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Abstract 
In this paper we propose a new class of cryptosystems that 
utilizes metric continuity. The geometric cryptosystem 
considered in this paper as the main example of metric 
cryptosystems has a number of interesting properties such 
as resistance to several basic cryptographic attacks, 
efficiency and detection of transmission errors.   
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Introduction 
 
 Many existing cryptosystems are based on mathematical concepts such as 
Boolean functions, finite fields, discrete groups, etc.  AES, for example, utilizes Galois 
theory of finite fields.  In more recent works such as [7], [8], and [10], more advanced 
mathematical concepts of arithmetical and algebraic geometry were employed.   
 In this paper we propose a class of cryptographic systems based on mathematical 
concept of geometric continuity.  The main feature of such continuous cryptosystems is 
that plaintexts and ciphertexts are elements of such domains as real numbers or real 
vector spaces, and encryption/decryption procedures involve continuous transformations 
of these domains.  Apparently, this attempt to utilize the geometric continuity in 
cryptography is new.  So far we have found only one prior work [4] that somehow 
employs continuity: the Ajtai-Dwork cryptosystem introduced in this paper deals with a 
collection of parallel hyperplanes in n-dimensional vector space.   
 Informally speaking, continuity is a natural way to introduce randomness, which 
is important for security of cryptosystems (see e.g., [6]).  Randomization of keys deflects 
brute force attacks against the keys and randomization of ciphertexts deflects 
cryptanalysis based on intercepted ciphertexts.  
 Speaking mathematically, a continuous cryptographic system (CCS) is organized 
as follows.  Each plaintext is a point of a topological space X; each ciphertext is a point 
of a topological space Y; and each encryption/decryption procedure is a continuous 
isomorphism between X and Y. We will rigorously introduce continuous cryptosystems 
and discuss their properties in Section 1. (To enhance GCS security, it is reasonable to 
assume that prior to the moment GCS begins its work nearby texts in a natural language 
are transformed into mutually distant vectors)  
 Since a typical topological space is uncountable, like n-dimensional space n, 
CCS is not a “real,” but rather an “ideal” cryptosystem.   
 In order to make CCS a working cryptosystem, the continuous objects are to be 
“discretized.”   In Section 2 we introduce a concept of metric cryptosystem (MCS) in 
which such “discretization” is performed as a certain rounding procedure.  Informally 
speaking, a metric cryptosystem is a continuous cryptosystem enhanced with the 
following data:  

1. a certain finite subset  of X is designated as the space of plaintexts; 
2. a certain finite subset  of Y is designated as the space of ciphertexts; 
3. each encryption/decryption procedure is followed by rounding (which guarantees 

the transformation   ). 
 
 We will rigorously define metric cryptosystems and discuss their properties in 
Section 2.   
 We expect that the discrete cryptosystem derived from each MCS, which is built 
upon any strong topology, will posses a remarkable property of natural randomization of 
ciphertexts.  Unlike, for example, in Blowfish, the discrete cryptosystem derived from 
MCS does not pursue any special randomization strategy.  MCS-induced randomization 
is natural in that sense that it is generated by the very computation of a continuous 
function followed by customary procedures of rounding of results of the computations.    
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 Our expectation was confirmed by what we consider to be the most interesting 
example of MCS – a cryptosystem that we call Geometric Cryptosystem (GCS).   
 Another benefit of each MCS is its efficiency in detecting errors during 
transmissions of ciphertexts.  Consider, for example, the situation when a plaintext is 
presented by a discrete point in n (i.e., by a point that belongs to the integer lattice  n in 

n, where  denotes the set of all integers).  The corresponding ciphertext produced by a 
continuous transformation is not discrete anymore.  Therefore, if an error has occurred 
during the transmission of the ciphertext, it is highly unlikely that the decryption 
procedure will result in a discrete point.  Such a non-discrete result of decryption would 
indicate a transmission error.  
 Below we propose an implementation of MCS, which we call Geometric 
Cryptosystem (GCS). Each encryption/decryption key of GCS consists of two parts: a 
outer component and a inner component. The role of the outer component is played by a 
set of discrete data that is a finite sequence of positive integers.  The the inner component 
is represented by continuous data, which is an m-tuple of vectors (v1,v2,…, vm) of the 
vector space n.   
 The encryption and decryption techniques of GCS are mutually symmetric and 
require the same time, amount of memory, and computational power.  The same device 
can work both as the encryption and the decryption device. Only the outer component of 
the key determines in which mode, i.e., encryption or decryption, the device is currently 
working.  Namely, the outer component of the key used for encryption of a message can 
be transmitted along with the encrypted message so that the receiving device uses this 
outer component for decryption of this message. 
 The creation of an encryption transformation (from the space of plaintexts to the 
space of ciphertexts) requires a choice of both an outer component and an inner 
component.  Once the inner component is chosen, the encryption/decryption process 
depends solely on the choice of outer component.  
 However, the decryption transformation (from the space of ciphertexts to the 
space of plaintexts) cannot be reconstructed based solely on the outer component.  The 
inner component of the key can be chosen at random and is kept in secret.  The inner 
component is hard to reconstruct because of its randomness.  Attacks (considered in 
Appendix C) aiming at reconstruction of the inner component are not efficient.  
 Therefore, GCS allows for a dynamic key update without changing inner 
components.  Instead of such change, the outer component of the encryption key, as 
embedded into a transmitted message, determines a new decryption key.  The key, in its 
turn, triggers generation of a new decryption transformation.  Actually, any transmitted 
message may trigger a new decryption key generation.    
 GCS has recently been implemented in C++ with n = m = l = 4. The results are 
very encouraging: the speed of (not yet optimized) GCS on Pentium-IV system resulted 
in the encryption/decryption speed of 215Mb per sec with the used memory 
approximately equal to the size of the plaintext messages.  It is at least two times faster 
than the best results for AES 256.  For comparison of GCS versus AES performance see 
Appendix A. 
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Section 1. Continuous and Metric Cryptosystems 

 In this section we propose a general concept of continuous cryptosystem.  Our 
discussion of possible implementations of continuous cryptosystems in a discrete 
medium, such as a computer, will result in concept of metric cryptosystem.   
 Let us start with a standard (textbook-like) definition of a cryptosystem. 
Definition 1.1 (discrete). A cryptosystem is a 5-tuple ( , , , E, D) where: 

-  is the set of possible plaintexts (i.e., texts that are not encrypted), 
-  is the set of possible ciphertexts (i.e., texts that are encrypted) 
-  is the set of possible keys 
- E is the set of encryption rules depending on a key: if k is an element of  then ek:

  is the corresponding encryption rule 
- D is the set of decryption rules depending on a key: dk:   which verifies that 

the composition dk○ek is the identity map  . 
 
 Next, we define a cryptographic system that is a continuous analogue of the 
cryptosystem of Definition 1.1. 
  
Definition 1.2 (continuous).  A continuous cryptographic system (CCS) is a 5-tuple (X, 
Y, K, e, d), where  

- X is a topological space of plaintexts,  
- Y is a topological space of ciphertexts (Y is isomorphic to X),  
- K is a topological space of keys,  
- e: K×X  Y is a continuous map –  the set of encryption rules, and  
- d: K×Y  X is a continuous map – the set of decryption rules, 
- the encryption and decryption rules are mutually inverse: for each k in K and each 

x in X, and each y in Y one has:  
 
(1.1)                         d(k, e(k, x)) = x,   e(k, d(k, y)) = y. 
 
The encrypted message is the pair (k, e(k, x)), or simply e(k, x) if the  encryption key k is 
known to the recipient. 
 It follows from Definition 1.2 that the encryption transformation Tk: X  Y, 
defined by Tk(x) = e(k, x), and the decryption transformation Tk': Y  X, defined by 
Tk'(y) = d(k, y), are mutually inverse (in particular, the spaces X and Y are isomorphic). 
 
 Remark. In GCS (see Section 3) only a part of key k (so called ‘inner component’) 
is known to the recipient and only a part of the key k (so called ‘outer component’) is 
being transmitted along with the ciphertext e(k, x). 
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 It is easy to see that our Definition 1.2 of CCS is a continuous analog of the 
standard (discrete) Definition 1.1.  Moreover, since any set S is a topological space with 
respect to the discrete topology (i.e., when each subset of S is declared open) and any 
map between sets is, therefore, continuous, any cryptosystem satisfying the Definition 1.1 
is a particular case of CCS.   
 However, we are not interested here in this trivial discrete topology.  The most 
interesting examples of CCS are built upon a topology as strong as the topologies of real 
line  or that of the n-dimensional space n.  Another example of a strong enough 
topology is that of p-adic numbers for each prime p (see, e.g., [1]). 
 However, CCS built upon such strong topologies as n (or that of p-adic numbers) 
has obviously uncountably many plaintexts and ciphertexts.  In order to “materialize” 
such a strong CCS in a discrete medium, one has to address the following challenges. 
 

1. One has to deal with actual (i.e., discrete) plaintexts and ciphertexts rather than 
with continuous ones. 

2. One has to make sure that, despite of the continuous nature of each encryption 
transformation, encryption of an actual (i.e., discrete) plaintext will always result 
in an actual (i.e., discrete) ciphertext. The same for decryption. 

 
 As a response to these challenges, i.e., as an implementation of CCS in a discrete 
medium, we propose a metric cryptosystem.  
 
Definition 1.3 (metric). A metric cryptosystem (MCS) is a 10-tuple  

(X, Y, K, e, d; , , ; Round , Round ), 

where (X, Y, K, e, d) is a CCS, in which X is a metric space (with topology induced by 
the metric), Y is another metric space (with topology induced by the metric); K, e, d are 
as in CCS, and 

-  is a discrete subset of X, 
-  is a discrete subset of Y, 
-  is a discrete subset of K, 
- Round : X  is a map such that for each point x∈ X the point p = Round  (x) 

is the closest to x among all point p′∈  (in particular, Round (p) =p for any p∈ ); 
- Round : Y  is a map such that for each point y ∈ Y the point c = Round  (y) 

is the closest to y among all point c′ ∈  (in particular, Round (c)=c for any c∈ ); 
- It is required that for each key k in  and for each p ∈  one has  

 
(1.2)                                         Round (d(k, Round  (e(k, p)))) = p . 
 
Note that each standard system of Definition 1.1 is tautologically a metric system of the 
Definition 1.3 with the discrete X = , discrete Y =  (and, therefore, and Round  and 
Round  are identity transformations).   However, we introduced metric cryptosystems 
for more interesting “discretezations.” 
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 Indeed, the identity  (1.2) implies that in MCS the continuous encryption and 
decryption rules e: K×X  Y and d: K×Y  X of the underlying CCS are replaced by the 
following discrete encryption and decryption rules respectively: ediscr:  ×    and 
ddiscr:  ×    
(1.3)                          ediscr (k, p) = Round  (e(k, p)),  ddiscr(k, c) = Round  (d(k, c)). 
The identity (1.2) can, therefore, be rewritten as 
 

ddiscr(k, ediscr (k, p)) = p. 
 
This argument proves that the procedure of rounding turns our MCS into a conventional 
discrete cryptosystem - the 5-tuple ( , , , ediscr, ddiscr) as defined in Definition 1.1.   We 
will refer to this ( , , , ediscr, ddiscr) as the discrete cryptosystem derived from MCS. 
 
 Remark. In terms of the encryption transformation Tk:X Y, defined by Tk(x) 
=e(k, x), and the decryption transformation Tk': Y  X, the  formula (1.2) takes the form: 
 
(1.4)                                     Round (Tk'(Round (Tk(p)))) = p, 
 
for each key k in  and for each p ∈ .  
 
 

Section 2. GCS as a continuous cryptosystem (informal description)  

 In this section we informally define Geometric Cryptosystem (GCS) as a 
continuous cryptosystem in which X = Y = n, where n is the n-dimensional Euclidean 
vector space.  Therefore, both the plaintexts and the ciphertexts are (continuous) points of 
an n-dimensional Euclidean vector space n. In what follows we will construct the 
encryption rule in the form of collection of encryption transformations Tk: 

n  n for 
each key k.  Respectively, the decryption transformation Tk': 

n  n will always be the 
inverse of the encryption transformations. 
 Here is the construction of Tk (for relevant definitions on reflection groups see, 
e.g., [2], or Section 3 below).  

1. In the vector space n a collection of m mirrors, i.e., of (n −1)-dimensional 
subspaces, is chosen.  These mirrors are enumerated by numbers 1, 2, …, m. 

2. The collection of m mirrors is parametrized by a sequence v=(v1,v2, …,vm), where v1 
is a non-zero vector orthogonal to the mirror 1, v2 is a non-zero vector orthogonal to 
the mirror 2, etc.  

3.  The encryption transformation Tk is defined as a sequence of reflections performed 
in the order i = (i1, i2, …, il), where each of these indices ij is a number of an 
involved mirror, that is, the mirror il is reflected about first, then il-1, etc., and finally 
the mirror i1 is applied.  The same mirror can be used more than one time in the 
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sequence i (e.g., if i = (1, 2, 1), i.e., the mirror 1 is used twice – the first time at the 
beginning, and second time at the end). 

4. Therefore, the encryption key k is comprised of two components: the inner 
component v =(v1,v2, …,vm) and the outer component i =(i1, i2, …, il), i.e., k = (v, i).  

5. For each (continuous) plaintext x of n its image Tk(x) is a corresponding 
(continuous) ciphertext. The pair (i, Tk(x)) is the encrypted message, in which only 
the outer component i of the key k is transmitted along with the ciphertext Tk(x).  
That is, the mirrors are not revealed during transmission of the encrypted message. 

6. Decryption transformation Tk' = Tk
-1 is defined as “undoing” the reflections of the 

sequence i, that is, as applying the same reflections in the opposite order: the mirror 
i1 is reflected about first, then i2, etc., and finally the mirror il is applied  (e.g., if i = 
(1, 2, 1, 3), then Tk' is obtained by applying first the mirror 1, second – the mirror 2, 
third – the mirror 1 again, and forth – the mirror 3).   

7. This definition of the decryption transformation Tk' = Tk
-1 implies that Tk' has the 

same structure as Tk, namely, Tk' = Tk', where k' is the key comprised of the same 
inner component v and a new outer component i' = (il, il-1 ,…, i1), that is, is i' is the 
reversed sequence i.  

8. We will refer to this new k' = (v, i') as to decryption key. 

9. In a general GCS (see Section 3 below), the mirrors are “curved,” i.e., the 
reflections about the mirrors are twisted with some invertible transformations gi of 
the space n. 

 

Section 3.  GCS as a continuous cryptosystem (formal description) 

 In this section we provide a formal definition of Geometric Cryptosystem (GCS) 
within the framework of continuous cryptosystems introduced in Section 1 (GCS as 
metric cryptosystem will be addressed in Section 4 and Appendix B). 
 Geometric Cryptosystem (GCS) is a continuous cryptosystem (X, Y, K, e, d) (as 
in Section 1, Definition 1.2) in which:   
 

- X = Y = n, which is the real n-dimensional vector space, n ≥ 4.  
 
- K is a space of keys: K = Kinner×Kouter, where each element of the set Kinner is a m-

tuple v = (v1, v2, …, vm) of non-zero vectors v1, v2, …, vm in n, m ≥ n; and each 
element of Kouter is a repetition-free sequence i = (i1, i2, …, il) of indices such that 
n ≤ l ≤ m, where each of these indices ij belongs to the set {1, 2, …, m}; thus each 
element of K is a pair k = (v, i), where v and i are as above. 

 
- e: K× n  n is a continuous map defined for each k = (v, i) and x in n by the 

formula:   
(3.1)                            e((v, i), x)  =  Si1° Si2

 ° … ° Sil 
(x), 
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where each Sj: n  n, j = 1, 2, …m, is the reflection about the hyperplane (i.e., 
the mirror) Hj orthogonal to the vector vj, that is,  

(3.2)                              Sj (x) = x – [2(x,vj)/( vj, vj)]⋅vj 
for all x = [x1, x2,…., xn] in n, where (x, y)  stands for a given inner product in 

n.  In the most of cases we shall employ the standard Euclidean dot product of 
vectors x and y in n, that is,  

(3.3)      (x, y)  = x · y  = Σj xj yj, 
 

where summation is over j = 1, 2, …, n. 
 

- d: K× n  n, is a continuous map defined for each k = (v, i) and x in n by the 
formula:   

(3.3) d((v, i), y) = e((v, i'), y), 

where i' = (il, il-1 ,…, i1), that is, is i' is the reversed sequence i.  

   
 Note that the formula (3.1) for the encryption rule e can be rewritten as 
 
(3.5)                                                  e((v, i), x)  =  T(v, i)(x), 
 
where T(v, i) is a transformation of n given by the formula: 
 
(3.6)                                                 T(v, i) = Si1° Si2

 ° … ° Sil 
, 

 
and where each Sj is a transformation of n given by (3.2).   
 
Following the discussion after Definition 1.2, we will refer to this T(v, i) as encryption 
transformation of GCS. 
 Therefore, the formula (3.4) for the decryption rule d can be rewritten as 
 
(3.7)                                                d((v, i), y)  =  T(v, i')(y), 
 
where i' = (il, il-1 ,…, i1), that is, is i' is the reversed sequence i (as in  (3.4)).   

 Following the discussion after Definition 1.2, we will refer to this T(v, i') as 
decryption transformation of GCS. 
 For each encryption key k = (v, i), we refer to v = (v1, v2, …, vm) as the inner 
component of k and to i = (i1, i2, …, il) as the outer component of k. 

 
 Remark. We choose the standard dot product in (3.3) only for the sake of 
simplicity. Any other inner product in Rn would work here as well. 
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 Remark.  The set Kouter of repetition-free sequences is finite: the number of 
repetition-free sequences i = (i1, i2, …, il) of length l is   

(3.8)                                        m ⋅ (m –1) ⋅ … ⋅ (m – l + 1) = m!/(m – l)!, 

(the length l of any repetition-free sequences on the set {1, 2, …, m} never exceeds m). 

  Remark.  We can consider a larger class of outer components by allowing any 
sequence i = (i1, i2, …, il) of indices, where each of these indices ij belongs to the set {1, 
2, …, m}, with the only restriction that ij  ≠ ij+1 , for j = 1, 2, …, l –1.  Unlike repetition-
free sequences, this larger class of possible outer components is infinite, and the length l 
of i is arbitrary.  For  this larger class of the outer components the numbers m and l may 
be chosen arbitrarily (i.e., there do not have to satisfy the above inequalities n ≤ l ≤ m).  

 Remark. If the vector vj is of the unit length, i.e., if (vj, vj) = 1, the above formula 
(3.2) for Sj gets simplified as follows. 

(3.9)                                                      Sj (x) = x – 2(x,vj)⋅vj .   
  
 
 Remark. The decryption transformation T(v, i') is equal to T(v, i)

–1 because each 
reflection Sj is self-invertible, i.e., Sj

–1 = Sj.   More precisely, 

(3.10) T(v,i)
–1=(Si1°Si2° … °Sil 

)–1 = Sil
–1 
°Sil -1

–1  ° … °Si1
–1 =Sil°Sil -1

 ° … °Si1
= T(v, i′),  

where i' = (il, il-1, …, i1).   

 Remark. By definition, each Sj is an orthogonal transformation of n (recall that a 
transformation f of n is orthogonal if (f(x), f(y)) = (x, y) for any x and y in n).  
Therefore, both the encryption transformation T(v, i) and the decryption transformation 
T(v,i') are orthogonal.  This happens because each of them is a composition of orthogonal 
transformations.    
 Remark.   It is well known that the group On( ) of the orthogonal transformation 
of n is a compact topological group.  Thus, each encryption transformation T(v, i) and 
each decryption transformation T(v,i') belongs to this compact group On( ). (Below, in 
Appendix C, where we consider possible cryptographic attacks against GCS, we shall 
discuss this compact group in more details). 
 Remark.  We can propose a generalization of the encryption transformation (3.6) 
by defining transformations T(g, v, i)  given by the formula:  

(3.11)                           T(g, v, i) = gi1°Si1°gi1
–1° gi2°Si2°gi2

–1 ° … ° gil°Sil°gil
–1

 
. 

where g1, g 2, …, g m  are the invertible transformations of n.  It is easy to see that each 
T(g, v, i)  is an invertible transformation of n and the inverse of T(g, v, i)  is  T(g, v, i')   which 
agrees with (3.10).  Clearly the encryption transformation (3.6) is a particular case of 
(3.11) where each gj is the identity transformation of n.  Therefore, the continuous 
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cryptosystem with the keys of the form k = (g, v, i) and the encryption transformations   
Tk = T(g, v, i)  is a generalization of the continuous cryptosystem GCS.   

However, the metric property (1.4) of this more general cryptosystem is unknown. 
 

Section 4. GCS as a metric cryptosystem  

 
GCS, as a continuous cryptosystem, has been described in the two previous sections.  
Here we will describe it as a metric cryptosystem.  For this purpose we introduce:  

1. The metric on X = Y = n:  this metric is a standard Euclidean distance. 

2. the set  of plaintexts:  =  n, i.e.,  is the set of all vectors p = [p1, p2, …, pn] 
with integer coordinates. 

3. the set  of ciphertexts:  = r = [1/2r] ⋅  n for a certain  positive integer r, that 
is, r consists of binary rational vectors c = [c1, c2, …, cn] such that 2r ⋅ ci is an 
integer for i = 1, 2, …, n. 

4. the set  of keys:  =  inner×  outer, where each element of the set  inner is a m-
tuple v = (v1, v2, …, vm) of non-zero vectors v1, v2, …, vm in n, m ≥ n; and each 
element of  outer is a repetition-free sequence i = (i1, i2, …, il) of indices, where 
each of these indices ij belongs to the set {1, 2, …, m}; thus each element of  is a 
pair k = (v, i), where v and i are as above. 

5. Rounding of plaintexts Round : X We define Round  to be the ordinary 
rounding of vectors of X = n to the vectors in =  n.  (For example, if n = 4 and 
x is a binary vector of the form x = [10.11, 11.1, – 1011.0011,  –1.101101], then 
Round (x) = [11, 100, – 1011,  –10]). 

6. Rounding of ciphertexts Round : Y We define Round  by the formula:  

Round  (y) = [1/2r] ⋅ Round  (2r ⋅ y). 

In other words, Round (y) = [c1, c2, …, cn], where each ci is the ordinary 
rounding of xi to r correct binary places after the binary dot.  (For example, if n=4, 
r=1, and y is a binary vector of the form y = [10.11, 11.1,–1011.0011, –1.101101], 
then Round (y) = [11, 11.1, – 1011,  –1.1]). 

In what follows we assume that a device computing encryption/decryption 
transformations has an unlimited precision, i.e., if each coordinate of a vector x is 
between – 2N and +2N, then the error in computing each (continuous) ciphertext T(v,i)(p) 
can be made smaller than, for instance, 2–2N.   
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Theorem 4.1. Assume that r is a positive integer such that 22r > n (that is, r > ½log2(n)). 
Then the requirement (1.2) holds, that is, for each key k = (v, i) in  and for each p ∈  
one has 

(4.1)                              Round (T(v,i)
–1( Round  (T(v,i)(p)))) = p 

 
(where T(v,i) is the encryption transformation given by (3.5)). 
 

In what follows we prove Theorem 4.1 by producing a more general statement 
(Proposition 4.2) that defines the restrictions for the computational device guaranteeing 
the formula (4.1).  To formulate Proposition 4.2 we need to introduce some additional 
notation. 

Recall that each key k of GCS is comprised of its inner component v = (v1, v2, …,vm) and 
its outer component i = (i1, i2, …, il).  In what follows we fix the inner component v, and 
therefore, each encryption or decryption rule will depend only on the outer component i.  
Then e(k, x) = T(v,i)(x), where T(v,i) is a transformation of n given by the formula (3.5). 

Let ei be the unit length vector in the direction of vi, that is,  

(4.2)                                                 ei = vi/||vi||, 

for i = 1, 2, …, m, where ||x|| stands for the length of x, that is ||x||2 = (x, x).   

 

We will replace the inner component v = (v1, v2, …,vm) by the normalized inner 
component e = (e1, e2, …,em).  Clearly 

(4.3)                                                      T(v,i) = T(e,i) .  

We proceed with the assumption that, while each vi is precise, its unit vector ei is 
computed with the error  

(4.4)                                                              ∆ei 

for i = 1, 2, …, m (that is, we do not assume here that the computational device is 
absolutely precise). 

Next we need to define the scalar magnitude εi of the vector ∆ei: 

(4.5)                                              εi = 4⋅||∆ei|| + 2⋅||∆ei||2 

for i = 1, 2, …, m. 

And the total scalar error ε in the direction i:   
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(4.6)                                                 ε = εi1
 + εi2 + ... + εil

 

(by this definition, ε is always non-negative, and ε becomes 0 if and only if there is no 
computational error at all).   

In the Proposition 4.2 we shall work with plaintext vectors p = [p1, p2, …, pn]  such that 
each coordinate pi of p is an integer satisfying 

(4.7)                                                   – 2N < pi < 2N 

for i = 1, 2, …, n, (we will view each pi as a binary integer having at most N binary 
digits). 

Finally, we shall proceed with the assumption that  

(4.8)                                          ε ⋅ (2 + ε) ⋅ (2N – 1)) ⋅ √n < ½ . 

Remark.  Formula (4.8) demonstrate that in a real device, that is, when ε > 0, the 
magnitude N of the plaintext cannot be arbitrarily big, because, if N = + ∞, then ε must 
be zero, i.e. the device must be absolutely precise. 

Now we can state the main technical result of the section, which will immediately imply 
Theorem 4.1. 

Proposition 4.2.  With the notations and assumptions (4.2) – (4.8), let r be any non-
negative integer such that the following inequality holds.  

(4.9)   ((ε + 1) ⋅ 2–r–1+ ε ⋅ (2 + ε) ⋅ (2N –1)) ⋅ √n < ½ 

Then (4.1) holds for each vector p satisfying (4.7), that is, 

Round (T(e,i)
–1( Round  (T(e,i)(p)))) = p. 

 
Remark. For practical purposes it is convenient to take the minimal possible r with the 
constraint (4.9). 

Proof of Proposition 4.2 is presented in Appendix B. Here we will demonstrate how 
Proposition 4.2 implies Theorem 4.1.  Indeed, since Theorem 4.1 assumes the unlimited 
precision, we may set ∆ei = 0, that is, εi = 0 for all i, that is, ε = 0.  Therefore, the formula 
(4.9) becomes  

2–r–1⋅ √n < ½ 
or, equivalently,  

√n < ½ ⋅ (2r+1) = 2r. 
Finally, we obtain n < 22r. 
 
This proves Theorem 4.1.  ■ 
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Appendix A – Performance of GCS in comparison with AES 

GCS has been implemented in Pentium IV computer system.  The table below represents 
comparison of GCS performance with AES (Advanced Encryption Standard) 
performance, where GCS has parameters m = n = l = 4, N = 40, and r = 2 

Algorithm     CPU Language Encoding, 
MB/sec 

Decoding, 
MB/sec 

 
 
AES/ Rijndael * 
Key length:   
  128 bits 
 

 
 
   Pentium4 3.06GHz   
w/hyperthreading 

 
 
  X86    
assembler 

 
 
  179.6 

 
 
  181.7 

 
 
AES/ Rijndael* 
Key length:   
   128 bits 
 

 
 
    Athlon 2.25GHz 

 
 
      C 

 
 
  107.6 

 
 
  99.8 

 
 
GCS (prototype 
implementation); 
 
Parameters: 

m = n = 4; 
Key length:     
     L = 512 bits 

 
 
    Pentium4 2.4GHz 

 
 
     C++ 

 
 
>215 

 
 
>210 

 

* AES/ Rijndael - the fastest known software implementation 
Data concerning AES performance are taken from:  http://www.tcs.hut.fi/~helger/aes/rijndael.html 
 

Appendix B - Proof of Proposition 4.2.  

The proof of Propositon 4.2 is based on four technical statements regarding errors of 
computing certain transformations of n. The first of them, Lemma B.1, defines the error 
in the case of linear transformations, and Lemma B.2 estimates this error in the case of 
the linear orthogonal transformations. The third one, Lemma B.3, provides error 
estimation in the case of composition of orthogonal transformations; Lemma B.4 
provides error estimation when the transformation is a single reflection. The last result, 
Lemma B.5, specializes the results of Lemma B.3 and Lemma B.4 for the composition of 
reflections. 

Lemma B.1. Assume that computation of a given vector x in n is performed with the 
error ∆x.  Assume that f is a linear transformation of n such that its computational error 
is ∆f: n  n (that is, for any precise vector y the value f(y) is computed with the error 
∆f(y)). Then the total error τ∆f(x) of computing f(x) is given by the formula: 

http://www.tcs.hut.fi/~helger/aes/rijndael.html
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(B.1)                                        τ∆f(x)  =  f(∆x) + ∆f(x + ∆x).  

 In particular, if g is another transformation of n, then the error ∆(f°g) of the 
composition f°g is given by the formula 

(B.2)                                     ∆(f°g)(x)  =  ∆f(g(x)) + f(∆g(x)). 

for each x in n.  Therefore, the total error of computing f°g is given by 

τ∆(f°g)(x)  =  f(g(∆x)) + ∆f(g(x + ∆x)) + f(∆g(x + ∆x)). 

Proof Lemma B.1. Let x′ = x + ∆x be the computed (i.e., approximate) value of x. 
Furthermore, the computed (i.e., approximate) value of f(y) for a given (i.e., precise, rater 
than approximate) vector y in n is: 

f(y) + ∆f (y). 

 Therefore, substituting y=x′ = x +∆x, we see that the computed (i.e., approximate) 
value of f(x′) is equal to  

f(x′) + ∆f (x′) = f(x  + ∆x) + ∆f (x + ∆x) =  f(x) + f(∆x) + ∆f(x + ∆x) 

because f is linear.  
 This finishes the proof of Lemma B.1. ■ 

 Recall that, for each vector x in n, ||x|| is the Euclidean norm of x, that is,  

||x||2 = (x, x) = x1
2 + x2

2 + … + xn
2. 

 Now assume that f is an orthogonal transformation of n, that is, || f(x)|| =  ||x|| for 
every vector x (in particular, this guarantees that f is linear and (f(x), f(y)) = (x, y) for any 
x and y in n).   

Lemma B.2. Assume that computation of a given vector x in n is performed with the 
error ∆x.  Assume that f is an orthogonal transformation of n such that its computational 
error is ∆f: n  n. Then the total error τ∆f(x) of computing f(x) is estimated as follows: 

(B.3)                                 || τ∆f(x) ||  ≤  ||∆x|| + ||∆f(x + ∆x)|| 

Proof of Lemma B.2.  By Lemma B.1, the triangle inequality ||y + z|| ≤ ||y|| + ||z||, and the 
property || f(y)|| =||y || for any y in n, we have 

|| τ∆f(x) || = || f(∆x) + ∆f(x + ∆x)|| ≤ || f(∆x)|| + ||∆f(x + ∆x)|| = ||∆x|| + ||∆f(x + ∆x)|| 

Lemma B.2 is proved.  ■ 

Lemma B.3.  Let f1,   f2 ,… ,  fl   be orthogonal transformations of n and let ∆fi be the error 
of computing fi for each i = 1, 2, …, l (see e.g. Lemma B.1). Assume that for each i = 1, 
2, …, l there exists a number εi ≥ 0 such that 

(B.4)     || ∆fi(x) || ≤ εi ⋅ ||x||. 

for any x in n and i = 1, 2, …, l.  Then for f = f1 ° f2 °… ° fl we have 
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(B.5)                                                  ||∆f(x)|| ≤ ε ⋅ ||x||  

for any x in n, where ε = ε1 + ε2 +... + εl.   Therefore, for f = f1 ° f2 °… ° fl we have 

(B.6)                                  ||τ∆f(x)|| ≤ ε ⋅ ||x||  + (ε + 1) ⋅ ||∆x||   

for any x in n. 

 Remark.  In other words, for x ≠ 0, formula (B.5) reads  

||τ∆f(x)||/||x|| ≤ ε + (ε + 1) ⋅ ||∆x||/||x||, 

that is, the relative error ||τ∆f(x)||/||x|| of computing f(x) never exceeds ε plus the product 
of (ε + 1) and the relative error of computing x.  

Proof of Lemma B.3.  We prove (B.5) first.  We employ Mathematical induction in l: 

1. (Base of induction): If l = 0, i.e., f is the identity transformation of n, the assertion is 
obvious because ||∆f(x)|| = 0 and ε = 0. 

2. (Inductive hypothesis): Assume now that (B.5) is proved for l – 1 or less, e.g.,  

for f ′ = f1 ° f2 °… ° fl-1.  Then we have (B.5) in the form 

|| ∆ f ′(y) || ≤ ε′⋅ ||y||, 

for any y in n, where ε′ = ε1 + ε2 +... + εl-1  = ε – εl. 

3. (Inductive step) Let f ′= f1 ° f2 °… ° fl-1 and ε′ = ε1 + ε2 +... + εl-1.  Then f = f ′° fl and          
ε = ε′ + εl.  Therefore, by the formula (B.2) 

∆f(x) = ∆( f ′° fl )(x) = ∆ f ′(y) + f ′(z), 

where y = fl (x) and z = ∆ fl(x). Then using the inductive hypothesis for y we obtain: 

 || ∆f(x) || = ||∆ f ′(y) + f ′(z)|| ≤  ||∆ f ′(y)|| + ||f ′(z)|| ≤  ε′ ⋅ ||y|| + || f ′(z) ||. 

 Since f ′, as a composition of orthogonal transformations of n, is also an 
orthogonal transformation of n, we have ||f ′(z)|| = ||z||.  And, by the assumption (B.4), 
||z|| = ||∆fl(x)|| ≤ εl ⋅ ||x||.  Since fl (x) is orthogonal, ||y|| = ||fl (x)|| = ||x||.   
 Combining the above computations, we finally obtain: 

|| ∆f(x) || ≤  ε′ ⋅ ||y|| + || f ′(z) ||  ≤  ε′ ⋅ ||x|| + εl ⋅ ||x|| = (ε′ + εl) ⋅ ||x||  =  ε⋅ ||x|| , 

which is the inequality (B.5).  

This finishes the inductive step.  Thus, the inequality (B.5) is proved. 

In order to prove (B.6), we will use (B.3) and (B.5). 

|| τ∆f(x) ||  ≤  ||∆x|| + ||∆f(x + ∆x)|| ≤ ||∆x|| + ε⋅ ||x + ∆x||  ≤ ||∆x|| + ε⋅ (||x|| + ||∆x||) = 

= ε ⋅ ||x||  + (ε + 1) ⋅ ||∆x||. 

This proves (B.6). Lemma B.3 is proved.   ■ 
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 We need the following fact, which estimates the error of computing a single 
reflection in n. 

Lemma B.4.  Let e be a unit vector in n computed with the error ∆e and let S be the 
reflection of n relative to the vector e.  Then the error ∆S of computing the reflection S 
is estimated by the formula: 

||∆S(x)|| ≤ εe ⋅ ||x|| 

for each x in n, where εe = 4⋅||∆e|| + 2⋅||∆e||2. 

Proof of Lemma B.4.  Recall that since e is the unit length,  

S(x) = x – [2⋅(x, e)]⋅e 

for any x in n. We assume that the error ∆S of this S comes solely from the error ∆e (of 
computing the vector e). Then an approximate value of S(x) is 

x – [2⋅(x, e + ∆e)]⋅(e + ∆e). 

Therefore,  

∆S(x) = {x – [2⋅(x, e + ∆e)]⋅(e + ∆e)} – {x – [2⋅(x, e)]⋅e} 

= [2⋅(x, e)]⋅e – [2⋅(x, e + ∆e)]⋅(e + ∆e) =  – [2⋅(x, e)]⋅∆e – [2⋅(x, ∆e)]⋅e – [2⋅(x, ∆e)]⋅∆e . 

(In particular, this formula implies that ∆S is a linear transformation of n).This formula, 
in conjunction with the triangle inequality, implies that 

||∆S(x)|| ≤ ||2⋅(x, e)⋅∆e|| + ||2⋅(x, ∆e)⋅e|| + ||2⋅(x, ∆e)⋅∆e|| = 

= 2⋅|(x, e)|⋅||∆e|| + 2⋅|(x, ∆e)|⋅||e|| + 2⋅|(x, ∆e)|⋅||∆e|| 

Then using the fact ||e||=1 and Cauchy-Schwarz inequality |(x, y)| ≤||x||⋅||y|| we obtain: 

||∆S(x)||≤ 2⋅||x||⋅||∆e||+2⋅||x||⋅||∆e||+2⋅||x||⋅||∆e||⋅||∆e|| = (4⋅||∆e|| + 2⋅||∆e||2)⋅||x|| = εe ⋅||x|| 

This proves Lemma B.4.    ■ 

 The following result explicitly estimates the precision of encryption/decryption 
transformations of GCS.  

Lemma B.5.   Let T(e,i) be the transformation given by the formula (4.2) with respect to 
the sequence i = (i1, i2, …, il). Then for each vector x in n computed with the error ∆x, 
we have 

(B.7)                                    ||τ∆T(e,i)(x)|| ≤ ε ⋅ ||x|| + (ε + 1) ⋅ ||∆x||, 

where  
ε = εi1

 + εi2
 +... + εil

 
as in (4.6), and where  

εi = 4⋅||∆ei|| + 2⋅||∆ei||2, 
for i = 1, 2, …, m, as in (4.5). 
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 Let y = T(e,i)(x), and assume that y is first computed with an error and then 
approximated (e.g., rounded) to the vector  y' = y + ∆y + ∆, where ∆ is the error of 
approximation procedure.  Then 

(B.8)                ||τ∆T(e,i)
–1(y)|| ≤ (ε + 1) ⋅ ||∆|| + ε ⋅ (ε + 2) ⋅||x||  + (ε + 1)2 ⋅ ||∆x||. 

Proof of Lemma B.5.  Prove (B.7) first.  Using Lemma B.4 and Lemma B.3 in the 
situation when f = T(e,i) = Si1° Si2

 ° … ° Sil 
, we obtain from (B.6): 

||τ∆f(x)|| ≤ ε ⋅ ||x||  + (ε  + 1)⋅ ||∆x||. 

This proves the inequality (B.7). 
 Now we are going to prove the inequality (B.8).  We will use the inequality (B.7) 
in the situation when we y = T(e,i)(x) is taken instead of x and ∆ + ∆y instead of ∆x. Here 
∆y is the total error of computing y, that is, ∆y = τ∆T(e,i)(x).  Recall  from (3.10) that  

T(e,i)
–1  = (Si1° Si2

 ° … ° Sil 
) –1 = Sil

–1 
° Sil -1

–1  ° … ° Si1
–1 = Sil° Sil -1

 ° … ° Si1
= T(e, i′), 

where i' = (il, il-1, …, i1).  Then the total error of computing T(e,i)
–1(y) is estimated by the 

following modification of (B.7): 

||τ∆T(e,i)
–1(y)|| =  ||τ∆T(e, i′)(y)||  ≤ ε ⋅||y|| + (ε + 1) ⋅ ||∆ +∆y|| . 

Note that ||y|| = ||x||, and ||∆y|| = ||τ∆T(e,i)(x)|| ≤ ε ⋅||x|| + (ε + 1) ⋅||∆x|| by (B.7). Therefore, 
using the triangle inequality ||∆ +∆y|| ≤ ||∆|| + ||∆y||, we obtain 

||τ∆T(e,i)
–1(y)||  ≤ ε ⋅ ||y|| + (ε + 1) ⋅ (||∆|| +||∆y||) ≤  

≤ ε ⋅ ||x|| + (ε + 1) ⋅ (||∆|| + ε ⋅ ||x|| + (ε + 1) ⋅ ||∆x||) =  

= (ε + 1) ⋅ ||∆|| + ε ⋅ (ε + 2) ⋅||x||  + (ε + 1)2 ⋅ ||∆x||. 

The inequality (B.8) is proved. Lemma B.5 is proved. ■ 

 Now we are ready to finish the proof of Proposition 4.2.  Let r be any number 
satisfying (4.9).  We have to prove (4.1), that is,  

Round (T(e,i)
–1( Round  (T(e,i)(p)))) = p, 

for any vector p =  [p1, p2, …, pn] satisfying (4.7), that is,   

– 2N < pi < 2N 

for i = 1, 2, …, n.  Indeed, using the formula 

||p||2 = (p, p) = p1
2 + p2

2 + … + pn
2, 

we obtain:  
||p||2 ≤ (2N –1)2 + (2N –1)2  + … + (2N –1)2 = (2N –1)2⋅n. 

Therefore,  

(B.9)                                           ||p|| ≤ (2N –1) ⋅ √n  

 Now, denote y = T(e,i)(p) and denote by ∆y the error of computation of y.  Then  
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Round (y + ∆y) = y  + ∆y + ∆, 
where ∆ is the error of rounding.  The entire setup fits exactly into Lemma B.5 with ∆x = 
0.  Therefore, formula (B.8) specializes to the following one: 

(B.10)                             ||τ∆T(e,i)
–1(y)|| ≤ (ε + 1) ⋅ ||∆|| + ε ⋅ (ε + 2) ⋅||x||. 

One can easily show that the error ∆ of rounding any vector of n to r binary places after 
the dot can be estimated as  

(B.11)                                              ||∆|| ≤ (2–r–1) ⋅√n,  

because each coordinate ∆i of ∆ satisfies |∆i| ≤ ½ ⋅ 2–r = 2–r –1. 

 Substituting  (B.9) and (B.11) in (B.10), we obtain: 

||τ∆T(e,i)
–1(y)|| ≤  (ε + 1) ⋅ (2–r –1) ⋅√n  + ε ⋅ (ε + 2) ⋅(2N –1) ⋅ √n = 

= ((ε + 1) ⋅ 2–r –1 + ε ⋅ (2 + ε) ⋅ (2N –1)) ⋅ √n. 
Therefore, by (4.9),  

||τ∆T(e,i)
–1(y)|| < ½ 

We interpret this result as follows.  First, denote for shortness ∆' = τ∆T(e,i)
–1(y).  This is 

the total error of computing T(e,i)
–1(T(e,i)(x)) = x.  In other words, the result of the 

computation is x + ∆'.  The above inequality guarantees that ||∆'|| < ½.  Therefore, each 
coordinate ∆'i of ∆' satisfies |∆'i| < ½.  Since the vector x = p has integer coordinates, this 
implies that  

Round (p + ∆') = p, 

which result is equivalent to (4.1).  This proves Proposition 4.2. ■ 

Therefore, Theorem 4.1 is proved (see the argument right after Proposition 4.2) ■ 

 
Appendix C    GCS and Cryptanalysis  

In this section we shall consider some basic attacks against GCS. 

1) Brute force attack aimed at reconstructing the key of GCS. 
2) Length-preservation-based attack aimed at reconstructing individual plaintexts. 
3) Algebro-geometric attack aimed at reconstructing the key of GCS. 

The attacks 1) and 2) are aimed against GCS as a “real” (i.e., implemented metric) 
cryptosystem, as discussed in Section 4 and Appendix B. Attack 3) is an “ideal” attack 
against the normalized inner component.  It is ideal in the sense that it ignores possible 
errors caused by rounding or by imprecision of real computational devices.  Attack 3) 
aims at reconstructing normalized inner component for a given encryption transformation 
T(v, i) (See Section 3).  In this attack T(v, i) is given as an n×n-orthogonal matrix factorized 
as a product of l reflections.  We will show the, in order to succeed, the cryptanalyst will 
have to face an algebraic variety of possibilities of dimension at least n⋅(n-1)/2.  In other 
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words, it shows that in the discrete version of this attack the cryptanalyst may face a large 
number of algebraic equations with potentially infinite number of integer solutions.  

Recall that in the definition of GCS we used only repetition-free outer components i = (i1, 
i2, …, il), where the indices i1, i2, …, il form an l-element subset of the set  {1, 2, ..., m}.  
In particular, n ≤ l ≤ m.  The number of such outer components of the length l is  

m ⋅ (m –1) ⋅ … ⋅ (m – l + 1) = m!/(m – l)!. 

 
C.1 A brute force attack aimed at reconstructing the key of GCS 

The goal of the cryptanalyst is to reconstruct normalized inner component e = (e1, e2,…, 
em).  We proceed from the assumption that the cryptanalyst intercepted a number of 
messages in the form (i, c), where i is the outer component, c = Round  (T(e,i)(p))) is the 
corresponding ciphertext,  and e is the (yet unknown to him) normalized inner 
component.  His strategy is to choose a normalized inner component e' = (e'1, e'2,…, e'm)  
in such a way that applying the decryption transformation T(e',i) –1  to the ciphertext c will 
result in a “readable” plaintext   p' =T(e',i)

–1(c).  This p' is an approximation of the actual 
text p, that is, p' = p + D. The readability of p' will be for him a criterion for a correct 
choice of e'.  We say that p' = p + D is not readable if  

(C.1)                                                    ||D||2 > ||p||. 

If the opposite of (C.1) holds (i.e., if ||D||2 ≤ ||p||), we say that p' is possibly readable. 

Remark.  We would argue that this definition of possible readability is too liberal.  For 
instance, if p is a binary executable file, even an error in one bit of p will irreparably 
damage it as a computer program.  The same is true when p a credit card number, then 
any error D is sufficient to damage it irreparably. 

Based on this definition of non-readability, the cryptanalyst has to test various e' to 
guarantee that one of them will make p' possibly readable.  In other words, he has no 
other options but to list all possible e' with some increment until he gets a possibly 
readable plaintext p'.  At the moment when the cryptanalyst managed to recognize p' as 
an actually readable text, the cryptanalyst may decide that e' is sufficiently close to the 
original inner component e.  Therefore, he should proceed as follows.  

Since each ei has length 1, it depends only on n – 1 of its coordinates.  Therefore, in order 
for a given i to list all possible vectors e'i, one has to list only n–1 coordinates of the 
vector.  Assume for the sake of simplicity that this listing is obtained by listing the 
coordinates of each of the vectors e'1, e'2,…, e'm independently from each other.  That is, 
it proceeds as a listing of [m⋅(n–1)]-tuples of real numbers.  To simplify this work of the 
cryptanalyst we assume that each of these m⋅(n–1) numbers is bounded between               
– 1/√ (n –1) and 1/√ (n –1).  This assumption also guarantees that each vector e'i indeed 
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has length 1.  We also assume that the cryptanalyst lists each coordinate with the same 
increment d.  This implies that in order to list all possible values of one coordinate he 
needs to perform at least 2/[d⋅√ (n –1)] operations.  Therefore, to list all such [m⋅(n–1)]-
tuples requires performing at least  

(C.2)                                               (2/[d⋅√ (n – 1)])m⋅(n – 1)  

operations.   

The rest of our discussion of this attack is devoted to obtaining the upper bound of the 
increment d (see formula (C.7) below) and, therefore, to obtaining the lower bound for 
the number of operations needed for a successful attack (see formula (C.8) below).  

Furthermore, we can think of the vectors e'1, e'2,…, e'm as approximation to e1, e2,…, em 
vectors respectively. We will write them as e'1= e1 + ∆e1, e'2 = e2 + ∆e2, … , e'm= em+∆em 
in the same way as in Appendix B.  The cryptanalyst uses this approximate inner 
component e' in his construction of the decryption transformation T(e',i)

–1.   By the very 
definition, this is an approximate (i.e., not precise in any sense) decryption 
transformation.  Applying the approximate decryption transformation T(e',i)

–1 to the 
intercepted vector p, he obtains an approximately decrypted vector p', i.e. a vector of the 
form p' = p + D, where D is the error of his approximate decryption.  The goal of the 
cryptanalyst is to extract information from p'.  At the moment when p' becomes readable, 
the cryptanalyst stops his work.  He stops because there is a high probability that e' is 
close to the original inner component e. 

Let us apply the formula (B.7) to our situation.   Namely, we take T(e, i)
–1 instead of T(e, i) 

and then set x = p, ∆x = 0, and τ∆T(e, i)
–1(x) = D.  Therefore (B.7) becomes  

(C.3)                                                     ||D|| ≤ ε ⋅ ||x||, 

where ε = εi1
 + εi2

 +... + εil
, as in (4.6), and where εi = 4⋅||∆ei|| + 2⋅||∆ei||2, for i = 1, 2, …, 

m, as in (4.5). 

 Then combining (C.1) and (C.2) we obtain  

||p|| < ||D||2 ≤ ε2 ⋅ ||p||2. 

Hence,    

(C.4)                                                       ε > 1/√||p||. 

Informally speaking, (C.4) means that if p' is not readable, then e' is still not close 
enough to e, that is, the approximation error ε is still big. 



                                                                                      A. Berenstein, L. Chernyak, Geometric Cryptosystem 

 21

We assume, again for the sake of simplicity, that as long as the approximation error ε of e 
satisfies the inequality (C.4), the cryptanalyst cannot obtain any useful information from 
the approximately decrypted vector p' = p + D. 

Therefore, a successful attack would require inequality opposite to (C.4), i.e.,  

(C.5)                                                       ε ≤ 1/√||p||. 

On the other hand, it is easy to see from the definition of the increment d and the 
approximation error ε that  

(C.6)                                                           4⋅l⋅d < ε. 

This inequality holds because each coordinate of each ∆ei changes with the increment d 
during the attack, and, therefore ||∆ei|| ≥ d for each i involved in the outer component i.  
Combining (C.5) with (C.6), we can see that, for a successful attack, the increment d 
should be bounded from above as follows. 

(C.7)                                                     d  < 1/(4l⋅√||x||). 

Therefore, combining the estimation (C.2) with the inequality (C.7), we obtain that the 
number of operations needed for a successful brute force attack is at least  

(C.8)                                             (8l⋅√||x||/[√ (n – 1)])m⋅(n – 1). 

For example, if m = l = n = 4, and ||x||≈240 (as it is currently implemented – see Appendix 
A above), the number of operations required for successful brute force attack is at least 

(8⋅4⋅220/2)4 ⋅ 3 = (24⋅220)4 ⋅ 3 = (224)12 =  2288. 

Which is a much better estimation then the estimation for AES 256.  To put it into a 
perspective, let us imagine that one could build a machine that could recover a AES 256-
bit key in a day (i.e., try 2256 keys per day), then it would take that machine 
approximately eleven million (!!!) years to crack GCS in this case. 

Another example, when n is merely increased by 1, will yield a drastically different 
result. Namely, if m = l  = 4, n = 5, and ||x|| ≈ 240, the number of operations required for 
successful brute force attack is at least 

(8⋅4⋅220/2)5 ⋅ 4  = (24⋅220)5 ⋅ 4  = (224)20  =  2480 ≈ 3⋅10144. 

 This number greatly exceeds the number of particles in the universe. 
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C.2 A length-preservation-based attack aimed at reconstructing individual 
plaintexts  

This attack on GCS is based on the fact that  

||f(x)|| = ||x|| 

for any orthogonal transformation f and for any vector x in n.  In our case x = p is a plain 
text and f = T(v,i)  The goal of the cryptanalyst is to use this fact in order to guess a 
plaintext p out of a given ciphertext c.  The expectation is that the attack will take less 
time than the above brute force attack.   

The following is our argument explaining why the attack doomed to fail. 

Let p be a plaintext message and c = f(p) + ∆ is the corresponding encrypted message, 
where ∆ is the encryption error (see Section 4 and Appendix B). Denote ∆' = f–1(∆).  Note 
that                                                      

(C.9)                                                       ||∆'|| ≤ (2–r–1) ⋅√n 

because ||∆'||2 = ||∆||2 and because ∆ satisfies (B.11). 

We have  
|| c ||2 = || f(p) + ∆||2 = || f(p + f–1(∆))||2 =  || f(p + ∆')||2 =  ||p + ∆'||2 

Assume that d = ||c||2.  According to definition of the metric GCS in the beginning of 
Section 4, 22r⋅d is an integer, i.e., as a binary number, d has at most 2r digits after the dot.  
If we write p = [p1, p2, …, pn] and ∆' = [∆'1, ∆'2, …, ∆'n] then the cryptanalyst has to deal 
with the following equation: 

d = (p1+ ∆'1)2 + (p2+ ∆'2)2 + … + (pn+ ∆'n)2, 

where d is a given binary rational number having at most 2r digits after the dot, ∆'1, ∆'2, 
…, ∆'n are real numbers such that sum of their squares is less than 2–2r–2⋅n, and  p1, p2, …, 
pn are the integers he is looking for.  Note that the errors ∆'1, ∆'2, …, ∆'n are unknown to 
the cryptanalyst.  Even in the case that he knew all of these errors are zero (in which case 
d is an integer), he would have to solve the equation  

d = (p1)2 + (p2)2 + … + (pn)2, 

that is, he would have to list all lattice points in the surface of  the ball of radius √d and 
having its center at the origin.  This problem is known to be hard (see, for example, [9]).  

The actual problem the cryptanalyst faces is significantly harder. He has to list all lattice 
points between two concentric balls B(√d + µ) and B(√d), where µ = (2–r–1)⋅√n as in 
(C.9).  
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Since µ is a constant for our implementation (i.e., µ is not too close to 0) and d may be 
arbitrarily big, we expect that the number of lattice points in the difference B(√d + µ) – 
B(√d) is close enough to the volume of this difference.  Denote by Vn(d, µ) this volume.  
It is easy to see that  
 

Vn (d, µ) =  An⋅((√d + µ)n – (√d) n) > An⋅n⋅ (√d )n–1 ⋅µ, 

where  An  = 2n–k⋅πk/ [n ⋅ (n – 2) ⋅…] and where k is the largest integer preceding n/2.   

For n ≥4 we expect that the number of lattice points the cryptanalyst has to list is at least 
An⋅n⋅(√d )n–1⋅µ.  Since √d is between 0 and 2N⋅√n and µ = (2–r–1)⋅√n, the expected 
number of points the cryptanalyst has to list is commensurable with 
  

An⋅n⋅ (√d )n – 1⋅µ ≈  An⋅n⋅ (½ ⋅2N⋅√n )n – 1⋅(2–r–1) ⋅√n = An⋅n⋅ (√n)n ⋅ 2(N–1) ⋅(n–1) – r–1 

This shows that n ≥4 the attack cannot take significantly less time than the brute force 
listing of plaintexts.  

For example, if N = 40 and n = 4, then (taking into account that A4 = ½ ⋅π2) the number 
of points is of an order magnitude  

½ ⋅π2⋅4⋅2(40–1) ⋅(4–1) = π2⋅2118≈ 3⋅1036. 

This is rather a big number of points to list in order to reconstruct a single plaintext p.  
However, even after this huge listing is accomplished, it is not guaranteed that the attack 
is successful.  For instance, if the plaintext p is a binary executable file, then the 
cryptanalyst faces the real problem of selecting this p out of 3⋅1036 candidates.  At the 
same time, even if completely successful, the attack of this kind would not help in 
reconstructing other plaintexts or the parameters (i.e., the normalized inner component) 
of GCS.  

 
C.3 Algebro-geometric attack aimed at reconstructing the key of GCS 

In this attack we assume that one transformation T(v,i) for a certain outer component i = 
(i1, i2, …, il)  became known to the cryptanalyst. (This knowledge of T(v,i) could have 
been obtained as a result of intercepting a number of ciphertexts for which he also 
somehow knows corresponding plaintexts.)  

For the sake of simplifying the cryptanalyst’s work we assume that T(v,i) is known to him 
precisely, i.e., without any rounding. We also assume that the inner component v = (v1, v2, 
…,vm) consists of vectors with integer coordinates, i.e., each vi belongs to  n (where  is 
the set of all integers).  
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In other words we assumed that the cryptanalyst knows precisely the standard matrix A 
(with rational coefficients) of the linear encryption transformation T(v,i).  His goal is to 
reconstruct the inner component v = (v1, v2, …,vm) or, more precisely, the normalized 
inner component e = (e1, e2, …,em), as in (4.2). 

If successful in achieving his goal, the cryptanalyst also solves the following algebro-
geometric problem (which we refer to as GCS problem).   

GCS problem is: given an orthogonal n×n matrix A with rational coefficients, find all l-
tuples of non-zero vectors (u1, u2,…., ul) in  n such that  

(C.10)                                               Su1° Su2
 ° … ° Sul 

= A, 

where Su stands for the reflection about the hyperplane orthogonal to the vector u, that is,   

Su (x) = x – [2(x,u)/(u,u)]⋅u. 

Remark. In the above definition, each Suj 
is treated as a n×n matrix, so that the left hand 

side of (C.10) is merely a product of these l matrices.  

Let us consider an example to illustrate complexity of GCS problem.   

Take l = 2.  Then F(u, v) =  Su ° Sv.  That is,  

F(u, v) (x) =  Su(Sv (x)) = Su(x – [2(x, v)/( v, v)]⋅ v) = Su(x) – [2(x, v)/( v, v)]⋅ Su(v) = x – 
[2(x, u)/( u, u)]⋅ u –  [2(x, v)/( v, v)]⋅ (v – [2(v, u)/( u, u)]⋅ u) = x – [2(x, u)/( u, u)]⋅ u –  
[2(x, v)/( v, v)]⋅ v – [2(x, v)/(v, v)]⋅ [2(v, u)/( u, u)]⋅ u  

That is,  

F(u,v)(x) = x – [2(x, u)/( u, u)]⋅u – [2(x, v)/( v, v)]⋅v – [2(x, v)/( v, v)]⋅[2(v, u)/( u, u)]⋅u 

By definition, the matrix A of the transformation F(u,v) is given by the following 
formula:  

Ai,j = (F(u,v)(ej), ei), 

for i, j = 1, 2, ..., n, where e1, e2,..., en comprize the standard orthonormal base in n.  
Therefore,  

Ai,j = δi,j – 2 uj ⋅ ui /( u, u) – 2 vj ⋅ vi /( v, v) – 4 vj ⋅ ui ⋅ (v, u) /[( v, v)⋅( u, u)], 

where δi,j  is 0 if i ≠ j, and 1 if i = j; and 

(u, u) = u1
2 + ... + un

2; (v, v) = v1
2 + ... + vn

2; (v, u) = v1⋅u1
 + ... + vn⋅un. 
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In the general case when l > 2, the  problem is equivalent to solving n⋅(n – 1)/2 equations, 
each of the degree 2l, in n×l integer varriables.   

In fact, the problem that the cryptanalyst faces is harder because, by the very nature of 
GCS, each matrix coefficient Ai,j can be known to him only in a rounded form, that is, 
instead of a single rational number Ai,j, he has to deal with an interval of such numbers. 

In its turn, the problem of solving polynomial equations in integers is closely related to 
the famous 10-th Hilbert problem (the solution to the original 10-th Hilbert’s problem has 
been established as negative in [3]).  More precisely, our problem is a particular case of 
the distributional Diophantine problem (See [5], Section 7).  GCS problem seems to be 
harder than the average distributional Diophantine problem because our parameter A is 
not one-dimensional, and, therefore, can take more different values.  We also expect that, 
for a generic parameter A, GCS problem may have very many solutions. This expectation 
is based on the fact that the continuous version of GCS problem indeed has too many 
solutions.  

Continuous GCS problem is: given an orthogonal n×n matrix A with real coefficients, 
find all l-tuples of non-zero vectors (u1, u2,…., ul) in  n each of the unit length such that  

(C.11)                                               Su1° Su2
 ° … ° Sul 

= A. 

We will show below that. If l ≥ n, the set of solutions is uncountable, more precisely, this 
set is a variety of the dimension at least (l – n/2)⋅(n – 1) ≥ n⋅(n – 1)/2. 

 In order to prove this, we first reformulate the problem.   

Let Ul be the set of all l-tuples of vectors u1, u2,…., ul of n such that (uj, uj) = 1 for all j.  
That is, Ul is the Cartesian product of l copies of the unit (n – 1)-dimensional sphere. In 
particular, the dimension of Ul is l⋅(n – 1).  Let On( ) is the set of all orthogonal n×n 
matrices with real coefficients. Define the map F: Ul  On( ) as follows:  

F(u1, u2,…., ul) = Su1° Su2
 ° … ° Sul 

. 
 

The problem is: to describe each fiber  

F–1(A) = {(u1, u2,…., ul) ∈ X: F(u1, u2,…., ul) = A}. 

Here is our solution of the problem.  By definition, each reflection Su belongs to the 
orthogonal group On( ).  Moreover, it is well-known that On( ) is generated by 
reflections. It is also well known that On( ) is the disjoint union of On

+( ) and On
–( ), 

where the former one consists of all the orthogonal matrices of the determinant +1 and 
the latter one consists of the all the orthogonal matrices of the determinant –1.    
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Proposition C.1.  Let A be an orthogonal matrix in On( ) and a positive integer l ≥ n such 
that det(A) = (–1)l.  Then there are uncountably many l-tuples of reflections S1, S2, …, Sl 
of n such that:   

A = S1°S2 ° ⋅⋅⋅ °Sl. 

(Informally speaking, there are uncountably many ways to factorize A into a product of l 
reflections).  More precisely, the variety of all such l-tuples is a manifold of dimension at 
least n⋅(n – 1)/2. 

Proof.  Indeed, the dimension of On( ) as manifold is n⋅(n – 1)/2.  Let Ul be the set of all 
l-tuples of vectors u1, u2,…., ul of n such that (uj, uj) = 1 for all j.  That is, Ul is the 
Cartesian product of l copies of the unit (n – 1)-dimensional sphere. In particular, the 
dimension of Ul is l⋅(n – 1).  Define the map F: Ul  On( ) as follows:  

F(u1, u2,…., ul) = Su1° Su2
 ° … ° Sul 

, 
where Su stands for the reflection about the hyperplane orthogonal to the vector u, that is,   

Su (x) = x – [2(x,u)/(u,u)]⋅u. 

In fact, the image F(Ul) belongs to On
ε( ), where ε = + if l is even, and ε =  – if l is odd.  

Note that for u and v such that (u, u) = 1 and (v, v) = 1 the reflection Su equals the 
reflection Sv if and only if either u = v or u = – v. 

It is well known that each element A of On( ) can be factored into at most n reflections 
because: 

(a) Each A may be presented as a composition of some number k ≤ n/2 of two-
dimensional rotations and at most n – 2k reflections. 

(b) Each two-dimensional rotation is a composition of two reflections.  

This implies that, if l ≥ n, then F is surjective onto On
ε( ) (that is, the image of F is the 

entire On
ε( )).  Moreover, each matrix A in On

ε( ) can be obtained as an image of F in 
uncountably many ways which fact follows from the lemma below.   

Lemma C.2.  Assume that l ≥ n and A is an element of On
ε( ).  Then dimension of F-1(A) 

is at least 

l⋅(n – 1)  –  n⋅(n – 1)/2 = (l – n/2)⋅(n – 1) ≥ n⋅(n – 1)/2 . 

Proof.  We have already proved that F: Ul  On
ε( ) is a surjective map (where ε = + if l 

is even and ε = – if l is odd).  Furthermore, one can easily show that F is a smooth map, 
i.e., an infinitely differentiable map.  It is well known that for a smooth surjective map of 
manifold f: X  Y the dimension of a fiber f –1(y0) for each point y0 in Y is at least the 
difference of the dimension of X and the dimension of Y.  Thus, the fiber F–1(A) has 
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dimension that is the difference of dimensions of the source and the target manifolds. 
This proves the lemma. 

Lemma C.2 is proved. ■ 
 

This finishes the verification of the fact that each matrix A in On
ε ( ) can be factored into 

the product of l reflections (for any l such that l ≥ n and the parity of l is ε) in 
uncountably many ways.   

This proves Proposition C.1. ■ 
 

C.4  GCS with a secret outer component 

In what follows we shall use the notation of Section 4 and Appendix B. Consider a 
modification of GCS in which the encrypted messages are the triples (i, c0, c), where i is 
an outer component, c0 is a ciphertext of the form  

c0  = Round  (T(v,i)(j )), 

where j is another outer component considered as a vector of n, and c is a ciphertext 
encrypted by means of j, that is, c = Round  (T(v,j)(p)), where p is a plaintext.  The 
decryption of such a message proceeds as follows. First, j is decrypted as  

j = Round (T(v, i')(c0)); 

then, p is decrypted as p = Round (T(v, j')(c)).  (Here j' is the reversed outer component j 
and i' is the reversed outer component i, as in Section 3).  

The advantage of this modification is that the actual outer component j is unknown to the 
cryptanalyst which fact seriously complicates all above discussed attacks against GCS.  
Apparently, the only way to reconstruct the actual outer component j is to list all possible 
candidates for the component.  This modification of GCS also deflects Chosen Ciphertext 
Attack (CCA). 
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