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1 Introduction

The NTRUSign signature scheme was introduced in [8]. The original presentation gave a theoretical
description of the scheme and an analysis of its security, along with several parameter choices which
claimed to yield an 80 bit security level. The paper [8] did not give a general recipe for generating
parameter sets to a specific level of security. In line with recent research on NTRUEncrypt [9], this
paper presents an outline of such a recipe for NTRUSign. NTRUSign has many more implementation
options than NTRUEncrypt, and research is ongoing to improve the efficiency of NTRUSign opera-
tions at a given security level. This paper is therefore not intended to be the last word on parameter
generation for NTRUSign, but to provide a specific parameter generation algorithm whose output
has, we believe, the stated security properties. We also present certain technical advances upon
which we intend to build in subsequent papers.

In addition to outlining a parameter generation algorithm for NTRUSign, this paper makes the
following four important contributions.

1. We note that the “transpose lattice” of [8] has greater security against lattice reduction key
recovery attacks than does the “standard lattice,” because shortest vector in the transpose
lattice is longer than the shortest vector in the standard lattice by a factor of, effectively, N
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This allows a reduction in the size of the public key, while maintaining the security of the key
against lattice attacks. This increased lattice security is combined with the use of trinary form
for private keys, which increases the possible combinatorial security for a given key size.

2. We note that the structure of signatures in the transpose lattice leads naturally to a slightly
different definition of the norm of a signature. Using this norm changes the asymptotic properties
of signatures. More precisely, a valid signer can now create signatures that are a factor of N
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closer to the expected closest vector in the lattice than was previously possible using the standard
lattice of [8]. Clearly, in an asymptotic sense, this is a change of great significance. For the
practical cases under consideration in this paper, the use of this norm enables us to reduce the
lattice dimension required for security against lattice-based signature forgery attacks, validating
our ability to reduce bandwidth.

3. We introduce an improved combinatorial method for signature forgery, similar to the methods
described in [7]. This attack roughly square-roots the time necessary to forge a signature by
combinatorial means.

4. We improve the analysis of the number of signatures an attacker must collect in order to mount
the best transcript attack that is currently known. For the parameter sets under analysis here,
where there is one perturbation basis of the same size as the private basis of the public key,
the transcript length goes as d6/N , where d is the number of 1s in the private key. We present
theoretical and experimental evidence to demonstrate that this lower bound well above 230 for
the parameter choices mentioned here.

Our object is to make this paper as self-contained as possible, but we will occasionally refer to
[8] for details.



2 Outline of the parameter generation algorithm

2.1 Sketch of NTRUSign: underlying mathematics

We briefly review NTRUSign to establish the parameters that must be calculated by a parameter
generation algorithm.

NTRUSign is defined in terms of operations on the set R of polynomials of degree (strictly) less
than N and having integer coefficients. The basic operations on these polynomials are addition and
convolution multiplication. Convolution multiplication ∗ of two polynomials f and g is defined by
the formula

(f ∗ g)(X) =
N−1∑

k=0

( ∑

i+j≡k (mod N)

fi · gj

)
Xk.

If one of the polynomials has all coefficients chosen from the set {0,±1}, we will refer to the
convolution as being trinary, while if coefficients of the polynomials are reduced modulo q for some
integer q, we will refer to the convolution as being modular.

In more mathematical terms, R is the quotient ring R = Z[X]/(XN − 1). Every element of R
has a unique representation as a polynomial r =

∑N−1
i=0 riX

i. A natural measure of size in R is
the centered Euclidean norm (essentially the variance) of the vector of coefficients. Thus we write
r̄ = 1

N

∑N−1
i=0 ri for the average of the coefficients and define the centered norm by the formula

‖r‖2 =
N−1∑

i=0

(ri − r̄)2 =
N−1∑

i=0

r2
i −Nr̄2.

If r ∈ R satisfies ‖r‖2 = O(N), we will say that r is short. The centered norm possesses the
attractive pseudo-multiplicative property ‖r ∗ s‖ ≈ ‖r‖ · ‖s‖ for most choices of short r, s ∈ R.

Given any positive integers N and q and any polynomial h ∈ R, we construct a lattice Lh

contained in R2 ∼= Z2N as follows:

Lh = Lh(N, q) = {(r, r′) ∈ R×R | r′ ≡ r ∗ h (mod q)}.

This sublattice of Z2N is called a convolution modular lattice. It has dimension equal to 2N and
determinant equal to qN .

The centered norm ‖ · ‖ : R → R can be naturally extended to Lh as follows. For (r, r′) ∈
Lh(N, q), we set

‖(r, r′)‖ = min
k1,k2∈R

(‖r + k1q‖2 + ‖r′ + k2q‖2)1/2.

Note that our parameter generation algorithm must give values for N and q.

2.2 Sketch of NTRUSign: key generation

For a fixed parameter δ > 0, let Sδ denote the following subset of R:

Sδ = {r ∈ R : δN − 1 < ‖r‖2 < δN + 1}.

We now construct a particularly useful class of lattices. We start by choosing f, g ∈ Sδ such
that f and g are invertible modulo q, i.e. so that there are polynomials f−1, g−1 ∈ R satisfying
f ∗ f−1 ≡ g ∗ g−1 ≡ 1 (mod q). The process of computing f−1 and g−1 from f and g is described
in [5]. Next we find polynomials F, G ∈ R satisfying f ∗G− g ∗ F = q. See [8] for an algorithm to



construct F, G ∈ R for most randomly chosen f, g ∈ Sδ. We note for future reference that if F and
G are constructed using the method from [8], then they will satisfy

‖F‖ ≈ ‖G‖ ≈ ‖f‖
√

N/12 ≈ N
√

δ/12. (1)

Having found the 4-tuple (f, g, F, G), we set

h ≡ f−1 ∗ F ≡ g−1 ∗G (mod q). (2)

Again for future reference, we observe that (2) implies that there exist k1, k2 ∈ R such that

f ∗ h = F + k1q and g ∗ h = G + k2q. (3)

The corresponding lattice Lh is called an NTRUSign lattice, the polynomial h is called the public
key, and the pair (f, g) is called the private key. The importance of the NTRUSign lattice is that it
can be described by two distinctly different bases. First, Lh is generated by all linear combinations
of the rows of the matrix

(
1 h
0 q

)
. (4)

Here, as in [8], the 2-by-2 matrix in (4) is an abbreviation for the 2N -by-2N matrix whose four
N -by-N square blocks are the N -by-N circulant matrices corresponding to 1, h, 0, q. The matrix (4)
is the public basis for Lh, since the integers (N, q) and the polynomial h are public knowledge.

However, the construction of Lh reveals another basis, namely the rows of the following matrix,
which form a private basis for Lh:

(
f F
g G

)
. (5)

The two bases (4) and (5) are related by the following formula, where k1 and k2 are given by (3):
(

f −k1

g −k2

)(
1 h
0 q

)
=

(
f F
g G

)
.

Our parameter generation algorithm must output a description of Sδ. In this paper, we will take
all private key polynomials f and g to be drawn from a space of trinay polynomials of the following
form.

Definition 1. For a given positive integer d, the space T (d) is defined to be the set of all r ∈ R
such that d+1 coefficients of r are equal to 1, d coefficients of r are equal to −1, and the remaining
coefficients are equal to 0

Definition 2. Define δd to be the quantity

δd =
2d + 1

N
− 1

N2
.

We observe that
‖fd‖2

N
= δd for all fd ∈ T (d).

Note that our parameter generation algorithm must determine a value for d. This is then used to
compute δd, which is the value of δ used to define the space S from which f and g are chosen.



2.3 Sketch of NTRUSign: Signing

Signing and Verification — The signature algorithm takes as input a digital document D and the
private key (f, g, F, G) and outputs a signature s. (For further details, see Appendix A). In [8], the
recipient verifies the signature by checking that

‖(s, s ∗ h−m(D))‖ ≤ N ,

where m(D) ∈ R is a message representative derived by hashing D (see [8] for a discussion of
hashing requirements) and N is a norm bound specified by the parameter generation algorithm.

In the transpose lattice, the norm of s is typically smaller than the norm of s ∗ h−m by a
factor of

√
12/N . We therefore generalize the norm ‖(r, r′)‖ to include a balancing factor β > 0,

which leads to the definition

‖(r, r′)‖β = min
k1,k2∈R

(‖r + k1q‖2 + β2‖r′ + k2q‖2)1/2 .

Verification then consists of checking that

‖(s, s ∗ h−m(D))‖β ≤ N . (6)

One way to interpret the β-norm ‖(r, r′)‖β is as the usual norm of the point (r, βr′) in the lattice

Lh(β) = Lh(N, q, β) = {(r, βr′)|r ∈ R and r′ ≡ r ∗ h (mod q)} .

Of course, Lh(β) may no longer live in Z2N , but it is a lattice in R2N .

Signing Failures — Depending on the choice of parameter set, it may be possible for the signing
algorithm to fail because it produces an s with ‖(s, s ∗h−m(D))‖β > N . To address this potential
difficulty, either the signer should use a parameter set for which the chance of a failure is negli-
gible, or she should include some randomness in the signature, perform a trial verification after
each signature operation, and resign with different randomness if the verification fails. Ideally, the
parameter generation algorithm would take as input an acceptable chance of signing failure and
use this in selecting N . In this paper, we denote the expected size of a signature by E and define
the signing tolerance ρ by the formula

N = ρE .

As ρ increases beyond 1, the chance of a signing failure appears to drop off exponentially. In
particular, experimental evidence indicates that the probability that a validly generated signature
will fail the normbound test with parameter ρ is smaller than e−C(N)(ρ−1), where C(N) > 0 increases
with N . In fact, under the assumption that each coefficient of a signature can be treated as a sum
of independent identically distributed random variables, a theoretical analysis indicates that C(N)
grows quadratically in N .

In this paper we take ρ = 1.1. This appears to give a vanishingly small probability of valid
signature failure for N in the ranges that we consider. We also present some sample parameters
with ρ = 1, where multiple signing may be required.

Transcript Analysis — Signing is not zero-knowledge, since a transcript of signatures leaks infor-
mation about the private key [4, 8]. The number of signatures that an attacker must acquire in
order to mount the best currently known attack can be greatly increased by the use of perturba-
tions as introduced in [8]. We will argue later that the length of the transcript needed to recover
the private key is exponential in the number of perturbations. Ideally, the parameter generation



algorithm would take as input the number of signatures that were to be generated with a given key,
and output the appropriate number of perturbations. In fact, in this paper we will restrict ourselves
to considering parameter sets with one perturbation of a specific form, and argue that for all of the
parameter sets under consideration, the use of a single perturbation makes it safe to produce well
over 230 signatures with a single key. Future research will consider alternative and more efficient
forms for the perturbations.

Our parameter generation algorithm must outputN and β. This completes the list of parameters
that the algorithm must output.

2.4 A proposed parameter generation algorithm for NTRUSign

In this section we will describe an algorithm for determining an NTRUSign parameter set with one
perturbation and with a given level of security. The remainder of this paper justifies these choices
in more detail.

Before giving the algorithm, we remind the reader of the quantities that the algorithm takes as
input and the quantities that it provides as output.

Input to the NTRUSign Parameter Generation Algorithm

k the desired security level in bits
ρ the signing tolerance ρ = N/E defined in Section 2.3

Nmax try all values of N up to this Nmax

Output from the NTRUSign Parameter Generation Algorithm

N polynomials have degree < N

q coefficients of polynomials are reduced modulo q

d polynomials in T (d) have d+1 coefficients equal to 1, have d coefficients equal to −1,
and the other coefficients are 0.

N the norm bound used to verify a signature.
β the balancing factor for the norm ‖ · ‖β.

The parameter sets given below for various values of the bit security parameter k were generated
with ρ = 1.1 and Nmax = 2 · ρ · k. These parameter sets are recommended parameter sets for
NTRUSign at the k bit security level.

The algorithm presented here generates parameter sets that are verifiable (i.e. anyone can
generate them) and secure. They are also general enough to be efficient in a variety of environments.
In specific environments with particular requirements, such as 8-bit processors, various fine tunings
and alterations can be made to the algorithm. Future papers will present modified algorithms
tailored to these environments.

A Parameter Generation Algorithm For NTRUSign

1. Set N = 1.
2. Increment N to the next prime strictly larger than N .
3. If N > Nmax, then go to step 18.
4. Set q = 32.

5. Set qmax = 2
blog2(

2πe(2/3+1/N−1/N2)Nmax
3/2

√
3(3.8)2

c

6. If q > qmax, then go to step 2.



7. Let d be the smallest positive integer satisfying

d ≤ N/3 and ωcmb
def= log2

((
N

d+1

)
√

N

)
> k.

If no such d exists, go to step 2; otherwise proceed to the next step. (The quantity ωcmb is the
combinatorial security.)

8. Compute δd = (2d + 1)/N − 1/N2 (cf. definition 2) and set

c =

√
2πeδdN3/2

q
√

3
. (7)

9. Refer to Table 1(a) to obtain the lattice key security constants A(c) and B(c).
10. Set A = A(c) and B = B(c) and compute

ωlk(A, B,N) = AN −B − max
0≤r<N−2d


log2


1−

(
1−

2d∏

i=0

(
1− r

N − i

))2N

 +

Ar

2


 . (8)

The maximum is taken over integers r, so we note that there will be a maximum value. The “lk”
subscript indicates that ωlk measures the security against lattice key recovery attacks.

11. If ωlk < k and d < 1
3N − 1, increment d by 1 and go to step 8.

12. If d ≥ 1
3N , go to step 2.

13. Compute smallest value of β satisfying
√

12
N
≤ β ≤ 1 and ωfrg

def= −1
2

log2


 πN/2

Γ (1 + N/2)
·
(

ρN

qβ

√
δd

3

(
1 +

β2N

12

))N

 > k. (9)

(The quantity ωfrg is the effort required by the best known combinatorial forgery attacks.) If
there is no β satisfying these two conditions, then set q = 2q and return to step 6. Otherwise,
set

N =
ρN

6

√
δd(12 + β2N) (10)

and continue.
14. The effectiveness of forgery attacks based on solving CVP using the public key h and the

lattice Lh are characterized by the two quantities N/q and

γ(N, q, β, δ, ρ) def= ρ

√
πeδ

6q

(
1
β

+
βN

12

)
. (11)

Calculate γ(N, q, β, δd, ρ). Refer to Table 1(b) to obtain ωlf , the strength against lattice-based
forgery attacks. Note that in order to use a particular line of Table 1(b), both γ and N/q must
be less than the listed values.

15. If ωlf < k, set q = 2q and return to step 6.
16. When we arrive at this step, the computed parameters (N, q, d,N , β) give the desired k bit

security level against all known attacks. Store the parameters (N, q, d,N , β) and the following
additional quantities:

σS = 8dN + N2 = time to sign,
σV = N2 = time to verify,
bpk = N · log2 q = size of public key and signature (in bits),

τ = 29d6 = transcript length.

(12)



bound for c A(c) B(c)
c > 3.7 0.451 −0.218
c > 5.3 0.649 −5.436
c > 6.8 1.539 −102.59

(a) Constants used to calculated bit security
against lattice key attacks, based on

experimental evidence for different values of c

bound for γ and N/q ωlf(N)
γ < 0.1774 and N/q < 1.305 0.995113N − 82.6612
γ < 0.1413 and N/q < 0.707 1.16536N − 78.4659
γ < 0.1400 and N/q < 0.824 1.14133N − 76.9158

(b) Bit security against lattice forgery attacks,
ωlf , based on experimental evidence for

different values of (γ, N/q)
Table 1. Experimentally determined quantities

17. Go to step 2.
18. Check the valid parameter sets (N, q, d,N , β) and associated quantities (12) that were stored

in calls to step 16. Depending on requirements, select the one that gives the lowest value of σS ,
or of σV , or of bpk, or the one that gives the highest value of τ . Output this parameter set and
terminate.

2.5 Asymptotic aspects of the NTRUSign parameter generation algorithm

We will demonstrate in this section that given an input ρ and k there exists a constant α1 > 0
such that if Nmax = α1k then there exist parameters satisfying the requirements of the NTRUSign
parameter generation algorithm. In fact, we will show that there exist constants α2, α3, α4, α5, α6,
depending only upon ρ, such that for any Nmax/2 < N < Nmax, the corresponding d, q, β,N can
be chosen to satisfy

1. α2N < d < N/3,
2. α3N < q < α4N ,
3. β = α5/

√
N .

4. N = α6N .

Begin by fixing any 1/3 > α2 > 0. Then if d is chosen in the above range it is simple to verify using
Stirling’s formula that there exists a constant α7 such that for any N > α7k, the combinatorial
security bound ωcmb defined in step 7 will be larger than k.

Next choose, α3, α4 such that α3 > (0.707)−1 and a power of 2 lies in the interval (α3N,α4N).
Set q equal to this power of 2. With these choices, there exists a constant α8 such that c, defined
in (7), satisfies c = α8N

1/4. Thus there exists a constant α9 such that for any N > α9k, c > 3.7.
The security lower bound of Table 1(a) corresponding to c > 3.7 increases linearly with N . The
effect of zero forcing is simply to decrease the slope by at most a constant factor. Thus there exists
a constant α10 such that for any N > α10k, the lattice security bound ωlk defined in (8) will be
larger than k.

Referring now to (26), (27) and (29) we see that the expected signature sizes will in general
satisfy Es = α11N and Et = α12N

3/2 for constants α11, α12 that depend on the size of the bases
used. Setting, β = Es/Et we then have β = α5/

√
N , where α5 = α11/α12. Note that in this

asymptotic analysis we are describing the parameters such as β in slightly greater generality than
in the preceding algorithm. Referring to (16) we set N = α6N , where α6 = ρα11

√
2. We also note

that an application of Sterling’s formula shows that with this definition of β there must exist a
constant α13 such that ωfrg > k for N > α13k. Here ωfrg is defined in (9).

With these constraints, the value of γ(N, q, β, δ, ρ) given by (11) or by (20) must satisfy
γ(N, q, β, δ, ρ) = ρα13N

−1/4 for some α13 > 0. Because of the constraint α3 > (0.707)−1 we satisfy
the N/q requirements of Table 1(b), and as γ(N, q, β, δ, ρ) = ρα14/N

1/4 , the linear lower bounds



Parameters Security Measures

k N d q β N
80 157 29 256 0.38407 150.02

112 197 28 256 0.51492 206.91

128 223 32 256 0.65515 277.52

160 263 45 512 0.31583 276.53

192 313 50 512 0.40600 384.41

256 349 75 512 0.18543 368.62

ωcmb c ωlk ωfrg γ ωlf log2(τ)

104.43 5.34 93.319 80 0.139 102.27 31.9

112.71 5.55 117.71 112 0.142 113.38 31.2

128.63 6.11 134.5 128 0.164 139.25 32.2

169.2 5.33 161.31 160 0.108 228.02 34.9

193.87 5.86 193.22 192 0.119 280.32 35.6

256.48 7.37 426.19 744 0.125 328.24 38.9

Table 2. Parameters and relevant security measures for trinary keys, one perturbation, ρ = 1.1, q = power of 2

for ωfrg guarantee that there exists a constant α15 such that for N > α15k we will have ωlf(N) > k.
Choosing α1 to be the maximum of α7, α10, α13, α15 we achieve our goal.

Note that as γ(N, q, β, δ, ρ) = ρα13N
−1/4, by ( 18) the algorithm will terminate with a signature

norm on the order of less than a constant times N1/4 times the size of the expected smallest vector.
This is better, by a factor of N1/4 than the N1/2 times the expected smallest achieved without the
use of β. Because of this, the resistance to lattice reduction based forgery is asymptotically higher
with this approach. It should be remarked though, that the norm of a random forgery remains
within a constant factor of the norm of a valid signature. However, as the constant is worse, the
chance of success of a random forgery decays exponentially with N , as quantified by (9).

2.6 Recommended Parameter Sets

The parameter sets in Table 2 were generated with ρ = 1.1 and Nmax = 2 ∗ ρ ∗N , and selected to
give the shortest possible signing time σS . This was found to also give the lowest values for the other
performance measures σV and bpk. The value for Nmax was a heuristic; as N increased beyond the
values in the recommended parameter sets, all the performance measures deteriorated noticeably.
Table 2 gives the parameters and all relevant measures of security. The transcript length required,
τ , is derived by the methods described in Section 6 and will in practice underestimate the required
transcript length by a considerable margin. Appendix C gives the performance measures for these
parameters, and for comparison the parameter sets obtained by setting ρ = 1.

3 Security considerations

In this section we review the security considerations that have led to the algorithm proposed in
Section 2.4. The standard definition of “unforgeability against adaptively chsoen message attacks”
is given in [10]. However, NTRUSignrequires us to weaken our notion of unforgeability and allow
the adversary access to only a bounded, but large, number of signatures. In order for this model to
be a secure and effective signature scheme, the following security issues must be addressed:

1. Given only the public parameters N, q, δ, β,N and the public key h, it should be very hard to
recover f, g.

2. Given only the public parameters, h, and D it should be very hard to create an s satisfying (6).
3. Given the additional information consisting of f and g, there should be a computationally

efficient method to create a signature s on D satisfying (6).
4. Given only the public parameters, public key h, and a long transcript of valid signatures

(D1, s1), (D2, s2), . . . , (Dτ , sτ ),

it should be computationally infeasible to create a valid signature pair (D, s) for any message
digest D not already in the list.



Item (1) has been well studied already and is essentially the NTRU key recovery problem. We
discuss this in Section 4. Item (2) is really a subset of item (4), but for conceptual reasons it is
considered separately in Section 5. Item (3), the method of computing a signature given the private
key, is briefly reviewed in Appendix A, and item (4) is covered in Section 6.

4 Security of the private key

Given the public key h and the parameters N, q, δ an adversary is faced with the problem of
determining some r, r′ ∈ R such that r, r′ are reasonably small and r′ ≡ r ∗ h (mod q). These can
be the original keys f, F or g,G or some other pair of similar size. Experiments [5] indicate that
finding useful imitations is not significantly easier than finding the original keys, and so we will
concentrate here on recovery of f, F or g, G. As is exposited in [9] there are two primary methods of
approaching the key recovery problem, both of which must be considered when selecting a parameter
set to give a specific security level. These are lattice-based attacks [6] and combinatorial attacks [7].
Other methods of attack exist, but are less efficient than these two.

4.1 Combinatorial Security

We refer to the security of a polynomial against combinatorial attack as its combinatorial security,
and denote the combinatorial security of polynomials drawn from S by Comb[S]. A combinatorial
attack can be accomplished via a meet in the middle technique on the known space T (d) that f, g
are chosen from. Then

Comb[T (d)] >

(
N

d + 1

)
/
√

N. (13)

4.2 Lattice Security

The point (f, F ) will be contained in the lattice Lh, and The point (f, λF ) will be contained in
the lattice Lh(λ) for any λ ∈ R. As noted in [5, 6], an attacker minimizes the running time for a
lattice-based attack by selecting

λ = ‖f‖/‖F‖ .

We define the lattice constant c as

c =
√

2N · ‖(f, λF )‖
σ, length of expected shortest vector in Lh(λ)

.

The length of the expected shortest vector, σ, is given (approximately) by [6]:

σ(N, q, δ, λ) =

√
Nqλ

πe
. (14)

In the transpose lattice, λ = ‖f‖/‖F‖ =
√

12/N , and so

c =

√
2πeδN3/2

31/2q
. (15)

Experimentally, for fixed c and N/q, the running times for lattice reduction behave roughly as

log(T ) = AN + B ,



for some experimentally-determined constants A and B. Thus for constant c and N/q, increasing
N increases the breaking time exponentially. As c increases, with N and N/q held constant, the
coefficient A appears to increase. The relevant experiments are summarized in Table 1(a).

For NTRUSign in the “standard” lattice, the small vector in the lattice is of the form (f, g),
where ‖f‖ ∼ ‖g‖, and so the balancing constant λ = 1. Since the definition of c involves

√
λ−1, the

effect of moving from the “standard” NTRUEncrypt lattice to the “transpose” NTRUSign lattice is
to increase c by a factor of (N/12)1/4 for free. This allows for a given level of lattice security at
lower dimensions for the transpose lattice than for the standard lattice. Note that NTRUEncrypt
uses the standard lattice, which is why the key sizes given in [9] are greater than the equivalent
NTRUSign key sizes at the same level of security.

4.3 Zero-forcing

Zero-forcing [11] allows an attacker to reduce the dimension of the lattice they must attack to
recover the key. The formula of [11], corrected in [9], applies here with two changes. First, because
the private key is trinary, there are 2d + 1 nonzero entries rather than d as in the binary case.
Second, because a pattern of zeroes can be found in either f or g, there are 2N rotations rather
than N rotations of the pattern that might be of use — hence the 2N that appears in the exponent.
We obtain

Gain ∼

1−

(
1−

2d∏

i=0

(
1− r

N − i

))2N

 2αr/2 ,

where α is the slope of the lattice strength.

5 Security against forgery

Next, we quantify the probability that an adversary, without knowledge of f, g, can compute a
signature s on a given document D. The constants N, q, δ, β,N must be chosen to ensure that this
probability is less than 2−k, where k is the desired bit level of security. To investigate this some
additional notation will be useful:

1. Expected length of s: Es

2. Expected length of t−m: Et

By Es, Et we mean respectively the expected values of ‖s‖ and ‖t−m‖ (appropriately reduced
modq) when generated by the signing procedure described in Appendix A. These will be indepen-
dent of m but dependent on N, q, δ. A genuine signature will then have expected length

E =
√
E2

s + β2E2
t

and we will set

N = ρ
√
E2

s + β2E2
t . (16)

As in the case of recovering the private key, an attack can be made by combinatorial means,
by lattice reduction methods or by some mixing of the two. By balancing these approaches we will
determine the optimal choice of β, the public scaling factor for the second coordinate.



5.1 Combinatorial forgery

Let us suppose that N, q, δ, β,N , h are fixed. An adversary is given m, the image of a digital
document D under the hash function H. His problem is to locate an s such that

‖(s mod q, β(h ∗ s−m) mod q)‖ < N .

In particular, this means that for an appropriate choice of k1, k2 ∈ R

(‖(s + k1q‖2 + β2‖h ∗ s−m + k2q)‖2)1/2 < N .

A purely combinatorial attack that the adversary can take is to choose s at random to be quite
small, and then to hope that the point h ∗ s −m lies inside of a sphere of radius N/β about the
origin after its coordinates are reduced modq. The attacker can also attempt to combine guesses,
in a way similar to the meet-in-the-middle attacks on private NTRUEncrypt keys originally due
to Odlyzko [7]. Here, the attacker would calculate a series of random si and the corresponding ti
and ti − m, and file the ti and the ti − m for future reference. If a future sj produces a tj that
is sufficiently close to ti −m, then (si + sj) will be a valid signature on m. As with the previous
meet-in-the-middle attack, the core insight is that filing the ti and looking for collisions allows us
to check l2 t-values while generating only l s-values.

An important element in the running time of attacks of this type is the time that it takes to file a
t value. We are interested not in exact collisions, but in two ti that lie close enough to allow forgery.
In a sense, we are looking for a way to file the ti in a spherical box, rather than in a cube as is the
case for the similar attacks on private keys. It is not clear that this can be done efficiently. However,
for safety, we will assume that the process of filing and looking up can be done in constant time,
and that the running time of the algorithm is dominated by the process of searching the s-space.
Under this assumption, the attacker’s expected work before being able to forge a signature is:

p(N, q, β,N ) <

√
πN/2

Γ (1 + N/2)
·
(N

qβ

)N

. (17)

If k is the desired bit security level it will suffice to choose parameters so that the right hand
side of (17) is less than 2−k.

5.2 Signature forgery through lattice attacks

On the other hand the adversary can also launch a lattice attack by attempting to solve a closest
vector problem. in particular, he can attempt to use lattice reduction methods to locate a point
(s, βt) ∈ Lh(β) sufficiently close to (0, βm) that ‖(s, β(t−m))‖ < N . We’ll refer to ‖(s, β(t−m))‖
as the norm of the intended forgery.

The difficulty of using lattice reduction methods to accomplish this can be tied to another
important lattice constant:

γ(N, q, β) =
N

σ(N, q, δ, β)
√

2N
. (18)

This is the ratio of the required norm of the intended forgery over the norm of the expected smallest
vector of Lh(β), scaled by

√
2N . For usual NTRUSign parameters the ratio, γ(N, q, β)

√
2N, will be

larger than 1. Thus with high probability there will exist many points of Lh(β) that will work as
forgeries. The task of an adversary is to find one of these without the advantage that knowledge of
the private key gives. As γ(N, q, β) decreases and the ratio approaches 1 this becomes measurably
harder.



Experiments have shown that for fixed γ(N, q, β) and fixed N/q the running times for lattice
reduction to find a point (s, t) ∈ Lh(β) satisfying

‖(s, t−m)‖ < γ(N, q, β)
√

2Nσ(N, q, δ, β)

behave roughly as
log(T ) = AN + B

as N increases. Here A is fixed when γ(N, q, β), N/q are fixed, increases as γ(N, q, β) decreases and
increases as N/q decreases. Experimental results are summarized in Table 1(b).

Our analysis shows that lattice strength against forgery is maximized, for a fixed N/q, when
γ(N, q, β) is as small as possible. By (14),(16),(18) we have

γ(N, q, β) = ρ

√
πe

2N2q
· (E2

s /β + βE2
t ) (19)

and so clearly the value for β which minimizes γ is β = Es/Et. This optimal choice yields

γ(N, q, β) = ρ

√
πeEsEt

N2q
. (20)

Referring to (17) we see that increasing β has the effect of improving combinatorial forgery
security. Thus the optimal choice will be the minimal β ≥ Es/Et such that p(N, q, β,N ) defined by
(17) is sufficiently small.

An adversary could attempt a mixture of combinatorial and lattice techniques, fixing some
coefficients and locating the others via lattice reduction. However, as explained in [8], the lattice
dimension can only be reduced a small amount before a solution becomes very unlikely. Also, as the
dimension is reduced, γ decreases, which sharply increases the lattice strength at a given dimension.

6 Transcript security

In this section we will assume that signatures are generated by a private basis {f, g, F,G} together
with T private perturbation bases {fi, gi, Fi, Gi}, i = 1, . . . , T . We will assume that f ∗G− g ∗F =
fi ∗Gi − gi ∗ Fi = q for each i, and that ‖Fi‖ =

√
N/12|fi‖.

An adversary studying a long transcript of valid signatures will by (28) have at his disposal a
long list of pairs of polynomials of the form

s = εf + ε′g + ε1f1 + ε′1g1 + . . . + εT fT + ε′T gT (21)

and
t−m = εF + ε′G + ε1F1 + ε′1G1 + . . . + εT FT + ε′T GT . (22)

Let f0 = f, F0 = F, ε0 = ε, . . . for the purpose of having a more uniform notation. Then by (23),
for i = 0, . . . T

εi = {m ∗ gi

q
}, ε′i = −{m ∗ fi

q
}

Let a(X) =
∑

aiX
i ∈ R be a polynomial. The reversal of a is the polynomial

ā(X) = a(X−1) = a0 +
N−1∑

i=1

aN−iX
i.



We then set
â(X) = a(X) ∗ ā(X).

Notice that â has the form

â =
N−1∑

k=0

(N−1∑

i=0

aiai+k

)
Xk.

From [8], the expectation of ŝ and t̂− m̂, given by (21) and (22) is (up to lower order terms)

E(ŝ) = (N/12)(f̂0 + ĝ0 + . . . + f̂T + ĝT )

and
E(t̂− m̂) = (N/12)(F̂0 + Ĝ0 + . . . + F̂T + ĜT ).

We refer to these as the second moments. If these second moments could be recovered and if the
f̂i, ĝi, F̂i, Ĝi could be removed for i ≥ 1 then the problem of recovering the private key would reduce
to the problem of factoring a Gram matrix UT U , where U is an unknown orthonormal lattice basis
(see [4]). For safety we will assume that a reduction to this problem reveals the key, although at
this moment the problem of efficient Gram factorization has not been solved. If one perturbation is
added, i.e if T = 1, then the best known attack is to eliminate the perturbation and the f̂1, ĝ1, F̂1, Ĝ1

by first recovering E(ŝ2), E((t̂− m̂)2), E(ŝ3) and E((t̂− m̂)3) (known as fourth and sixth moments
respectively) and then using simple algebra to reduce to the Gram factorization problem. Even this
involves some unexplored territory, such as the taking of square roots in this context, but we will
again assume that this causes the attacker has no significant problems.

Let us suppose now that T = 1. If τ is sufficiently large, then an attacker has a reasonable
chance of determining (12/N)E(ŝ) = f̂0 + ĝ0 + f̂1 + ĝ1 by averaging over τ signatures and rounding
to the nearest integer. This will give a reasonably correct answer when the error in many coefficients
(say at least half) is less than 1/2. To compute the probability that an individual coefficient has an
error less than 1/2, write (12/N)ŝ as a main term plus an error, where the main term converges to
f̂0 + ĝ0 + f̂1 + ĝ1. The error will converge to 0 at about the same rate as the main term converges to
its expected value. If the probability that a given coefficient is further than 1/2 from its expected
value is less than 1/(2N) then we can expect at least half of the coefficients to round to their correct
values. (Note that this convergence cannot be speeded up using lattice reduction in, for example,
the lattice ĥ, because the terms f̂ , ĝ are unknown and are larger than the expected shortest vector
in that lattice).

The rate of convergence of the error and its dependence on τ can be estimated by an application
of Chernoff-Hoeffding techniques, using an assumption of a reasonable amount of independence and
uniform distribution of random variables within the signature transcript. This assumption appears
to be justified by experimental evidence, and in fact benefits the attacker by ensuring that the
cross-terms converge to zero. Details of the calcalation are given in Appendix B.

Using this technique, we estimate that to have a single coefficient in the 2k-th moment with
error less than 1

2 , the attacker must analyze a signature transcript of length τ > 22k+4d2k/N . Here
d is the number of 1’s in the trinary key. Experimental evidence for the second moment indicates
that the required transcript length will in fact be much longer than this. For one perturbation,
the attacker needs to recover the sixth moment accurately, leading to required transcript lengths
τ > 230 for all the recommended parameter sets in this paper.

7 Conclusion and Alternative algorithms

This paper has outlined an algorithm that produces a set of NTRUSign signatures that allow signing
of 230 messages at a security level of k bits. Future refinements might include:



1. Taking q to be a prime, rather than a power of 2.
2. Different values of ρ, allowing a tradeoff between reduction of N and increased probability of

having to re-sign.
3. Closer consideration of the requirements for perturbation bases, to establish whether they have

to be generated with exactly the same properties as the public basis.
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A Computation of the signature

A.1 The basic signature process

We will need to round numbers to the nearest integer and to take their fractional parts. For any
a ∈ Q, let bae denote the integer closest to a, and define {a} = a − bae. (For numbers a that are
midway between two integers, we specify that {a} = +1

2 , rather than −1
2 .) If A is a polynomial

with rational (or real) coefficients, let bAe and {A} be A with the indicated operation applied to
each coefficient.

Suppose we are given a point (0,m), where m is the image of some digital document D under
the hash function H. Our object is to find a point (s, t) ∈ Lh(β) such that ‖s‖2 + β2‖t−m‖2 is as
small as possible. As is described in [8] this is accomplished by the following process. Solve for real
(x, y) satisfying

(0,m) = (x, y)
(

f F
g G

)

by writing

(x, y) = (0,m)
(

G −F
−g f

)
/q =

(−m ∗ g

q
,
m ∗ f

q

)
.



Define ε and ε′ with rational coefficients varying uniformly between −1/2 and 1/2 by the formulas

bxe = x + ε and bye = y + ε′.

Thus

ε = −{x} =
{

m ∗ g

q
i

}
and ε′ = −{y} = −

{
m ∗ f

q

}
(23)

Note that Eε, the expected size of ‖ε‖, equals the expected size of ‖ε′‖ and

Eε =
√

N/12. (24)

(This is approximately, but not exactly, correct if q is even, due to our arbitrary choice that {1
2} = 1

2 ,
rather than −1

2 . However, it is easy to compute the necessary correction.)
Letting

(s, t) = (bxe , bye)
(

f F
g G

)

we then obtain
(s, t−m) = (εf + ε′g, εF + ε′G). (25)

For computational convenience we have only described how to sign points of the form (0,m).
However it is useful to note that a signature on a general point (m1,m2) can be reduced to this
special case. Simply sign (0,m2 − h ∗m1), obtaining a signature (s1, t1) satisfying

(s1, t1 − (m2 − h ∗m1)) = (εf + ε′g, εF + ε′G).

Then setting (s, t) = (s1, t1) + (m1, h ∗m1) we obtain a new lattice point satisfying

(s−m1, t−m2) = (ε1f + ε2g, ε1F + ε2G).

We are now in a position to measure the expected size of a signature. By (25)

‖s‖ ≈
√
‖ε1‖2‖f‖2 + ‖ε2‖2‖g‖2.

By (24) and our assumption that f, g ∈ Sδ it follows that

Es =

√
N2δ

6
. (26)

Similarly, if our signature is derived from the key generation process described in [8] then F,G will
satisfy (1) and

Et =

√
N3δ

72
. (27)

A.2 The addition of perturbations

NTRUSign is not zero-knowledge, but the rate of information leakage can be reduced considerably
by the use of perturbations. In this section we explain this concept, and discuss how perturbations
are constructed and their implications for the size of the final signatures.

As before, consider a point (0,m), where m is the image of some digital document D under the
hash function H. Suppose the signer has in his possession another private basis {f1, g1, F1, G1}.
Using this basis to sign (0,m) he obtains (s1, t1) satisfying

(s1, t1 −m) = (ε1f1 + ε′1g1, ε1F1 + ε′1G1),



where ε1, ε
′
1 are defined analogously to (23) He may then use the generalized signing procedure

described in the previous section to sign (s1, t1) and obtain (s, t) satisfying

(s− s1, t− t1) = (εf + ε′g, εF + ε′G).

Thus
(s, t−m) = (εf + ε′g + ε1f1 + ε′1g1, εF + ε′G + ε1F1 + ε′1G1). (28)

The important observation from the point of view of security is that the distribution of the εs
is the same as the distribution of the ε1s. An attacker who averages functions of signatures will
therefore not be able to pick a method of averaging that removes the effect of the perturbations.
As discussed in [8], the attacker must instead obtain sufficient linearly independent averaged values
to allow them to eliminate the perturbations by linear algebra.

We now consider the size of perturbed signatures. For generality, we first consider an arbitrary
private basis {f1, g1, F1, G1} where ‖f1‖ =

√
δ1N and ‖F1‖ =

√
ω1‖f1‖. Following the analysis in

[8] it is easily checked that

Es =

√
N2(δ + δ1)

6
and that

Et =

√
N2(δω + δ1ω1)

6
.

Similarly, if two private bases are used then

Es =

√
N2(δ + δ1 + δ2)

6
, Et =

√
N2(δω + δ1ω1 + δ2ω2)

6
, (29)

and so on.

B Transcript bounds

An application of the Chernoff-Hoeffding technique for bounding sums of uniformly bounded dis-
crete and independent random variables [2] leads to the following result.

Proposition 1. Let Y1, . . . , YT be a collection discrete random variables such that there are con-
stants B and σ with the property that for every 1 ≤ i ≤ T ,

|Yi| < B, E(Yi) = 0, and E(Y 2
i ) = σ.

Then for any K > 0,

P

( T∑

i=1

Yi > K

)
≤ 2e−K2/4σ2T .

When calculating the 2kth moment of s, the main term will be composed of a number of pieces,
one of which is

(N/12)k(f ∗ f̄)k.

Similarly, a piece of the error, after averaging a transcript of length R, will be

1
R

R∑

j=1

(ε(j)f ∗ ε̄(j)g ∗ f ∗ ḡ)k



A conservative lower bound for the size of R necessary to achieve an accurate estimate of the main
term is a lower bound for the size of R necessary for the lth coefficient of

(
12
N

)k (
1
R

) R∑

j=1

(ε(j)f ∗ ε̄(j)g ∗ f ∗ ḡ)k

to have an error of absolute value less than 1/2. This coefficient is a sum of RN2k variables, which
we denote as

Yi =
(

12
N

)k (
1
R

)
ε
(j)
f (l1) · · · ε(j)f (lk)ε̄(j)g (m1) · · · ε̄(j)g (mk)A(r),

where l1 + . . . + lk + m1 + . . .mk + r ≡ l (mod N). By the quasi-multiplicativity property, the
average value of A(r)2 will be approximately given by

‖f ∗ ḡ‖2k/N ≈ ‖f‖2k‖g‖2k/N ≈ (2d)2k/N.

The ε(j)(li) coefficients will be very close to independent, with E(ε(j)(li)2) = 1/12. We thus have

E(Y 2
i ) ≈

(
2d

N

)2k 1
R2N

.

Taking K = 1/2 and substituting into Proposition 1 yields

P (
R2N∑

i=1

Yi > 1/2) ≤ 2e−RN/16(2d)2k
.

A necessary requirement for the right hand side to be less than 1/2 is that

R > 22k+4d2k/N

and this is the source of our estimate.

C Performance

Table 3 gives the estimated number of Add-With-Carries necessary for signing and verification with
each of the given parameter sets. These are compared to figures for ECDSA which were generalized
from [1] as described in [9].

The figures were obtained assuming that the operations can use an instruction that carries out
a 32 × 32-bit multiply in a single cycle. This is consistent with the assumption made in [1]. They
ignore the time necessary to hash the incoming message.

The formulae used to obtain the performance figures are:

– trinary convolution = (2d + 1)N adds-with-carry
– full convolution = N2 adds-with carry
– sign with no perturbations = 4 trinary convolutions
– sign with one perturbation and no validity check = 8 trinary + 1 full convolution
– verify = 1 full convolution
– ECDSA signing = 1 point multiplication
– ECDSA verification = 1.17 point multiplications.



Table 3 gives the performance measures for each of the recommended parameter sets.
Table 4 investigates the effects on the parameter set of setting ρ = 1, increasing the danger that

a message will have to be signed twice, but allowing a decreased N and hence possibly security
against forgery at lower values of N . As is shown, this is useful at lower security levels, but at higher
security levels the ρ = 1.1 parameters are identical to the ρ = 1 parameters. This is a result of the
increased lattice security at higher dimensions (c going as N

1
4 , γ going as N− 1

4 ), which results in
the value of d that first gives combinatorial security also giving the desired level of lattice security.

Parameters bpk σS σV other

k N d q

80 157 29 256

112 197 28 256

128 223 32 256

160 263 45 512

192 313 50 512

256 349 75 512

NTRU ECC RSA

1256 192 1024

1576 224 ∼ 2048

1784 256 3072

2367 320 4096

2817 384 7680

3141 512 15360

NTRU ECDSA Gain

61073 112210 1.84

82937 170356 2.05

106817 277280 2.60

163849 — —

233169 936618 4.20

331201 1595434 4.82

NTRU ECDSA Gain

24649 130912 5.31

38809 198749 5.12

49729 323493 6.51

69169 — —

97969 1092721 11.15

121801 1861340 15.28

d/N N/k

0.185 1.963

0.142 1.759

0.143 1.742

0.131 1.644

0.159 1.630

0.215 1.363

Table 3. Performance measures for the recommended parameter sets

k N d q β N c γ

80 127 31 256 0.37264 122.94 5.33 0.133

112 191 29 256 0.45615 176.14 5.60 0.127

128 223 32 256 0.65515 277.52 6.11 0.164

160 263 45 512 0.31583 276.53 5.33 0.108

192 313 50 512 0.40600 384.41 5.86 0.119

256 349 75 512 0.18543 368.62 7.37 0.125

Table 4. Trinary keys, one perturbation, ρ = 1, q = power of 2

signature sizes


