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Abstract. We provide the first proof of security for Tandem-DM, one of the oldest and most well-
known constructions for turning a blockcipher with n-bit blocklength and 2n-bit keylength into a
2n-bit cryptographic hash function. We prove, that when Tandem-DM is instantiated with AES-256,
i.e. blocklength 128 bits and keylength 256 bits, any adversary that asks less than 2120.4 queries cannot
find a collision with success probability greater than 1/2. We also prove a bound for preimage resistance
of Tandem-DM. Interestingly, as there is only one practical construction known (FSE’06, Hirose) turn-
ing such an (n, 2n)-bit blockcipher into a 2n-bit compression function that has provably birthday-type
collision resistance, Tandem-DM is one out of two structures that possess this desirable feature.
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1 Introduction

A cryptographic hash function is a function which maps an input of arbitrary length to an output
of fixed length. It should satisfy at least collision-, preimage- and second-preimage resistance and
is is one of the most important primitives in cryptography [23].

Blockcipher-Based Hash Functions. Since their initial design by Rivest, MD4-family hash functions
(e.g. MD4, MD5, RIPEMD, SHA-1, SHA2 [26, 27, 29, 30]) have dominated cryptographic practice.
But in recent years, a sequence of attacks on these type of functions [7, 11, 36, 37] has led to
a generalized sense of concern about the MD4-approach. The most natural place to look for an
alternative is in blockcipher-based constructions, which in fact predate the MD4-approach [22].
Another reason for the resurgence of interest in blockcipher-based hash functions is due to the rise
of size restricted devices such as RFID tags or smart cards: A hardware designer has to implement
only a blockcipher in order to obtain an encryption function as well as a hash function. But since
the output length of most practical encryption functions is far too short for a collision resistant
hash function, e.g. 128-bit for AES, one is mainly interested in sound design principles for double
block length (DBL) hash functions [2]. A DBL hash-function uses a blockcipher with n-bit output
as the building block by which it maps possibly long strings to 2n-bit ones.

Our Contribution. Four ’classical’ DBL hash functions are known: MDC-2, MDC-4, Abreast-DM

and Tandem-DM [3, 4, 21]. At EUROCRYPT’07, Steinberger [34] proved the first security bound
for the hash function MDC-2: assuming a hash output length of 256 bits, any adversary asking less
than 274.9 queries cannot find a collision with probability greater than 1/2.

In this paper, we prove the first security bound for the compression function Tandem-DM in
terms of collision resistance and preimage resistance. We will give an upper bound for success if an
adversary is trying to find a collision. By assuming a hash output length of 256 bits, any adversary
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asking less than 2120.4 queries cannot find a collision with probability greater than 1/2. We will
also prove an upper bound for success if an adversary is trying to find a preimage. This bound is
rather weak as it essentially only states, that the success probability of an adversary asking strictly
less than 2n queries is asymptotically negligible.

Beyond providing such a proof of security for Tandem-DM in the first place, our result even
delivers one of the most secure rate 1/2 DBL compression functions known. The first practical
DBL compression function with rate 1/2 (without bit-fixing and other artificial procedures like
employing two different blockciphers) that has a birthday-type security guarantee was presented at
FSE’06 by Hirose [14]. He essentially states (see Appendix B for a proof), that no adversary asking
less than 2124.55 queries, again for 2n = 256, can find a collision with probability greater then 1/2.
These two compression functions (Hirose’s FSE ’06 proposal and Tandem-DM) are the only rate
1/2 practical compression functions that are known to have a birthday-type security guarantee.

Outline. The paper is organized as follows: Section 2 includes formal notations and definitions as
well as a review of related work. In Section 3, we proof that an adversary asking less than 2120.4

oracle queries has negligible advantage in finding a collision for the Tandem-DM compression
function. A bound for preimage resistance of Tandem-DM is given in Section 4. In Section 5 we
discuss our results and conclude the paper.

2 Preliminaries

2.1 Iterated DBL Hash Function Based on Blockciphers

Ideal Cipher Model. An (n, k)-bit blockcipher is a keyed family of permutations consisting of two
paired algorithms E : {0, 1}n × {0, 1}k → {0, 1}n and E−1 : {0, 1}n × {0, 1}k → {0, 1}n both
accepting a key of size k bits and an input block of size n bits. For simplicity, we will call it an
(n, k)-blockcipher. Let BC(n, k) be the set of all (n, k)-blockciphers. Now, for any one fixed key
K ∈ {0, 1}k , decryption E−1

K = E−1(·,K) is the inverse function of encryption EK = E(·,K), so
that E−1

K (EK(x)) = x holds for any input X ∈ {0, 1}n.
Most of the attacks on hash functions based on block ciphers do not utilize the internal structure

of the blockciphers. The security of such hash functions is usually analyzed in the ideal cipher model
[2, 9, 18]. In the ideal cipher model the underlying primitive, the blockcipher E, is modeled as a
family of random permutations {Ek} whereas the random permutations are chosen independently
for each key K, i.e. formally E is selected randomly from BC(n, k).

DBL Compression Functions. Iterated DBL hash functions with two blockcipher calls in their
compression function are discussed in this article. A hash function H : {0, 1}∗ → {0, 1}2n can
be built by iterating a compression function F : {0, 1}3n → {0, 1}2n as follows: Split the padded
message M into n-bit blocks M1, . . . ,Ml, fix (G0,H0), apply (Gi,Hi) = F (Gi−1,Hi−1,Mi) for
i = 1, . . . , l and finally set H(M) := (Gl,Hl). Let the compression function F be such that

(Gi,Hi) = F (Gi−1,Hi−1,Mi),

where Gi−1,Hi−1, Gi,Hi,Mi ∈ {0, 1}n. We assume that the compression function F consists of FT ,
the top row, and FB , the bottom row. We explicitly allow the results of FT to be fed into the
calculation of FB . Each of the component functions FB and FT performs exactly one call to the
blockcipher and can be defined as follows:
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Gi = FT (Gi−1,Hi−1,Mi) = E(XT ,KT )⊕ ZT ,

Hi = FB(Gi, Gi−1,Hi−1,Mi) = E(XB ,KB)⊕ ZB,

where XT ,KT , ZT are uniquely determined by Gi−1,Hi−1,Mi and XB ,KB , ZB are uniquely deter-
mined by Gi, Gi−1,Hi−1,Mi.
We define the rate r of a blockcipher based compression/hash function F by

r =
|Mi|

(number of block cipher calls in F)× n
.

It is a measure of efficiency for such blockcipher based constructions.

2.2 The Tandem-DM Compression Function

The Tandem-DM compression function was proposed at EUROCRYPT’92 by Lai and Massey [21].
It uses two cascaded Davies-Meyer [2] schemes. The compression function is illustrated in Figure 1
and is formally defined in Definition 1.

E

E

Gi−1

Hi−1

Gi

Hi

Mi

Figure 1. The compression function Tandem-DM F TDM where E is an (n, 2n)-blockcipher, the small rectangle
inside the cipher rectangle indicates which input is used as key

Definition 1. Let F TDM : {0, 1}2n × {0, 1}n → {0, 1}2n be a compression function such that
(Gi,Hi) = F TDM (Gi−1,Hi−1,Mi) where Gi,Hi,Mi ∈ {0, 1}n. F TDM is built upon an (n, 2n)-
blockcipher E as follows:

Wi = E(Gi−1,Hi−1|Mi)

Gi = FT (Gi−1,Hi−1,Mi) = Wi ⊕Gi−1

Hi = FB(Gi−1,Hi−1,Mi) = E(Hi−1,Mi|Wi)⊕Hi−1.

2.3 Related Work

Our work is largely motivated by Steinberger [34] in order to provide rigorous proofs for well-known
blockcipher based hash functions. As is reviewed in the following, there are many papers on hash
functions composed of blockciphers.
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Schemes with non-optimal or unknown collision resistance. Preneel et al. [28] discussed the security
of SBL hash functions against several generic attacks. They concluded that 12 out of 64 hash
functions are secure against the attacks. However, formal proofs were first given by Black et al.
[2] about 10 years later. Their most important result is that 20 hash functions – including the 12
mentioned above – are optimally collision resistant. Knudsen et al. [19] discussed the insecurity
of DBL hash functions with rate 1 composed of (n, n)-blockciphers. Hohl et al. [15] analyzed the
security of DBL compression functions with rate 1 and 1/2. Satoh et al. [33] and Hattoris et al. [12]
discussed DBL hash functions with rate 1 composed of (n, 2n)-blockciphers. MDC-2 and MDC-4
[16, 1, 4] are (n, n)-blockcipher based DBL hash functions with rates 1/2 and 1/4, respectively.
Steinberger [34] proved that for MDC-2 instantiated with, e.g., AES-128 no adversary asking less
than 274.9 can usually find a collision. Nandi et al. [25] proposed a construction with rate 2/3
but it is not optimally collision resistant. Furthermore, Knudsen and Muller [20] presented some
attacks against it. Gauravaram et al. [10] proposed a new approach based on iterated halving to
design a hash function with a blockcipher. At EUROCRYPT’08 and CRYPTO’08, Steinberger
[31, 32] proved some security bounds for fixed-key (n, n)-blockcipher based hash functions, i.e.
permutation based hash functions, that all have small rates and low security guarantees. None of
these schemes/techniques mentioned so far are known to have birthday-type collision resistance.

Schemes with Birthday-Type Collision Resistance. Merkle [24] presented three DBL hash functions
composed of DES with rates of at most 0.276. They are optimally collision resistant in the ideal
cipher model. Hirose [13] presented a class of DBL hash functions with rate 1/2 which are composed
of two different and independent (n, 2n) blockciphers that have birthday-type collision resistance.
At FSE’06, Hirose [14] presented a rate 1/2 and (n, 2n) blockcipher based DBL hash function that
has birthday-type collision resistance. As he only stated the proof for the hash function, we have
given the proof for his compression function in Appendix B.

3 Collision Resistance

In this section we will discuss the collision resistance of the compression function Tandem-DM.

3.1 Defining Security – Collision Resistance of a Compression Function

Insecurity is quantified by the success probability of an optimal resource-bounded adversary. The

resource is the number of queries to the ideal cipher oracles E or E−1. For a set S, let z
R← S

represent random sampling from S under the uniform distribution. For a probabilistic algorithm

M, let z
R←M mean that z is an output ofM and its distribution is based on the random choices

of M.
An adversary is a computationally unbounded but always-halting collision-finding algorithm

A with access to an oracle E ∈ BC(n, k). We can assume (by standard arguments) that A is
deterministic. The adversary may make a forward query (K,X)fwd to discover the corresponding
value Y = EK(X), or the adversary may make a backward query (K,Y )bwd, so as to learn the
corresponding value X = E−1

K (Y ) for which EK(X) = Y . Either way the result of the query is
stored in a triple (Xi,Ki, Yi) and the query history, denoted Q, is the tuple (Q1, . . . , Qq) where
Qi = (Xi,Ki, Yi) is the result of the i-th query made by the adversary and where q is the total
number of queries made by the adversary. The value Xi ⊕ Yi is called ’XOR’-output of the query.
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Without loss of generality, it is assumed that A asks at most only once on a triplet of a key Ki, a
plaintext Xi and a ciphertext Yi obtained by a query and the corresponding reply.

The adversary’s goal is to output two different triplets (G,H,M) and (G′,H ′,M ′) such that
F (G,H,M) = F (G′,H ′,M ′). We impose the reasonable condition that the adversary must have
made all queries necessary to compute F (G,H,M) and F (G′,H ′,M ′). We will in fact dispense the
adversary from having to output these two triplets, and simply determine whether the adversary
has been successful or not by examining its query history Q. Formally, we say that Coll(Q) holds
if there is such a collision and Q contains all the queries necessary to compute it.

Definition 2. (Collision resistance of a compression function) Let F be a blockcipher based
compression function, F : {0, 1}3n → {0, 1}2n. Fix an adversary A. Then the advantage of A in
finding collisions in F is the real number

AdvColl
F (A) = Pr[E

R← BC(n, k); ((G,H,M), (G′ ,H ′,M ′))
R← AE,E−1

:

((G,H,M) 6= (G′,H ′,M ′)) ∧ F (G,H,M) = F (G′,H ′,M ′)].

For q ≥ 1 we write

AdvColl
F (q) = max

A
{AdvColl

F (A)}

where the maximum is taken over all adversaries that ask at most q oracle queries (i.e. E and E−1

queries).

3.2 Security Results

Our discussion will result in a proof for the following upper bound:

Theorem 1. Let F := F TDM as in Definition 1 and n, q be natural numbers with q < 2n. Let
N ′ = 2n − q and let α be any positive number with eq/N ′ ≤ α and τ = αN ′/q (and ex being the
exponential function). Then

AdvColl
F (q) ≤ q2neqτ(1−ln τ)/N ′

+ 4qα/N ′ + 6q/(N ′)2 + 2q/(N ′)3.

The proof is given on page 11 and is a simple corollary of the discussion and lemmas below. As this
theorem is rather incomprehensible, we will investigate what this theorem means for AES-256. The
bound obtained by this theorem depends an a parameter α. We do not require any specific value α
as any α (meeting to the conditions mentioned in Theorem 1) leaves us with a correct bound. For
Theorem 1 to give a good bound one must choose a suitable value for the parameter α. Choosing
large values of α reduces the value of the first term but increases the value of the second term.
There seems to be no good closed for for α as these will change with every q. The meaning of α will
be explained in the proof. We will optimize the parameter α numerically as given in the following
corollary.

Corollary 1. For the compression function Tandem-DM, instantiated with AES-256, any adver-
sary asking less than 2120.4 (backward or forward) oracle queries cannot usually find a collision. In
this case, α = 24.0.
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3.3 Proof of Theorem 1

Analysis Overview. We will analyze if the queries made by the adversary contain the means
of constructing a collision for the compression function F TDM . Effectively we look to see whether
there exist four queries that form a collision (see Figure 2).

To upper bound the probability of the adversary obtaining queries than can be used to construct
a collision, we upper bound the probability of the adversary making a query that can be used as
the final query to complete such a collision. Namely for each i, 1 ≤ i ≤ q, we upper bound the
probability that the answer to the adversary’s i-th query (Ki,Xi)fwd or (Ki, Yi)bwd will allow the
adversary to use the i-th query to complete the collision. In the latter case, we say that the i-th
query is ’successful’ and we give the attack to the adversary.

As the probability depends naturally on the first i − 1 queries, we need to make sure that
the adversary hasn’t already been too lucky with these (or else the probability of the i-th query
being successful would be hard to upper bound). Concretely, being lucky means, that there exists
a large subset of the first i− 1 queries that all have the same XOR output (see below for a formal
definition). Our upper bound thus breaks down into two pieces: an upper bound for the probability
of the adversary getting lucky in one defined specific way and the probability of the adversary ever
making a successful i-th query, conditioned on the fact that the adversary has not yet become lucky
by its (i− 1)-th query.

Analysis Details. Fix numbers n, q and an adversary A asking q queries to its oracle. We upper
bound Pr[Coll

TDM (Q)] by exhibiting predicates Lucky(Q), Win1(Q), Win2(Q) and Win3(Q)
such that Coll

TDM (Q)⇒ Lucky(Q)∨Win1(Q)∨Win2(Q)∨Win3(Q) and then by upper bound-
ing separately the probabilities Pr[Lucky(Q)], Pr[Win1(Q)], Pr[Win2(Q)] and Pr[Win3(Q)]. Then
obviously Pr[Coll(Q)] ≤ Pr[Lucky(Q)]+Pr[Win1(Q)]+Pr[Win2(Q)]+Pr[Win3(Q)]. The event
Lucky(Q) happens if the adversary is lucky, whereas if the adversary is not lucky but makes a
successful i-th query then one of the other predicates hold.

To state the predicates, we need one additional definition. Let a(Q) be a function defined on
query sequences of length q as follows:

a(Q) = max
Z∈{0,1}n

|{i : Xi ⊕ Yi = Z}| is the maximum size of a set of queries

in Q whose XOR outputs are all the same.

The event Lucky(Q) is now defined by

Lucky(Q) = a(Q) > α,

where α is the constant from Theorem 1 (it is chosen depending on n and q by a numerical
optimization process). Thus as α is chosen larger Pr[Lucky(Q)] diminishes. The other events,
Win1(Q), Win2(Q) and Win3(Q) are different in nature from the event Lucky(Q). Simply put,
they consider mutually exclusive configurations on how to find a collision for Tandem-DM (see
Figure 2 for an overview).
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[BL]
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W
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S1

[TR]

[BR]

A2

B2

V ′

W ′

L2
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Figure 2. Generic configuration for a collision if (V = V ′, W = W ′) for the Tandem-DM compression function.

We will call the configuration necessary for, e.g., predicate Win1a(Q) simply 1a. Now, take for
example just this configuration of predicate Win1a(Q) (i.e. all four queries are different and a
collision is found; it will be defined in Definition 3). Formally, the four queries Qi, Qj , Qk, Ql ∈ Q
fit configuration 1a if and only if

(i 6= j) ∧ (i 6= k) ∧ (i 6= l) ∧ (j 6= k) ∧ (j 6= l) ∧ (k 6= l)∧
(Xi ⊕ Yi = Xk ⊕ Yk) ∧ (Xj ⊕ Yj = Xl ⊕ Yl)∧
(Ki = Xj |K(1...n/2)

j ) ∧ (Kj = K
(n/2+1...n)
i |Yi)∧

(Kk = Xl|K(1...n/2)
k ) ∧ (Kl = K

(n/2+1...n)
k |Yk).

We say, that Fit1a(Q) holds if there exist i, j, k, l ∈ {1, 2, . . . , q} such that queries Qi, Qj , Qk, Ql

fit configuration 1a. The other predicates Fit1b(Q), Fit1c(Q), Fit1d(Q), Fit2a(Q), . . . ,Fit2d(Q)
and Fit3a(Q), . . . Fit3d(Q) whose configurations are given in Definition 3 are likewise defined. We
also let Fitj(Q) = Fitja(Q) ∨ . . . ∨ Fitjd(Q) for j = 1, 2, 3.

Definition 3. Fit1(Q): The last query is used only once in position TL. Note that this is equal to
the case where the last query is used only once in position TR.

Fit1a(Q) all queries used in the collision are pairwise different,
Fit1b(Q) BL = TR and BR is different to TL, BL, TR,
Fit1c(Q) BL = BR and TR is different to TL, BL, BR,
Fit1d(Q) TR = BR and BL is different to TL, TR, BR,

Fit2(Q): The last query is used only once in position BL. Note that this is equal to the case where
the last query is used only once in position BR.

Fit2a(Q) all queries used in the collision are pairwise different,
Fit2b(Q) TL = TR and BR is different to TL, BL, TR,
Fit2c(Q) TL = BR and TR is different to TL, BL, BR,
Fit2d(Q) TR = BR and TL is different to BL, TR, BR,

Fit3(Q): The last query is used twice in a collision. Then:

Fit3a(Q) last query used in TL,BL (TL = BL) and TR 6= BR,
Fit3b(Q) last query used in TL,BL (TL = BL) and TR = BR,
Fit3c(Q) last query used in TL,BR (TL = BR) and BL 6= TR,
Fit3d(Q) last query used in TL,BR (TL = BR) and BL = TR.
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In Lemma 1 we will show that these configurations cover all possible cases of a collision.

We now define

Win1(Q) = ¬Lucky(Q) ∧ Fit1(Q),

Win2(Q) = ¬(Lucky(Q) ∨Fit1(Q)) ∧ Fit2(Q),

Win3(Q) = ¬(Lucky(Q) ∨Fit1(Q) ∨ Fit2(Q)) ∧Fit3(Q).

Thus Win3(Q), for example, is the predicate which is true if and only if a(Q) < α (i.e. ¬Lucky(Q))
and Q contains queries that fit configurations 3a, 3b, 3c or 3d but Q does not contain queries fitting
configurations 1a, . . . , 1d, 2a, . . . 2d.

We now show, that Coll
TDM (Q) =⇒ Lucky(Q) ∨Win1(Q) ∨Win2(Q) ∨Win3(Q).

Lemma 1. Coll
TDM (Q) =⇒ Lucky(Q) ∨Win1(Q) ∨Win2(Q) ∨Win3(Q).

Proof. As Fit1a(Q) ∨ . . . ∨ Fit3d(Q) =⇒Win1a(Q) ∨ . . .Win3d(Q), it is sufficient to show that
Coll

TDM(Q) =⇒ Fit1a(Q) ∨ . . . ∨ Fit3d(Q). Now, say Coll
TDM(Q). Then a collision can be

constructed from the queries Q. That is, our query history Q contains queries Qi, Qj , Qk, Ql (see
Figure 2) such that we have a collision, i.e. V = V ′ and W = W ′ and TL 6= TR. Note, that the
last condition suffices to ensure a real collision (a collision from two different inputs).

First assume that the last query is used once in the collision. If it is used in position TL, then
we have to consider the queries BL, TR and BR. If these three queries are all different (and as the
last query is only used once), then Fit1a(Q). If BL = TR and BR is different, then Fit1b(Q). If
BL = BR and TR is different, then Fit1c(Q). If TR = BR and BL is different, then Fit1d(Q).
If BL = TR = BR, then we have BL = BR and TL = TR and this would not result in a collision
since the inputs to the two compression functions would be the same. As no cases are left, we are
done (for the case that the last query is used only in position TL).

If the last query is used once in the collision and is used in position BL, then we have to consider
the queries TL, TR and BR. If these three queries are all different (and as the last query is only
used once), then Fit2a(Q). If TL = TR and BR is different, then Fit2b(Q). If TL = BR and TR

is different, then Fit2c(Q). If TR = BR and TL is different, then Fit2d(Q). If TL = TR = BR,
it follows TL = TR and BL = BR and this would not result in a collision since the inputs to the
two compression functions would be the same. As no cases are left, we are done.

We now analyze the case when the last query is used twice in the collision. First, assume that the
query is used for the positions TL and BL (TL = BL). If TR 6= BR, then Fit3a(Q), if TR = BR,
then Fit3b(Q). Now assume that the query is employed for the pair TL and BR (TL = BR). Note,
that this case is equal to the case where the query is employed for BL and TR. If BL 6= TR, then
Fit3c(Q), if BL = TR, then Fit3d(Q). The other cases, i.e. the last query is employed either for
TL = TR or BL = BR, do not lead to a real collision as this would imply the same compression
function input. As no cases are left, we are done.

If the last query is used more than twice for the collision we do not get a real collision as this
case would imply either TL = TR or BL = BR and we have the same input, again, for both
compression functions. �

The next step is to upper bound the probability of the predicates Lucky(Q), Win1(Q), Win2(Q)
and Win3(Q).
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Lemma 2. Let α be as in Theorem 1. If α > e and τ = N ′α/q, then

Pr[Lucky(Q)] ≤ q2neτν(1−ln τ).

The proof is quite technical and is given in Appendix A.

Lemma 3. Pr[Win1(Q)] ≤ qα/N ′ + 2q/(N ′)2 + q/(N ′)3.

Proof. As Win1(Q) = ¬Lucky(Q)∧Fit1(Q), we will upper bound the probabilities of Fit1a(Q),
Fit1b(Q), Fit1c(Q) and Fit1d(Q) separately in order to get an upper bound for Pr[Fit1(Q)] ≤
Fit1a(Q) + . . . + Fit1d(Q). We will use the notations given in Figure 3.

[TL]

[BL]

Xi

Ki,1

V

W

Ki,2

Yi

S1

[TR]

[BR]

A2

B2

V ′

W ′

L2

R2

S2

Figure 3. Notations used for Win1(Q)

Let Qi denote the first i queries made by the adversary. The term ’last query’ means the latest
query made by the adversary (we examine the adversary’s queries (Ki,Xi)fwd or (Ki, Yi)bwd one at
a time as they come in). The last query is always given index i. We say the last query is successful
if the output Xi or Yi for the last query is such that a(Qi) < α and such that the adversary can
use the query (Xi,Ki, Yi) to fit the configuration given in Figure 3 using only queries in Qi (in
particular, the last query must be used once in the fitting for that query to count as successful).
The goal is thus to upper bound the adversary’s chance of ever making a successful last query. The
basic setup for upper bounding the probability of success in a given case is to upper bound the
maximum number of different outputs Yi or Xi (depending on whether the last query is a forward
or a backward query) that would allow the query (Xi,Ki, Yi) to be used to fit the configuration,
and then divide this number by N ′ = 2n − q (since either Yi or Xi, depending, is chosen randomly
among a set of at least 2n−q different values). The ratio is then multiplied by q, since the adversary
makes q queries in all, each of which could become a successful last query.

(i) Fit1a(Q): The last query, wlog. (Xi,Ki,1|Ki,2, Yi), is used in position TL. We do not care
whether the last query was a forward or backward query since the analysis below is the
same. All queries are, as claimed, pairwise different. We give the adversary for free the an-
swer to the forward query BL, (Ki,1,Ki,2|Yi, S1). Then we have V = Yi ⊕ Xi and W =
S1⊕Ki,1. This pair of queries is successful if the adversary’s query history Qi−1 contains a pair
(A2, B2|L2, R2), (B2, L2|R2, S2) such that V = Xi ⊕ Yi = R2 ⊕ A2 = V ′ and W = S1 ⊕Ki,1 =
S2 ⊕B2 = W ′. There are at most α queries in Qi−1 that can possibly be used for query in TR

that all lead to a collision in the top row, i.e. V = V ′. Therefore we have at most α possibilities
for the query in BRsince the query in TR uniquely determines the query BR. Thus, the last
query has a chance of ≤ α/N ′ of succeeding. So the total chance of making a successful query
of this type is ≤ qα/N ′.
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(ii) Fit1b(Q): Again, the last query, wlog. (Xi,Ki,1|Ki,2, Yi), is used in position TL. We give the
adversary for free the answer to the forward query BL, (Ki,1,Ki,2|Yi, S1). By our claim, as
BL=TR, we have A2 = Ki,1, B2 = Ki,2, L2 = Yi and R2 = S1. It follows that for any given
query i for TL, we have at most one query for TR to form a collision V = V ′ (as the query TL

uniquely determines the query BL and the queries BL and TR are equal) and therefore have
at most one query BR in our query history to form a collision W = W ′. The last query has a
chance of ≤ 1/(N ′ ·N ′) of succeeding and so the total chance of making a successful query in
the attack is ≤ q/(N ′)2.

(iii) Fit1c(Q): As this analysis is essentially the same as for Fit1b(Q) we conclude with a total
chance of success for this type of query of ≤ q/(N ′)2.

(iv) Fit1d(Q): Again, the last query, wlog. (Xi,Ki,1|Ki,2, Yi), is used in position TL. We give the
adversary for free the answer to the forward query BL, (Ki,1,Ki,2|Yi, S1). Note, that this query
is trivially different from the query in TL as we assume that the last query is only used once in
this configuration (the case in which the two queries, TL and BL, are equal is discussed in the
analysis of Win3(Q)). We have V = Yi ⊕Xi and W = S1 ⊕Ki,1. As by our claim, we assume
TR = BR. The pair of queries for TL and BL is successful if the adversary’s query history
Qi−1 contains a query (A2, B2|L2, R2) such that V = R2 ⊕ A2 = V ′ and W = R2 ⊕ A2 = W ′,
i.e. V = W = V ′ = W ′. Moreover, it follows from B2 = R2 = L2 that V = W = V ′ = W ′ = 0.
As at least three of them are chosen randomly by the initial query input (wlog. V,W, V ′), the
query has a chance of success in the i-th query ≤ 1/(N ′ ·N ′ ·N ′) and therefore a total chance
of success ≤ q/(N ′)3.

The claim follows by adding up the individual results.
�

Lemma 4. Pr[Win2(Q)] ≤ qα/N ′ + 2q/(N ′)2 + q/(N ′)3.

As the proof and the result is (in principle) identical to the proof of Pr[Win1(Q)] we omitted the
details of the proof.

Lemma 5. Pr[Win3(Q)] ≤ 2qα/N ′ + 2q/(N ′)2

Proof. The same notations and preliminaries as in the proof of Lemma 3 are used.

(i) Win3a(Q): The last query, wlog. (Xi,Ki,1|Ki,2, Yi) is used in positions TL and BL. We do not
care whether the last query is a forward or backward query since the analysis is the same. It
follows, that Xi = Ki,1 = Ki,2 = Yi and therefore V = Xi ⊕ Yi = W = 0. We assume that
the adversary is successful concerning these restraints, i.e. has found a query TL that can also
be used for BL such as Xi = Yi = Ki,1 = Ki,2. (Note, that this condition is quite hard.) We
do have at most α queries in Qi−1 that can possibly be used for a query in TR and that lead
to a collision in the top row, i.e. 0 = V = V ′. For every such query TR we have at most one
corresponding query in Qi−1 that can be used in position BR. So the last query has a chance of
≤ α/N ′ of succeeding and so the total chance of making a successful query of this type during
the attack is ≤ qα/N ′.

(ii) Win3b(Q): The last query, wlog. (Xi,Ki,1|Ki,2, Yi) is used in positions TL and BL. We do not
care whether the last query is a forward or backward query since the analysis is the same. It
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follows, that Xi = Ki,1 = Ki,2 = Yi and therefore V = Xi⊕Yi = W = 0. We assume again that
the adversary is successful concerning these restraints, i.e. has found a query TL that can also
be used for BL. We do have at most α queries in Qi−1 that can possibly be used for a query in
TR and that lead to a collision in the top row, i.e. 0 = V = V ′. We assume that we can use any
such query equally as the corresponding query for BR. In reality, this gives the adversary with
high probability more power than he will have. Thus, the last query has a chance of ≤ α/N ′ of
succeeding and so the total chance of making a successful query of this type during the attack
is ≤ qα/N ′. As discussed above, this upper bound is likely to be generous.

(iii) Win3c(Q): The last query, wlog. (Xi,Ki,1|Ki,2, Yi) is used in positions TL and BR. Note, that
this situation is equal to the last query being used in position BL and TR. We do not care
whether the last query is a forward or backward query. We give the adversary for free the
answer to the forward query BL, (Ki,1,Ki,2|Yi, S1). We also give the adversary for free the
answer to the backward query TR, (A2,Xi|Ki,1,Ki,2). The probability for the i-th query to be
successful is equal to Pr[V = V ′] · Pr[W = W ′], and as W and V ′ are guaranteed to be chosen
independently and randomly the chance of success is ≤ 1/(N ′)2. The total chance of success is
therefore ≤ q/(N ′)2.

(iv) Win3d(Q): The last query, wlog. (Xi,Ki,1|Ki,2, Yi) is used in positions TL and BR. Note, that
this situation is equal to the last query being used in position BL and TR. We do not care
whether the last query is a forward or backward query. We give the adversary for free the answer
to the forward query BL, (Ki,1,Ki,2|Yi, S1). (This query is also used for position TR and it
follows (by comparing the input values of query BL that is used for TR with them of BR)
Ki,2|Yi = Xi|Ki,1 and S1 = Ki,2. Comparing the outputs we get a collision in the top row of
the compression functions Pr[V = V ′] = Pr[EKi,1|Ki,2

(Xi) ⊕Xi = EKi,2|Yi
(Ki,1) ⊕Ki,1], where

Yi = EKi,1|Ki,2
, with probability ≤ 1/N ′. This is, because the input values Xi,Ki,1,Ki,2 have to

be in such a way that the two inputs to the E oracle are different (if they are not, we wold have
no colliding inputs for the two compression functions). For the bottom row of the compression
function we get, similarly, a collision with probability ≤ 1/N ′. So the total chance for succeeding
is in this case ≤ q/(N ′)2 as we have again at most q queries by the adversary.

�

We now give the proof for Theorem 1.

Proof. (of Theorem 1)
The proof follows directly with Lemma 1, 2, 3, 4 and Lemma 5. �

4 Preimage Resistance

Although, the main focus is on collision resistance, we are also interested in the difficulty of inverting
the compression function of Tandem-DM. Generally speaking, second-preimage resistance is a
stronger security requirement than preimage resistance. A preimage may have some information
of another preimage which produces the same output. However, in the ideal cipher model, for the
compression function Tandem-DM, a second-preimage has no information useful to find another
preimage. Thus, only preimage resistance is analyzed. Note, that there have be various results that
discuss attacks on iterated hash functions in terms of pre- and second-preimage, e.g. long-message
second-preimage attacks [6, 17], in such a way that the preimage-resistance level cannot easily be
transferred to an iterated hash function built on it.
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The adversary’s goal is to output a preimage (G,H,M) for a given σ, where σ is taken randomly
from the output domain, such as F (G,H,M) = σ. As in the proof of Theorem 1 we will again
dispense the adversary from having to output such a preimage. We will determine whether the
adversary has been successful or not by examining its query history Q. We say, that PreImg(Q)
holds if there is such a preimage and Q contains all the queries necessary to compute it.

Definition 4. (Inverting random points of a compression function) Let F be a blockcipher
based compression function, F : {0, 1}3n → {0, 1}2n. Fix an adversary A that has access to oracles
E,E−1. Then the advantage of A of inverting F is the real number

AdvInv
F (A) = Pr[E

R← BC(n, k);σ
R← {0, 1}2n : (G,H,M)

R← AE,E−1

(σ) : F (G,H,M) = σ].

Again, for q ≥ 1, we write

AdvInv
F (q) = max

A
{AdvInv

F (A)}

where the maximum is taken over all adversaries that ask at most q oracle queries.
Note, that there has been a discussion on formalizations of preimage resistance. For details we

refer to [2, Section 2, Appendix B].

4.1 Preimage Security

The preimage resistance of the compression function Tandem-DM is given in the following Theo-
rem.

Theorem 2. Let F := F TDM be as in Definition 1. For every N ′ = 2n − q and q > 1

AdvInv
F (q) ≤ 2q/(N ′)2.

Proof. Fix σ = (σ1, σ2) ∈ {0, 1}2n where σ1, σ2 ∈ {0, 1}n and an adversary A asking q queries to
its oracles. We upper bound the probability that A finds a preimage for a given σ by examining
the oracle queries as they come in and upper bound the probability that the last query can be used
to create a preimage, i.e. we upper bound Pr[PreImg(Q)]. Let Qi denote the first i queries made
by the adversary. The term ’last query’ means the latest query made by the adversary since we
examine again the adversary’s queries (Ki,Xi)fwd or (Ki,Xi)bwd one at a time as they come in.
The last query is always given index i.

Case 1: The last query (Xi,Ki, Yi) is used in the top row. Either Xi or Yi was randomly assigned by
the oracle from a set of at least the size N ′. The query is successful in the top row if Xi⊕Yi = σ1

and thus has a chance of success of ≤ 1/N ′. In Qi−1 there is at most one query Qj that matches
for the bottom row. If there is no such query in Q we give this query Qj the adversary for
free. This ’bottom’ query is successful if Xj ⊕ Yj = σ2 and therefore has a chance of success of
≤ 1/N ′. So the total chance of success after q queries is ≤ q/(N ′)2

Case 2: The last query (Xi,Ki, Yi) is used in the bottom row. The analysis is essentially the same
as in case 1. The total chance of success if ≤ q/(N ′)2, too.

As any query can be either used in the top or the bottom row the claim follows.
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5 Discussion and Conclusion

In this paper, we have investigated the security of Tandem-DM, a long outstanding DBL com-
pression function based on an (n, 2n)-blockcipher. In the ideal cipher model, we showed that this
construction has birthday-type collision resistance. As there are some generous margins in the proof
it is likely, that Tandem-DM is even more secure. Our bound for preimage resistance is far from
optimal, but we have not found an attack that would classify this bound as tight.

Somewhat surprisingly, there seems to be only one practical rate 1/2 DBL compression function
that also has a birthday-type security guarantee. It was presented at FSE’06 by Hirose [14]. Taking
into account that it was presented about 15 years after Tandem-DM, it is clear that there needs
still to be a lot of research done in the field of blockcipher based hash functions, e.g. there are still
security proofs missing for the aforementioned Abreast-DM and MDC-4 compression or hash
functions.
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A Proof of Lemma 2

We can rephrase the problem of upper bounding Pr[Lucky(Q)] = Pr[a(Q) > α] as a balls-in-bins
question. Let N = 2n be the number of bins and q be the number of balls to be thrown. The i-th
ball falls into the j-th bin if the XOR output of the i-th query is equal to the XOR output of the
j-th query, i.e. Xi ⊕ Yi = Xj ⊕ Yj . In the following we will upper bound the probability that some
bin contains more than α balls. As the balls are thrown independent of each other, the i-th ball
always has probability ≤ p = 1/(2n − q) of falling in the j-th bin. This is because the XOR output
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of the i-th query is chosen uniformly at random from a set of size at least 2n− q. If we let B(k) be
the probability of having exactly k balls in a particular bin, say bin 1, then

B(k) ≤ pk

(

q

k

)

.

Let ν = qp, where ν is an upper bound for the expected number of balls in any bin. By Stirlings
approximation [8] (and ex being the exponential function)

n! ≤
√

2πn ·
(n

e

)n
· e1/(12n)

we can upper bound B(k) as follows

B(k) ≤ pk q!

k!(q − k)!

≤ pk

√
2π

√

q

k(q − k)
· qq

kk(q − k)1−k
· e

k · eq−k

eq
· e 1

12
(q−k−(q−k))

≤ k−kνk

(

q

q − k

)

≤ νk · k−k · ek.

Since α = τν we get

B(α) ≤ ντνeτν

(τν)τν
=

eτν

τ τν
= eτν(1−ln τ).

As B(α) is a decreasing function of α if (1− ln τ) < 0. It follows that B(α) is a decreasing function
if α > e. And so we have

Pr[a(Q) > α] ≤ 2n ·
q

∑

j=α

B(j)

≤ q2nB(α) ≤ q2neτν(1−ln τ).

This proves our claim. �

B Security of the FSE’06 Proposal by Hirose for a DBL Compression Function

At FSE’06, Hirose [14] proposed a DBL compression function (Definition 5 and Figure 4). He proved
that when this compression function FHirose is employed in an iterated hash function H, that no
adversary asking less than 2126.71 (assuming AES-256 as the blockcipher) can have an even chance
in finding a collision. As he has not stated a security result for the compression function we do here
for comparison with Tandem-DM.
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B.1 Compression Function

Definition 5. Let FHirose : {0, 1}2n × {0, 1}n → {0, 1}2n be a compression function such that
(Gi,Hi) = FHirose(Gi−1,Hi−1,Mi) where Gi,Hi,Mi ∈ {0, 1}n. FHirose is built upon a (n, 2n)-
blockcipher E as follows:

Gi = FT (Gi−1,Hi−1,Mi) = E(Gi−1,Hi−1|Mi)⊕Gi−1

Hi = FB(Gi−1,Hi−1,Mi) = E(Gi−1 ⊕ C,Hi−1|Mi)⊕Gi−1 ⊕ C,

where | represents concatenation and c ∈ {0, 1}n − {0n} is a constant.

A visualization of this compression function is given in the following Figure 4.

E

E

Gi−1

Hi−1

Gi

Hi

Mi

C

Figure 4. The compression function F Hirose, E is an (n, 2n)-blockcipher, the small rectangle inside the cipher
rectangle indicates the position of the key

B.2 Security of Compression Function

As the security proof of Hirose [14, Theorem 4] only states the collision resistance of a hash function
built using FHirose we will give a security proof for the compression function alone. In particular,
we will show

Theorem 3. Let F := FHirose be a compression function as in Defintion 5. Then,

AdvColl
F (q) ≤ 2q2

(2n − 2q)2
+

2q

2n − 2q
.

In numerical terms, it means that no adversary performing less than 2124.55 oracle calls has more
than an even chance, i.e. 0.5, in finding a collision.

Due to the special structure of the compression function, the following definition is useful for
the proof.

Definition 6. A pair of distinct inputs (Gi−1,Hi−1,Mi), (G
′
i−1,H

′
i−1,M

′
i) to FHirose is called a

matching pair if (G′
i−1,H

′
i−1,M

′
i) = (Gi−1,Hi−1,Mi⊕C. Otherwise they are called a non-matching

pair.
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Note, that the proof is essentially due to Hirose [14], but as he stated it only for the hash
function and not for the compression function itself. We will give a proof here for the compression
function.

Proof. Let A be an adversary that asks q queries to oracles E,E−1. Since

Gi = E(Gi−1,Hi−1|Mi)⊕Gi−1

depends both on the plaintext and the ciphertext of E and one of them is fixed by a query and the
other is determined by the answer it follows that Gi is determined randomly. We give the adversary
for free the answer to the query for Hi. Let (Xi,Ki,1|Ki,2, Yi) and (Xi ⊕ C,Ki,1|Ki,2, Zi) be the
triplest of E obtained by the i-th pair of queries and the corresponding answers.

For every 2 ≤ i ≤ q, let Ci be the event that a colliding pair of non-matching inputs are found
for F with the i-th pair of queries. Namely, it is the event that, for some i′ < i

F (Xi,K1,i,K2,i) = F (Xi′ ,K1,i′ ,K2,i′) or F (Xi′ ⊕ C,K1,i′ ,K2,i′)

or

F (Xi ⊕ C,K1,i,K2,i) = F (Xi′ ,K1,i′ ,K2,i′) or F (Xi′ ⊕ C,K1,i′ ,K2,i′)

which is equivalent to

(Yi ⊕Xi, Zi ⊕Xi ⊕ C) = (Yi′ ⊕Xi′ , Zi′ ⊕Xj′ ⊕ C) or (Zi′ ⊕Xi′ ⊕C, Yi′ ⊕Xj′).

It follows, that

Pr[Ci] ≤
2(i− 1)

(2n − (2i − 2))(2n − (2i− 1))
≤ 2q

(2n − 2q)2
.

Let C be the event that a colliding pair of non-matching inputs are found for FHirose with q (pairs)
of queries. Then,

Pr[C] ≤
q

∑

i=2

Pr[Cj] ≤
q

∑

i=2

2q

(2n − 2q)2
≤ 2q2

(2n − 2q)2
.

Now, let Ĉi be the event that a colliding pair of matching inputs is found for F . It follows, that

Pr[Ĉi] ≤
2

(2n − 2q)
.

Let Ĉ be the event that a colliding pair of matching inputs are found for FHirose with q (pairs) of
queries. Then,

Pr[Ĉ] ≤
q

∑

i=2

Pr[Ĉi] ≤
2q

2n − 2q
.

Since AdvColl
F (q) = Pr[C ∨ Ĉ] ≤ Pr[C] + Pr[Ĉ], the claim follows.
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