
Hidden Exponent RSA and Efficient Key

Distribution

He Ge

Department of Computer Science and Engineering
University of North Texas, Denton, TX 76203

Email: ge@unt.edu

Abstract. In this paper we propose a variant of RSA public key scheme,
called “Hidden Exponent RSA”. Based on this new scheme, we devised an
efficient key distribution/management scheme for secure communication
among devices in the context of pervasive computing, with emphasis on
the simplicity and efficiency of the protocol. We show the new scheme is
secure under the strong RSA assumption.

Keywords: key management, key exchange, strong RSA assumption, pervasive
computing

1 Introduction

In this paper we consider key distribution/management problem in the context of
pervasive computing. Pervasive computing is an emerging trend in computation
technology, i.e., computation can be carried out anywhere by any possible elec-
tronic devices collaboratively [11]. It includes areas such as mobile computing,
distributed computing, etc. One example is wireless Ad Hoc network that could
be deployed in both civil and military applications. In such network, wireless de-
vices directly communicate with each other in peer-to-peer mode. For instance,
in a sensor network, thousands of sensors are scattered in certain area to accom-
plish surveillance task. After deployment, all sensors are static and powered by
batteries. Another instance is battalion team in military, where each members
in the group carrying devices directly communicates with other members and
the topology of the network is dynamically changing. Obviously, secure commu-
nication should be enforced in such networks due to military requirements.

The most direct solution is to preset common secret key(s) in these devices.
However, one obvious disadvantage is that compromise of some devices will reveal
all communication in network. Using public key cryptography, communication
parties could generate session key for their communication. However, public key
cryptography generally consumes lots resources such as computation and com-
munication, which is not believed suitable for pervasive computing due to the
limited capabilities of pervasive devices.

In this paper, we devise a lightweight key management scheme that might be
appropriate for such situation. Even though based on public key cryptography,

it is much more efficient than traditional key management scheme. The paper is
organize as follows. In section 2 we propose a public key scheme that is a variant
of well-known RSA. We introduce key management scheme in section 3. The
performance analysis is given in section 4. We discuss the security properties in
section 5. The paper concludes in section 6.

2 Hidden Exponent RSA Scheme

In 1978, Rivest, Shamir and Adlement proposed the well-known RSA public key
scheme in the paper “A method for obtaining digital signature and public-key
cryptosystems ” [9]. This scheme elegantly solved the conjecture proposed by
Diffie and Hellman about public key cryptography in their pioneer paper “New
direction in cryptography” [5]. In this section, we first review RSA scheme. Then
we introduce a new public key scheme that is a variant of RSA.

2.1 RSA Scheme

Alice picks two large random prime numbers p, q. She computes n = pq, and
Euler’s totient function φ(n) = (p− 1)(q − 1). She further picks a random e < n

that is relatively prime to φ(n), and computes d, the inverse of e modulo φ(n).
Then (d, n) is the private key of Alice, and (e, n) is the public key. (d, p, q, φ(n))
are kept secret by Alice. If another user Bob wants to send a message m < n to
Bob, he computes the ciphertext

c = me (mod n),

and sends it to Alice. Alice decrypts the ciphertext as

m′ = cd (mod n).

If Alice and Bob follow the protocol,

m′ = cd = (me)d = med = m (mod n).

In practice, p, q are set to 512-bit long. e is chosen quite small (3, or 65537
(216 + 1)). d is fairly large (above 1000 bit). Therefore, in RSA, encryption is
efficient, while decryption is quite time-consuming.

2.2 Hidden Exponent RSA Scheme

We propose a variant of standard RSA scheme. Alice picks an element g ∈ Z∗

n

with large order. Z∗

n is the multiplicative group that contains all positive integer
less than n and relatively prime to n. Therefore 〈g〉 is a cyclic subgroup of
Z∗

n
. Alice picks a random d which is relatively prime to the order of 〈g〉, and

computes e which is the inverse of d modulo |〈g〉|. Alice also computes E =
ge (mod n). Now the public key is (E, g, n), and the private key is (d, n). In

standard RSA, operations are over the group Z∗

n
. In the new scheme, operations

are over the subgroup of Z∗

n. This will not degrade the security of the scheme if g

has sufficiently large order. However, e, public exponent in RSA, is being hidden
as the discrete logarithm of E. That is why we call the new scheme “Hidden
Exponent RSA”.

The direct consequence of “hidden exponent” is that we can safely choose
small decryption exponent d. In RSA, d has to be reasonably large to prevent
small decryption exponent attack [10, 3]. When we hide e as the discrete loga-
rithm of E, these attacks will not be effective anymore. However, we can imme-
diately notice that encryption method does not work in the new scheme because
e is not available now. Even though, Bob still can encrypt some random message
to Alice. Suppose Bob picks a random r, computes c = Er (mod n) and sends it
to Alice. Then Alice can decrypt it as m′ = cd (mod n). If Bob and Alice follow
the protocol, Alice will obtain

m′ = cd = (Er)d = (ge)rd = gr (mod n).

This shows Bob has sent a message m = gr (mod n) to Alice. However, Bob
still cannot send meaningful message to Alice. We devise an encryption protocol
which is similar to ElGamal encryption algorithm [6]. It works as follows.

– Using Alice’s public key E, Bob encrypts a message m < n as a pair (c1, c2)
such that

c1 = Ek (mod n), c2 = Km (mod n),

where K = gk (mod n) for a large random integer k.
– When Alice receives the ciphertext, she decrypts it as

K = cd

1 (mod n), m = c2K
−1 (mod n).

We have introduced the method to implement Hidden Exponent RSA scheme.
The most advantage for the new scheme is the balance of computation overhead
for encryption and decryption. Suppose we choose d, k 160 bit, the encryption
needs about 320 modular multiplications, while decryption needs about 160 mod-
ular multiplications. The total costs are about 480 modular multiplications. In
standard RSA scheme, the total computation overhead are above 1000 modular
multiplications, most of which are on the decryption. The balance computation
is useful in peer-to-peer communication such as sensor network. In such net-
work, we would like computation overhead is evenly distributed among devices
to extend whole life time of the system.

3 An Efficient Key Management Scheme

If we treat Alice as a key generation center (KGC), she then produces many such
keypairs (d1, E1), (d2, E2), · · · , (dk, Ek), and distributes each keypair to a device.
Now each device has a hidden exponent RSA keypair. Thus, we obtain a key
distribution scheme. However, some cautions should be taken at this moment.

When we apply a standard hidden exponent RSA to key distribution scheme, key
forgery problem emerges. We should make sure that a valid keypair can only be
generated by KGC. To do so, some restrictions need to be enforced. For instance,
d must be a prime number. Otherwise, we can obtain multiple valid keypairs from
one valid keypair. For example, suppose d = d1d2, then E = ge1e2 (mod n).
Obviously we can obtain two valid keypairs (E1 = ge1 (mod n), d1), (E2 =
ge2 (mod n), d2).

In this section we introduce the method to extend hidden exponent RSA
scheme to an efficient key distribution scheme.

3.1 Parameter Setting of KGC

We first review some definitions. A Safe RSA Modulus n = pq is called safe
if p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ also are prime numbers. An
element x ∈ Z∗

n
is called a quadratic residue if there exists an a ∈ Z∗

n
such that

a2 = x (mod n). The set of all quadratic residues of Z∗

n forms a cyclic subgroup
of Z∗

n, which we denote by QRn.
In the proposed key management scheme, a single key generation center

(KGC) creates keypairs for devices. KGC’s parameters are:

1. n, g: n is a safe RSA modulus such that n = pq, p = 2p′ +1, and q = 2q′ +1,
where p and q are each 512 bit long, and p′ and q′ are prime. g is a generator
of the cyclic group QRn. n and g are public values while p and q are kept
secret by KGC.

2. ld, lt: ld is the length of decryption key which is 160 in our setting. lt is the
length of the tag which is used to uniquely identify a public key. We set
lt = 24. Tag t is set to prime in our scheme, therefore it can total represent
513,708 public keys which is large enough for our target application. For
example, a sensor network at most has several thousands sensors.

3. A one-way hash function H : {0, 1}∗ → {0, 1}k.

3.2 Keypairs Generation

KGC picks two random prime numbers d and t with lengths ld and lt, respec-
tively, where t has not been previously used before. KGC computes

E = get
−1

(mod n),

where e, t−1 are the inverses of d, t modulo |QRn| = p′q′, respectively. d is the
private key for the device, while (E, t) is the public key. t, called tag, is the
unique identifier to represent a valid hidden exponent RSA keypair.

Through careful choice of parameters and some restriction, we have extended
hidden exponent RSA scheme to a key distribution scheme. We will discuss the
security in section 4. We can see, a nice feature is integrated into encryption
scheme of hidden exponent RSA scheme: authentication. That is, when Bob
sends a ciphertext encrypted by Alice’s public key (E, t), he knows only au-
thenticated Alice can decrypt this ciphertext. This is in contrast to ElGamal
encryption scheme in which encryption does not provide authentication.

3.3 Authenticated Key Exchange

We introduce the most important application of hidden exponent RSA: session
key generation. Suppose Alice and Bob hold their legitimate hidden exponent
RSA keypairs. They implement an authenticated Diffie-Hellman key exchange
[5] as follows.

1. Alice and Bob exchange their public keys: (Ea, ta), and (Eb, tb).
2. Alice checks tb has length lt, otherwise she aborts the protocol. Then she

picks a random numbers ra, calculates challenges Ca = E
tbra

b
(mod n). Bob

follows the same method to compute Cb = Etarb

a (mod n). They exchange
challenges.

3. Alice calculates Cda

b
(mod n) which is grb (mod n) if all parties follow the

protocols. Then Alice can get grarb (mod n) which Bob is also supposed to
obtain. Alice and Bob use this common value to derive a session key K.

4. Key confirmation step: Alice uses the session key to encrypt H(grb (mod
n)) using a symmetric encryption algorithm. Bob uses the session key to
encrypt H(gra (mod n)) using the same method. Alice and Bob exchange
the confirmation message. If Alice/Bob find the decrypted value is equal
to their own result, this finishes the key exchange protocol. Otherwise, the
protocol is aborted.

In step 4, we use the hash value in the key confirmation to reduce the com-
munication overhead. In a real application, the key confirmation step can be
integrated into the subsequent data transmission. Therefore, only two rounds of
message exchange is needed for the authenticated key exchange protocol.

3.4 Performance Analysis

We analyze the performance of key exchange protocol. We compare it with a
solution based on traditional authenticated key exchange protocol [8, 4].

In a traditional scheme, each parties has its private key di, public key (e, ni)
in which e is almost the same for all parties. A key authentication center (KAC),
with public key (e, n) and private key d, takes the responsibility to authenticate
a user’s public key ni. KAC computes

hi = (H(ni))
d (mod n).

Then each party’s authenticated key is in the format (ni||hi). X.509 public key
certificate is based on this technique [4].

When Alice and Bob wish to generate a session key, they first exchange their
public key. Each side verifies that the received public key has been authenticated
by KAC. After that, Alice picks a random integer ra, and computes ma =
gra (mod n), and encrypts it as Ca = me

a
(mod nb). Bob follows the same

method to compute Cb = (grb (mod n))e (mod na). Alice and bob exchange
the challenges and can finally compute the common value grarb (mod n), from
which a session key can be derived.

We consider computation and communication overhead in the scheme. For
simplicity, we let results of modulation have the length of modulus n which is
1024 bit in our setting. Thus, the message length in the protocol is 1024 bits.
We also use the bit length of exponent to represent the number of modular
multiplication. We choose 160 bit for random integer in the protocol. Based on
these conditions, the new scheme needs 2048 bits communication payload for
each party, while traditional scheme needs 3072 bits payload. The new scheme
needs about 480 (160 × 3) modular multiplications for each party, while the
traditional scheme needs about 1344 (1024 + 160 × 2) modular multiplications.

This shows our key distribution scheme greatly improves the performance
of the traditional scheme. This makes it more suitable for the application in
pervasive computing due to the resource limitation for pervasive devices.

4 Security Properties of Proposed Scheme

We address the security of the scheme in this section. We mainly discuss key
forgery issue. We first review a widely accepted and used security assumption,
strong RSA assumption (for example, in [2, 7, 1]).

Assumption 1 (Strong RSA Assumption) Let n be a RSA modulus. The

Strong RSA Assumption says that for a random element u ∈ Z∗

n
, no polynomial-

time algorithm can find a pair (v, e) such that e > 1 and ve = u (mod n).

Due to the strong RSA assumption, it is obvious that no one except KGC
can create a a valid keypair (E, d, t) such that Edt = g (mod n).

However, we need address the issue of keypair forgery. In practice, more
than one sensors could be compromised such that the keypairs are extracted.
Since each valid keypair is uniquely identified by a tag t, We need to prove it is
infeasible to forge a valid key with a new tag which is not created by KGC.

Theorem 1. Under the strong RSA assumption, there exists no polynomial-

time algorithm which takes a list of valid keypairs, (d1, E1, t1), (d2, E2, t2), . . . ,
(dk, Ek, tk) and produces a new keypair (d, E, t) such that Edt = g (mod n) and

t 6= ti for 1 ≤ i ≤ k.

Proof. (Sketch) Suppose we have polynomial-time algorithm A which can com-
pute a new valid keypair based on the available keypairs. Then given a random
input (u, n), we can construct the following steps.

1. We pick random prime numbers d1, d2, . . . , dk and t1, t2, . . . , tk with the re-
quired bit lengths, and compute

r = d1d2...dkt1t2...tk,

g = ur = ud1d2...dkt1t2...tk (mod n).

2. Next, we create k keys as follows:

(d1, t1, E1 = ud2...dkt2...tk (mod n)),

(d2, t2, E2 = ud1d3...dkt1t3...tk (mod n)),

...

(dk, tk, Ek = ud1d2...dk−1t1t2...tk−1 (mod n))

Note that for all i = 1, . . . , k, Editi

i
= ud1d2···dkt1t2···tk = ur = g (mod n).

3. We use the algorithm A to create a new valid keypair (d, E, t) such that
Edt = g (mod n). t will be different from all the ti’s, but will have the
same length lt. Therefore, t can not be an integer multiple of any of the
ti’s, and since the ti’s are prime then it follows that GCD(t, t1t2 · · · tk) =
1. Furthermore, since the di’s are prime and all longer than t, it follows
that GCD(t, d1d2 · · ·dk) = 1, and so GCD(t, r) = 1. Therefore, we use the
Extended GCD algorithm to find a and b such that

ar + bt = 1,

and let y = (Ed)aub. Thus

yt = (Ed)atubt = uar+bt = u (mod n),

Through these steps, assuming the existence of algorithm A, we find a pair
(y, t) such that yt = u (mod n) for a random u. However, this is infeasible
under the strong RSA assumption. Therefore, we should not be able to find such
algorithm A under the same assumption. This concludes the proof. ⊓⊔

As to the security of authenticated key exchange, we can identify the protocol
includes two RSA challenge-response procedures which are secure under the
standard RSA assumption.

5 Conclusion

In this paper, we proposed a public key scheme called “Hidden Exponent RSA”.
Based on this scheme, we devised a lightweight key management scheme which
might be suitable for the application in pervasive computing. The new scheme
has much lower communication and computation overhead compared to tradi-
tional key management scheme. Finally, we proved the new scheme is secure
under the strong RSA assumption.

References

1. Ateniese, G., Camenisch, J., Joye, M., and Tsudik, G. A practical and prov-
ably secure coalition-resistant group signature scheme. In Advances in Cryptology

— Crypto (2000), pp. 255–270.

2. Baric, N., and Pfitzmann, B. Collision-free accumulators and fail-stop signature
schemes without trees. In Advances in Cryptology — Eurocrypt (1997), pp. 480–
494.

3. Boneh, D., and Durfee, G. Cryptanalysis of RSA with private key d less than
n

0.292. IEEE Transactions on Information Theory 46, 4 (2000), 1339–1349.
4. CCITT. Recommendation X.509: The directory-authentication framework, 1989.

Blue book - Melbourne, Geneve.
5. Diffie, W., and Hellman, M. New direction in cryptography. IEEE Transactions

on Information Theory 11 (Nov. 1976), 644–654.
6. ElGamal, T. A public key cryptosystem and a signature scheme based on discrete

logarithms. In Advances in Cryptology — Crypto (1984), pp. 10–18.
7. Fujisaki, E., and Okamoto, T. Statistical zero knowledge protocols to prove

modular polynomial relations. In Advances in Cryptology — Crypto (1997), pp. 16–
30.

8. Kohnfelder, L. Towards a practical public-key cryptosystem, May 1978. Bach-
elor’s Thesis, M.I.T.

9. Rivest, R. L., Shamir, A., and Adleman, L. A method for obtaining digital
signature and public-key cryptosystems. In Commnuications of the ACM (Feb.
1978), vol. 21, pp. 120–126.

10. Wiener, M. Cryptanalysis of short RSA secret exponents. IEEE Transactions on

Information Theory 36, 3 (1990), 553–558.
11. Wiener, M. Some computer science issues in ubiquitous computing. Communi-

cations of the ACM 36, 7 (1993), 75–84.

