
 A. Berenstein, L. Chernyak, Geometric Cryptosystem

05/15/2005

Geometric Cryptosystem

Arkady Berenstein1 & Leon Chernyak2

Abstract
In this paper we propose a new class of cryptosystems that
utilizes metric continuity. The geometric cryptosystem
considered in this paper as the main example of metric
cryptosystems has a number of interesting properties such
as resistance to several basic cryptographic attacks,
efficiency and detection of transmission errors.

Table of Content

Section 1. Continuous and Metric cryptosystems

Section 2. GCS as a continuous cryptosystem (informal description)

Section 3. GCS as a continuous cryptosystem (formal description)

Section 4. GCS as a metric cryptosystem

Appendix A – Performance of GCS in comparison with AES

Appendix B – Proof of Proposition 4.2

Appendix C – GCS and Cryptanalysis:

C.1 Brute force attack aimed at reconstructing the key of GCS

C.2 Length-preservation-based attack aimed at reconstructing individual

plaintexts

C.3 Algebro-geometric attack aimed at reconstructing the key of GCS

C.4 GCS with a secret outer component

1 Affiliation: University of Oregon, Department of Mathematics
2 Affiliation: Institute for Genometric Systems

 1

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 2

Introduction

 Many existing cryptosystems are based on mathematical concepts such as
Boolean functions, finite fields, discrete groups, etc. AES, for example, utilizes Galois
theory of finite fields. In more recent works such as [7], [8], and [10], more advanced
mathematical concepts of arithmetical and algebraic geometry were employed.
 In this paper we propose a class of cryptographic systems based on mathematical
concept of geometric continuity. The main feature of such continuous cryptosystems is
that plaintexts and ciphertexts are elements of such domains as real numbers or real
vector spaces, and encryption/decryption procedures involve continuous transformations
of these domains. Apparently, this attempt to utilize the geometric continuity in
cryptography is new. So far we have found only one prior work [4] that somehow
employs continuity: the Ajtai-Dwork cryptosystem introduced in this paper deals with a
collection of parallel hyperplanes in n-dimensional vector space.
 Informally speaking, continuity is a natural way to introduce randomness, which
is important for security of cryptosystems (see e.g., [6]). Randomization of keys deflects
brute force attacks against the keys and randomization of ciphertexts deflects
cryptanalysis based on intercepted ciphertexts.
 Speaking mathematically, a continuous cryptographic system (CCS) is organized
as follows. Each plaintext is a point of a topological space X; each ciphertext is a point
of a topological space Y; and each encryption/decryption procedure is a continuous
isomorphism between X and Y. We will rigorously introduce continuous cryptosystems
and discuss their properties in Section 1. (To enhance GCS security, it is reasonable to
assume that prior to the moment GCS begins its work nearby texts in a natural language
are transformed into mutually distant vectors)
 Since a typical topological space is uncountable, like n-dimensional space n,
CCS is not a “real,” but rather an “ideal” cryptosystem.
 In order to make CCS a working cryptosystem, the continuous objects are to be
“discretized.” In Section 2 we introduce a concept of metric cryptosystem (MCS) in
which such “discretization” is performed as a certain rounding procedure. Informally
speaking, a metric cryptosystem is a continuous cryptosystem enhanced with the
following data:

1. a certain finite subset of X is designated as the space of plaintexts;
2. a certain finite subset of Y is designated as the space of ciphertexts;
3. each encryption/decryption procedure is followed by rounding (which guarantees

the transformation).

 We will rigorously define metric cryptosystems and discuss their properties in
Section 2.
 We expect that the discrete cryptosystem derived from each MCS, which is built
upon any strong topology, will posses a remarkable property of natural randomization of
ciphertexts. Unlike, for example, in Blowfish, the discrete cryptosystem derived from
MCS does not pursue any special randomization strategy. MCS-induced randomization
is natural in that sense that it is generated by the very computation of a continuous
function followed by customary procedures of rounding of results of the computations.

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 3

 Our expectation was confirmed by what we consider to be the most interesting
example of MCS – a cryptosystem that we call Geometric Cryptosystem (GCS).
 Another benefit of each MCS is its efficiency in detecting errors during
transmissions of ciphertexts. Consider, for example, the situation when a plaintext is
presented by a discrete point in n (i.e., by a point that belongs to the integer lattice n in

n, where denotes the set of all integers). The corresponding ciphertext produced by a
continuous transformation is not discrete anymore. Therefore, if an error has occurred
during the transmission of the ciphertext, it is highly unlikely that the decryption
procedure will result in a discrete point. Such a non-discrete result of decryption would
indicate a transmission error.
 Below we propose an implementation of MCS, which we call Geometric
Cryptosystem (GCS). Each encryption/decryption key of GCS consists of two parts: a
outer component and a inner component. The role of the outer component is played by a
set of discrete data that is a finite sequence of positive integers. The the inner component
is represented by continuous data, which is an m-tuple of vectors (v1,v2,…, vm) of the
vector space n.
 The encryption and decryption techniques of GCS are mutually symmetric and
require the same time, amount of memory, and computational power. The same device
can work both as the encryption and the decryption device. Only the outer component of
the key determines in which mode, i.e., encryption or decryption, the device is currently
working. Namely, the outer component of the key used for encryption of a message can
be transmitted along with the encrypted message so that the receiving device uses this
outer component for decryption of this message.
 The creation of an encryption transformation (from the space of plaintexts to the
space of ciphertexts) requires a choice of both an outer component and an inner
component. Once the inner component is chosen, the encryption/decryption process
depends solely on the choice of outer component.
 However, the decryption transformation (from the space of ciphertexts to the
space of plaintexts) cannot be reconstructed based solely on the outer component. The
inner component of the key can be chosen at random and is kept in secret. The inner
component is hard to reconstruct because of its randomness. Attacks (considered in
Appendix C) aiming at reconstruction of the inner component are not efficient.
 Therefore, GCS allows for a dynamic key update without changing inner
components. Instead of such change, the outer component of the encryption key, as
embedded into a transmitted message, determines a new decryption key. The key, in its
turn, triggers generation of a new decryption transformation. Actually, any transmitted
message may trigger a new decryption key generation.
 GCS has recently been implemented in C++ with n = m = l = 4. The results are
very encouraging: the speed of (not yet optimized) GCS on Pentium-IV system resulted
in the encryption/decryption speed of 215Mb per sec with the used memory
approximately equal to the size of the plaintext messages. It is at least two times faster
than the best results for AES 256. For comparison of GCS versus AES performance see
Appendix A.

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 4

Acknowledgements. The authors express their gratitude to Igor Mendelev for invaluable
help in implementation of the first prototype of GCS and for performing the comparative
analysis of GCS prototype with the Advanced Encryption Standard (AES).
 Our thanks are due to Professor Itkis of Boston University for his comments and
remarks on this manuscript.

Section 1. Continuous and Metric Cryptosystems

 In this section we propose a general concept of continuous cryptosystem. Our
discussion of possible implementations of continuous cryptosystems in a discrete
medium, such as a computer, will result in concept of metric cryptosystem.
 Let us start with a standard (textbook-like) definition of a cryptosystem.
Definition 1.1 (discrete). A cryptosystem is a 5-tuple (, , , E, D) where:

- is the set of possible plaintexts (i.e., texts that are not encrypted),
- is the set of possible ciphertexts (i.e., texts that are encrypted)
- is the set of possible keys
- E is the set of encryption rules depending on a key: if k is an element of then ek:

 is the corresponding encryption rule
- D is the set of decryption rules depending on a key: dk: which verifies that

the composition dk○ek is the identity map .

 Next, we define a cryptographic system that is a continuous analogue of the
cryptosystem of Definition 1.1.

Definition 1.2 (continuous). A continuous cryptographic system (CCS) is a 5-tuple (X,
Y, K, e, d), where

- X is a topological space of plaintexts,
- Y is a topological space of ciphertexts (Y is isomorphic to X),
- K is a topological space of keys,
- e: K×X Y is a continuous map – the set of encryption rules, and
- d: K×Y X is a continuous map – the set of decryption rules,
- the encryption and decryption rules are mutually inverse: for each k in K and each

x in X, and each y in Y one has:

(1.1) d(k, e(k, x)) = x, e(k, d(k, y)) = y.

The encrypted message is the pair (k, e(k, x)), or simply e(k, x) if the encryption key k is
known to the recipient.
 It follows from Definition 1.2 that the encryption transformation Tk: X Y,
defined by Tk(x) = e(k, x), and the decryption transformation Tk': Y X, defined by
Tk'(y) = d(k, y), are mutually inverse (in particular, the spaces X and Y are isomorphic).

 Remark. In GCS (see Section 3) only a part of key k (so called ‘inner component’)
is known to the recipient and only a part of the key k (so called ‘outer component’) is
being transmitted along with the ciphertext e(k, x).

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 5

 It is easy to see that our Definition 1.2 of CCS is a continuous analog of the
standard (discrete) Definition 1.1. Moreover, since any set S is a topological space with
respect to the discrete topology (i.e., when each subset of S is declared open) and any
map between sets is, therefore, continuous, any cryptosystem satisfying the Definition 1.1
is a particular case of CCS.
 However, we are not interested here in this trivial discrete topology. The most
interesting examples of CCS are built upon a topology as strong as the topologies of real
line or that of the n-dimensional space n. Another example of a strong enough
topology is that of p-adic numbers for each prime p (see, e.g., [1]).
 However, CCS built upon such strong topologies as n (or that of p-adic numbers)
has obviously uncountably many plaintexts and ciphertexts. In order to “materialize”
such a strong CCS in a discrete medium, one has to address the following challenges.

1. One has to deal with actual (i.e., discrete) plaintexts and ciphertexts rather than
with continuous ones.

2. One has to make sure that, despite of the continuous nature of each encryption
transformation, encryption of an actual (i.e., discrete) plaintext will always result
in an actual (i.e., discrete) ciphertext. The same for decryption.

 As a response to these challenges, i.e., as an implementation of CCS in a discrete
medium, we propose a metric cryptosystem.

Definition 1.3 (metric). A metric cryptosystem (MCS) is a 10-tuple

(X, Y, K, e, d; , , ; Round , Round),

where (X, Y, K, e, d) is a CCS, in which X is a metric space (with topology induced by
the metric), Y is another metric space (with topology induced by the metric); K, e, d are
as in CCS, and

- is a discrete subset of X,
- is a discrete subset of Y,
- is a discrete subset of K,
- Round : X is a map such that for each point x∈ X the point p = Round (x)

is the closest to x among all point p′∈ (in particular, Round (p) =p for any p∈);
- Round : Y is a map such that for each point y ∈ Y the point c = Round (y)

is the closest to y among all point c′ ∈ (in particular, Round (c)=c for any c∈);
- It is required that for each key k in and for each p ∈ one has

(1.2) Round (d(k, Round (e(k, p)))) = p .

Note that each standard system of Definition 1.1 is tautologically a metric system of the
Definition 1.3 with the discrete X = , discrete Y = (and, therefore, and Round and
Round are identity transformations). However, we introduced metric cryptosystems
for more interesting “discretezations.”

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 6

 Indeed, the identity (1.2) implies that in MCS the continuous encryption and
decryption rules e: K×X Y and d: K×Y X of the underlying CCS are replaced by the
following discrete encryption and decryption rules respectively: ediscr: × and
ddiscr: ×
(1.3) ediscr (k, p) = Round (e(k, p)), ddiscr(k, c) = Round (d(k, c)).
The identity (1.2) can, therefore, be rewritten as

ddiscr(k, ediscr (k, p)) = p.

This argument proves that the procedure of rounding turns our MCS into a conventional
discrete cryptosystem - the 5-tuple (, , , ediscr, ddiscr) as defined in Definition 1.1. We
will refer to this (, , , ediscr, ddiscr) as the discrete cryptosystem derived from MCS.

 Remark. In terms of the encryption transformation Tk:X Y, defined by Tk(x)
=e(k, x), and the decryption transformation Tk': Y X, the formula (1.2) takes the form:

(1.4) Round (Tk'(Round (Tk(p)))) = p,

for each key k in and for each p ∈ .

Section 2. GCS as a continuous cryptosystem (informal description)

 In this section we informally define Geometric Cryptosystem (GCS) as a
continuous cryptosystem in which X = Y = n, where n is the n-dimensional Euclidean
vector space. Therefore, both the plaintexts and the ciphertexts are (continuous) points of
an n-dimensional Euclidean vector space n. In what follows we will construct the
encryption rule in the form of collection of encryption transformations Tk:

n n for
each key k. Respectively, the decryption transformation Tk':

n n will always be the
inverse of the encryption transformations.
 Here is the construction of Tk (for relevant definitions on reflection groups see,
e.g., [2], or Section 3 below).

1. In the vector space n a collection of m mirrors, i.e., of (n −1)-dimensional
subspaces, is chosen. These mirrors are enumerated by numbers 1, 2, …, m.

2. The collection of m mirrors is parametrized by a sequence v=(v1,v2, …,vm), where v1
is a non-zero vector orthogonal to the mirror 1, v2 is a non-zero vector orthogonal to
the mirror 2, etc.

3. The encryption transformation Tk is defined as a sequence of reflections performed
in the order i = (i1, i2, …, il), where each of these indices ij is a number of an
involved mirror, that is, the mirror il is reflected about first, then il-1, etc., and finally
the mirror i1 is applied. The same mirror can be used more than one time in the

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 7

sequence i (e.g., if i = (1, 2, 1), i.e., the mirror 1 is used twice – the first time at the
beginning, and second time at the end).

4. Therefore, the encryption key k is comprised of two components: the inner
component v =(v1,v2, …,vm) and the outer component i =(i1, i2, …, il), i.e., k = (v, i).

5. For each (continuous) plaintext x of n its image Tk(x) is a corresponding
(continuous) ciphertext. The pair (i, Tk(x)) is the encrypted message, in which only
the outer component i of the key k is transmitted along with the ciphertext Tk(x).
That is, the mirrors are not revealed during transmission of the encrypted message.

6. Decryption transformation Tk' = Tk
-1 is defined as “undoing” the reflections of the

sequence i, that is, as applying the same reflections in the opposite order: the mirror
i1 is reflected about first, then i2, etc., and finally the mirror il is applied (e.g., if i =
(1, 2, 1, 3), then Tk' is obtained by applying first the mirror 1, second – the mirror 2,
third – the mirror 1 again, and forth – the mirror 3).

7. This definition of the decryption transformation Tk' = Tk
-1 implies that Tk' has the

same structure as Tk, namely, Tk' = Tk', where k' is the key comprised of the same
inner component v and a new outer component i' = (il, il-1 ,…, i1), that is, is i' is the
reversed sequence i.

8. We will refer to this new k' = (v, i') as to decryption key.

9. In a general GCS (see Section 3 below), the mirrors are “curved,” i.e., the
reflections about the mirrors are twisted with some invertible transformations gi of
the space n.

Section 3. GCS as a continuous cryptosystem (formal description)

 In this section we provide a formal definition of Geometric Cryptosystem (GCS)
within the framework of continuous cryptosystems introduced in Section 1 (GCS as
metric cryptosystem will be addressed in Section 4 and Appendix B).
 Geometric Cryptosystem (GCS) is a continuous cryptosystem (X, Y, K, e, d) (as
in Section 1, Definition 1.2) in which:

- X = Y = n, which is the real n-dimensional vector space, n ≥ 4.

- K is a space of keys: K = Kinner×Kouter, where each element of the set Kinner is a m-

tuple v = (v1, v2, …, vm) of non-zero vectors v1, v2, …, vm in n, m ≥ n; and each
element of Kouter is a repetition-free sequence i = (i1, i2, …, il) of indices such that
n ≤ l ≤ m, where each of these indices ij belongs to the set {1, 2, …, m}; thus each
element of K is a pair k = (v, i), where v and i are as above.

- e: K× n n is a continuous map defined for each k = (v, i) and x in n by the

formula:
(3.1) e((v, i), x) = Si1° Si2

 ° … ° Sil
(x),

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 8

where each Sj: n n, j = 1, 2, …m, is the reflection about the hyperplane (i.e.,
the mirror) Hj orthogonal to the vector vj, that is,

(3.2) Sj (x) = x – [2(x,vj)/(vj, vj)]⋅vj
for all x = [x1, x2,…., xn] in n, where (x, y) stands for a given inner product in

n. In the most of cases we shall employ the standard Euclidean dot product of
vectors x and y in n, that is,

(3.3) (x, y) = x · y = Σj xj yj,

where summation is over j = 1, 2, …, n.

- d: K× n n, is a continuous map defined for each k = (v, i) and x in n by the
formula:

(3.3) d((v, i), y) = e((v, i'), y),

where i' = (il, il-1 ,…, i1), that is, is i' is the reversed sequence i.

 Note that the formula (3.1) for the encryption rule e can be rewritten as

(3.5) e((v, i), x) = T(v, i)(x),

where T(v, i) is a transformation of n given by the formula:

(3.6) T(v, i) = Si1° Si2

 ° … ° Sil
,

and where each Sj is a transformation of n given by (3.2).

Following the discussion after Definition 1.2, we will refer to this T(v, i) as encryption
transformation of GCS.
 Therefore, the formula (3.4) for the decryption rule d can be rewritten as

(3.7) d((v, i), y) = T(v, i')(y),

where i' = (il, il-1 ,…, i1), that is, is i' is the reversed sequence i (as in (3.4)).

 Following the discussion after Definition 1.2, we will refer to this T(v, i') as
decryption transformation of GCS.
 For each encryption key k = (v, i), we refer to v = (v1, v2, …, vm) as the inner
component of k and to i = (i1, i2, …, il) as the outer component of k.

 Remark. We choose the standard dot product in (3.3) only for the sake of
simplicity. Any other inner product in Rn would work here as well.

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 9

 Remark. The set Kouter of repetition-free sequences is finite: the number of
repetition-free sequences i = (i1, i2, …, il) of length l is

(3.8) m ⋅ (m –1) ⋅ … ⋅ (m – l + 1) = m!/(m – l)!,

(the length l of any repetition-free sequences on the set {1, 2, …, m} never exceeds m).

 Remark. We can consider a larger class of outer components by allowing any
sequence i = (i1, i2, …, il) of indices, where each of these indices ij belongs to the set {1,
2, …, m}, with the only restriction that ij ≠ ij+1 , for j = 1, 2, …, l –1. Unlike repetition-
free sequences, this larger class of possible outer components is infinite, and the length l
of i is arbitrary. For this larger class of the outer components the numbers m and l may
be chosen arbitrarily (i.e., there do not have to satisfy the above inequalities n ≤ l ≤ m).

 Remark. If the vector vj is of the unit length, i.e., if (vj, vj) = 1, the above formula
(3.2) for Sj gets simplified as follows.

(3.9) Sj (x) = x – 2(x,vj)⋅vj .

 Remark. The decryption transformation T(v, i') is equal to T(v, i)

–1 because each
reflection Sj is self-invertible, i.e., Sj

–1 = Sj. More precisely,

(3.10) T(v,i)
–1=(Si1°Si2° … °Sil

)–1 = Sil
–1
°Sil -1

–1 ° … °Si1
–1 =Sil°Sil -1

 ° … °Si1
= T(v, i′),

where i' = (il, il-1, …, i1).

 Remark. By definition, each Sj is an orthogonal transformation of n (recall that a
transformation f of n is orthogonal if (f(x), f(y)) = (x, y) for any x and y in n).
Therefore, both the encryption transformation T(v, i) and the decryption transformation
T(v,i') are orthogonal. This happens because each of them is a composition of orthogonal
transformations.
 Remark. It is well known that the group On() of the orthogonal transformation
of n is a compact topological group. Thus, each encryption transformation T(v, i) and
each decryption transformation T(v,i') belongs to this compact group On(). (Below, in
Appendix C, where we consider possible cryptographic attacks against GCS, we shall
discuss this compact group in more details).
 Remark. We can propose a generalization of the encryption transformation (3.6)
by defining transformations T(g, v, i) given by the formula:

(3.11) T(g, v, i) = gi1°Si1°gi1
–1° gi2°Si2°gi2

–1 ° … ° gil°Sil°gil
–1

.

where g1, g 2, …, g m are the invertible transformations of n. It is easy to see that each
T(g, v, i) is an invertible transformation of n and the inverse of T(g, v, i) is T(g, v, i') which
agrees with (3.10). Clearly the encryption transformation (3.6) is a particular case of
(3.11) where each gj is the identity transformation of n. Therefore, the continuous

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 10

cryptosystem with the keys of the form k = (g, v, i) and the encryption transformations
Tk = T(g, v, i) is a generalization of the continuous cryptosystem GCS.

However, the metric property (1.4) of this more general cryptosystem is unknown.

Section 4. GCS as a metric cryptosystem

GCS, as a continuous cryptosystem, has been described in the two previous sections.
Here we will describe it as a metric cryptosystem. For this purpose we introduce:

1. The metric on X = Y = n: this metric is a standard Euclidean distance.

2. the set of plaintexts: = n, i.e., is the set of all vectors p = [p1, p2, …, pn]
with integer coordinates.

3. the set of ciphertexts: = r = [1/2r] ⋅ n for a certain positive integer r, that
is, r consists of binary rational vectors c = [c1, c2, …, cn] such that 2r ⋅ ci is an
integer for i = 1, 2, …, n.

4. the set of keys: = inner× outer, where each element of the set inner is a m-
tuple v = (v1, v2, …, vm) of non-zero vectors v1, v2, …, vm in n, m ≥ n; and each
element of outer is a repetition-free sequence i = (i1, i2, …, il) of indices, where
each of these indices ij belongs to the set {1, 2, …, m}; thus each element of is a
pair k = (v, i), where v and i are as above.

5. Rounding of plaintexts Round : X We define Round to be the ordinary
rounding of vectors of X = n to the vectors in = n. (For example, if n = 4 and
x is a binary vector of the form x = [10.11, 11.1, – 1011.0011, –1.101101], then
Round (x) = [11, 100, – 1011, –10]).

6. Rounding of ciphertexts Round : Y We define Round by the formula:

Round (y) = [1/2r] ⋅ Round (2r ⋅ y).

In other words, Round (y) = [c1, c2, …, cn], where each ci is the ordinary
rounding of xi to r correct binary places after the binary dot. (For example, if n=4,
r=1, and y is a binary vector of the form y = [10.11, 11.1,–1011.0011, –1.101101],
then Round (y) = [11, 11.1, – 1011, –1.1]).

In what follows we assume that a device computing encryption/decryption
transformations has an unlimited precision, i.e., if each coordinate of a vector x is
between – 2N and +2N, then the error in computing each (continuous) ciphertext T(v,i)(p)
can be made smaller than, for instance, 2–2N.

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 11

Theorem 4.1. Assume that r is a positive integer such that 22r > n (that is, r > ½log2(n)).
Then the requirement (1.2) holds, that is, for each key k = (v, i) in and for each p ∈
one has

(4.1) Round (T(v,i)
–1(Round (T(v,i)(p)))) = p

(where T(v,i) is the encryption transformation given by (3.5)).

In what follows we prove Theorem 4.1 by producing a more general statement
(Proposition 4.2) that defines the restrictions for the computational device guaranteeing
the formula (4.1). To formulate Proposition 4.2 we need to introduce some additional
notation.

Recall that each key k of GCS is comprised of its inner component v = (v1, v2, …,vm) and
its outer component i = (i1, i2, …, il). In what follows we fix the inner component v, and
therefore, each encryption or decryption rule will depend only on the outer component i.
Then e(k, x) = T(v,i)(x), where T(v,i) is a transformation of n given by the formula (3.5).

Let ei be the unit length vector in the direction of vi, that is,

(4.2) ei = vi/||vi||,

for i = 1, 2, …, m, where ||x|| stands for the length of x, that is ||x||2 = (x, x).

We will replace the inner component v = (v1, v2, …,vm) by the normalized inner
component e = (e1, e2, …,em). Clearly

(4.3) T(v,i) = T(e,i) .

We proceed with the assumption that, while each vi is precise, its unit vector ei is
computed with the error

(4.4) ∆ei

for i = 1, 2, …, m (that is, we do not assume here that the computational device is
absolutely precise).

Next we need to define the scalar magnitude εi of the vector ∆ei:

(4.5) εi = 4⋅||∆ei|| + 2⋅||∆ei||2

for i = 1, 2, …, m.

And the total scalar error ε in the direction i:

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 12

(4.6) ε = εi1
 + εi2 + ... + εil

(by this definition, ε is always non-negative, and ε becomes 0 if and only if there is no
computational error at all).

In the Proposition 4.2 we shall work with plaintext vectors p = [p1, p2, …, pn] such that
each coordinate pi of p is an integer satisfying

(4.7) – 2N < pi < 2N

for i = 1, 2, …, n, (we will view each pi as a binary integer having at most N binary
digits).

Finally, we shall proceed with the assumption that

(4.8) ε ⋅ (2 + ε) ⋅ (2N – 1)) ⋅ √n < ½ .

Remark. Formula (4.8) demonstrate that in a real device, that is, when ε > 0, the
magnitude N of the plaintext cannot be arbitrarily big, because, if N = + ∞, then ε must
be zero, i.e. the device must be absolutely precise.

Now we can state the main technical result of the section, which will immediately imply
Theorem 4.1.

Proposition 4.2. With the notations and assumptions (4.2) – (4.8), let r be any non-
negative integer such that the following inequality holds.

(4.9) ((ε + 1) ⋅ 2–r–1+ ε ⋅ (2 + ε) ⋅ (2N –1)) ⋅ √n < ½

Then (4.1) holds for each vector p satisfying (4.7), that is,

Round (T(e,i)
–1(Round (T(e,i)(p)))) = p.

Remark. For practical purposes it is convenient to take the minimal possible r with the
constraint (4.9).

Proof of Proposition 4.2 is presented in Appendix B. Here we will demonstrate how
Proposition 4.2 implies Theorem 4.1. Indeed, since Theorem 4.1 assumes the unlimited
precision, we may set ∆ei = 0, that is, εi = 0 for all i, that is, ε = 0. Therefore, the formula
(4.9) becomes

2–r–1⋅ √n < ½
or, equivalently,

√n < ½ ⋅ (2r+1) = 2r.
Finally, we obtain n < 22r.

This proves Theorem 4.1. ■

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 13

Appendix A – Performance of GCS in comparison with AES

GCS has been implemented in Pentium IV computer system. The table below represents
comparison of GCS performance with AES (Advanced Encryption Standard)
performance, where GCS has parameters m = n = l = 4, N = 40, and r = 2

Algorithm CPU Language Encoding,
MB/sec

Decoding,
MB/sec

AES/ Rijndael *
Key length:
 128 bits

 Pentium4 3.06GHz
w/hyperthreading

 X86
assembler

 179.6

 181.7

AES/ Rijndael*
Key length:
 128 bits

 Athlon 2.25GHz

 C

 107.6

 99.8

GCS (prototype
implementation);

Parameters:

m = n = 4;
Key length:
 L = 512 bits

 Pentium4 2.4GHz

 C++

>215

>210

* AES/ Rijndael - the fastest known software implementation
Data concerning AES performance are taken from: http://www.tcs.hut.fi/~helger/aes/rijndael.html

Appendix B - Proof of Proposition 4.2.

The proof of Propositon 4.2 is based on four technical statements regarding errors of
computing certain transformations of n. The first of them, Lemma B.1, defines the error
in the case of linear transformations, and Lemma B.2 estimates this error in the case of
the linear orthogonal transformations. The third one, Lemma B.3, provides error
estimation in the case of composition of orthogonal transformations; Lemma B.4
provides error estimation when the transformation is a single reflection. The last result,
Lemma B.5, specializes the results of Lemma B.3 and Lemma B.4 for the composition of
reflections.

Lemma B.1. Assume that computation of a given vector x in n is performed with the
error ∆x. Assume that f is a linear transformation of n such that its computational error
is ∆f: n n (that is, for any precise vector y the value f(y) is computed with the error
∆f(y)). Then the total error τ∆f(x) of computing f(x) is given by the formula:

http://www.tcs.hut.fi/~helger/aes/rijndael.html

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 14

(B.1) τ∆f(x) = f(∆x) + ∆f(x + ∆x).

 In particular, if g is another transformation of n, then the error ∆(f°g) of the
composition f°g is given by the formula

(B.2) ∆(f°g)(x) = ∆f(g(x)) + f(∆g(x)).

for each x in n. Therefore, the total error of computing f°g is given by

τ∆(f°g)(x) = f(g(∆x)) + ∆f(g(x + ∆x)) + f(∆g(x + ∆x)).

Proof Lemma B.1. Let x′ = x + ∆x be the computed (i.e., approximate) value of x.
Furthermore, the computed (i.e., approximate) value of f(y) for a given (i.e., precise, rater
than approximate) vector y in n is:

f(y) + ∆f (y).

 Therefore, substituting y=x′ = x +∆x, we see that the computed (i.e., approximate)
value of f(x′) is equal to

f(x′) + ∆f (x′) = f(x + ∆x) + ∆f (x + ∆x) = f(x) + f(∆x) + ∆f(x + ∆x)

because f is linear.
 This finishes the proof of Lemma B.1. ■

 Recall that, for each vector x in n, ||x|| is the Euclidean norm of x, that is,

||x||2 = (x, x) = x1
2 + x2

2 + … + xn
2.

 Now assume that f is an orthogonal transformation of n, that is, || f(x)|| = ||x|| for
every vector x (in particular, this guarantees that f is linear and (f(x), f(y)) = (x, y) for any
x and y in n).

Lemma B.2. Assume that computation of a given vector x in n is performed with the
error ∆x. Assume that f is an orthogonal transformation of n such that its computational
error is ∆f: n n. Then the total error τ∆f(x) of computing f(x) is estimated as follows:

(B.3) || τ∆f(x) || ≤ ||∆x|| + ||∆f(x + ∆x)||

Proof of Lemma B.2. By Lemma B.1, the triangle inequality ||y + z|| ≤ ||y|| + ||z||, and the
property || f(y)|| =||y || for any y in n, we have

|| τ∆f(x) || = || f(∆x) + ∆f(x + ∆x)|| ≤ || f(∆x)|| + ||∆f(x + ∆x)|| = ||∆x|| + ||∆f(x + ∆x)||

Lemma B.2 is proved. ■

Lemma B.3. Let f1, f2 ,… , fl be orthogonal transformations of n and let ∆fi be the error
of computing fi for each i = 1, 2, …, l (see e.g. Lemma B.1). Assume that for each i = 1,
2, …, l there exists a number εi ≥ 0 such that

(B.4) || ∆fi(x) || ≤ εi ⋅ ||x||.

for any x in n and i = 1, 2, …, l. Then for f = f1 ° f2 °… ° fl we have

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 15

(B.5) ||∆f(x)|| ≤ ε ⋅ ||x||

for any x in n, where ε = ε1 + ε2 +... + εl. Therefore, for f = f1 ° f2 °… ° fl we have

(B.6) ||τ∆f(x)|| ≤ ε ⋅ ||x|| + (ε + 1) ⋅ ||∆x||

for any x in n.

 Remark. In other words, for x ≠ 0, formula (B.5) reads

||τ∆f(x)||/||x|| ≤ ε + (ε + 1) ⋅ ||∆x||/||x||,

that is, the relative error ||τ∆f(x)||/||x|| of computing f(x) never exceeds ε plus the product
of (ε + 1) and the relative error of computing x.

Proof of Lemma B.3. We prove (B.5) first. We employ Mathematical induction in l:

1. (Base of induction): If l = 0, i.e., f is the identity transformation of n, the assertion is
obvious because ||∆f(x)|| = 0 and ε = 0.

2. (Inductive hypothesis): Assume now that (B.5) is proved for l – 1 or less, e.g.,

for f ′ = f1 ° f2 °… ° fl-1. Then we have (B.5) in the form

|| ∆ f ′(y) || ≤ ε′⋅ ||y||,

for any y in n, where ε′ = ε1 + ε2 +... + εl-1 = ε – εl.

3. (Inductive step) Let f ′= f1 ° f2 °… ° fl-1 and ε′ = ε1 + ε2 +... + εl-1. Then f = f ′° fl and
ε = ε′ + εl. Therefore, by the formula (B.2)

∆f(x) = ∆(f ′° fl)(x) = ∆ f ′(y) + f ′(z),

where y = fl (x) and z = ∆ fl(x). Then using the inductive hypothesis for y we obtain:

 || ∆f(x) || = ||∆ f ′(y) + f ′(z)|| ≤ ||∆ f ′(y)|| + ||f ′(z)|| ≤ ε′ ⋅ ||y|| + || f ′(z) ||.

 Since f ′, as a composition of orthogonal transformations of n, is also an
orthogonal transformation of n, we have ||f ′(z)|| = ||z||. And, by the assumption (B.4),
||z|| = ||∆fl(x)|| ≤ εl ⋅ ||x||. Since fl (x) is orthogonal, ||y|| = ||fl (x)|| = ||x||.
 Combining the above computations, we finally obtain:

|| ∆f(x) || ≤ ε′ ⋅ ||y|| + || f ′(z) || ≤ ε′ ⋅ ||x|| + εl ⋅ ||x|| = (ε′ + εl) ⋅ ||x|| = ε⋅ ||x|| ,

which is the inequality (B.5).

This finishes the inductive step. Thus, the inequality (B.5) is proved.

In order to prove (B.6), we will use (B.3) and (B.5).

|| τ∆f(x) || ≤ ||∆x|| + ||∆f(x + ∆x)|| ≤ ||∆x|| + ε⋅ ||x + ∆x|| ≤ ||∆x|| + ε⋅ (||x|| + ||∆x||) =

= ε ⋅ ||x|| + (ε + 1) ⋅ ||∆x||.

This proves (B.6). Lemma B.3 is proved. ■

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 16

 We need the following fact, which estimates the error of computing a single
reflection in n.

Lemma B.4. Let e be a unit vector in n computed with the error ∆e and let S be the
reflection of n relative to the vector e. Then the error ∆S of computing the reflection S
is estimated by the formula:

||∆S(x)|| ≤ εe ⋅ ||x||

for each x in n, where εe = 4⋅||∆e|| + 2⋅||∆e||2.

Proof of Lemma B.4. Recall that since e is the unit length,

S(x) = x – [2⋅(x, e)]⋅e

for any x in n. We assume that the error ∆S of this S comes solely from the error ∆e (of
computing the vector e). Then an approximate value of S(x) is

x – [2⋅(x, e + ∆e)]⋅(e + ∆e).

Therefore,

∆S(x) = {x – [2⋅(x, e + ∆e)]⋅(e + ∆e)} – {x – [2⋅(x, e)]⋅e}

= [2⋅(x, e)]⋅e – [2⋅(x, e + ∆e)]⋅(e + ∆e) = – [2⋅(x, e)]⋅∆e – [2⋅(x, ∆e)]⋅e – [2⋅(x, ∆e)]⋅∆e .

(In particular, this formula implies that ∆S is a linear transformation of n).This formula,
in conjunction with the triangle inequality, implies that

||∆S(x)|| ≤ ||2⋅(x, e)⋅∆e|| + ||2⋅(x, ∆e)⋅e|| + ||2⋅(x, ∆e)⋅∆e|| =

= 2⋅|(x, e)|⋅||∆e|| + 2⋅|(x, ∆e)|⋅||e|| + 2⋅|(x, ∆e)|⋅||∆e||

Then using the fact ||e||=1 and Cauchy-Schwarz inequality |(x, y)| ≤||x||⋅||y|| we obtain:

||∆S(x)||≤ 2⋅||x||⋅||∆e||+2⋅||x||⋅||∆e||+2⋅||x||⋅||∆e||⋅||∆e|| = (4⋅||∆e|| + 2⋅||∆e||2)⋅||x|| = εe ⋅||x||

This proves Lemma B.4. ■

 The following result explicitly estimates the precision of encryption/decryption
transformations of GCS.

Lemma B.5. Let T(e,i) be the transformation given by the formula (4.2) with respect to
the sequence i = (i1, i2, …, il). Then for each vector x in n computed with the error ∆x,
we have

(B.7) ||τ∆T(e,i)(x)|| ≤ ε ⋅ ||x|| + (ε + 1) ⋅ ||∆x||,

where
ε = εi1

 + εi2
 +... + εil

as in (4.6), and where

εi = 4⋅||∆ei|| + 2⋅||∆ei||2,
for i = 1, 2, …, m, as in (4.5).

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 17

 Let y = T(e,i)(x), and assume that y is first computed with an error and then
approximated (e.g., rounded) to the vector y' = y + ∆y + ∆, where ∆ is the error of
approximation procedure. Then

(B.8) ||τ∆T(e,i)
–1(y)|| ≤ (ε + 1) ⋅ ||∆|| + ε ⋅ (ε + 2) ⋅||x|| + (ε + 1)2 ⋅ ||∆x||.

Proof of Lemma B.5. Prove (B.7) first. Using Lemma B.4 and Lemma B.3 in the
situation when f = T(e,i) = Si1° Si2

 ° … ° Sil
, we obtain from (B.6):

||τ∆f(x)|| ≤ ε ⋅ ||x|| + (ε + 1)⋅ ||∆x||.

This proves the inequality (B.7).
 Now we are going to prove the inequality (B.8). We will use the inequality (B.7)
in the situation when we y = T(e,i)(x) is taken instead of x and ∆ + ∆y instead of ∆x. Here
∆y is the total error of computing y, that is, ∆y = τ∆T(e,i)(x). Recall from (3.10) that

T(e,i)
–1 = (Si1° Si2

 ° … ° Sil
) –1 = Sil

–1
° Sil -1

–1 ° … ° Si1
–1 = Sil° Sil -1

 ° … ° Si1
= T(e, i′),

where i' = (il, il-1, …, i1). Then the total error of computing T(e,i)
–1(y) is estimated by the

following modification of (B.7):

||τ∆T(e,i)
–1(y)|| = ||τ∆T(e, i′)(y)|| ≤ ε ⋅||y|| + (ε + 1) ⋅ ||∆ +∆y|| .

Note that ||y|| = ||x||, and ||∆y|| = ||τ∆T(e,i)(x)|| ≤ ε ⋅||x|| + (ε + 1) ⋅||∆x|| by (B.7). Therefore,
using the triangle inequality ||∆ +∆y|| ≤ ||∆|| + ||∆y||, we obtain

||τ∆T(e,i)
–1(y)|| ≤ ε ⋅ ||y|| + (ε + 1) ⋅ (||∆|| +||∆y||) ≤

≤ ε ⋅ ||x|| + (ε + 1) ⋅ (||∆|| + ε ⋅ ||x|| + (ε + 1) ⋅ ||∆x||) =

= (ε + 1) ⋅ ||∆|| + ε ⋅ (ε + 2) ⋅||x|| + (ε + 1)2 ⋅ ||∆x||.

The inequality (B.8) is proved. Lemma B.5 is proved. ■

 Now we are ready to finish the proof of Proposition 4.2. Let r be any number
satisfying (4.9). We have to prove (4.1), that is,

Round (T(e,i)
–1(Round (T(e,i)(p)))) = p,

for any vector p = [p1, p2, …, pn] satisfying (4.7), that is,

– 2N < pi < 2N

for i = 1, 2, …, n. Indeed, using the formula

||p||2 = (p, p) = p1
2 + p2

2 + … + pn
2,

we obtain:
||p||2 ≤ (2N –1)2 + (2N –1)2 + … + (2N –1)2 = (2N –1)2⋅n.

Therefore,

(B.9) ||p|| ≤ (2N –1) ⋅ √n

 Now, denote y = T(e,i)(p) and denote by ∆y the error of computation of y. Then

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 18

Round (y + ∆y) = y + ∆y + ∆,
where ∆ is the error of rounding. The entire setup fits exactly into Lemma B.5 with ∆x =
0. Therefore, formula (B.8) specializes to the following one:

(B.10) ||τ∆T(e,i)
–1(y)|| ≤ (ε + 1) ⋅ ||∆|| + ε ⋅ (ε + 2) ⋅||x||.

One can easily show that the error ∆ of rounding any vector of n to r binary places after
the dot can be estimated as

(B.11) ||∆|| ≤ (2–r–1) ⋅√n,

because each coordinate ∆i of ∆ satisfies |∆i| ≤ ½ ⋅ 2–r = 2–r –1.

 Substituting (B.9) and (B.11) in (B.10), we obtain:

||τ∆T(e,i)
–1(y)|| ≤ (ε + 1) ⋅ (2–r –1) ⋅√n + ε ⋅ (ε + 2) ⋅(2N –1) ⋅ √n =

= ((ε + 1) ⋅ 2–r –1 + ε ⋅ (2 + ε) ⋅ (2N –1)) ⋅ √n.
Therefore, by (4.9),

||τ∆T(e,i)
–1(y)|| < ½

We interpret this result as follows. First, denote for shortness ∆' = τ∆T(e,i)
–1(y). This is

the total error of computing T(e,i)
–1(T(e,i)(x)) = x. In other words, the result of the

computation is x + ∆'. The above inequality guarantees that ||∆'|| < ½. Therefore, each
coordinate ∆'i of ∆' satisfies |∆'i| < ½. Since the vector x = p has integer coordinates, this
implies that

Round (p + ∆') = p,

which result is equivalent to (4.1). This proves Proposition 4.2. ■

Therefore, Theorem 4.1 is proved (see the argument right after Proposition 4.2) ■

Appendix C GCS and Cryptanalysis

In this section we shall consider some basic attacks against GCS.

1) Brute force attack aimed at reconstructing the key of GCS.
2) Length-preservation-based attack aimed at reconstructing individual plaintexts.
3) Algebro-geometric attack aimed at reconstructing the key of GCS.

The attacks 1) and 2) are aimed against GCS as a “real” (i.e., implemented metric)
cryptosystem, as discussed in Section 4 and Appendix B. Attack 3) is an “ideal” attack
against the normalized inner component. It is ideal in the sense that it ignores possible
errors caused by rounding or by imprecision of real computational devices. Attack 3)
aims at reconstructing normalized inner component for a given encryption transformation
T(v, i) (See Section 3). In this attack T(v, i) is given as an n×n-orthogonal matrix factorized
as a product of l reflections. We will show the, in order to succeed, the cryptanalyst will
have to face an algebraic variety of possibilities of dimension at least n⋅(n-1)/2. In other

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 19

words, it shows that in the discrete version of this attack the cryptanalyst may face a large
number of algebraic equations with potentially infinite number of integer solutions.

Recall that in the definition of GCS we used only repetition-free outer components i = (i1,
i2, …, il), where the indices i1, i2, …, il form an l-element subset of the set {1, 2, ..., m}.
In particular, n ≤ l ≤ m. The number of such outer components of the length l is

m ⋅ (m –1) ⋅ … ⋅ (m – l + 1) = m!/(m – l)!.

C.1 A brute force attack aimed at reconstructing the key of GCS

The goal of the cryptanalyst is to reconstruct normalized inner component e = (e1, e2,…,
em). We proceed from the assumption that the cryptanalyst intercepted a number of
messages in the form (i, c), where i is the outer component, c = Round (T(e,i)(p))) is the
corresponding ciphertext, and e is the (yet unknown to him) normalized inner
component. His strategy is to choose a normalized inner component e' = (e'1, e'2,…, e'm)
in such a way that applying the decryption transformation T(e',i) –1 to the ciphertext c will
result in a “readable” plaintext p' =T(e',i)

–1(c). This p' is an approximation of the actual
text p, that is, p' = p + D. The readability of p' will be for him a criterion for a correct
choice of e'. We say that p' = p + D is not readable if

(C.1) ||D||2 > ||p||.

If the opposite of (C.1) holds (i.e., if ||D||2 ≤ ||p||), we say that p' is possibly readable.

Remark. We would argue that this definition of possible readability is too liberal. For
instance, if p is a binary executable file, even an error in one bit of p will irreparably
damage it as a computer program. The same is true when p a credit card number, then
any error D is sufficient to damage it irreparably.

Based on this definition of non-readability, the cryptanalyst has to test various e' to
guarantee that one of them will make p' possibly readable. In other words, he has no
other options but to list all possible e' with some increment until he gets a possibly
readable plaintext p'. At the moment when the cryptanalyst managed to recognize p' as
an actually readable text, the cryptanalyst may decide that e' is sufficiently close to the
original inner component e. Therefore, he should proceed as follows.

Since each ei has length 1, it depends only on n – 1 of its coordinates. Therefore, in order
for a given i to list all possible vectors e'i, one has to list only n–1 coordinates of the
vector. Assume for the sake of simplicity that this listing is obtained by listing the
coordinates of each of the vectors e'1, e'2,…, e'm independently from each other. That is,
it proceeds as a listing of [m⋅(n–1)]-tuples of real numbers. To simplify this work of the
cryptanalyst we assume that each of these m⋅(n–1) numbers is bounded between
– 1/√ (n –1) and 1/√ (n –1). This assumption also guarantees that each vector e'i indeed

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 20

has length 1. We also assume that the cryptanalyst lists each coordinate with the same
increment d. This implies that in order to list all possible values of one coordinate he
needs to perform at least 2/[d⋅√ (n –1)] operations. Therefore, to list all such [m⋅(n–1)]-
tuples requires performing at least

(C.2) (2/[d⋅√ (n – 1)])m⋅(n – 1)

operations.

The rest of our discussion of this attack is devoted to obtaining the upper bound of the
increment d (see formula (C.7) below) and, therefore, to obtaining the lower bound for
the number of operations needed for a successful attack (see formula (C.8) below).

Furthermore, we can think of the vectors e'1, e'2,…, e'm as approximation to e1, e2,…, em
vectors respectively. We will write them as e'1= e1 + ∆e1, e'2 = e2 + ∆e2, … , e'm= em+∆em
in the same way as in Appendix B. The cryptanalyst uses this approximate inner
component e' in his construction of the decryption transformation T(e',i)

–1. By the very
definition, this is an approximate (i.e., not precise in any sense) decryption
transformation. Applying the approximate decryption transformation T(e',i)

–1 to the
intercepted vector p, he obtains an approximately decrypted vector p', i.e. a vector of the
form p' = p + D, where D is the error of his approximate decryption. The goal of the
cryptanalyst is to extract information from p'. At the moment when p' becomes readable,
the cryptanalyst stops his work. He stops because there is a high probability that e' is
close to the original inner component e.

Let us apply the formula (B.7) to our situation. Namely, we take T(e, i)
–1 instead of T(e, i)

and then set x = p, ∆x = 0, and τ∆T(e, i)
–1(x) = D. Therefore (B.7) becomes

(C.3) ||D|| ≤ ε ⋅ ||x||,

where ε = εi1
 + εi2

 +... + εil
, as in (4.6), and where εi = 4⋅||∆ei|| + 2⋅||∆ei||2, for i = 1, 2, …,

m, as in (4.5).

 Then combining (C.1) and (C.2) we obtain

||p|| < ||D||2 ≤ ε2 ⋅ ||p||2.

Hence,

(C.4) ε > 1/√||p||.

Informally speaking, (C.4) means that if p' is not readable, then e' is still not close
enough to e, that is, the approximation error ε is still big.

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 21

We assume, again for the sake of simplicity, that as long as the approximation error ε of e
satisfies the inequality (C.4), the cryptanalyst cannot obtain any useful information from
the approximately decrypted vector p' = p + D.

Therefore, a successful attack would require inequality opposite to (C.4), i.e.,

(C.5) ε ≤ 1/√||p||.

On the other hand, it is easy to see from the definition of the increment d and the
approximation error ε that

(C.6) 4⋅l⋅d < ε.

This inequality holds because each coordinate of each ∆ei changes with the increment d
during the attack, and, therefore ||∆ei|| ≥ d for each i involved in the outer component i.
Combining (C.5) with (C.6), we can see that, for a successful attack, the increment d
should be bounded from above as follows.

(C.7) d < 1/(4l⋅√||x||).

Therefore, combining the estimation (C.2) with the inequality (C.7), we obtain that the
number of operations needed for a successful brute force attack is at least

(C.8) (8l⋅√||x||/[√ (n – 1)])m⋅(n – 1).

For example, if m = l = n = 4, and ||x||≈240 (as it is currently implemented – see Appendix
A above), the number of operations required for successful brute force attack is at least

(8⋅4⋅220/2)4 ⋅ 3 = (24⋅220)4 ⋅ 3 = (224)12 = 2288.

Which is a much better estimation then the estimation for AES 256. To put it into a
perspective, let us imagine that one could build a machine that could recover a AES 256-
bit key in a day (i.e., try 2256 keys per day), then it would take that machine
approximately eleven million (!!!) years to crack GCS in this case.

Another example, when n is merely increased by 1, will yield a drastically different
result. Namely, if m = l = 4, n = 5, and ||x|| ≈ 240, the number of operations required for
successful brute force attack is at least

(8⋅4⋅220/2)5 ⋅ 4 = (24⋅220)5 ⋅ 4 = (224)20 = 2480 ≈ 3⋅10144.

 This number greatly exceeds the number of particles in the universe.

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 22

C.2 A length-preservation-based attack aimed at reconstructing individual
plaintexts

This attack on GCS is based on the fact that

||f(x)|| = ||x||

for any orthogonal transformation f and for any vector x in n. In our case x = p is a plain
text and f = T(v,i) The goal of the cryptanalyst is to use this fact in order to guess a
plaintext p out of a given ciphertext c. The expectation is that the attack will take less
time than the above brute force attack.

The following is our argument explaining why the attack doomed to fail.

Let p be a plaintext message and c = f(p) + ∆ is the corresponding encrypted message,
where ∆ is the encryption error (see Section 4 and Appendix B). Denote ∆' = f–1(∆). Note
that

(C.9) ||∆'|| ≤ (2–r–1) ⋅√n

because ||∆'||2 = ||∆||2 and because ∆ satisfies (B.11).

We have
|| c ||2 = || f(p) + ∆||2 = || f(p + f–1(∆))||2 = || f(p + ∆')||2 = ||p + ∆'||2

Assume that d = ||c||2. According to definition of the metric GCS in the beginning of
Section 4, 22r⋅d is an integer, i.e., as a binary number, d has at most 2r digits after the dot.
If we write p = [p1, p2, …, pn] and ∆' = [∆'1, ∆'2, …, ∆'n] then the cryptanalyst has to deal
with the following equation:

d = (p1+ ∆'1)2 + (p2+ ∆'2)2 + … + (pn+ ∆'n)2,

where d is a given binary rational number having at most 2r digits after the dot, ∆'1, ∆'2,
…, ∆'n are real numbers such that sum of their squares is less than 2–2r–2⋅n, and p1, p2, …,
pn are the integers he is looking for. Note that the errors ∆'1, ∆'2, …, ∆'n are unknown to
the cryptanalyst. Even in the case that he knew all of these errors are zero (in which case
d is an integer), he would have to solve the equation

d = (p1)2 + (p2)2 + … + (pn)2,

that is, he would have to list all lattice points in the surface of the ball of radius √d and
having its center at the origin. This problem is known to be hard (see, for example, [9]).

The actual problem the cryptanalyst faces is significantly harder. He has to list all lattice
points between two concentric balls B(√d + µ) and B(√d), where µ = (2–r–1)⋅√n as in
(C.9).

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 23

Since µ is a constant for our implementation (i.e., µ is not too close to 0) and d may be
arbitrarily big, we expect that the number of lattice points in the difference B(√d + µ) –
B(√d) is close enough to the volume of this difference. Denote by Vn(d, µ) this volume.
It is easy to see that

Vn (d, µ) = An⋅((√d + µ)n – (√d) n) > An⋅n⋅ (√d)n–1 ⋅µ,

where An = 2n–k⋅πk/ [n ⋅ (n – 2) ⋅…] and where k is the largest integer preceding n/2.

For n ≥4 we expect that the number of lattice points the cryptanalyst has to list is at least
An⋅n⋅(√d)n–1⋅µ. Since √d is between 0 and 2N⋅√n and µ = (2–r–1)⋅√n, the expected
number of points the cryptanalyst has to list is commensurable with

An⋅n⋅ (√d)n – 1⋅µ ≈ An⋅n⋅ (½ ⋅2N⋅√n)n – 1⋅(2–r–1) ⋅√n = An⋅n⋅ (√n)n ⋅ 2(N–1) ⋅(n–1) – r–1

This shows that n ≥4 the attack cannot take significantly less time than the brute force
listing of plaintexts.

For example, if N = 40 and n = 4, then (taking into account that A4 = ½ ⋅π2) the number
of points is of an order magnitude

½ ⋅π2⋅4⋅2(40–1) ⋅(4–1) = π2⋅2118≈ 3⋅1036.

This is rather a big number of points to list in order to reconstruct a single plaintext p.
However, even after this huge listing is accomplished, it is not guaranteed that the attack
is successful. For instance, if the plaintext p is a binary executable file, then the
cryptanalyst faces the real problem of selecting this p out of 3⋅1036 candidates. At the
same time, even if completely successful, the attack of this kind would not help in
reconstructing other plaintexts or the parameters (i.e., the normalized inner component)
of GCS.

C.3 Algebro-geometric attack aimed at reconstructing the key of GCS

In this attack we assume that one transformation T(v,i) for a certain outer component i =
(i1, i2, …, il) became known to the cryptanalyst. (This knowledge of T(v,i) could have
been obtained as a result of intercepting a number of ciphertexts for which he also
somehow knows corresponding plaintexts.)

For the sake of simplifying the cryptanalyst’s work we assume that T(v,i) is known to him
precisely, i.e., without any rounding. We also assume that the inner component v = (v1, v2,
…,vm) consists of vectors with integer coordinates, i.e., each vi belongs to n (where is
the set of all integers).

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 24

In other words we assumed that the cryptanalyst knows precisely the standard matrix A
(with rational coefficients) of the linear encryption transformation T(v,i). His goal is to
reconstruct the inner component v = (v1, v2, …,vm) or, more precisely, the normalized
inner component e = (e1, e2, …,em), as in (4.2).

If successful in achieving his goal, the cryptanalyst also solves the following algebro-
geometric problem (which we refer to as GCS problem).

GCS problem is: given an orthogonal n×n matrix A with rational coefficients, find all l-
tuples of non-zero vectors (u1, u2,…., ul) in n such that

(C.10) Su1° Su2
 ° … ° Sul

= A,

where Su stands for the reflection about the hyperplane orthogonal to the vector u, that is,

Su (x) = x – [2(x,u)/(u,u)]⋅u.

Remark. In the above definition, each Suj
is treated as a n×n matrix, so that the left hand

side of (C.10) is merely a product of these l matrices.

Let us consider an example to illustrate complexity of GCS problem.

Take l = 2. Then F(u, v) = Su ° Sv. That is,

F(u, v) (x) = Su(Sv (x)) = Su(x – [2(x, v)/(v, v)]⋅ v) = Su(x) – [2(x, v)/(v, v)]⋅ Su(v) = x –
[2(x, u)/(u, u)]⋅ u – [2(x, v)/(v, v)]⋅ (v – [2(v, u)/(u, u)]⋅ u) = x – [2(x, u)/(u, u)]⋅ u –
[2(x, v)/(v, v)]⋅ v – [2(x, v)/(v, v)]⋅ [2(v, u)/(u, u)]⋅ u

That is,

F(u,v)(x) = x – [2(x, u)/(u, u)]⋅u – [2(x, v)/(v, v)]⋅v – [2(x, v)/(v, v)]⋅[2(v, u)/(u, u)]⋅u

By definition, the matrix A of the transformation F(u,v) is given by the following
formula:

Ai,j = (F(u,v)(ej), ei),

for i, j = 1, 2, ..., n, where e1, e2,..., en comprize the standard orthonormal base in n.
Therefore,

Ai,j = δi,j – 2 uj ⋅ ui /(u, u) – 2 vj ⋅ vi /(v, v) – 4 vj ⋅ ui ⋅ (v, u) /[(v, v)⋅(u, u)],

where δi,j is 0 if i ≠ j, and 1 if i = j; and

(u, u) = u1
2 + ... + un

2; (v, v) = v1
2 + ... + vn

2; (v, u) = v1⋅u1
 + ... + vn⋅un.

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 25

In the general case when l > 2, the problem is equivalent to solving n⋅(n – 1)/2 equations,
each of the degree 2l, in n×l integer varriables.

In fact, the problem that the cryptanalyst faces is harder because, by the very nature of
GCS, each matrix coefficient Ai,j can be known to him only in a rounded form, that is,
instead of a single rational number Ai,j, he has to deal with an interval of such numbers.

In its turn, the problem of solving polynomial equations in integers is closely related to
the famous 10-th Hilbert problem (the solution to the original 10-th Hilbert’s problem has
been established as negative in [3]). More precisely, our problem is a particular case of
the distributional Diophantine problem (See [5], Section 7). GCS problem seems to be
harder than the average distributional Diophantine problem because our parameter A is
not one-dimensional, and, therefore, can take more different values. We also expect that,
for a generic parameter A, GCS problem may have very many solutions. This expectation
is based on the fact that the continuous version of GCS problem indeed has too many
solutions.

Continuous GCS problem is: given an orthogonal n×n matrix A with real coefficients,
find all l-tuples of non-zero vectors (u1, u2,…., ul) in n each of the unit length such that

(C.11) Su1° Su2
 ° … ° Sul

= A.

We will show below that. If l ≥ n, the set of solutions is uncountable, more precisely, this
set is a variety of the dimension at least (l – n/2)⋅(n – 1) ≥ n⋅(n – 1)/2.

 In order to prove this, we first reformulate the problem.

Let Ul be the set of all l-tuples of vectors u1, u2,…., ul of n such that (uj, uj) = 1 for all j.
That is, Ul is the Cartesian product of l copies of the unit (n – 1)-dimensional sphere. In
particular, the dimension of Ul is l⋅(n – 1). Let On() is the set of all orthogonal n×n
matrices with real coefficients. Define the map F: Ul On() as follows:

F(u1, u2,…., ul) = Su1° Su2
 ° … ° Sul

.

The problem is: to describe each fiber

F–1(A) = {(u1, u2,…., ul) ∈ X: F(u1, u2,…., ul) = A}.

Here is our solution of the problem. By definition, each reflection Su belongs to the
orthogonal group On(). Moreover, it is well-known that On() is generated by
reflections. It is also well known that On() is the disjoint union of On

+() and On
–(),

where the former one consists of all the orthogonal matrices of the determinant +1 and
the latter one consists of the all the orthogonal matrices of the determinant –1.

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 26

Proposition C.1. Let A be an orthogonal matrix in On() and a positive integer l ≥ n such
that det(A) = (–1)l. Then there are uncountably many l-tuples of reflections S1, S2, …, Sl
of n such that:

A = S1°S2 ° ⋅⋅⋅ °Sl.

(Informally speaking, there are uncountably many ways to factorize A into a product of l
reflections). More precisely, the variety of all such l-tuples is a manifold of dimension at
least n⋅(n – 1)/2.

Proof. Indeed, the dimension of On() as manifold is n⋅(n – 1)/2. Let Ul be the set of all
l-tuples of vectors u1, u2,…., ul of n such that (uj, uj) = 1 for all j. That is, Ul is the
Cartesian product of l copies of the unit (n – 1)-dimensional sphere. In particular, the
dimension of Ul is l⋅(n – 1). Define the map F: Ul On() as follows:

F(u1, u2,…., ul) = Su1° Su2
 ° … ° Sul

,
where Su stands for the reflection about the hyperplane orthogonal to the vector u, that is,

Su (x) = x – [2(x,u)/(u,u)]⋅u.

In fact, the image F(Ul) belongs to On
ε(), where ε = + if l is even, and ε = – if l is odd.

Note that for u and v such that (u, u) = 1 and (v, v) = 1 the reflection Su equals the
reflection Sv if and only if either u = v or u = – v.

It is well known that each element A of On() can be factored into at most n reflections
because:

(a) Each A may be presented as a composition of some number k ≤ n/2 of two-
dimensional rotations and at most n – 2k reflections.

(b) Each two-dimensional rotation is a composition of two reflections.

This implies that, if l ≥ n, then F is surjective onto On
ε() (that is, the image of F is the

entire On
ε()). Moreover, each matrix A in On

ε() can be obtained as an image of F in
uncountably many ways which fact follows from the lemma below.

Lemma C.2. Assume that l ≥ n and A is an element of On
ε(). Then dimension of F-1(A)

is at least

l⋅(n – 1) – n⋅(n – 1)/2 = (l – n/2)⋅(n – 1) ≥ n⋅(n – 1)/2 .

Proof. We have already proved that F: Ul On
ε() is a surjective map (where ε = + if l

is even and ε = – if l is odd). Furthermore, one can easily show that F is a smooth map,
i.e., an infinitely differentiable map. It is well known that for a smooth surjective map of
manifold f: X Y the dimension of a fiber f –1(y0) for each point y0 in Y is at least the
difference of the dimension of X and the dimension of Y. Thus, the fiber F–1(A) has

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 27

dimension that is the difference of dimensions of the source and the target manifolds.
This proves the lemma.

Lemma C.2 is proved. ■

This finishes the verification of the fact that each matrix A in On
ε () can be factored into

the product of l reflections (for any l such that l ≥ n and the parity of l is ε) in
uncountably many ways.

This proves Proposition C.1. ■

C.4 GCS with a secret outer component

In what follows we shall use the notation of Section 4 and Appendix B. Consider a
modification of GCS in which the encrypted messages are the triples (i, c0, c), where i is
an outer component, c0 is a ciphertext of the form

c0 = Round (T(v,i)(j)),

where j is another outer component considered as a vector of n, and c is a ciphertext
encrypted by means of j, that is, c = Round (T(v,j)(p)), where p is a plaintext. The
decryption of such a message proceeds as follows. First, j is decrypted as

j = Round (T(v, i')(c0));

then, p is decrypted as p = Round (T(v, j')(c)). (Here j' is the reversed outer component j
and i' is the reversed outer component i, as in Section 3).

The advantage of this modification is that the actual outer component j is unknown to the
cryptanalyst which fact seriously complicates all above discussed attacks against GCS.
Apparently, the only way to reconstruct the actual outer component j is to list all possible
candidates for the component. This modification of GCS also deflects Chosen Ciphertext
Attack (CCA).

 A. Berenstein, L. Chernyak, Geometric Cryptosystem

 28

References:

1. N. Koblitz, P-adic numbers, p-adic analysis, and zeta-functions. New
York: Springer-Verlag, 1977.

2. J. E., Humphreys, Reflection groups and Coxeter groups, Cambridge; New York:
Cambridge University Press, 1990.

3. Y. Matiyasevich, Hilbert's Tenth Problem. The MIT Press, Cambridge, London,
1993.

4. M. Ajtai, C. Dwork, “Public-Key Cryptosystem with Worst-Case/Average-Case
Equivalence”, Electronic Colloquium on Computational Complexity, Report
TR96-065, 1996.

5. Jie Wang, “Average-Case Intractable NP Problems”: in Advances in Languages,
Algorithms, and Complexity (D.-Z. Du and K.-I. Ko eds.), Kluwer Academic
Publishers, pp. 313-378, 1997.

6. B. Jun and P. Kocher, “The Intel Random Number Generator,” Cryptography
Research, Inc. White Paper Prepared for Intel Corporation. April 22, 1999.

7. T. Moh, “A Public Key System With Signature And Master Key Functions,” in
Communications in Algebra, 27(5), pp 2207-2222 (1999).

8. G. Frey, “Applications of arithmetical geometry to cryptographic constructions”,
Proceedings of the Fifth International Conference on Finite Fields and
Applications, Springer-Verlag, 2001, 128-161.

9. B. Hassibi and H. Vikalo, “The Expected Complexity of Sphere Decoding,” in
Proc. 35th Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA,
Oct. 29-Nov. 1 2001.

10. A. Silverberg and K. Rubin, “Supersingular abelian varieties in cryptology,” in
Advances in Cryptology --- Crypto 2002, Lecture Notes in Computer Science
2442 (2002), Springer, 336-353

	Section 3. GCS as a continuous cryptosystem (formal description)
	
	
	Section 4. GCS as a metric cryptosystem

	Appendix A – Performance of GCS in comparison wit
	Appendix C – GCS and Cryptanalysis:

	Acknowledgements. The authors express their gratitude to Igor Mendelev for invaluable help in implementation of the first prototype of GCS and for performing the comparative analysis of GCS prototype with the Advanced Encryption Standard (AES).
	Section 3. GCS as a continuous cryptosystem (formal description)
	
	
	
	
	
	In this section we provide a formal definition of Geometric Cryptosystem (GCS) within the framework of continuous cryptosystems introduced in Section 1 (GCS as metric cryptosystem will be addressed in Section 4 and Appendix B).

	For each encryption key k = \(v, i\), we refer�
	Algorithm
	CPU
	
	
	Language

	We have
	This finishes the verification of the fact that each matrix A in On((R) can be factored into the product of l reflections (for any l such that l (n and the parity of l is () in uncountably many ways.

