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Abstract.

An attack is possible upon all three RSA analogue PKCs based on singu-
lar cubic curves given by Koyama. While saying so, Seng et al observed
that the scheme become insecure if a linear relation is known between two
plaintexts. In this case, attacker has to compute greatest common divisor
of two polynomials corresponding to those two plaintexts. However, the
computation of greatest common divisor of two polynomials is not efficient.
For the reason, the degree e of both polynomials, an encryption exponent,
is quite large. In this paper, we propose an algorithm, which makes the at-
tack considerably efficient. Subsequently, we identify isomorphic attack on
the Koyama schemes by using the isomorphism between two singular cubic
curves.
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1. Introduction.

Koyama et al [3, 5, 7]first time constructed RSA type public key cryp-
tosystems based on singular cubic curve where security based on factoring
problem. In these schemes, two plaintexts mx,my are used to form a point
M = (mx,my) on the singular cubic curve over Zn, and the ciphertext is a
point C = e×M on the same curve. Later, Seng et al [10] have shown that
all three schemes are equivalent to each other by an isomorphism mapping
and become insecure if a linear relation is known between two plaintexts.
For this attack, attacker has to compute the greatest common divisor (GCD)
of two polynomials both of degree e, where e is the encryption exponent.
This attack was found less efficient because of its slow speed. Now in this
paper, we propose a different algorithm of the same attack, which makes it
more efficient than that of the Seng et al. In our attack, the attacker has to
compute the GCD of two polynomials of degree six and of degree e. Next, in
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this article, we identify isomorphic attack. From this, an attacker can forge
signature of receiver B without knowing B’s secret key. For this attack, a
singular cubic curve is needed, isomorphic to the curve corresponding to the
plaintext. Historically it was searched by Koyama for the KOMV scheme
which was based on nonsingular elliptic curve [6].

2. Singulaer Cubic Curve.

Consider the congruence equation
y2 + axy = x3 + bx2mod p (1)

a, b ∈ Zp .
The set of all solutions (x, y) ∈ Zp×Zp to (1) denoted by Cp(a, b) is called

singular cubic curve.
Let Fp be a finite field with p elements and Fp

? be the multiplicative
group of Fp. Clearly the order of Fp

? denoted by ]Fp
? = p− 1.

A nonsingular part of singularcubic curve denoted by Cp(a, b) is defined
as the set of solutions (x.y) ∈ Fp × Fp to equation (1) excluding a singular
point (0, 0), but including the point at infinity, denoted by ©.

It is well known that the same addition laws defined by the chord and
tangent method in the case of elliptic curve still holds in the singular cubic
curve [8, 9]. For any point P ∈ Cp(a, b). For the sum P +©, by definition,
is equal to P , which is also equal to ©+ P . For P = (x0, y0), we define −P
the additive inverse of P as the point (x0,−y0−ax0). The sum of P +(−P )
is defined to be ©. For P1 = (x1, y1) and P2 = (x2, y2) with P1 6= P2 the
sum P1 + P2 = (x3, y3) is calculated as follows:

x3 = γ2 + aγ− b−x1−x2 y3 = γ(x1−x3)− y1 (2)
where

γ =

{
y2−y1

x2−x1
, if (x1, y1) 6= (x2, y2),

3x2
1+2bx1−ay1

2y1+ax1
if(x1, y1) = (x2, y2).

The existence of such addition law makes Cp(a, b) a finite abelian group.
In fact, the group structure of Cp(a, b) is well known [8, 2]. For any k ∈ Fp

the multiplication operation ⊗ is defined as bellow :

k ⊗ (x, y) =
︷ ︸︸ ︷
(x, y)⊕ (x, y)⊕ (x, y)⊕ .....⊕ (x, y) k times over Cp(a, b)

Let n be the product of two large primes p and q (> 3). Let Zn =
(1, 2, 3, ...., n− 1) and Zn

? be a multiplicative group of Zn and consider the
congruence equation

y2 + axy = x3 + bx2 over Zn where a, b∈Zn. (3)
The nonsingular part of a singular cubic curve over Zn denoted by Cn(a, b),

is defined, as the set of solutions (x, y) ∈ Zn×Zn to equation (3) excluding a
singular points which are either congruent to (0, 0)modulo p or congruent to
(0, 0)modulo q, but including a point at infinity ©. By Chinese Remainder
Theorem, Cn(a, b) is isomorphic as a group to Cp(a, b)× Cq(a, b).
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3. RSA Type Schemes Based on Singular Cubic Curves

Three RSA type schemes based on singular cubic curve over Zn are pro-
posed as below:

3.1. Scheme I [7]. This cryptosystem is based on the singular cubic curve
of the form

Cn(0, b) := y2 ≡ x3 + bx2(mod n) (4)

where n = pq is the product of two large primes. The encryption key e is
chosen such that (e,N) = 1 where N = lcm(p − 1, p + 1, q − 1, q + 1).The
decryption key d is chosen such that ed ≡ 1mod N . The public key is the
pair (n, e) and the private keys are d, p and q. To encrypt a plaintext pair

M = (mx,my), the sender first computes b = m2
y−m3

x

m2
x

(mod n) and then the
ciphertext is computed as C = e×M on the singular cubic curve Cn(0, b).
The complete ciphertext is (C, b). The Receiver, who knows the decryption
key d can get the plaintext (mx,my) by computing d× (cx, cy) = (mx,my)
over the singular cubic curve Cn(0, b).

3.2. Scheme II [3]. This cryptosystem is based on the singular cubic curve
of the form

Cn(a, 0) := y2 + axy ≡ x3(mod n) (5)

where n = pq is the product of two large primes. The encryption key e is
chosen such that (e,N) = 1 where N = lcm(p − 1, q − 1). The decryption
key d is chosen such that ed ≡ 1mod N . The public key is the pair (n, e) and
the private keys are d, p and q. To encrypt a plaintext pair M = (mx,my),

the sender first computes a = m3
x−m2

y

mxmy
(modn) and then the ciphertext is

computed as C = e×M on the singular cubic curve Cn(a, 0).The complete
ciphertext is (C, a). The Receiver, who knows the decryption key d can
get the plaintext (mx,my) by computing d × (cx, cy) = (mx,my) over the
singular cubic curve Cn(a, 0).

3.3. Scheme III [5]. This cryptosystem is based on the singular cubic curve
of the form

Cn(a, b) := (y − αx)(y − βx) ≡ x3(mod n) (6)

where n = pq is the product of two large primes. The encryption key e is
chosen such that (e,N) = 1 where N = lcm(p − 1, q − 1). The decryption
key d is chosen such that ed ≡ 1mod N . The public key is the pair (n, e) and
the private keys are d, p and q. To encrypt a plaintext pair M = (mx,my),
sender first chooses a randomly and computes . Then the ciphertext is
computed as C = e×M on the singular cubic curve Cn(α, β).The complete
ciphertext is (C,α, β). The Receiver, who knows the decryption key d can
get the plaintext (mx,my) by computing d × (cx, cy) = (mx,my) over the
singular cubic curve Cn(α, β).
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Seng et al [10] have given following two equivalence relation between
scheme I, II and III.
Reduction of Scheme II to Scheme I: The transformation (x, y) →
(x, y + a

2x) will transform the curve Cn(a, 0) to the curve Cn(0, b) with
b = a24. Using this transformation one can reduce scheme II to Scheme I.
Reduction of Scheme III to Scheme I: The transformation (x, y) →
(x, y − α−β

2 x)will transform the curve Cn(α, β) to the curve Cn(0, b) with
b = (α−β

2 )2. Using this transformation, one can reduce Scheme III to the
Scheme I.

4. An Efficient Algorithm For Linearly Related Plaintext Attack.

In this section, we discuss the situation when two linearly related messages
are both encrypted with the same public key. This situation was first time
discussed by Coppersmith et al [1] for the RSA scheme and then by Seng
et al. [10] for the singular cubic curve based RSA. Now we analyze said
situation for singular cubic curve based RSA and propose a more efficient
algorithm for the attack then those of Seng et al. In section 3 we have
already seen that the scheme II and scheme III are reducible to the scheme
I. So, let us consider the scheme I to discuss our attack. Let M = (mx,my)
and M ′ = (m′

x,m′
y) be two plaintexts linearly related by the known relations

m′
x ≡ αmx + γ (7)

m′
y ≡ βmx + δ (8)

where α, γ, β and δ are integers in Zn
∗. Assume that the encryption of

the plaintexts (mx,my) and (m′
x,m′

y) are given by

(cx, cy) ≡ e× (mx,my)(mod n) (9)

(c′x, c′y) ≡ e× (m′
x,m′

y)(mod n) (10)
From the above ciphertext we can derive the curves Cn(0, b) and Cn(0, b′)

upon which the plaintexts must lie. Thus we have

m3
x + bm2

x −m2
y ≡ 0 (mod n)

(αmx + γ)3 + b′(αmx + γ)2 − (βmy + δ)2 ≡ 0 (mod n)
By above two equations we can write my as a polynomial w in mx with

w(x) =
(αx + γ)3 + b′(αx + γ)2 − β2(x3 + bx2)

2 βδ
(11)

by equation (4) it is clear that w(mx) ≡ my(mod n). Now let f(x) ≡
x3 + bx2−w(x)2(mod n), which is a polynomial of degree 6. From equation
(4) we see that f(mx) ≡ 0(mod n) on Z[x]/(n, f(x)). Next we compute
e × (x,w(x)) ≡ (h(x), j(x))(mod n) over Z[x]/(n, f(x)). Then we have the
following equations

h(mx) ≡ cx(mod n)
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j(mx) ≡ cy(mod n).
Finally, we compute gcd(h(x)− cx, f(x)) which is a linear polynomial of

the form k(x−mx). This gives us the plaintext mx. Knowing this half of the
plaintext (mx,my) = M , we can compute the other half my by w(mx) = my.
Finally because of the linear relation between M and M ′ we can compute
the plaintext M ′.

4.1. Comparison between Seng et al Algorithm (SA)and Proposed
Algorithm(PA).
SA- Let two linearly related messages are (x, y) and (x + ∆, y + ∆).

1. In SA, attacker has to compute first coordinate of e × (x, y) and
e × (x + ∆, y + ∆) by using the division polynomial. Let it be c1x and
c2x.

2. In SA, the attacker has to compute the gcd of two polynomials G(x)
and H(x) both of degree e, where G(x) = xe−c1xφe(x, .)modn, and H(x) =
(x + ∆, y + ∆)− c2xφe(x + ∆, .)modn.

3. SA depends on e, hence, for higher values of e attack is less applicable.
PA- Let two linearly related messages are M = (mx,my) and M ‘ = (mx‘,my‘),
where mx‘ = αmx+γ and my‘ = βmx+δ. 1. In PA, attacker has to compute
first coordinates of e× (x,w(x)) where

w(x) =
(αx + γ)3 + b′(αx + γ)2 − β2(x3 + bx2)

2 βδ

. Let e× (x,w(x)) = (h(x), J(x)) and f(x) ≡ x3 + bx2 − w(x)2(mod n).
2. In PA, attacker has to compute the gcd of two polynomials G(x) =

h(x) − cx and f(x). Here, G(x) is a polynomial of degree e and f(x) is a
polynomial of degree 6.

3. PA does not depend upon the encryption exponent; hence, it is appli-
cable for each value of e.

4. In PA, since one polynomial is of degree 6 so we may assume that the
computational efficiency is faster than SA.

5. Isomorphic Attack

TThe idea behind the proposed attack is based on the isomorphic property
of two singular cubic curves. Such type of attack was first time identified
by Koyama for the KMOV scheme [6]. We first give definition and the
isomorphic property as follows.
Definition 5.1 Let n = pq (p, q are primes), and Cn(0, b1) and Cn(0, b2) be
singular cubic curves such that

Cn(0, b1) : y2 = x3 + b1x
2(mod n), Cn(0, b2) : y2 = x3 + b2x

2(mod n).
Cn(0, b1) and Cn(0, b2) are isomorphic if there exist up ∈ Z∗

p and uq ∈ Z∗
q

such that,
b2 ≡ u2

pb1(mod p), and b2 ≡ u2
qb1(mod q).
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By using the property of singular elliptic curve over field and Chinese
Remainder Theorem, the following isomorphic property of singular cubic
curve over ring is shown [9]as bellow:

Let Cn(0, b11) : y2 = x3 + b1x
2(mod n) and Cn(0, b2) : y2 = x3 +

b2x
2(mod n) be two singular cubic curves. Let M1 = (m1x,m1y), C1 =

(c1x, c1y) ∈ Cn(0, b1) and M2 = (m2x,m2y), C2 = (c2x, c2y) ∈ Cn(0, b2),
where C1 = e ×M1 over Cn(0, b1) and C2 = e ×M2 over Cn(0, b2). Then
the following statements are equivalent,

1. Cn(0, b1) and Cn(0, b2) are isomorphic
2. b2 ≡ u2b1(mod n) for some u ∈ Z∗

n (12)
3. c2x ≡ u2c1x(mod n), c2y ≡ u3c2y(mod n) for some u ∈ Z∗

n (13)
4. m2x ≡ u2m1x(mod n), m2y ≡ u3m2y(mod n) for some u ∈ Z∗

n (14)
If C1, C2 and M1 satisfying the congruence (13) are given, then M2 can

be easily obtained by computing the congruence (14). It is not difficult to
check whether or not congruence (13) holds.

Suppose, an attacker A wants to victimize B by forge signature on a
plaintext M = (mx,my) without B’s consent. For this, A generates another
message M ′ with B’s public key nB and random integer u:

M ′ = (u2mx(mod nB), u3my(mod nB)),
And sends M ′ to B. B makes a signature S′ = (s′x, s′y) for M ′ with his

secret key dB:
S′ = dB ×M ′ over CnB (0, b′B).
Then, A computes the signature
S = (sx, sy) = (u−2s′x(mod nB), u−3s′y(mod nB)). Which is B’s signature

for the message M.
Note that the curve CnB (0, bB) contains points (M,S) and the curve

CnB (0, b′B) contains points (M ′, S′).
Using this technique A can forge B’s signatures without B’s secret key.

6. Conclusion.

IIn the attack proposed by Seng et al [10] attacker has to compute the
GCD of two polynomials both of degree e while in our proposed attack,
attacker has to compute the GCD of two polynomials of degree 6 and of
degree e. Therefore, the attack proposed by us is more efficient than that of
the Seng et al. Next, by using the Isomorphic attack one can forge signature
of system generator on any message without using the secret key.
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