple is not in the list LH i
2, B responses to the H2-query and add

(i, 01, ωi, certi,M, dM , ·, ·) to LH i
2. Then B can output ha as above.

We complete the description of algorithm B. Next, we analyze the suc-

cess probability ε of B in solving the given instance of the co-CDH problem

in (G1, G2). For the convenience, we make further assumptions that A1’s forgery

F1, F2 and F3 are independent from each other and happen with probability at

most ε′1, ε
′
2 and ε′3, respectively, where ε′ = ε′1 + ε′2 + ε′3. B succeeds in F1 if all

the following events happen.

E11: B does not abort as a result of any of A1’s signature queries, hash queries

and designation requests. A1’s signature queries includes standard signature

queries, self-proxy signature queries and the proxy signature queries with the

original signer user i for all i = 2, 3, · · · , n. A1’s designation requests refer to all

the self delegation of user 1 and all the delegation by user i.

E12: A1 produces a valid standard signature forgery (M, s).

E13: Event E12 happens and c = 0 for (11,M, ·, ·, ·) in the list LH3.

By B1 we denote the event that B succeeds in F1.

Pr(B1) = Pr[E11 ∧ E12 ∧ E13]

= Pr[E11] · Pr[E12|E11] · Pr[E13|E11 ∧ E12]. (8)

We will give a lower bound for these terms in the following claims.

Claims 1.1: Pr[E11]≥ (1− 1/(qS + q + 1))qS+q+1.

Proof. When A1 requests user 1 to sign i-th message M of its choice, B finds

(11,M, d, c, b) in the list LH3 or adds the tuple to LH3. Prior to the query, A1’s

view is indepent of the bit c. Moreover, d is uniformly distributed in G1 for any

19

bit c. Therefore the query (11,M) causes B to abort with the probability at most

1/(qS + q + 1). For qS1 queries of user 1’s standard signature, the probability

that B does not abort is at least (1 − 1/(qS + q + 1))qS1 . If we make a similar

analysis to the proxy signature queries (i, l,M) with the original signer user i

(i = 1, 2, · · · , n). And the probability that B does not abort during making

responses to the queries is at least (1 − 1/(qS + q + 1))
∑n

i=1
qSi

2 . Similarly, the

probability that B does not abort during answering requests of all the delegations

is at least (1− 1/(qS + q + 1))q.

Claims 1.2: Pr[E12|E11]≥ ε′1.
Proof: If B does not abort as a result of A1’s signature queries and delegation

requests, then the view of A1 in the simulation is identical to the view of A1 in

the actual attack. The claim follows from it.

Claims 1.3: Pr[E13|E11∧E12]≥ 1/(qS + q + 1).

Proof: Conditioned on the events E11 and E12, B will abort only if A1

produces a forgery (M, s) for which (11,M, d, c, ·) in LH3 has c = 1. Since A1

could not have made a standard signature query for M , c is independent of A1’s

view and therefore we obtain Pr[E13|(E11∧ E12)]≥ 1/(qS + q + 1).

From equation (8) and the above-mentioned claims, we have

Pr(B1) ≥ (1− 1/(qS + q + 1))qS+q+1 · 1/(qS + q + 1) · ε′1. (9)

By B2 we denote the event that B succeeds in F2. We define the events

needed for B2.

E21: It is the same as E11.

E22: A1 produces a valid self-proxy signature (ω, cert,M, s) of the target user.

E23: Event E22 happens and the bit c = 0 for (i, 01, ω, d, cert,M, dM , cj , bj) in

the list LH1
2 .

Claims 2.1: Pr[E21]≥ (1− 1/(qS + q + 1))qS+q+1.

Claims 2.2: Pr[E22|E21]≥ ε′2.
Claims 2.3: Pr[E23|(E21∧E22)]≥ 1/(qS + q + 1).

Proof: Conditioned on the events E21 and E22, B will abort only if A1

produces a forgery (M, s) for which (i, 01, ω, d, cert,M, dM , cj , bj) in the list LH1
2

has c = 1. Since A1 could not have made a self proxy signature query for

(1, l,M), c is independent of A1’s view and therefore we obtain Pr[E23|(E21∧
E22)]≥ 1/(qS + q + 1). Thus, we have

Pr(B2) ≥ (1− 1/(qS + q + 1))qS+q+1 · 1/(qS + q + 1) · ε′2. (10)

By B3 we denote the event that B succeeds in F3. We define the events

20

needed for B3.

E31: It is the same as E11.

E32: Adversary A1 produces a valid proxy signature (ω, cert,M, s) in stead of

the target user 1.

E33: Event E32 happens and c = 0 for (i, 01, ω, d, cert,M, dM , cj , bj) in the list

LH i
2, where i = 2, 3, · · · , n.

Claims 3.1: Pr[E31]≥ (1− 1/(qS + q + 1))qS+q+1.

Claims 3.2: Pr[E32|E31]≥ ε′2.
Claims 3.3: Pr[E33|(E31∧E32)]≥ 1/(qS + q + 1).

Proof: Conditioned on the events E21 and E22, B will abort only if A1

produces a forgery (M, s) for which (i, 01, ω, d, cert,M, dM , cj , bj) in the list LH i
2

has c = 1. Since A1 could not have made a self proxy signature query for

(1, l,M), c is independent of A1’s view and therefore we obtain Pr[E23|(E21∧
E22)]≥ 1/(qS + q + 1). Thus, we have

Pr(B1) ≥ ε′2 · (1− 1/(qS + q + 1))qS+q+1 · 1/(qS + q + 1). (11)

Therefore, the success probability ε of B in solving the given instance of the

co-CDH problem in (G1, G2) is

Pr(B) = Pr(B1) + Pr(B2) + Pr(B3) (12)

≥ (ε′1 + ε′2 + ε′3) · (1− 1/(qS + q + 1))qS+q+1 · 1/(qS + q + 1) (13)

= (1− 1/(qS + q + 1))qS+q+1 · 1/(qS + q + 1) · ε′. (14)

B’s running time is A1’s running time plus the time taken to responds to all

the queries and requests from A1. B responds to
∑n

i=1 qH
i
1 H1-queries,

∑n
i=1 qH

i
2

H2-queries and qH3 H3-queries. B’s responses to at most q1 self delegation

queries includes at most q1 H1-answers and at most q1 certification generations.

For
∑n

i=2 qi delegation queries with the original (user i), B needs only at most∑n
i=2 qi H1-responses. B’s responses to qS1 standard signature queries include

at most qS1 H3-answers and at most qS1 signature generations. B’s responses

to
∑n

i=1 qS
i
2 proxy signature queries with the original user i includes at most∑n

i=1 qS
i
2 H2-answers and at most

∑n
i=1 qS

i
2 signature generations. Each response

to Hash-oracle and each signature generation require an exponentiation in G1,

respectively. Hence, the total running time t of B satisfies

t ≤ t′ +
n∑

i=1

(qH i
1 + qH i

2 + 2qSi
2 + qi) + q1 + qH3 + 2qS1. (15)

Thus, we have completed the proof of the theorem.

21

Theorem 3. Let (G1, G2) be a (t, ε)-co-GDH group pair of order p. Then the

proposed delegation-by-certificate proxy signature scheme is (t′, qS, qH, ε′)-secure

against existential forgery under an adaptive chosen-message and chosen-warrant

attack in the random oracle model for all t′ and ε′ for the adversary A2.

ε ≥ (1− 1/(qS + q + 1))qS1+qS1
2+q+1 · 1/(qS + q + 1) · ε′. (16)

t ≤ t′ +
n∑

i=1

(qH i
1 + qH i

2 + qSi
2 + 2qi) + qH3 + qS1. (17)

Proof: Suppose A2 is a forgery algorithm that (t′, qS, qH, ε′)-breaks the sig-

nature scheme. We will construct an algorithm C to solve co-CDH in (G1, G2)

with probability at least ε in time at most t by using the adversary A2.

Algorithm C is given a generator g2 of G2, u ∈ G2 and h ∈ G1, where u = ga
2 .

C attempts to output ha ∈ G1. C simulates the challenger and responds to A2’s

queries.

• Setup C gives A2 the generator g2 of G2 and u · gr
2 as the public key of the

target user 1. Here user 1 is the original signer.

• Simulation C responds to the queries of the adversary A2 as B responds

to the queries of the adversary A1 with these exceptions that C responds

to the requests of user 1 designating user i instead of that requests of user

i designating user 1. In addition, C responds to a (i, l,M) proxy signature

query in a different way from B.

1. (1 designates i) A2 can play the role of the proxy signer i (i =

2, 3, · · · , n). We assume that A2 makes at most qi designation re-

quests from user 1. C outputs a warrant ω, and then makes a re-

sponse to H1-oracle queries about (i, 00, ω). If (i, 00, ω, d, ·, ·) is in

LH i
1, C returns d. Otherwise, C randomly chooses a bit cj so that

Pr[cj = 0]=1/(qS + q + 1), where q =
∑n

i=1 qi, bj ∈ Zp. If cj = 0,

dj = h · ψ(g2)bj ∈ G1; otherwise cj = 1, dj = ψ(g2)bj ∈ G1. Add

(i, 00, ωj , dj , cj , bj) to the list LH i
1. If cj = 0, C returns FAILURE;

otherwise cj = 1, C lets certj = ψ(u)bj · ψ(g2)rbj , r ∈ Zp. C returns

(ωj , certj) and adds (ωj , dj , certj , ·, ·) to the list WCERTi.

2. (proxy signature by user i on behalf of user 1 with the l-th delegation-

by-certificate) Assume that A2 makes a query (i, l,M). In the case

i = 1, C responses to self delegation signature on message M by

using the l-th self delegation certificate. If WCERT1[l] in the list

22

WCERT1 has not been defined, C returns INVALID; otherwise if (1,

ωl,dl,certl,M ,dM ,s)∈ SDS, C returns s; otherwise C first answers H2-

query about (1,01, ωl,dl,certl,M) and returns dM , then C responses to

the signing oracle OS(sk1, ·) about 01||M ||ω1[l]||cert1[l]: if cj = 0, C

returns FAILURE, otherwise cj = 1, C lets sj = ψ(u)bj ·ψ(g2)rjbj , rj ∈
Zp and returns sj . Add (ωl, dl, certl,M, dM , sj) to the list SDS. In the

case i = 2, 3, · · · , n, if WCERTi[l] in the list WCERTi has not been

defined, C returns INVALID; otherwise if (i, 01, ωl, dl, certl,M, dM , ·, ·)
is in LH i

2, C returns dM . Otherwise C answers H2-query about

(i, 01, ωl, dl, certl,M) and returns dM . A2 uses the private key ski

and (ωl, certl, dl) to generate a proxy signature s on message M .

C checks the validity of the signature and adds the valid signature

(i, ωl, dl, certl,M, dM , s) to PDSi.

• Forgery A2 produces its forgery (M, s) or (ω, cert,M, s).

• Output Algorithm C generates its output according to the type of the

forgery.

[F1′] If the forgery is the standard signature (M, s) of the target user, where

V (pkP , 11||M, s) = 1 and (M, ·, s) /∈STMS, C finds (11,M, ·, ·, ·) ∈
LH3. If c = 1, C returns FAILURE; otherwise c = 0, C computes

ha = s/(hr · ψ(u)b · ψ(g2)rb).

[F2′] The forgery is the self-proxy signature (ω1, cert1,M, s) of the target

user, where V (pk1, 00||ω1, cert1) = 1, V (pk1, 01||M ||ω1||cert1, s) = 1

and (ω1, cert1,M, s) /∈ SDS. If (ω1, ·, cert1) ∈WCERT1, C finds

(1, 01, ω1, d1, cert1,M, dM , ·, ·) in the list LH1
2 . Then C outputs ha

as in the event F1′. If (ω1, ·, cert1) /∈WCERT1, then according to

V (pk1, 00||ω1, cert1) = 1, C can find (1, 00, ω1, d1, ·, ·) in the list LH1.

C outputs ha as above.

[F3′] The forgery is the proxy signature (ωj , certj ,M, s) of the target user

with the proxy signer i, where V (pk1, 00||ωj , certj) = 1, V (pki, 01||M ||
ωj || certj ,s)= 1 and (ωj , certj ,M, s) /∈ PDSi. In fact, since A2 owns

the private key ski, it is enough to only require that (ωj , certj ,M, s)

has (ωj , ·, certj) /∈WCERTi. C finds (i, 00, ω, dj , cj , bj) in the list

LH i
1, then C outputs ha as in the event F2′.

Next, we analyze the success probability ε of C in solving the given instance of

the co-CDH problem in (G1, G2). We make the assumption that all A2’s forgeries

23

are independent from each other, and F1′, F2′ and F3′ happen with probability

at most ε′1, ε
′
2 and ε′3, respectively, where ε′ = ε′1 + ε′2 + ε′3.

C succeeds in F1′ if the following three events all happen.

E11′: C does not abort as a result of any of A2’s signature queries, hash queries

and designation requests. A2’s signature queries includes standard signature

queries and self-proxy signature queries. Noted that C can response to all the

proxy signature queries with the original signer user i for all i = 2, 3, · · · , n with

probability 1. A2’s designation requests refer to all the self delegation of user 1

and all the delegations to user i.

E12′: A2 produces a valid standard signature forgery (M, s).

E13′: Event E12′ happens and c = 0 for (11,M, ·, ·, ·) in the list LH3.

By C1 we denote the event that C succeeds in F1′.

Pr(C1) = Pr[E11′ ∧ E12′ ∧ E13′]

= Pr[E11′] · Pr[E12′|E11′] · Pr[E13′|E11′ ∧ E12′]. (18)

We will give the lower bound for these terms in the following claims.

Claims 1.1: Pr[E11′]≥ (1− 1/(qS + q + 1))qS1+qS1
2+q+1.

Proof. If A2 requests user 1 to sign i-th message M of its choice, C finds

(11,M, d, c, b) in the list LH3 or adds the tuple to LH3. Prior to the query, A2’s

view is independent of c. Moreover, d is uniformly distributed in G1 for any bit

c. Therefore the query (11,M) causes C to abort with the probability at most

1/(qS+q+1). For qS1 queries of user 1’s standard signature, the probability that

C does not abort is at least (1−1/(qS+q+1))qS1 . If we make a similar analysis to

a self proxy signature queries (1, l,M), we can obtain that the probability C does

not abort during making responses to the queries is at least (1−1/(qS+q+1))qS1
2 .

Similarly, the probability that C does not abort during answering requests of all

the delegations is at least (1− 1/(qS + q + 1))q.

Claims 1.2: Pr[E12′|E11′]≥ ε′1.
Claims 1.3: Pr[E13′|E11′∧E12′]≥ 1/(qS + q + 1).

From equation (18) and the above-mentioned claims, we have

Pr(C1) ≥ (1− 1/(qS + q + 1))qS1+qS1
2+q+1 · 1/(qS + q + 1) · ε′1. (19)

We define C2,C3 similarly as we define B2 and B3. Thus, we can obtain the

following result.

Pr(C2) ≥ ε′2 · (1− 1/(qS + q + 1))qS1+qS1
2+q+1 · 1/(qS + q + 1). (20)

Pr(C3) ≥ ε′3 · (1− 1/(qS + q + 1))qS1+qS1
2+q+1 · 1/(qS + q + 1). (21)

24

Therefore, the success probability ε of C in solving the given instance of the

co-CDH problem in (G1, G2) is

Pr(C) = Pr(C1) + Pr(C2) + Pr(C3)

≥ (1− 1/(qS + q + 1))qS1+qS1
2+q+1 · 1/(qS + q + 1) · ε′. (22)

C’s running time is A2’s running time plus the time taken to respond to the

queries and requests. C responds to
∑n

i=1 qH
i
1 H1-queries,

∑n
i=1 qH

i
2 H2-queries

and qH3 H3-queries. C’s responses to at most q1 self delegations queries includes

at most q1 H1-answers and at most q1 certification generations. For
∑n

i=2 qi del-

egation queries with the proxy user i, C needs at most
∑n

i=2 qi H1-responses and

at most
∑n

i=2 qi certificate generations. C’s responses to qS1 standard signature

queries includes at most qS1 H3-answers and at most qS1 signature generations.

C’s responses to
∑n

i=1 qS
i
2 proxy signature queries with the proxy user i only

needs at most
∑n

i=1 qS
i
2 H2-answers. Each response to Hash-oracle and each sig-

nature generation require an exponentiation in G1, respectively. Hence, the total

running time t of C satisfies

t ≤ t′ +
n∑

i=1

(qH i
1 + qH i

2 + qSi
2 + 2qi) + qH3 + qS1. (23)

Thus, we have completed the proof of Theorem 3.

25

