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Abstract. Let E be an elliptic curve de�ned over a �nite �eld. Balasubrama-

nian and Koblitz have proved that if the `th roots of unity µ` is not contained

in the ground �eld, then a �eld extension of the ground �eld contains µ` if and

only if the `-torsion points of E are rational over the same �eld extension. We

generalize this result to Jacobians of genus two curves with complex multipli-

cation. In particular, we show that the Weil- and the Tate-pairing on such a

Jacobian are non-degenerate over the same �eld extension of the ground �eld.

1. Introduction

In [11], Koblitz described how to use elliptic curves to construct a public key
cryptosystem. To get a more general class of curves, and possibly larger group
orders, Koblitz [12] then proposed using Jacobians of hyperelliptic curves.

In elliptic curve cryptography it is essential to know the number of points on
the curve. Cryptographically we are interested in elliptic curves with large cyclic
subgroups. Such elliptic curves can be constructed. The construction is based on
the theory of complex multiplication, studied in detail by [1]. It is referred to as the
CM method. The CM method for constructing elliptic curves has been generalized
to genus two curves by [22], and e�cient algorithms have been proposed by [23] and
[9]. Both algorithms take as input a primitive, quartic CM �eld K (see section 5),
and give as output a genus two curve C de�ned over a prime �eld Fp.

After Boneh and Franklin [3] proposed an identity based cryptosystem by us-
ing the Weil pairing on an elliptic curve, pairings have been of great interest to
cryptography [7]. The next natural step was to consider pairings on Jacobians of
hyperelliptic curves. Galbraith et al [8] survey the recent research on pairings on
Jacobians of hyperelliptic curves.

The pairing in question is usually the Weil- or the Tate-pairing; both pairings
can be computed with Miller's algorithm [14]. The Tate-pairing can be computed
more e�ciently than the Weil-pairing, cf. [6]. Let C be a smooth curve de�ned over
a �nite �eld Fq, and let JC be the Jacobian of C. Let ` be a prime number dividing
the number of Fq-rational points on the Jacobian, and let k be the multiplicative
order of q modulo `. By [10], the Tate-pairing is non-degenerate on JC(Fqk)[`]. By
[21, Proposition 8.1, p. 96], the Weil-pairing is non-degenerate on JC [`]. So if JC [`]
is not contained in JC(Fqk), then the Tate pairing is non-degenerate over a possible
smaller �eld extension than the Weil-pairing. For elliptic curves, in most cases
relevant to cryptography, the Weil-pairing and the Tate-pairing are non-degenerate
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over the same �eld: let E be an elliptic curve de�ned over Fp, and consider a prime
number ` dividing the number of Fp-rational points on E. Balasubramanian and
Koblitz [2] proved that

(1) if ` - p− 1, then E[`] ⊆ E(Fpk) if and only if ` | pk − 1.

By Rubin and Silverberg [19], this result also holds for Jacobians of genus two
curves in the following sense: if ` - p − 1, then the Weil-pairing is non-degenerate
on U × V , where U = JC(Fp)[`], V = ker(ϕ − p) ∩ JC [`] and ϕ is the p-power
Frobenius endomorphism on JC .

The result (1) can also be stated as: if ` - p− 1, then E(Fpk)[`] is bicyclic if and
only if ` | pk − 1. In this paper, we show that in most cases, this result also holds
for Jacobians of genus two curves with complex multiplication. More precisely, the
following theorem is established.

Theorem 9. Consider a genus two curve C de�ned over Fp with End(JC) ' OK ,
where K is a primitive, quartic CM �eld (cf. section 5). Let ωm be a pm-Weil
number of the Jacobian JC . Let ` be an odd prime number dividing the number of
Fp-rational points on JC , and with ` unrami�ed in K, ` - p and ` - p− 1. Let p be
of multiplicative order k modulo `. Then the following holds.

(i) If ω2
m 6≡ 1 (mod `), then JC(Fpm)[`] is bicyclic if and only if ` divides pm− 1.

(ii) The Weil-pairing is non-degenerate on JC(Fpk)[`]× JC(Fpk)[`].

Notation and assumptions. In this paper we only consider smooth curves. If
F is an algebraic number �eld, then OF denotes the ring of integers of F , and
F0 = F ∩ R denotes the real sub�eld of F .

2. Genus two curves

A hyperelliptic curve is a projective curve C ⊆ Pn of genus at least two with a
separable, degree two morphism φ : C → P1. It is well known, that any genus two
curve is hyperelliptic. Throughout this paper, let C be a curve of genus two de�ned
over a �nite �eld Fq of characteristic p. By the Riemann-Roch Theorem there exists
a birational map ψ : C → P2, mapping C to a curve given by an equation of the
form

y2 + g(x)y = h(x),
where g, h ∈ Fq[x] are of degree deg(g) ≤ 3 and deg(h) ≤ 6; cf. [4, chapter 1].

The set of principal divisors P(C) on C constitutes a subgroup of the degree zero
divisors Div0(C). The Jacobian JC of C is de�ned as the quotient

JC = Div0(C)/P(C).

Let ` 6= p be a prime number. The `n-torsion subgroup JC [`n] ⊆ JC of points of
order dividing `n is a Z/`nZ-module of rank four, i.e.

JC [`n] ' Z/`nZ× Z/`nZ× Z/`nZ× Z/`nZ;

cf. [13, Theorem 6, p. 109].
The multiplicative order k of q modulo ` plays an important role in cryptography,

since the (reduced) Tate-pairing is non-degenerate over Fqk ; cf. [10].

De�nition 1 (Embedding degree). Consider a prime number ` 6= p dividing the
number of Fq-rational points on the Jacobian JC . The embedding degree of JC(Fq)
with respect to ` is the least number k, such that qk ≡ 1 (mod `).



NON-CYCLIC SUBGROUPS OF JACOBIANS OF GENUS TWO CURVES WITH CM 3

Closely related to the embedding degree, we have the full embedding degree.

De�nition 2 (Full embedding degree). Consider a prime number ` 6= p dividing
the number of Fq-rational points on the Jacobian JC . The full embedding degree
of JC(Fq) with respect to ` is the least number κ, such that JC [`] ⊆ JC(Fqκ ).

Remark 3. If JC [`] ⊆ JC(Fqκ ), then ` | qκ−1; cf. [5, Corollary 5.77, p. 111]. Hence,
the full embedding degree is a multiple of the embedding degree.

A priori, the Weil-pairing is only non-degenerate over Fqκ . But in fact, as we
shall see, the Weil-pairing is also non-degenerate over Fqk .

3. The Weil- and the Tate-pairing

Let F be an algebraic extension of Fq. Let x ∈ JC(F)[`] and y =
∑
i aiPi ∈ JC(F)

be divisors with disjoint supports, and let ȳ ∈ JC(F)/`JC(F) denote the divisor class
containing the divisor y. Furthermore, let fx ∈ F(C) be a rational function on C
with divisor div(fx) = `x. Set fx(y) =

∏
i f(Pi)ai . Then e`(x, ȳ) = fx(y) is a

well-de�ned pairing

e` : JC(F)[`]× JC(F)/`JC(F) −→ F×/(F×)`,

it is called the Tate-pairing ; cf. [7]. Raising the result to the power |F
×|
` gives a

well-de�ned element in the subgroup µ` ⊆ F̄ of the `th roots of unity. This pairing

ê` : JC(F)[`]× JC(F)/`JC(F) −→ µ`

is called the reduced Tate-pairing. If the �eld F is �nite and contains the `th roots
of unity, then the Tate-pairing is bilinear and non-degenerate; cf. [10].

Now let x, y ∈ JC [`] be divisors with disjoint support. The Weil-pairing

e` : JC [`]× JC [`]→ µ`

is then de�ned by e`(x, y) = ê`(x,ȳ)
ê`(y,x̄) . The Weil-pairing is bilinear, anti-symmetric

and non-degenerate on JC [`]× JC [`]; cf. [15].

4. Matrix representation of the endomorphism ring

An endomorphism ψ : JC → JC induces a linear map ψ̄ : JC [`] → JC [`] by
restriction. Hence, ψ is represented by a matrix M ∈ Mat4(Z/`Z) on JC [`]. Let
f ∈ Z[X] be the characteristic polynomial of ψ (see [13, pp. 109�110]), and let
f̄ ∈ (Z/`Z)[X] be the characteristic polynomial of ψ̄. Then f is a monic polynomial
of degree four, and by [13, Theorem 3, p. 186],

f(X) ≡ f̄(X) (mod `).

Since C is de�ned over Fq, the mapping (x, y) 7→ (xq, yq) is a morphism on C.
This morphism induces the q-power Frobenius endomorphism ϕ on the Jacobian JC .
Let P (X) be the characteristic polynomial of ϕ. P (X) is called theWeil polynomial
of JC , and

|JC(Fq)| = P (1)

by the de�nition of P (X) (see [13, pp. 109�110]); i.e. the number of Fq-rational
points on the Jacobian is P (1).
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De�nition 4 (Weil number). Let notation be as above. Let Pm(X) be the charac-
teristic polynomial of the qm-power Frobenius endomorphism ϕm on JC . Consider
a number ωm ∈ C with Pm(ωm) = 0. If Pm(X) is reducible, assume furthermore
that ωm and ϕm are roots of the same irreducible factor of Pm(X). We identify ϕm
with ωm, and we call ωm a qm-Weil number of JC .

Remark 5. A qm-Weil number is not necessarily uniquely determined. In general,
Pm(X) is irreducible, in which case JC has four qm-Weil numbers.

Assume Pm(X) is reducible. Write Pm(X) = f(X)g(X), where f, g ∈ Z[X] are
of degree at least one. Since Pm(ϕm) = 0, either f(ϕm) = 0 or g(ϕm) = 0; if not,
then either f(ϕm) or g(ϕm) has in�nite kernel, i.e. is not an endomorphism of JC .
So a qm-Weil number is well-de�ned.

5. CM fields

An elliptic curve E with Z 6= End(E) is said to have complex multiplication. Let
K be an imaginary, quadratic number �eld with ring of integers OK . K is a CM
�eld, and if End(E) ' OK , then E is said to have CM by OK . More generally a
CM �eld is de�ned as follows.

De�nition 6 (CM �eld). A number �eldK is a CM �eld, ifK is a totally imaginary,
quadratic extension of a totally real number �eld K0.

In this paper only CM �elds of degree [K : Q] = 4 are considered. Such a �eld
is called a quartic CM �eld.

Let C be a genus two curve. We say that C has CM by OK , if End(JC) ' OK .
The structure of K determines whether JC is simple, i.e. does not contains an
abelian subvariety other than {O} and itself. More precisely, the following theorem
holds.

Theorem 7. Let C be a genus two curve with End(JC) ' OK , where K is a
quartic CM �eld. Then JC is simple if and only if K/Q is Galois with Galois group
Gal(K/Q) ' Z/2Z× Z/2Z.

Proof. [20, proposition 26, p. 61]. �

Theorem 7 motivates the following de�nition.

De�nition 8 (Primitive, quartic CM �eld). A quartic CM �eld K is called primi-
tive if either K/Q is not Galois, or K/Q is Galois with cyclic Galois group.

6. Non-cyclic subgroups of JC

Let K be a primitive, quartic CM �eld. By the CM method (see [23, 9]), we
can construct a genus two curve C with End(JC) ' OK . The following theorem
concerns such a curve.
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Theorem 9. Consider a genus two curve C de�ned over Fp with End(JC) ' OK ,
where K is a primitive, quartic CM �eld. Let ωm be a pm-Weil number of the
Jacobian JC . Let ` be an odd prime number dividing the number of Fp-rational
points on JC , and with ` unrami�ed in K, ` - p and ` - p−1. Let p be of multiplicative
order k modulo `. Then the following holds.

(i) If ω2
m 6≡ 1 (mod `), then JC(Fpm)[`] is bicyclic if and only if ` divides pm− 1.

(ii) The Weil-pairing is non-degenerate on JC(Fpk)[`]× JC(Fpk)[`].

In the following, let P̄m ∈ (Z/`Z)[X] be the characteristic polynomial of the
restriction of ϕm to JC [`]. The proof of Theorem 9 uses a number of lemmas.

Lemma 10. Let notation and assumptions be as in Theorem 9. Let ı : OK →
End(JC) be an isomorphism. Consider a number α ∈ OK . If ker[`] ⊆ ker(ı(α)n)
for some number n ∈ N, then ker[`] ⊆ ker(ı(α)).

Proof. Since ker[`] ⊆ ker(ı(α)n), it follows that ı(α)n = `β̃ for some endomorphism

β̃ ∈ End(JC); see e.g. [16, Remark 7.12, p. 37]. Notice that β̃ = ı(α)n

` = ı(β) for
some number β ∈ OK . Hence, αn = `β ∈ `OK . Since ` is unrami�ed in K, it
follows that α ∈ `OK . So ker[`] ⊆ ker(ı(α)). �

Lemma 11. Let notation and assumptions be as in Theorem 9. If ωm 6≡ 1 (mod `),
then JC(Fpm)[`] is of rank at most two as a Z/`Z-module.

Proof. Since ` | |JC(Fp)|, 1 is a root of P̄m. Assume that 1 is a root of P̄m of
multiplicity ν. Since the roots of P̄m occur in pairs (α, pm/α), also pm is a root of
P̄m of multiplicity ν.

If JC(Fqm)[`] is of rank three as a Z/`Z-module, then ` divides qm − 1 by [5,
Proposition 5.78, p. 111]. Choose a basis B of JC [`]. With respect to B, ϕm is
represented by a matrix of the form

M =


1 0 0 m1

0 1 0 m2

0 0 1 m3

0 0 0 m4

 .
Now, m4 = detM ≡ degϕm = p2m ≡ 1 (mod `), so P̄m(X) = (X − 1)4. Since `
is unrami�ed in K, it follows that ωm ≡ 1 (mod `); cf. Lemma 10. This is a
contradiction. So JC(Fpm)[`] is of rank at most two as a Z/`Z-module. �

Lemma 12. Let notation and assumptions be as in Theorem 9. If ω2
m 6≡ 1 (mod `),

then P (X) is irreducible.

Proof. The Jacobian JC is simple by Theorem 7. Assume Pm(X) is reducible. Then
Pm(X) = f(X)e for some integer e ∈ Z and some irreducible polynomial f ∈ Z[X]
by [17, Theorem 8, p. 58]. Notice that e ∈ {2, 4}. If ωm /∈ R, then Q(ωm) ⊂ K is
an imaginary, quadratic number �eld and K is the composition of K0 and Q(ωm),
i.e. Gal(K/Q) is bicyclic. This is a contradiction. So ωm ∈ R, i.e. ω2

m = pm.
If ωm ∈ Q, then f(X) ≡ X − 1 (mod `) because P̄m(1) = 0. But then ωm ≡ 1
(mod `). This is a contradiction. So ωm /∈ Q, e = 2 and f(X) = X2 − pm. Hence,
P̄m(X) = (X2 − pm)2. Since P̄m(1) = 0, it follows that ω2

m = pm ≡ 1 (mod `).
This is a contradiction. So Pm(X) is irreducible. �
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Proof of Theorem 9. Assume that JC(Fpm)[`] is bicyclic. If pm 6≡ 1 (mod `), then
1 is a root of P̄m of multiplicity two, i.e. P̄m(X) = (X − 1)2(X − pm)2. P (X) is
irreducible by Lemma 12. Hence, by [18, Proposition 8.3, p. 47] it follows that `
rami�es in K. This is a contradiction. So pm ≡ 1 (mod `), i.e. ` | pm − 1.

On the other hand, if ` | pm − 1, then the Tate pairing is non-degenerate on
JC(Fpm)[`]. So JC(Fpm)[`] must be of rank at least two as a Z/`Z-module, since
` - p − 1. Hence, JC(Fpm)[`] is bicyclic by Lemma 11. The proof of Theorem 9,
part (i) is established.

Now let m = k. If ωk ≡ 1 (mod `), then JC [`] = JC(Fpk)[`], and (ii) follows.
Assume that ωk 6≡ 1 (mod `). Let U = JC(Fp)[`] and V = ker(ϕ−p)∩JC [`], where
ϕ is the p-power Frobenius endomorphism on JC . Then V = JC(Fpk)[`] \ JC(Fp)[`]
by Lemma 11, and

JC(Fpk)[`] ' U ⊕ V ' Z/`Z× Z/`Z.
By [19], the Weil-pairing eW is non-degenerate on U×V . Now let x ∈ JC(Fpk)[`] be
an arbitrary Fpk -rational point of order `. Write x = xU + xV , where xU ∈ U and
xV ∈ V . Choose y ∈ V and z ∈ U , such that eW (xU , y) 6= 1 and eW (xV , z) 6= 1.
We may assume that eW (xU , y) · eW (xV , z) 6= 1; if not, replace z by 2z. Since the
Weil-pairing is anti-symmetric, eW (xU , z) = eW (xV , y) = 1. Hence,

eW (x, y + z) = eW (xU , y) · eW (xV , z) 6= 1.

�
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